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ABSTRACT

Chaotic systems have been extensively applied in image encryption as a source of randomness. However, dynamical degradation has been
pointed out as an important limitation of this procedure. To overcome this limitation, this paper presents a novel image encryption scheme
based on the pseudo-orbits of 1D chaotic maps. We use the di�erence of two pseudo-orbits to generate a random sequence. The generated
sequence has been successful in all NIST tests, which implies it has adequate randomness to be employed in encryption process. Confusion
and di�usion requirements are also e�ectively implemented. The usual low key space of 1D maps has been improved by a novelty procedure
based on multiple perturbations in the transient time. A factor using the plain image is one of the perturbation conditions, which ensures a
new and distinct secret key for each image to be encrypted. The proposed encryption scheme has been e�caciously veri�ed using the Lena,
Baboon, and Barbara test images.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099261

Chaotic systems have been widely applied to cryptosystems. How-
ever, the use of chaoticmapshas beenquestionedby thedynamical
degradation due to �nite precision in computers. As a conse-
quence, there is a signi�cant concern on the robustness of chaos-
based encryption schemes. In this paper, we apply the concept of
pseudo-orbit to the generation of random sequence. Instead of
using the chaotic systems directly, we have employed the error
appearing due to the computer �nite precision, which can be esti-
mated as the di�erence of two pseudo-orbits. Another important
feature of our proposal is related to the key space. Using a novelty
procedure based on multiple perturbations during the transient
time, we have been able to increase the usually low key space of
1Dmaps. As 1Dmaps are very simple to implement, the proposed
scheme is compelling. The generated sequence has been successful

in all NIST tests, which implies it has adequate randomness to be
utilized in encryption process. The proposed technique has been
successfully tested for di�erent images and compared with other
methods presented in the literature.

I. INTRODUCTION

Over the recent years, chaotic systems have been explored in
many diverse �elds, such as sensors design, location systems, and
information security.1–3 Encryption algorithms have received great
attention over the last few decades due to an exponential increase
in the data tra�c.4 There are many works with di�erent approaches
investigating the chaos applications in cryptography. For instance,
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Wu et al.5 have elaborated a cryptosystem using the operations of
DNA confusion and di�usion, with the joint of two chaotic systems.
Gao and Che6 have used logistic map and hyperchaotic Chen’s sys-
tem to encrypt images. Lastly, Rostami et al.7 applied the logistic map
creating a fast encryption scheme suitable for parallel processing.

Alongside the cryptographic studies, many works have reported
dynamical degradation of chaotic properties due to the �nite pre-
cision e�ects.8–10 Notably, Cao et al.9 have exhibited a case of chaos
suppression in the logistic map for a speci�c set of parameters. A
great e�ort has been undertaken tomitigate such problems andmany
strategies have been reported. These approaches can be categorized
into four general types: (a) using high �nite precision calculations,11

(b) coupling or cascading chaotic systems,12,13 (c) switching between
multiple chaotic systems,14 and (d) perturbation chaotic systems
by means of a pseudorandom process.15 Although these strategies
have shown some advances, chaotic-based encryption has still been
reported to be vulnerable to known/chosen plaintext attacks.10,16 All
these factors determine the di�culties to e�ciently use simple 1D
chaotic maps, such as logistic map or tent map,17 in encryption algo-
rithms. In addition, these 1Dmaps present only one initial condition,
which results in a poor key space. Nevertheless, 1D maps are still
appealing as they have a simple structure and are easy to implement
in hardware.18

Therefore, a chaos-based encryption scheme, which could
reduce the digital degradation of 1D chaos systems with a large key
space and good security properties, should be a desired solution. The
novelty of this paper and its contribution are as follows. We present
a method to mitigate the chaos degradation using two pseudo-orbits
derived from two natural interval extensions. The initial condition is
perturbed by a set of values. The perturbation conditions are chosen
to appear after a few iterations that guarantee the loss of all signi�-
cant digits according to critical time simulation.19 The logistic map
is chosen as a simple discrete chaotic system. In order to generate a
single pseudorandom sequence, we have used the lower bound error
operation.20,21Very recently, the concept of pseudo-orbit and interval
extensions has successfully been applied to compute the Lyapunov
exponent.22 The e�ciency of our proposal is shown through the per-
formance analysis while encrypting three images. Experiments show
that the proposed scheme has a good performance upon the follow-
ing criteria: NIST SP 800-22, key space, key sensitive, correlation of
adjacent pixels, information entropy, histogram, di�erential attacks,
and information loss.

The remainder of this paper is organized as follows. Section II
presents an overview of preliminary concepts used to de�ne the
designed scheme in Sec. III. Results as well as the discussion are
shown in Sec. IV. Finally, Sec. V presents concluding remarks and
further work analysis.

II. THE LOWER BOUND ERROR

Moore et al.23 have described interval extensions, which are the
basis for the lower bound error theorem. They de�ned an interval X
as [X,X] = x : X ≤ x ≤ X.When considering the logisticmap,24 two
examples of interval extensions are

F(Xn) = rXn(1 − Xn), (1)

G(Yn) = rYn − rYnYn. (2)

Equations (1) and (2) aremathematically equivalent. However, due to
the limitation of the numerical representation,25,26 the two pseudo-
orbits diverge exponentially. A simple procedure to estimate the
simulation error is the lower bound error.20,21

De�nition II.1. Simulating two di�erent natural interval
extensions and giving the corresponding pseudo-orbits x̂a,n and x̂b,n, the
lower bound error δ is given by Ref. 20: δ = |x̂a,n − x̂b,n|/2.

III. THE 1D CHAOS-BASED SCHEME

The proposed scheme can be summarized in the following
steps:9,27

Step 1: Choose the initial condition and perturbation values

M = [m1 m2 m3 m4 m5 ci], (3)

where m1 ∈ [0; 1] is the initial condition of the chaotic system.
The parametersmi ∈ (0; 1), i = 2, . . . , 5, are the perturbation values.
Here, we have chosen four perturbation values, but their numbers
can be easily increased, which will lead to a corresponding increase
in the parameter space. ci is also a perturbation value, but it depends
only on the image to be ciphered, and it is de�ned by

ci =
1

(L × W)2

L∑

i=1

W∑

j=1

Ip(i, j), (4)

where L and W are the length and width, respectively, and i and j
are the coordinates of the plain image Ip. Moreover, each pixel of the
matrix Ip can range from 0 to 255, for a grayscale image.
Step 2: Update the �rst initial condition [X0 = Y0 = M(1, 1)] and the
parameter r of the logistic map.
Step 3: From two natural interval extensions, simulate the 1D map
twice tr + L × W − 1 times. The tr points are discarded transient
response. After k × 100 iterations, k = 1, 2 . . . , 6, the two interval
extensions are perturbed with the vectorM,

Xn+1 = mod (Xn+1 + M(k, 1), 1), (5)

Yn+1 = mod (Yn+1 + M(k, 1), 1), (6)

where mod is the module operation. One hundred iterations are
su�cient to guarantee the loss of all signi�cant digits in a double-
precision �oating-point format.19,28

Step 4: Calculate the lower bound error K given by

K =
|X − Y|

2
. (7)

Step 5: The standardization process is as follows:

Ks = uint8(mod(K/min(K)) × 256, 256), (8)

where uint8 is an algorithm to convert double-precision numbers in
unsigned integer 8-bit numbers.
Step 6: Transform the vector key K into a matrix, using the reshape
algorithm,

Ks = reshape(Ks, [L,W]). (9)

Step 7: Obtain the cipher image Ic applying the bit-wise xor opera-
tion between Ip and Ks,

Ic(i, j) = Ip(i, j) ⊕ Ks(i, j). (10)
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FIG. 1. Outline of the main novelty steps of the proposed encryption scheme
based in the lower bound error.20,21

Figure 1 outlines the encryption scheme. The use of 1D map with
multiple perturbation values and the lower bound error are the novel
features of the proposed algorithm. It is important to notice that the
scheme proposed here can be easily adapted to colored image. For
instance, the generation of key stream can be done following the
method designed in Ref. 29.

IV. RESULTS AND DISCUSSION

To validate the proposed encryption scheme, the following
tests were performed: NIST SP 800-22 test, key space analysis, the
correlation of adjacent pixels, information entropy, histogram, key
sensitivity, di�erential analysis, and cropping attack.

The following parameters have been used to generate the key
stream: r = 3.99, M = [0.10.20.30.40.5ci], tr = 700. We used two
natural interval extensions given by Eqs. (1) and (2). The param-
eters ci for Lena, Baboon, and Barbara are 4.731 966 182 589 531 ×

10−4, 4.997 396 608 814 597 × 10−4, and 4.478 178 161 662 072 ×

10−4, respectively.

A. NIST SP 800-22 test

NIST SP 800-22 consists of 15 tests and has been extensively
used to verify the pseudorandom features of a sequence.9,30–32 The
test provides a P-value at a level of signi�cance α. If P-value≥ α, then
the sequence passes the test, and it can be considered as random.9,30

Table I shows the P-value for 15 tests. The sequence tested had a bit
stream length equal to 1 000 000, α = 0.01, and it was obtained from
an adjustment of Eq. 8 (Ks = uint16(mod(K/min(K)) × 216, 216), in
order to obtain a long sequence. All the tests have been successful as
the P-value ≥ 0.01.

TABLE I. Results of the NIST test for the proposed cryptosystem. All the tests have

been successful as the P-value ≥ 0.01.

Statistical test P-value Result

Frequency 0.935 716 Passed
Block frequency (m = 128) 0.798 139 Passed
Cusum-forward 0.122 325 Passed
Cusum-reverse 0.554 420 Passed
Runs 0.181 557 Passed
Long runs of ones 0.171 867 Passed
Rank 0.816 537 Passed
Spectral Discrete Fourier Transform (DFT) 0.075 719 Passed
Nonoverlapping templates (m = 9) 0.262 249 Passed
Overlapping templates (m = 9) 0.383 827 Passed
Universal 0.080 519 Passed
Approximate entropy (m = 10) 0.964 295 Passed
Passed excursions (x = +1) 0.155 209 Passed
Passed excursions variant (x = −1) 0.970 538 Passed
Linear complexity (M = 500) 0.262 249 Passed
Serial (m = 16, ∇92

m ) 0.616 305 Passed

B. Key space

A secure cryptosystem must have a key space larger than 2100

to be robust against brute-force attacks.3,33,34 Our algorithm contains
one initial condition and four perturbation values with the approx-

imate key space of 253
5
. We consider a factor that is the average of

the image pixel values, which represents a key space 512 × 512 = 218.
Hence, the overall scheme key space is 2283, which is larger than the
required minimum.

C. Correlation analysis of adjacent pixels

In a plain image, the correlation coe�cient is close to one, indi-
cating high correlation among pixels. On the other hand, encrypted
images display correlation coe�cients close to zero.34The correlation
coe�cients are given by35

ρ(X,Y) =
E[(X − µX)(Y − µY)]

σXσY

, (11)

TABLE II. The correlation coefficients for the test images. The correlation for each

original and encrypted image is given. Encrypted images display values near to zero,

which are expected for strong encryption schemes. (O) stands for original and (C) for

ciphered image.

Correlation coe�cient

Image Horizontal Vertical Diagonal

Lena (O) 0.973 23 0.986 48 0.960 31
Lena (C) −0.002 51 −0.002 92 −0.001 56
Baboon (O) 0.869 98 0.829 20 0.800 18
Baboon (C) −0.001 80 0.000 66 −0.001 28
Barbara (O) 0.895 39 0.958 87 0.883 04
Barbara (C) 0.000 11 0.003 46 0.001 84
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(a)

(b)

(c)

(I) (II) (III) (IV)

FIG. 2. Histograms for plain and ciphered images. The second and fourth columns exhibit the histograms for the plain and encrypted images, respectively. Although the
plain image displays a significant presence of particular gray value, our encryption algorithm converts the plain image to a noiselike image with uniform distribution of pixels.
Table III evidences the significant reduction of variance.

where µ, σ , and E are the mean, the standard deviation, and expec-
tation values for the variables X and Y , respectively. Table II shows
that correlation coe�cients for the encrypted images are very close
to zero, which con�rms the applicability of the proposed algorithm.

D. Entropy analysis

An estimation of randomness using entropy is given by36

H(X) =

2N−1∑

i=1

Pi log2
1

Pi

, (12)

whereH(X) is the entropy in bits, X is an input variable, and Pi is the
likelihood estimation of variable X. For a ciphered image,H(X) ≈ 8.
The entropy value for Lena, Baboon, and Barbara is 7.999 3. The
information entropy of the ciphered image should be close to 8 after
encryption. The closer it gets to 8, the less feasible for the cryptosys-
tem to unveil information.29 Therefore, as the calculated entropy is

very close to 8 for the three images, the probability of information
leakage is very little.

E. Histogram analysis

It is expected to obtain uniform histograms for the encrypted
images.33,37 Figure 2 displays the results of histogram analysis for test
images. Note the reduction of pixel variance between the plain and
encrypted images. Table III shows the respective variances, according
to Eq. (13),37,38 as

Var(h) =
1

G2
L

GL−1∑

i=0

GL−1∑

j=0

1

2
(hi − hj)

2, (13)

where GL = 256 is the gray level and h is the vector of the histogram
values. The variances were signi�cantly reduced. The percentage
reduction between the cipher and plain images is greater than 99.7%
in all cases, which is a superior level comparing to 99.1% obtained in
Ref. 39.
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TABLE III. Histogram variances for the test images. The third column demonstrates

that the level of decrease in variance of the cipher image is in contrast to the plain

image.

Variance

Image Plain Ciphered Reduction (%)

Lena 643 270.56 1000.18 99.84
Baboon 847 461.35 990.11 99.88
Barbara 383 694.31 963.07 99.75

F. Key sensitivity analysis

Based on the methodology described by Zhang,38 we analyze
how the key stream changes when minor disturbances are intro-
duced. The values of vectorM, one at a time, are perturbed by a factor
equal to 10−14, and the encryption process is performed, getting C2.
The di�erence between the ciphered images is quanti�ed by38

Di�1(%) =
100

L × W

L∑

i=1

W∑

j=1

|sign(C1(i, j) − C2(i, j))|, (14)

where L andW are the length andwidth of the cipher imagesC1 (with
no perturbed values) and C2. From the key stream obtained via per-
turbations as vectorM, we perform the decryption process using C1,
getting P2. Equation (15) quanti�es the di�erence between the plain
images P1 and P2,

Di�2(%) =
100

L × W

L∑

i=1

W∑

j=1

|sign(P1(i, j) − P2(i, j))|. (15)

Table IV displays the di�erences using Eqs. (14) and (15) in the
Lena image test. As it has been expected, the outcome is completely
di�erent.

G. Differential analysis

The number of changing pixel rate (NPCR) is described by
Eq. (16), while the uni�ed average changed intensity (UACI) is
described by Eq. (17). These two indexes allow measuring the vul-
nerability to di�erential attacks.38 To perform this test, two plain
images are encrypted, with the particular attention that one of the

TABLE IV. Results of key sensitivity analysis for the Lena image. Levels near to 100%

suggest completely different images.

Secret key Di�1 (%) Di�2 (%)

0.1 + 10−14 99.59 99.59
0.2 + 10−14 99.62 99.62
0.3 + 10−14 99.62 99.62
0.4 + 10−14 99.61 99.61
0.5 + 10−14 99.59 99.59
b + 10−14 99.61 99.61

TABLE V. NPCR and UACI results. The encryption is successful according to the

criteria established in Ref. 40.

Image NPCR (%) UACI (%) Decision

Lena 99.61 33.46 Passed
Baboon 99.61 33.48 Passed
Barbara 99.60 33.43 Passed

plain images has a randomly chosen pixel with a modi�ed value,

NPCR (%) =
100

L × W

L∑

i=1

W∑

j=1

|sign(C1(i, j) − C2(i, j))|, (16)

UACI (%) =
100

L × W

L∑

i=1

W∑

j=1

|C1(i, j) − C2(i, j)|

255
, (17)

where L and W are the length and width of the ciphered image Ci.
Table V displays the NPCR and UACI scores from distinct images.
The proposed scheme has been successfully tested considering the
critical values provided by Wu et al.40

H. Cropping attack

To analyze the robustness against cropping attack, we con-
verted some 512 × 256 blocks of a ciphered image into black.37,41

Figure 3 displays the ciphered images with blackened blocks and
the decrypted images. Even with signi�cant information loss, the
decrypted Lena image is still recognizable. To achieve this result, a
step has been added in the main algorithm.

Step A: The vector K in Eq. (7) is sorted in the ascending order
using the MATLAB function [a, b]=sort(K). Before the xor oper-
ation, the position of pixels is scrambled using the index b obtained
from the sort function.

FIG. 3. Results of cropping attack. The first line displays the ciphered images,
while the second line shows the respective decrypted images. Even in hard situa-
tion of 50% data-loss, our encryption scheme has been able to recover an original
image.
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TABLE VI. Performance comparison using the Lena image (512 × 512). With a

very simple 1D chaotic system, our encryption algorithm possesses similar or better

performance than the other methods described in the literature.42–45

Criteria Ours Ref. 42 Ref. 43 Ref. 44 Ref. 45

Key space 2283 2128 ≈2219 ≈2268 2280

Entropy 7.999 3 . . . 7.998 3 7.999 3 7.999 3
CC—H −0.002 1 −0.002 1 0.032 1 −0.004 5 0.001 7
CC—V −0.002 9 −0.016 2 0.0272 −0.000 2 −0.002 2
CC—D −0.001 6 0.017 8 0.038 4 0.005 3 −0.000 9
NPCR (%) 99.61 99.62 99.62 99.59 99.61
UACI (%) 33.46 33.48 33.49 33.41 33.46

Our results are in good agreement with other works.42–45 In spite
of being based on a very simple 1D chaotic system, our encryption
scheme is superior in some cases, as it can be seen in Table VI.

V. CONCLUSION

In this paper, we reported a novel 1D chaos-based image encryp-
tion scheme. We have shown a way to undertake a simple and easy-
to-implement 1D chaotic system for encryption of a plain image.
Natural interval extensions and the lower bound error have been used
to generate a random sequence based on the pseudo-orbits of the 1D
logistic map, which has passed the NIST test. Using multiple pertur-
bations during the transient time, the proposed technique possess
a large key space, which can be easily increased. The experimental
study shows that the proposed algorithm is e�ective, and the results
can be further applied to other studies aimed at e�cient chaos-based
cryptography.9,46 A natural continuation of this work will be the use
of a similar scheme in embedded encryption systems using hardware
description language and the formulation described in Ref. 47.
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