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Abstract: Engineering solutions based on dynamical chaos may improve the characteristics of various
sensors such as metal detectors, salinometers, optical and magnetic field sensors, and so on. In this
study, we investigated the possibility of creating inductive sensors based on Sprott chaotic oscillators
with a planar printed circuit board inductive coil. The electric circuit of each sensor was obtained
by merging two parts, namely, a harmonic oscillator and a nonlinear filter. A novel method for
real-time oscillation analysis using a bandpass filter is presented. The suggested design technique
was experimentally validated, and the sensor prototype showed characteristics making it practically
applicable. In addition, the proposed technique can be used for the development of other types of
sensors based on chaotic oscillators.

Keywords: chaotic circuit; proximity sensor; metal detector; inductive sensor; planar coil sensor;
chaotic sensor

1. Introduction

Current advances in technologies allow continuous improvement of sensors’ characteristics, such as
minimal environmental impact, robustness, physical dimensions, energy consumption, and prime
cost [1]. This statement is also valid for inductive sensors of various types (e.g., proximity sensors).
One of the rapidly developing areas in this field is the use of planar coils as inductive elements.
Passeraub et al. [2] demonstrated the ability to create a fully integrated inductive proximity sensor
on a single chip with a 1 mm2 planar coil, which was successfully applied by the authors for angular
position measurements. Sosnicki et al. [3] proposed the design of a miniature multilayer printed
circuit board (PCB) coil for use in industrial eddy current proximity sensors. The developed coil was
four times smaller than the wired coil of the same inductance and showed an advantage in detection
range over the wired coil of 60%. The use of such materials for the planar coil manufacturing of
low-temperature co-fired ceramics (LTCC) provides high reliability, stability, and excellent electrical
characteristics which are desirable in sensor applications [1]. Another direction of inductive sensor
enhancement is the use of new methods for measuring inductance changes. Guo [4] presented an
analog–digital mixed measurement method based on the two-dimensional look-up table to address
the problem of temperature drift. An alternative method to increase the sensitivity and selectivity
of inductive sensors is the application of chaos theory, as was proposed in our previous paper [5].
The idea that chaotic systems may be used as sensors was first discussed by Brown et al. in the
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mid-1990s [6]. In [7], an explanation of high sensitivity and selectivity achieved by chaotic oscillators is
given. These properties could significantly improve the characteristics of sensory systems of various
kinds. The hypothesis of chaotic sensors is that weak changes in chaotic system parameters may cause
significant changes in system behavior, in contrast to linear oscillators where small parameter changes
cause small changes in oscillation dynamics.

A number of chaotic circuits with sensitive elements are known from the literature. Teodorescu and
Cojocaru developed a chaotic sensor to measure water salinity [8]. They proposed a circuit involving
two LF357N operational amplifiers, four resistors, one capacitor. and the sensing element consisting of
two Fe/Zn electrodes immersed in a bath with the solution under measurement. When electrodes are
immersed in salt water, chaotic oscillations occur. The attractor depends on the salinity of the solution.
However, the full mathematical model which could allow studying the circuit numerically was not
presented by the authors. Another chaotic system used by several scientific groups to build sensors is
the Duffing equation. Hu and Liu [9] proposed a chaotic metal detector sensitive to regular sine signal
and immune to noise. That sensor identified weak harmonic signals by detecting the difference in phase
trajectories between the chaotic state and the large-scale periodic state of the system. Shi et al. [10]
developed a similar technique for detecting weak vibrating signals in a microelectromechanical (MEMS)
resonant beam sensor. That technique involves the calculation of the maximum Lyapunov exponent to
determine the oscillation regime. Wang et al. [11] suggested detecting the weak electrical signals with
unknown frequency by using a frequency-locking principle based on the periodic characteristic of
the intermittent chaos in a Duffing oscillator. Korneta et al. [12] proposed a noise-activated sensor
based on a Chua circuit. It operates in a chaotic mode where two attractors coexist. The noise added
to the target signal forces the system’s state to switch, and the time when the system stays in one of
the attractors is used to quantify its output proportional to the noise power. Kumari and Gupta [13]
introduced a photoresistor into a Chua circuit and studied non-chaotic oscillations under different
lighting conditions. The authors showed that the sensor can exhibit quick mode transition when the
small photodiode resistance change occurs.

Summarizing the literature review, one can say that the mentioned chaotic sensors utilize either a
custom chaotic circuit described by an unknown equation [8] or two commonly used chaos generators
(Duffing and Chua). The considered examples of Duffing and Chua oscillators show the advantages of
chaotic sensors, but some important features of chaotic systems (e.g., quick mode transition [7]) still
require investigation in the context of sensor construction. In addition, it is of scientific interest to go
beyond limitations imposed by the only two chaotic systems and find more simple and sensitive designs.
In our previous work [14], we proposed a method for synthesizing chaotic circuits with inductances
based on defined chaotic oscillator equations. We synthesized a circuit based on a Sprott Case D [15]
oscillator using the proposed technique. Another work by our team [5] showed promising properties
of a numerically simulated Sprott Case D system as a basis for inductive sensors. Nevertheless, the
practical possibility that the obtained circuit is used as an inductive sensor, for example, as a proximity
sensor or metal detector, still remains unexplored in the experiment. The development of methods
for analyzing the oscillations in circuits of this kind is also required. Moreover, it is of interest to
combine the chaos theory approach and the approach based on the use of printed coils, and to develop
a proximity sensor combining these two promising areas of research.

The purpose of the presented study is to demonstrate the possibility of creating an inductive
sensor based on a chaotic oscillator given in the form of differential equations. It is necessary to
determine the features of the sensor’s physical design, as well as the method for converting oscillations
in the circuit into the measurement information. The ability of the chaotic sensor to work with a PCB
coil is of prime interest. The above-mentioned aspects form the contribution of this work to inductive
sensor theory and technology.

The paper is organized as follows. In Section 2, we propose a method for designing chaotic
circuits with the sensitive inductive coil. Issues of practical implementation and oscillation analysis are
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also considered. Section 3 describes experimental findings made with the chaotic sensor prototype.
In Section 4, the discussion of obtained experimental results is given, and Section 5 concludes the paper.

2. Materials and Methods

2.1. Synthesis of the Chaotic Circuit with Inductive Element

2.1.1. Converting the Differential Equation into the Circuit

The method for synthesizing chaotic circuits with inductive elements based on chaotic ordinary
differential equations (ODEs) was first presented in [14]. Let us consider an ideal LC tank. It is
described by harmonic oscillator equations as follows:{

L∂I
∂t = −V

C∂V
∂t = I

⇒

{ .
x = − 1

L y
.
y = 1

C x
, (1)

where L is the coil inductance, C is the capacitance, V is the LC tank voltage, and I is the current
through the coil. Then, consider the Sprott Case N equation:

.
x = −2y
.
y = x + z2
.
z = 1 + y− 2z

. (2)

The harmonic oscillator is an integral part of this system. The first line of Equation (2) corresponds
to the current in the LC tank coil, and the second line, to the voltage on the capacitor. The third line
is also implemented in a voltage basis and corresponds to the nonlinear filter F1, which eventually
develops chaos in the system (see Figure 1a).Sensors 2019, 19, x FOR PEER REVIEW 4 of 18 
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VCCS, voltage-controlled current source; NIC, negative impedance converter; CCVS, 
current-controlled voltage source; VCVS, voltage-controlled voltage source; F1, block with the 
integrator and nonlinear operation. 
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Division by 10 appears in the term 10/2z  since a typical analog multiplier has an internal 
scaling constant, and UI /  is the transfer characteristic of VCCS. Comparing Equations (4) and 
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Based on the equations given above, three chaotic circuits with inductive elements were 
synthesized, as shown in Figures 2a, 3a, 4a. The dynamics of the circuits was verified using NI 
Multisim simulation software (version 14.0.1, National Instruments, Austin, TX, USA). 
Corresponding attractors are presented in Figures 2b, 3b, 4b. 

Figure 1. Circuits based on the LC tank: (a) simple (e.g., Sprott Case N), involving (b) passive or
active impedance converter (e.g., Sprott Case H) and with (c) current feedback (e.g., Sprott Case M).
VCCS, voltage-controlled current source; NIC, negative impedance converter; CCVS, current-controlled
voltage source; VCVS, voltage-controlled voltage source; F1, block with the integrator and
nonlinear operation.

In Case H [15], variables x and y of the original ODE system (Equation (3)) should be swapped to
exclude the presence of the state variable z in the first equation. The current variable x in Case H is
presented in the first line; in the circuit, it can be implemented using a negative impedance converter
(see Figure 1b): 

.
x = −y + z2
.
y = x + 0.5y
.
z = x− z

→


.
x = 0.5x + y
.
y = −x + z2
.
z = y− z

. (3)
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In Case M [15], variables z and y are swapped in the same way that leads to the appearance of
the state variable x in the third equation. Thus, we need to introduce a current sensor into the circuit
(see Figure 1c): 

.
x = −z
.
y = −x2

− y
.
z = 1.7 + 1.7x + y

→


.
x = −y
.
y = 1.7 + 1.7x + z
.
z = −x2

− z
. (4)

Figure 1 shows different structures of the third-order chaotic ODE implementations. Examples of
this structures are Sprott Case N (Figure 1a), Case H (Figure 1b), and Case M (Figure 1c), respectively [15].

To provide the required correspondence between the physical processes in the LC tank and the
dynamics of the chaotic ODE, one should scale time and amplitude for processes in the chaotic circuit
using scaling constants ax, ay, az, and ω applying the rules presented in [14]. After scaling, for example,
the Sprott Case N chaotic system, we obtain the following equations:


.
x = −2y
.
y = x + z2
.
z = 1 + y− 2z

scaling
↔


.
x = −ωa−1

x ayy
.
y = ωa−1

y (axx + a2
zz2)

.
z = ωa−1

z (1 + ayy− azz)

implement
↔


.
x = − 1

L y
.
y = 1

C1
(x + µz2

10 )
.
z = 1

C2
( 1

R1
+

y
Ry
−

z
Rz
)

. (5)

Division by 10 appears in the term µz2/10 since a typical analog multiplier has an internal scaling
constant, and µ = I/U is the transfer characteristic of VCCS. Comparing Equations (4) and (5), we obtain
equations for calculating the coefficients as follows:

1
L =

−ωay
ax

1
C1

= ωax
ay

µ
C1

= ωa
1

C2R1
= ωb

az
1

10C2R2
= ωax

1
C2R3

= ωc

. (6)

Based on the equations given above, three chaotic circuits with inductive elements were
synthesized, as shown in Figure 2a, Figure 3a and Figure 4a. The dynamics of the circuits was
verified using NI Multisim simulation software (version 14.0.1, National Instruments, Austin, TX,
USA). Corresponding attractors are presented in Figure 2b, Figure 3b and Figure 4b.
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We chose the Case N system [15] for our further experiments. The advantage of Case N is that the
calculation of the variable z does not require the value of the current variable x. This simplifies the
circuit compared to the implementations of most other Sprott systems.

2.1.2. Coil and Targets

Using the WEBENCH online tool (ver. 2019, Texas Instruments, Dallas, TX, USA) [16], we created
the coil presented in Figure 5. It has one layer, 37 square turns of 0.3mm wire and a rated inductance of
120 µH. The size of the coil and its wire width were restricted by the available manufacturing process
for rapid prototyping.

When a metal target (e.g., plate) is near the planar coil, an eddy current is induced in it. The vector
of the magnetic field created by this current is opposite to that generated by the sensitive coil.
This decreases the inductance of the sensitive coil [17]. As the inductance is the parameter of the chaotic
oscillator, it affects the nonlinear oscillations in the circuit. Using experimental data, the following
approximation was found:

L(d) =
−2.764 · 10−7

d
+ 1.231 · 10−4, (7)

where d is the distance to the metal plate, m, and L is the inductance, H. Inductance versus distance to
the target curve is presented in Figure 6. A round steel plate with a diameter of 15 cm (bottom of the
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bucket) was used to build the curve experimentally. This and other tested targets are presented in
Figure A1 in Appendix A.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 19 

 

We chose the Case N system [15] for our further experiments. The advantage of Case N is that 
the calculation of the variable z  does not require the value of the current variable x . This 
simplifies the circuit compared to the implementations of most other Sprott systems. 

2.1.2. Coil and Targets 

Using the WEBENCH online tool (ver. 2019, Texas Instruments, Dallas, TX, USA) [16], we 
created the coil presented in Figure 5. It has one layer, 37 square turns of 0.3mm wire and a rated 
inductance of 120 μH. The size of the coil and its wire width were restricted by the available 
manufacturing process for rapid prototyping. 

 
 

(a) (b) 

Figure 5. Printed coil produced for the experiment: (a) PCB layout designed using the WEBENCH 
online tool; (b) etched and soldered coil. Actual size: 90 × 90 mm, inductance 120 μH. 

When a metal target (e.g., plate) is near the planar coil, an eddy current is induced in it. The 
vector of the magnetic field created by this current is opposite to that generated by the sensitive coil. 
This decreases the inductance of the sensitive coil [17]. As the inductance is the parameter of the 
chaotic oscillator, it affects the nonlinear oscillations in the circuit. Using experimental data, the 
following approximation was found: 

4
7

10231.110764.2)( 






d

dL , (7) 

where d is the distance to the metal plate, m, and L  is the inductance, H. Inductance versus 
distance to the target curve is presented in Figure 6. A round steel plate with a diameter of 15 cm 
(bottom of the bucket) was used to build the curve experimentally. This and other tested targets are 
presented in Figure A1 in Appendix A. 

 
0 0.05 0.1 0.15 0.2 0.25 0.3

d, m

70

80

90

100

110

120

Figure 5. Printed coil produced for the experiment: (a) PCB layout designed using the WEBENCH
online tool; (b) etched and soldered coil. Actual size: 90 × 90 mm, inductance 120 µH.
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2.1.3. Effect of the Coil Series Resistance

Assuming practical configurations of metal detectors, one should notice that inductors have their
own resistance, which can be up to hundreds of ohms. In a model, the real coil can be replaced by an
ideal inductor connected in series with a resistor.

Consider the Sprott Case N system. Equations (5) are no longer adequate considering real
inductance. An additional term should be introduced into the first line, specifically, the voltage at the
node between the ideal inductance L and a resistor RL connected to a ground:

.
x =

1
L
(−y + RLx). (8)

The simulation shows that with the increase of RL the dynamics of the original system changes
significantly, and at a certain resistance value the system stops oscillating. The limit value of the RL
that does not need to be compensated depends on ω and L. Figure 7 shows the bifurcation diagrams
(BD) for the Case N analog model with values presented in Figure 2a, with respect to the resistance of
the coil.

One can see that even with a high value w = 3.3 × 105, the resistance of the coil L = 120 µH should
not exceed 8 Ω. The coil used in our experiments is shown in Figure 3b. It has a resistance of 42 Ω
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provided by a copper layer with a thickness of 0.5 oz-Cu (18 µm). For this reason, it can only be used
with very large values of w or L. The first solution requires more careful design of the analog circuit
due to high-frequency effects as well as increased requirements for the digital data acquisition system.
For the practical application, it was necessary to propose a resistance cancellation circuit. The following
options were applicable:

1. The use of a negative impedance converter (NIC), see Figure 8a. Trimmer R1 is used when the
resistance of the coil is unknown or when the circuit is to be used with several coils.

2. The use of a current sensor with subsequent voltage compensation at the bottom connection point
of the inductance. The appropriate circuit is shown in Figure 8b. The ratio of resistors R3 and R4
sets the gain of the operational amplifier and can be calculated by the following equation:

R3/R4 = RLΩ. (9)

This scheme allows one to measure a current variable and use it for analog computing in a
nonlinear unit (which is often found in other chaotic systems) or to output it to a data acquisition
system for analysis. Gain resistor R2 was selected so that, for a given nominal value of R1, the output
of the instrumentation amplifier has a voltage with a transfer coefficient 1 mV/mA. In Figure 6b,
the instrumental amplifier and resistors R1 and R2 form a current-controlled voltage source (CCVS)
with transfer coefficient 1 mV/mA. Gain control of such a CCVS is usually described in an instrumental
amplifier datasheet. Particularly, for AD8421 in the presented configuration, the following formula can
be used:

VOUT = IIN ·G ·R1 + VREF; G = 1 +
9.9kΩ

R2
. (10)

In both cases, a specific operational amplifier is required to provide sufficient current. In our
experiments, good results were achieved with TCA0372 having an output current of up to 1A.
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2. The use of a current sensor with subsequent voltage compensation at the bottom connection 

point of the inductance. The appropriate circuit is shown in Figure 8b. The ratio of resistors R3 
and R4 sets the gain of the operational amplifier and can be calculated by the following 
equation: 

 LRR3/R4 . (9) 

Figure 7. Bifurcation diagrams of the Sprott Case N system for different values ofω.
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2.1.4. Controlled Source Implementation

The developed chaotic sensor requires a voltage-controlled current source (VCCS). VCCS can be
implemented using a single instrumental amplifier or instrumental amp and a high-load op-amp to
increase the possible output current (see Figure 9a). The conductivity of this circuit depends on the
resistance R1 as follows:

µ =
1

R1
mV/mA. (11)

Another solution topology includes 2 op-amps and is presented in Figure 9b.
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Figure 9. Voltage-controlled current sources (VCCS): (a) involving instrumental amplifier and
operational amplifier; (b) involving two operational amplifiers.

The final circuit design of the chaotic sensor is presented in Figure 10. The analog multiplier AD633
performs multiplication. The low-distortion operational amplifier OPA2277 is used for operations
where the high output current is not required but precision is of greater importance.
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2.1.5. Influence of the Voltage-Controlled Current Source

Due to the limits of physical implementation caused by finite supply voltage, the second
nonlinearity is introduced by the VCCS in addition to the multiplication in the original ODE.
This nonlinearity can be approximated using saturation as follows:

.
x = −2y
.
y = x + z̃2
.
z = 1 + y− 2z

, z̃ =


z, z ∈ [zmin; zmax]

zmin, z < zmin

zmax, z > zmax

. (12)

Thus, the circuit equation yields the following:
.
x = − 1

L y
.
y = 1

C1
(x + µ̃z2

10 )
.
z = 1

C2
(Vn

R1
+

y
Ry
−

z
Rz
)

, z̃ =


z, z ∈ [zmin; zmax]

zmin, z < zmin

zmax, z > zmax

. (13)

When the value of Vn = 1 V, as defined by the Sprott Case N equation, the dynamics of the analog
circuit barely differs from the dynamics of the original equation. An example of a bifurcation diagram
is shown in Figure 11. As one can see, changes of the coil inductance affect the oscillation regime,
as was stated earlier.
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When the inductance L changes from 0.5 to 1 of its nominal value, the system regime changes from
periodic to chaotic oscillations through period doubling.
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However, the existence of the saturation significantly changes the system dynamics with the
increase of Vn. Phase portraits of the saturated circuit in chaotic and non-chaotic modes are shown in
Figures 12 and 13. For the chaotic mode, we set the value as Vn = 1.4 V and for the periodic mode we
set it as Vn = 1.7 V. Switching between oscillation modes, chaotic or periodic, can be performed by
varying the coil inductance, voltage Vn, or other parameters.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 19 

 

 






































maxmax

minmin

maxmin

12

2

1 ,
,

;,
~,

)(1

)
10

~
(1

1

zzz
zzz
zzzz

z

R
z

R
y

R
V

C
z

zx
C

y

y
L

x

zy

n






. (13) 

When the value of 1nV , as defined by the Sprott Case N equation, the dynamics of the analog 
circuit barely differs from the dynamics of the original equation. An example of a bifurcation 
diagram is shown in Figure 11. As one can see, changes of the coil inductance affect the oscillation 
regime, as was stated earlier. 

However, the existence of the saturation significantly changes the system dynamics with the 
increase of nV . Phase portraits of the saturated circuit in chaotic and non-chaotic modes are shown 
in Figures 12 and 13. For the chaotic mode, we set the value as V4,1nV  and for the periodic mode 
we set it as V7,1nV . Switching between oscillation modes, chaotic or periodic, can be performed 
by varying the coil inductance, voltage nV , or other parameters. 

 
Figure 11. Bifurcation diagram of the chaotic circuit based on the Sprott Case N chaotic oscillator. 
When the inductance L changes from 0.5 to 1 of its nominal value, the system regime changes from 
periodic to chaotic oscillations through period doubling. 

 
Figure 12. Attractor of the designed circuit in the chaotic mode of oscillations. Figure 12. Attractor of the designed circuit in the chaotic mode of oscillations.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 19 

 

 
Figure 13. Attractor of the designed circuit in the periodic mode of oscillations. 

Switching between chaotic and periodic mode may occur rapidly, as can be seen in the 
bifurcation diagram. A comparison of the bifurcation diagrams of the original Sprott Case N  
Equation (5) and the circuit simulation is presented in Figure 14. Value V5,1nV  was used in this 
numerical experiment. 

  

(a) (b) 
Figure 14. Bifurcation diagrams of the Case N system for Vn = 1.5V: (a) original ODE, where one can 
observe the loss of stability when δL > 0.68; (b) analog circuit/equation with saturation.  

2.2. Target Detection 

Following the idea of He et al. [18], one can calculate the number of periodic orbits in the 
bifurcation diagram of the original Case N (Figure 11) and from this obtain the corresponding value 
of the inductance and distance. However, a more promising possibility follows from the presence in 
the bifurcation diagram of the circuit (Figure 14b), a segment where oscillations quickly switch from 
chaotic to periodic mode. According to Teodorescu’s hypothesis [7], this makes it possible to build 
sensors with very high sensitivity. The sensor of this type operates as follows. First, the circuit is 
adjusted near a switching threshold by varying its parameters ( nV , R2, etc.). It operates in the 
periodic mode with no target near the sensor. Then, when a target approaches the coil, the circuit 
switches to the chaotic mode. Thus, it is necessary to distinguish the chaotic oscillations from the 
periodic ones to create a complete sensing system. 

2.2.1. Analysis of the Oscillation Regime 

There are many different ways to define whether oscillations in the circuit are chaotic. Some 
authors [9,10] suggest calculating Lyapunov exponents in real time. In [5,19], other methods are 

0.5 0.6 0.7 0.8 0.9 1
L

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 13. Attractor of the designed circuit in the periodic mode of oscillations.

Switching between chaotic and periodic mode may occur rapidly, as can be seen in the bifurcation
diagram. A comparison of the bifurcation diagrams of the original Sprott Case N Equation (5) and the
circuit simulation is presented in Figure 14. Value Vn = 1.5 V was used in this numerical experiment.
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Figure 14. Bifurcation diagrams of the Case N system for Vn = 1.5V: (a) original ODE, where one can
observe the loss of stability when δL > 0.68; (b) analog circuit/equation with saturation.
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2.2. Target Detection

Following the idea of He et al. [18], one can calculate the number of periodic orbits in the
bifurcation diagram of the original Case N (Figure 11) and from this obtain the corresponding value
of the inductance and distance. However, a more promising possibility follows from the presence in
the bifurcation diagram of the circuit (Figure 14b), a segment where oscillations quickly switch from
chaotic to periodic mode. According to Teodorescu’s hypothesis [7], this makes it possible to build
sensors with very high sensitivity. The sensor of this type operates as follows. First, the circuit is
adjusted near a switching threshold by varying its parameters (Vn, R2, etc.). It operates in the periodic
mode with no target near the sensor. Then, when a target approaches the coil, the circuit switches to
the chaotic mode. Thus, it is necessary to distinguish the chaotic oscillations from the periodic ones to
create a complete sensing system.

2.2.1. Analysis of the Oscillation Regime

There are many different ways to define whether oscillations in the circuit are chaotic.
Some authors [9,10] suggest calculating Lyapunov exponents in real time. In [5,19], other methods are
investigated, such as recurrent analysis and attractor geometric parameter measurement. The mentioned
methods have several disadvantages; for example, they can be implemented only on a digital computer
(making it impossible to build fully analog sensors, cheap and compact) and most of them are
computationally expensive. Meanwhile, there is a simple method for detecting chaos, which can be
implemented both as an analog circuit and with a low-performance microcontroller. Let us remember
that chaotic oscillations are characterized with the wideband spectrum. Thus, the use of filters can
be efficient. Frequency analysis of the oscillations in the circuit shows that the band between peaks
of the periodic mode contains important information (see Figure 15a). Its elicitation can be done
using a bandpass filter. An example of such an analysis is shown in Figure 15b. In the band of
9–11 kHz, switching from periodic to chaotic mode results in the increase of the filtered signal root
mean square (RMS) value by more than 20 dB. This is sufficient for reliable detection of the oscillation
mode. The same results can be achieved by selecting some other frequency bands (see Figure 15b).
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Figure 15. Frequency analysis of sensor oscillations: (a) comparison of chaotic and periodic modes
spectra; (b) spectra of filtered signals with a 9–11 kHz bandpass Chebyshev filter. As chaotic
oscillations occupy the frequency band more uniformly, separating the signal band in the section of
periodic frequency trough results in the notable increase of signal power when the circuit switches to
chaotic mode.
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The filter-based analysis is shown in Figure 16, being compared with the bifurcation diagram.
In both cases, a fourth-order bandpass Chebyshev filter with a 1 kHz bandwidth, providing sufficient
slope and having simple structure, was used. The transition from the chaotic to non-chaotic mode
leads to a cliff decrease of the filter output RMS value. By setting the threshold of the final detector, it is
easy to distinguish between modes. Experiments show that this threshold must be set once when the
sensor is calibrated.
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Figure 16. Comparison of the bifurcation diagram and the bandpass filter output. The strong
correspondence between the non-chaotic regime and the low level of the RMS output of both filters
(with 10 kHz and 22 kHz central frequencies) can be observed. Using the threshold value RMS = 0.01,
the chaos can be determined.

The resulting scheme of the sensor is presented in Figure 17.
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Figure 17. Overall detection scheme.

2.2.2. Sensitivity Tuning

It is possible to shift the edge of the periodic to chaotic mode transition using the circuit parameter
adjustment. By shifting this edge, the range of sensor d can be set. In our study, we explored the
ability to change the sensitivity of the sensor by tuning voltage Vn and resistance R2. Examples of the
obtained bifurcation diagrams are presented in Figure 18.

One can find the sensitivity curves by defining the boundaries of mode switching for different
values of parameters. For example, in Figure 18a, switching from the chaotic to periodic mode occurs
at the value Vn = 1.51 V, which corresponds to the distance of 0.1 m. The obtained curves (see Figure 19)
represent the maximal detection distance as functions of Vn and R2. Data points obtained in simulation
were fitted by the exponential function.

The nonlinear nature of these dependencies can be a problem for practical use. From these curves
it follows that a change in the detection distance from 20 to 30 cm requires a change in the adjustable
parameter by only 0.6%. However, the use of precise component and electrical component value
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optimization helps to overcome this issue. Moreover, at closer distances the sensing threshold can be
adjusted with much greater precision.
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3. Experimental Results

The circuit presented in Section 2.1.4. was assembled on a breadboard (see Figure 20).
ELVIS laboratory workstation (National Instruments, Austin, TX, USA) was used as a power source and
data acquisition device. Acquisition and primary analysis of the data were carried out by the virtual
instrument developed in the LabVIEW 2014 environment (National Instruments, Austin, TX, USA).
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Figure 20. The circuit used in the experiments. Crocodile clips attach the coil.

First, we verified the effects observed in computer simulations, specifically, by solving Equations (5)
and (9). It was found that all the predicted properties, including the presence of the rapid mode
switching zone, can be observed in the real circuit.

In the second part of the study, we investigated the ability of the proposed sensor to detect metal
targets. We discovered that when the target appears at a distance of detection, switching from periodic
to chaotic mode does not occur instantaneously. Figure 21 shows an example of the target distinction
at the maximum range. At the edge of detection, the circuit switches from periodic to chaotic mode
for short periods of time. The detector captures this switching as bursts, see Figure 22 for closer view
of this signal. In an analog detector, these bursts can be displayed as jumps of an indicator arrow,
an emergence of a sound signal, etc. In a digital device, it is possible, in addition, to count the number
of bursts and make a conclusion about the distance to the target more precisely. At closer distances,
a calculation of periodic orbits according to [18] may also be applied.
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Table 1 lists the detection ranges of different targets obtained for the developed sensor. These values
represent the properties of the proposed sensor. An improvement of the sensor characteristics is
possible, in particular, through the use of more advanced equipment, such as a very stable power
source and voltage source Vn.

Table 1. Detection ranges of various targets located on the central axis of the coil.

Target Distance (cm)

Steel plate Ø = 150 mm 16
Copper plate 100 mm × 70 mm × 0.018 mm 9

Steel scale calibration weight 50 g 3
Silver ring Ø = 19 mm 3

4. Discussion

In this paper, we demonstrated the ability to create an inductive sensor utilizing two prospective
technologies, namely, the use of the planar coil as a sensing element and the chaotic oscillator as the
measurement unit. Applying the technique presented in our previous work [14], we synthesized
three new chaotic circuits containing inductive coils. The results of simulation and experimental
research confirm the validity of the approach. One of the synthesized circuits, specifically, the analog
model of the Sprott Case N system [15], was examined as a proximity sensor. A method for detecting
the presence of a target by determining the switch between chaotic and periodic oscillations in the
circuit was proposed. To define whether the oscillations in the circuit were chaotic, a method based
on a bandpass filter was developed. Unlike methods based on Lyapunov exponent calculation or
entropy estimation, the proposed oscillation mode discrimination method is very simple and can be
implemented in real time by an analog circuit or a low-performance microcontroller. This expands
the field of the developed sensing technology application—for instance, it can be used in industrial
proximity sensors, having a miniature size and low cost. Other possible applications include fully
integrated sensors on-chip, similar to the design presented in [2].

The characteristics of the developed sensor prototype (see Table 1) can be compared with
the characteristics of the manufactured inductive proximity sensors. For instance, the ultra-long
sensing-distance inductive sensor OMRON TL-L with a sensing element of Ø 100 mm detects a
massive steel plate at a distance of 10 cm [20]. This and some other reported sensors are listed in
Table 2. Because of dependence of the coil physical dimensions on the sensor range, a comparison
of the maximal target distance to the coil width ratio is given. One can see that our approach allows
increasing the range of the proximity sensor in comparison with other designs to about 1.5 times.
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Table 2. Comparing the proximity range of the developed sensor with the sensors in referred works.

Sensor Max. Range/Coil Width

Cylinder coil and mixed analog–digital unit [4] 0.66
On-the-shelf sensor OMRON TL-L [20] 1

Multilayer PCB coil and ECS75 conditioner [3] 1
LTCC planar coil and TI LDC1000 chip [1] 1.26

Current study 1.77

In further studies, it is of importance to find the elements’ optimal values, in particular,
the inductance of the coil and its configuration. Development of sensors based on other chaotic
oscillators, including hyperchaotic and neuromorphic systems, is also of interest. To ensure the high
relevance of the experimental data, it is necessary to develop a laboratory setup for the automated
movement of the coil relative to the target, see [17] for example. With its help, in particular, it will be
possible to visualize real bifurcation diagrams similar to simulated ones shown in Figures 14 and 18.
Such an experiment will also be carried out in further work.

5. Conclusions

In the current research, we developed implementations of three Sprott chaotic oscillators as
electrical circuits with sensitive inductive coils. The Sprott Case N system was taken as the object of
the deeper study. At certain values of the adjustable parameters, a rapid transition from the harmonic
to chaotic mode occurs caused by small changes in the inductance of the coil. Oscillation mode
determination can be performed using a bandpass filter. With the circuit assembled on a prototyping
board and equipped with a square 9 cm × 9 cm PCB coil, it was possible to detect a steel plate at
a distance of 16 cm. This exceeds the range of industrial proximity sensors of similar geometrical
dimensions and indicates the prospects of the proposed sensing approach.
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