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The dynamics of the human body has generated considerable recent research interest among scientist
devoted to reducing the number of injuries and for performance improvement. In these studies, the
investigation is usually addressed by means of commercial devices based on video recordings.
However, these systems based on video recordings are usually expensive and require suitable laborato-
ries for their use, which makes it unfeasible to collect data for activities outside controlled environments.
In this work, we have shown that it is possible to present similar results with a much lower sampling rate,
focusing on the evaluation of minimum and maximum values of the gait. As a result, it has been possible
to develop a wearable, compact, portable, low-cost, wireless and embedded system to simultaneously
analyze the three-dimensional angular position in eight points. This technology can be used in many sorts
of environments. It is also possible to access information in real time with reliable and accurate measure-
ments by means of simple modelling for the use of fusion techniques implemented in the microcon-
troller. Tests were conducted to evaluate the metrological characteristics of the system using the
Complementary Filter (CF) and the Kalman Filter (KF). An algorithm of evolutionary strategies tuned both
filters, providing errors of less than 5% for static situations in the measurement of the angular position
over the entire system utilization range. Our results have been compared with the commercial system
Qualisys Motion-Capture. The statistical method elaborated by Bland and Altman has been used. We have
found our method yields a motion analyses in good agreement with results using post-processed video.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

During the last few decades, running has gained popularity in
recreational and competitive forms [1]. In 2017, about 65 million
Americans practised this sport.1 In recreational and competitive
forms, there is a large percentage of musculoskeletal injuries associ-
ated with walking and running. Considering that the altered move-
ment of joints cause these lesions [2], the biomechanical analysis
of human movement has been used in several works [3–5] to reduce
the number of injuries [6–8] and for performance improvement [9–
11]. The most used method in the study of human movement is the
analysis based on video recordings [12]. This method consists of
multiple cameras to track the movements of the highlighted limbs
with markers. These images are processed and analyzed using speci-
fic software, e.g. Visual 3D, to extract the kinematic data [13,14].
However, these systems are expensive and require suitable laborato-
ries for their use, which makes it unfeasible to collect data for activ-
ities outside controlled environments [15].

To overcome these limitations presented based on video record-
ings, several methods and algorithms have been developed to ana-
lyze the dynamics of human movement by means of inertial
sensors. Recently, an extensive review has been carried by [16].
In this work, more than 5000 works have been investigated, while
47 have been detailed analyzed. From this work, the following
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papers can be pointed out to evidence some investigations on
methods and algorithms. In [17], a mathematical model named
joint angles generation using optimization (JAGO) was proposed
for human joint angle time-history generation. The JAGO model
is based on an optimisation algorithm. Their structure is elaborated
upon, and optimal values of the algorithm parameters are derived
to achieve its robustness and result accuracy. A benchmark motion
was used in a simulation exercise. As results, the maximal root
mean square difference over time between estimated and bench-
mark quantities were around 1% of the peak to peak value for
ground reaction components and intersegmental couples and 6%
for a joint angles. In [18], the authors proposed an optimization
algorithm for joint mechanic estimate using inertial measurement
unit (IMU) data during a squat task, focusing on the ankle, knee
and hip joints. The method is based on an optimal motor control
strategy. Experiments were performed using 10 volunteers. Results
show that normalized root mean square difference (%) is 3.5 ± 2.2
for ankle angle, 9.3 ± 4.5 for knee angle and 9.4 ± 4.8 for hip angle.
Also in [19], an orientation algorithm was used to support a wear-
able inertial human motion tracking system for rehabilitation
applications. The algorithm uses a quaternion representation. This
representation, allowing accelerometer and magnetometer data to
be used in an analytically derived and optimised gradient descent
algorithm to compute the direction of the gyroscope measurement
error as a quaternion derivative.

Due to the possibility of using algorithms to improve the perfor-
mance of the inertial sensors, microelectromechanical magneto-
inertial sensors (MEMs) which are inexpensive non-invasive sen-
sors with small dimensions [20] have been widely used to analyze
human movement in several works [21]. The authors in [22] have
developed a wireless real-time human motion analysis device.
They use the Digital Motion Processor (DMP) to extract the 3-D ori-
entation data using quaternions to combine the accelerometers
and gyroscopes data. The system consists of two inertial units con-
nected to the controller via cable, and the controller wirelessly
sends the information to the computer. The authors suggest using
the Complementary Filter (CF) or Kalman Filter (KF) to obtain reli-
able and accurate orientation data to calculate the positions. The
authors in [23] proposed a method to estimate gait parameters
using inertial sensors. The parameters were estimated using the
KF to fuse the data of accelerometer with the data of gyroscope.
Besides, according to the authors, the most positive aspect of the
work is the possibility of analyzing up to 5 points simultaneously.
The system’s inertial sensors are connected via cable to the con-
troller, and the information is stored on a memory card. The
authors pointed out that they had problems aligning the sensors
and this caused measurement errors and the system does not allow
the analysis of the information in real time. [24] make the use of
inertial sensors for the classification of rehabilitation exercises. A
wireless 9DoF IMU sensor was secured to the leg that was being
exercised for data collection. Seven different lower limb rehabilita-
tion exercises for a knee or hip injury was used. During the data
acquisition, a sampling rate of 100 Hz was used. The available sig-
nal was filtered using 4th order low-pass Butterworth filter with a
cut-off frequency of 20 Hz. As results, the authors obtained an
accuracy score between 0.93 and 0.95 using principal component
analysis (PCA).

Nowadays there are a considerable number of commercial iner-
tial measurement unit (IMU) based systems to 3D motion tracking
(e.g. Xsens company and Inertia Technology company). Xsens is the
leading innovator in 3D motion tracking technology and products.
Their systems were used in different applications like to model-
based inverse dynamics using exclusively inertial motion capture
(IMC) input, applicable in ambulatory environments and validate
it against a conventional laboratory-based approach with 17 sen-
sors node [25], to analyze kinematics and shock attenuation during
a prolonged run on the athletic track with 8 sensors node [26] and
to visual semantic landmark-based robust mapping and localiza-
tion for autonomous indoor parking [27]. Inertia Technology is spe-
cialized in the development of miniaturized wireless devices that
can sense, process and communicate motion, vibration and orien-
tation features of interest. Their systems were used to examination
of horse gait with 4 sensors nodes [28] and to stride detection in
Warmblood horses at walk and trot with 8 sensors nodes [29].

The aforementioned commercial devices have been extensively
used to investigate causes of injuries, such as the patellofemoral
pain (PFP), which is one of the most common overuse running
injury in the knee joint. One of the methods to investigate the
causes of PFP has been to observe the rearfoot strike pattern by
analyzing human movement based on video recordings. This strat-
egy has been applied usually using commercial devices with sam-
pling rate with around 200 Hz [30,31,14]. However, the
information for gait patterns corresponds to 0.6–5.0 Hz [32–35].
Moreover, in a recent study, the maximal sprint velocity kinemat-
ics of the fastest 100 m sprinter Usain Bolt was investigated [36].
For data extraction, the computer program APAS (Ariel Perfor-
mance Analysis System, Ariel Dynamics Inc., Coto de Caza Trabuco
Canyon, USA) was used to reconstruct a 2D full-body biomechani-
cal model. The coordinate data were smoothed using a low-pass fil-
ter with 14 Hz cut-off frequency. As results, Bolt presented a stride
frequency of 4.16 Hz and his competitors also presented a stride
frequency less than 5 Hz.

Taking into account the low frequency that the human move-
ment presents during the gait, we have shown that it is possible
to present similar results to analyzing human movement with a
much lower sampling rate than the rate utilized in the analysis
based on video recordings. Our focus is on the evaluation of mini-
mum and maximum values of the gait using a sample rate of 20 Hz
at each point of analysis. As a result, it has been possible to develop
a wearable, compact, portable, low-cost and embedded system has
been proposed to analyze the posture during human movement.
The posture is analyzed from the measurement of the three-
dimensional angular position at eight points simultaneously that
communicate wirelessly to a receiver coupled to a nearby com-
puter. Each of the eight nodes (inertial unit), is composed of an
inertial sensor (made of accelerometers, gyroscopes, magnetome-
ters), a microcontroller and a radio transceiver. CF and KF have
been used to fuse the data from the sensors and get reliable mea-
surements of the three-dimensional angular position. This
approach presents three main features: the ability to be used in
any environment, the ability to access information in real time
and a simple modelling for the use of fusion techniques imple-
mented in the microcontroller for reliable and accurate measure-
ments. Additionally, the system has a graphical interface that
facilitates analyzing the data in real time and allows to save the
collected data.

Performed tests show that the use of CF and KF reduced the
high error in the measurement of the angular position presented
in works which use Quaternions [22,37]. The first step was to
choose the best performance between the CF and KF fusion
methods. After that, we have compared the proposed system
to a well-established Qualisys Motion-Capture commercial sys-
tem for the usual running on the treadmill. To describe agree-
ment between the measurements of the two systems, Bland
and Altman (BA) methodology [38] has bee used. BA method
describes the agreement between two quantitative measure-
ments by constructing limits of agreement. This statistical
method has been used to validate spatiotemporal gait analysis
using dual laser range sensors [39], the commercial system Equi-
moves (Inertia Technology company) for objective examination
of horse gait [28] and in validation of inertial measurement units
for upper Body Kinematics [40].
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The remainder of this paper is organized as follows. Section 2
presents the fundamental concepts necessary for the use of the
inertial sensors in the measurement of the angular position and
the concepts of the techniques of sensor fusion. Section 3 presents
the methodologies used in the fusion of the inertial sensors, the
method used to optimize the sensor fusion, the characteristics of
the proposed wireless network, the description of the tests per-
formed to verify the metrological characteristics of the system
and the standard test to apply the system in the analysis of human
gait. Section 4 presents the results obtained for the tests described
in Section 3. Finally, Section 5 presents the discussions and conclu-
sions of this paper.
2. Background

2.1. Coordinate system

The coordinate system adopted is the NED industrial standard
[41]. In this coordinate system, / is the angle around the axis x
called roll angle and its positive direction points to the north (N).
h is the angle around the y axis called pitch angle and its positive
direction points to the east (E). w is the angle around the z axis
called yaw angle and its positive direction points to down (D).
Fig. 1. Complementary filter used to estimate angular position. xi is the matrix
containing the angular velocities measured by the gyroscope, T is the sampling
period, yi is the matrix with the angular positions estimated by the accelerometer
and magnetometer and a is the only one performance parameter of the CF. a must
be between 0 and 1. The closer to 1 the greater the reliability assigned to the
gyroscope. a must be estimated for each of the three angular positions, and it is a
diagonal matrix.
2.2. Inertial sensors to measure angular position

The gyroscope is a sensor which measures angular velocity (x).
The angular position in each of the three axes is the integrating the
values of the angular velocity concerning time
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where T is the sampling period.
The accelerometer measures linear acceleration and the accel-

eration of gravity. The acceleration projections on the accelerome-
ter axes (ax; ay and az) can be used to measure angular position. The
angle w cannot be measured because for motions around the z axis
the acceleration of gravity does not change. The angles w and h are
calculated as

/a ¼ sen�1 ay
� �

;

ha ¼ tg�1 axffiffiffiffiffiffiffiffiffiffi
a2yþa2z
p

� �
:

The magnetometer is a sensor that measures the direction and
magnitude of the magnetic field. In applications involving human
motion measurement, this sensor can be used to determine the
angle w with the projections of the magnetic field on the axes
(Xm;Ym and Zm). The magnetometer correctly estimate the angular
position when the slope variation is compensated. In this work,
this compensation was made with the angular position data of
the accelerometer

wm ¼ tg�1
Zmsen/a � Ym cos/a

Xm cos ha þ Ymsenhasen/a þ Zmsenha cos/a

� �
:

For the use of the equations previously presented, it is very
important to calibrate the magnetometer [42]. This sensor must
present the same gains for the three axes, so that by performing
arbitrary rotations around the sensor axes, the collected values
must form a sphere whose centre has null values. The process of
calibration and elimination of distortions affecting magnetometer
measurements is described in [43].
2.3. Sensor fusion

Sensors fusion is used to estimate the state of a system from
data collected using two or more sensors. As MEMs inertial sensors
have particular limitations and errors when working separately to
measure angular position, in this work the CF and the KF have been
used to combine the information of the gyroscope with accelerom-
eter to estimate the angles / and h, and for combining the informa-
tion from the gyroscope with the magnetometer to measure the
angle w.

The CF aims to explore characteristics of the frequency response
of the sensors considering the most reliable frequency spectra of
each sensor to combine information that is at different and com-
plementary frequencies without distorting the signal. The sche-
matic diagram in Fig. 1 illustrates the CF in the discrete domain.

KF is a set of mathematical equations that form a filtering algo-
rithm that estimates states and is called a predictor-corrector.
Although the KF is defined for continuous systems, in this work,
only the discrete case has been used. The function of the KF is try-
ing to estimate the state x 2 Rn of a controlled process in discrete
instants of time and which can be represented by the process
Equation (xi) and measurement Equation (yi)

xi ¼ Axi�1 þ Bxi þ zi;

yi ¼ Hxri þ v i;

where xi 2 Rn is the vector of angular positions estimated by KF,
xri 2 Rn is the vector of angular positions from the accelerometer
and magnetometer, xi 2 Rp is the vector of angular velocities in
the three axes obtained by means of the gyroscope, A 2 Rn�n is
the state transition matrix, B 2 Rn�p is the matrix that models the
associated input, yi 2 Rm�1 is the vector of measures, H 2 Rm�n is
the matrix that models the states associated with measurement
that are derived from the accelerometer and magnetometer data,
zi 2 Rn�1 is the process noise e v i 2 Rm�1 is the measurement noise.

The matrices A;B and H determine how the KF was modelled for
the process and the type of adopted model. If they are diagonal
matrices, it means that the variables to which they are associated
are considered independent and are not directly related. In this
work, the model adopted is linear, and the matrices are diagonal.
A and B are identity matrices, and H has the sampling period on
the main diagonal. Therefore, the discrete linear model of KF was
used. KF consists of two main steps: the first of prediction and
the second of correction, as can be seen in the diagram of equations
of the linear KF illustrated in Fig. 2.

2.4. Evolutionary strategies – ES

The performance of the sensor fusion algorithms depends on
the correct choice of their parameters. An algorithm of Evolution-
ary Strategies is applied to optimize the choice of these parameters



Fig. 2. Kalman filter used to estimate angular position. xip is the priori process state,
Pip is the priori error covariance, Q is the covariance of the process noise, R is the
covariance of the measurement noise, K is the Kalman gain, xi is the corrected state
(angular positions) and Pi is covariance of the error. The Kalman gain reduces the
covariance of the error and depends on R and Q which are the performance
parameters of the KF.
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and consequently to improve the performance of the filters. ES is a
class of evolutionary algorithms used mainly to solve problems of
parameter estimation. An essential feature of ES is the self-
adaptation of the parameters during the evolutionary process, by
introducing them into the genetic representation of individuals
[44]. Generation of new individuals is given by

xkþp ¼ xk þ bNxk; ð1Þ
where p is the initial number of individuals of a population, k ranges
from 1 up to p; xk are the p initial individuals, xkþp are the p individ-
uals being generated, b is the mutation rate, N is a probability den-
sity function used for the process of self-adaptation of individuals.

3. Materials and methods

3.1. Optimization of CF and KF

As emphasized in the previous section, the performance of the
CF depends only on a and the performance of the KF depends on
R and Q. R was determined by the error of the angular positions
of /; h and w from the accelerometer and magnetometer. For this,
20 acquisitions of 2 min with a sampling rate of 20 Hz were per-
formed with the instruments stopped in 0�, and the mean of the
results was obtained.

Given the R values for each of the axes, the optimal KF tuning
becomes dependent only on Q, just as the optimal tuning of the
CF depends only on a. These parameters are estimated from the
proposed algorithm of Evolutionary Strategies represented by the
pseudo-code in Algorithm 1.

Algorithm 1 Optimization of CF and KF by ES.

1: data  angular velocity (gyroscope) and angular position
(accelerometer or magnetometer)

2: auxiliary  0
3: best_previous  0
4: min_error  1000000
5: parameter  population of 5 random individuals
6: while auxiliary < 20 do
7: for i = 1:length(parameter) do
8: parameter (i + 5)  parameter(i) + 0.01*N*parameter

(i)
9: end for
10: for j = 1:length(parameter) do
11: for i = 1:length(data) do
12: angular_position  angular position estimated by

the filter
13: end for

14: quadratic_error  sumðangular position� 0Þ2
15: if quadratic_error < min_error then
16: best_parameter  parameter (j)
17: min_error  quadratic_error
18: end if
19: end for
20: if best_previous¼¼best_parameter then
21: auxiliary  auxiliary +1
22: end if
23: parameter  population of 5 individuals: the best of

past generation, 3 drawn of 10 and 1 random
24: end while

Before using the proposed algorithm to determine the perfor-
mance parameters of the filters, the stability has been tested by
means of the data set from the angular position of the accelerom-
eter and the angular velocity of the gyroscope. The algorithm has
been tested 20 times with the same data set. If in all twenty times
the algorithm converged to near points of optimal tuning, i.e., it
presented low standard deviation, it means that the algorithm is
stable. Otherwise, the algorithm is not stable and is returning ran-
dom solutions or local optimal solutions.

In addition, to compare if the developed algorithm is actually
converging to optimal solutions, a exhaustive search algorithm
has been implemented that tests all values of a that are in the
range of 0.1 to 1, with step of 0.0001 and all values of Q which
are in the range of R

1000 to 1, with step of 0.00001. In this way, it
is possible to compare the results obtained to analyze the compu-
tational cost of the two algorithms and the efficiency of the pro-
posed tuning method. The criterion to determine the optimal
value of a and Q is the same for the two algorithms, which is the
value of a and Q that result in the least sum of the quadratic error
for a data set.

These algorithms were implemented using a Jupyter Notebook
interface for Python3. The parameters of the filters were deter-
mined using a set of 20 data collections with the static instrument
at 0�. This data set consists of the three-dimensional angular veloc-
ity reported by the gyroscope and the angular position reported by
the accelerometer (for / and h) and magnetometer (for w). The
codes were run on a notebook with Intel (R) Core i3 M350
2.27 GHz processor, 4 Gb RAM and Linux Lite 4.0 operating system.

3.2. Tests for metrological analysis of the system

After finding the performance parameters of CF and KF, tests
were applied to analyze the metrological characteristics of the sys-
tem and to verify which of the two filters had the best
performance.

3.2.1. Measurement in 0�
The objective of the test with the instrument stopped at 0� is to

compare the static behaviour of the sensors isolated use of the sen-
sors with the use of sensors combined by CF and KF. In this test, it
is possible to verify the mean value (accuracy) and the standard
deviation of the measurements (precision). For this purpose, the
angular position estimated by the accelerometer, gyroscope and
magnetometer working in isolation and the angular position
obtained with the use of CF and KF were collected 20 times during
2 min with a sampling rate of 20 Hz.

3.2.2. Dynamic characteristics of instruments
The objective of the test is to analyze the dynamic behaviour of

the sensors isolated and combined by CF and KF during fast varia-



Fig. 3. Platform for tests. The platform is composed of a rod coupled to the
servomotor, that allows to vary the angular position in a fast and controlled way.

Fig. 4. Inertial unit. In this image, the following components are described. The
microcontroller responsible for processing the data, the inertial sensor that consists
of accelerometer, gyroscope and magnetometer, the module for transmitting
wireless information NRF24L01 and the system shipped in the ABS box with the
button to choose the position in which it is as zero degree. The system is powered
by a 9-volt battery.

Fig. 5. Network of the slave master type composed of 8 inertial units represented
by s1-s8. All elements of the network are controlled by the receiver and form a
versatile, low cost system that allows three-dimensional angular analysis in 8
points simultaneously.
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tions of angular positions. To vary the angular positions, a rod was
coupled to a servo motor and the inertial unit was fixed on the rod
for the tests. The schematic of the test platform can be seen in
Fig. 3. The servo motor has speed rate of 0.22 s/60�.

3.2.3. Error curve
Ideally, the indication presented by a measurement system

should correspond to the actual value of the measurand. However,
no matter how good the quality of the measurement system, the
measurement error exists. In this sense, the measurement error
cannot be ignored in reliable measurement processes, and it is nec-
essary to estimate the error curve to graphically represent the error
distribution over the entire range of use of the angular measure-
ment instrument on the three axes.

The error curve represents the systematic and random errors of
a measurement system and can be estimated from the trend and
repeatability of the instrument. The trend represents systematic
errors and it is obtained from the difference in the mean of a finite
set of instrument indications relative to the conventional true
value of the measurand. The repeatability is the range of values
symmetric, around the mean value, within which the random error
is expected with some probability and is calculated by the product
of the standard deviation by the respective Student’s t coefficient.
To determine the error curve in this work, the t test was applied
using a probability of 95.45% and 15 degrees of freedom (16 points
collected). With these values of probability and degrees of free-
dom, we have the corresponding Student t coefficient equal to
2.181.

To vary the angular positions and estimate the errors through-
out the range of use of the instrument, the test platform illustrated
in Fig. 3 was used. The choice of the servo motor is related to its
operation. As it has a feedback system powered by a potentiometer
that acts as a shaft position sensor, it can be used in applications
where there is a need to move in a precise and controlled manner.

3.3. Wireless sensor network

The complete system consists of a wireless network of 8 inertial
units. Each inertial unit consists of 1 MPU9250 (inertial sensors:
accelerometer, gyroscope and magnetometer), 1 ATMEGA328
microcontroller and 1 NRF24L01 (radio transceiver), as shown in
the Fig. 4.

The proposed network is a master-slave network and is shown
in Fig. 5. The master is the receiver and is responsible for coordi-
nating the sending of all 8 sensors that form the network. For this,
each emitter is identified by a tag and has its own address. The
receiver points to which node will send the information, checks
if the connection has been established and checks to see if it has
received the information and the tag of the emitter. If there is a
problem, such as a lack of connection, the receiver stops at the
faulty node and it is easily to identify which unit is faulty. The
receiver is coupled to the computer and consists of an ARM
Cortex-M3 microcontroller and an NRF24L01 module.

The receiver coordinates the amount of information that is sent
by each inertial unit. This organization of the amount of informa-
tion sent at a time occurs in function of the time that is spent to
make the acquisition of all elements of the network and the time
of sampling of each inertial unit.

Before sending, each inertial unit converts the angular positions
to integer values. This conversion is to send more information in
each time. The communication module allows sending 32 bytes
at a time and, in the Arduino platform, each float type number
occupies 4 bytes and the integer type 2 bytes. For example, if the
time spent to traverse all emitters is 0.25 s and the sampling rate
of each inertial unit is 20 Hz, every 0.25 s each inertial unit sends
5 angular position data of the x, y, and z-axes. In addition, each
emitter has an identification tag to send angular position informa-
tion. At the same time, 1 integer is transmitted to identify the net-
work device, 5 integers of angular position of the x-axis, 5 of the y-
axis and 5 of the z-axis, totalling 32 bytes in each package.
3.4. Application of the system: gait analysis

The complete system was used during the usual running on the
treadmill MovementLX160. The test was performed at speed of
4.5 km/h during 90 s. The objective of the test is to analyze the
kinematic data of the trunk, pelvis, hip, knee and ankle during
the gait. One physically active subject (age: 23; height: 175 cm;
weight: 70 kg) volunteered to participate in the study. Fig. 6 shows
the inertial units positioned in the voluntary.

To compare the data of the proposed system, the same test was
performed using the Qualisys Motion-Capture commercial system.
For this, the kinematic data collection used 7 motion analysis cam-
eras (Qualisys Motion-Capture System, Qualisys Medical AB, Swe-
den). The software Qualisys Track Manager (Qualisys Medical,
AB, Sweden) and Visual 3D (Version 3.9; C-Motion Inc., Rockville,
USA) was used for reconstruction and quantification of kinematics
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through the joint coordinate system. Data were filtered using a
low-pass, fourth-order Butterworth filter with zero phase delay
and the cut-off frequency of 12 Hz. Cardan angles were calculated
using the coordinate system definitions recommended by Interna-
tional Society of Biomechanics [45] relative with static posture.
Fig. 7 illustrates the 20 reflective markers located on anatomical
landmarks and 5 cluster tracking markers which are placed on
the participant to perform the test.

After applying the same test with the same individual in the
two systems, a measurement comparison of the proposed system
with the Qualisys Motion-Capture Commercial system was per-
formed. For this, the statistical method of Bland–Altman for assess-
ing agreement between the two methods of clinical measurement
was applied [38].
Fig. 6. Proposed system positioned for angular analysis of the trunk, hip, knee and
ankle during gait.

Fig. 7. Positioning the markers to use the Qualisys Motion-Capture Commercial
system.

Fig. 8. Algorithm performance: results using the same dataset 20 times. Blue polka
dots represent the values found to a for each of the 20 tests. Orange polka dots
represent the values found to Q. The scale on the left at y-axis corresponds to values
of a. The scale on the right corresponds to Q values.
4. Results and discussion

Fig. 8 shows the results of the test of stability of the proposed
algorithm.

Fig. 8 shows that the ES algorithm is stable because it presents a
low variation of the results obtained for the repeated analysis of
the same data set. The average value found for a and Q by the ES
algorithm is very close to the value found by the exhaustive search
algorithm (EX). The ES algorithm found an average of a equal to
0:87397 and EX found a equal to 0:87780. For Q, ES found an aver-
age equal to 0:00031 and EX found Q equal to 0:00027. Therefore,
the proposed algorithm is converging to global optimal solutions.
The great advantage of the proposed algorithm is that its execution
time is much smaller than exhaustive search algorithms. The aver-
age time to find the a parameter was approximately 1:7 seconds
and 2:6 seconds for Q. For the same data set the ES algorithm spent
approximately 46 s to estimate a and 1192 s for Q.

After verifying that the proposed ES algorithm presents satisfac-
tory performance and finds the solutions quickly, the parameters
of the CF and KF were determined according to the Section 3.1.
The results are in Table 1.

The results presented in Table 1 shows that the greatest reliabil-
ity is in the gyroscope because for the CF a is close to 1 and for the
KF Q � R. The accelerometer and magnetometer have noisy mea-
surements of angular position, consequently, as the optimization
algorithm prioritizes the smallest sum of the quadratic error, the
greatest reliability is of the gyroscope.

After determining the optimum CF and KF parameters, tests to
check the system performance were applied. Table 2 contains the
95% confidence interval of the 20 set of data collected with the sta-
tic system at 0�.

In Table 2, it is possible to observe that the two filters presented
good results. Measures have become more precise and accurate
using the filters than with the instruments working alone. The KF
was superior in relation to the CF for the estimation of the three
angles, leaving the readings with lower standard deviation and
with the average closer to the expected value.

Using the KF there was a reduction of 27.24% in the trend of the
instrument for measurement around the x-axis, 13.13% for the y-
axis and 1.31% for the z-axis. In addition, the instrument became
more precise, as the standard deviation reduced 74.19% for the roll
angle, 73.45% for pitch angle and 87.36% for the yaw angle, show-
ing the efficiency of the filter for sensor fusion. Analyzing the con-
fidence interval, it is observed that the length of the interval is
smaller for KF and CF, that is, they have less dispersion. However,
although the accelerometer interval was larger, it also performed
well.

Fig. 9 shows the measurement of the angular position with fast
variation of position. The general behaviour associated with the
data presented in Table 2, is illustrated on static parts of the figure.
Analyzing Fig. 9, the accelerometer presents overshoot at fast
angular position change because its operating principle is based
on a mass-spring type system. The gyroscope presents bad accu-
racy. The dynamic response of the system presents a good perfor-
mance with CF and KF, eliminating the overshoot presents by the



Table 1
Optimum CF and KF parameters estimated using the average value of the 20 runs
using a different set of data in each execution. Each set of data was collected during
2 min with rate of 20 Hz and with the instrument static in 0�.

Parameter Roll Pitch Yaw

a 0:8103 0:8904 0:9533
R 0:0104 0:0155 0:0874
Q 0:000149 0:000196 0:00008

Table 2
Results (in degree) of the angular measurement in 0�. CI stands for the Confidence
Interval.

Angle Roll Pitch Yaw
Measurement 95%CI 95%CI 95%CI

Acel. or Magn. �0:08� 0:06 0:06� 0:06 �0:33� 0:64
Gyroscope 2:21� 0:55 �1:33� 0:33 �2:47� 0:66

CF �0:06� 0:02 0:05� 0:02 �0:37� 0:1
KF �0:06� 0:01 0:05� 0:02 �0:33� 0:08

Fig. 9. Excerpt of the measurement of angular position with fast change of position.
During the transition of the angular position, the accelerometer presents overshoot.
During the static part, the gyroscope accumulates integration errors presenting drift
and low accuracy. The behaviour of the magnetometer is similar to the accelerom-
eter. The use of CF and KF makes measurements more precise and accurate, without
noise or drift during the static intervals and without overshoot during the dynamic
intervals. The response time of KF is lower than that of CF.

Fig. 10. Error curve. First line roll angle: a) CF and b) KF; Second line pitch angle: c)
CF and d) KF; Third line yaw angle: e) CF and f) KF. The dashed line represents the
trend of the error. The hatching region is the interval that the error will be with
95.45% probability. The upper limit of the hatched area is the sum of the trend with
the repeatability and the lower limit is the subtraction of the trend with
repeatability.
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accelerometer. The dynamic response is better with the use of KF
because it presents a shorter response time than the CF.

Even using the sensor fusion algorithms and obtaining mea-
surements with good precision and accuracy, all systems have
measurement errors that must be predicted. Fig. 10 illustrate the
expected error for the roll, pitch and yaw angles using CF and KF.

Analyzing the error curves, with 95.45% probability, the angular
measurement error for the roll angle is expected to be between
�0.81� and 0.90� for the CF and between �0.80� and 1.11� for KF.
For the pitch angle, the expected error is between �1.17� e 0.88�
for CF and between �0.91� and 0.90� for KF. The expected error
for yaw angle is between �1.32� and 1.59� for CF and �1.00 and
1.35� for KF.

After applying tests to verify the metrological characteristics of
the system in static situations, it was observed that the KF presents
better performance than the CF and was chosen to be used in each
of the 8 units that compose the system. For the static tests applied,
using the KF, an error of less than 5% in angular measurement is
expected, which is a significant improvement over the results of
the work of [22], where the expected error in the angular position
measurement was 17–24%.

As a final test, the complete system was applied for postural
analysis during gait and the result was compared to that obtained
by the Qualisys capture system. Gait is a cyclical exercise and our
objective was only to evaluate the maximum andminimum values.
Determining the minimum and maximum values of cyclic exer-
cises, within normalities, these values would be maintained
throughout the training and would be sufficient to characterize
the movement. The movements were analyzed in the 3 anatomical
planes: frontal (x), sagittal (y) and transverse (z) planes. The angu-
lar positions of x; y and z planes are represented with the /; h and w
angles respectively. The results are shown in Table 3.

It is possible to notice in Table 3 that right and left ankle pitch
and yaw measurements present an inferior agreement with the
Qualisys system when compared with other measurement. Since
the inertial unit has been placed on the instep and we had diffi-
culty to fasten it without causing discomfort, the instrument has
been in movement and consequently, errors in pitch and yaw angle
measurements occurred.

To demonstrate the spread of differences of the individual pairs
in each parameter, Bland-Altman plots were used. Fig. 11 illus-
trates the limits of agreement between the proposed system and
the Qualisys system. All limits were determined without ‘linear’
attempt to model and remove a multiplicative offset between each
assay by linear regression and without ‘ODR’ attempt to model and
remove a multiplicative offset between each assay by orthogonal
distance regression. Right and left ankle pitch and yaw measure-
ments did not enter BA analysis because they presented the prob-
lems described previously.

The authors of [28] have employed a commercial inertial sys-
tem (Inertia Technology company) to evaluate horse gait and
[40] utilized a commercial inertial system (APDM Wearable Tech-
nologies company) to evaluate upper body kinematics. Both works



Table 3
Results of the angular measurement (in degree) during the gait at 4.5 km/h.

Segment Developed System Qualisys System

Roll (/) Pitch (h) Yaw (w) Roll (/) Pitch (h) Yaw (w)

min max min max min max min max min max min max

Trunk �3 11 �6 7 �18 13 3 11 �2 5 �8 4
Pelvis �1 7 �6 3 �23 5 0 6 �3 1 �8 5
Left Hip �19 30 �13 7 �14 23 �25 28 �9 1 �22 14
Right Hip �16 25 �10 10 �23 13 �21 27 �6 12 �18 8
Left Knee �14 57 �14 22 �10 27 �20 62 �5 14 �9 28
Right Knee �16 57 �19 9 �26 15 �16 60 �13 5 �29 �5
Left Ankle �32 9 �14 29 �17 14 �30 8 �5 13 �6 12
Right Ankle �22 7 �16 22 �28 26 �19 11 �10 8 �24 �12

The references to the positive values of movement in each plane are state as follows. Trunk: / (flexion), h (ipsilateral inclination) and w (ipsilateral rotation). Pelvis: /
(flexion), h (ipsilateral inclination) and w (ipsilateral rotation). Hip: / (flexion), h (abduction) and w (medial rotation). Knee: / (flexion), h (abduction) and w (medial rotation).
Ankle: / (dorsiflexion), h (inversion) and w (medial rotation).

Fig. 11. Application of Bland and Altman method to evaluate the difference of two
methods. Limits of agreement between the proposed system and the Qualisys
system for measure angular position during the gait at 4.5 km/h. Markers with
green polka dots represents the punctual differences between the measures of the
systems for roll angle. Markers with blue polka dots represents the punctual
differences for pitch angle. Red polka dots represents the punctual differences for
yaw angles. Horizontal lines represent the limits of agreement between the
methods. 95 % of the differences between the methods will be between the limits
represented in the figure. The horizontal lines have the same colour pattern
adopted for the markers.
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used BA to compare with an optical motion capture system. Table 4
presents the results of Fig. 11 and the results presented by [28,40].

So, comparing with the other results obtained for the commer-
cial inertial systems, which are more expensive than our system,
the limits of the agreement obtained for roll and pitch angle shows
that our system presents good results and consequently good
agreement in relation with Qualisys system.

The results obtained for yaw angle presents worse results than
the other two angles because the magnetometer have a worse per-
Table 4
Limits of agreement obtained by the Bland and Altman method: A comparison between o

Angle Developed System

Lower Bias Upper Lower

/ �6.8 0.2 7.3 �2.3
h �8.7 0.8 10.3 �8.8
w �19.7 �1.9 15.8 –
formance than accelerometer for angular measurements. Another
important feature of bio-medical instruments is the influence of
the training factor on instrument measurement errors. During
the first tests, the individual may not be accustomed to performing
the activity with the instrument in their body. This can cause
changes in exercise execution movements and increase the differ-
ence between the measurements of two systems.
5. Conclusions and recommendations

In this work, a low-cost wireless system to analyze the posture
during human movement has been developed. The motivation to
develop such device is due the fact that commercial solution are
unaffordable for many researchers and professionals. For applica-
tions, such as those involved to observe the rearfoot strike pattern,
we have shown the possibility to collect data in a lower sampling
rate. It has been possible since the maximum and minimum values
of the gait are sufficient to describe such pattern. The developed
system can be used in several types of environments. It also allows
access to information in real time. Moreover, as many tests have
shown, its metrological characteristics are in a good agreement
with commercial counterpart.

The system allows you to analyze angular position in eight
points simultaneously in real time. Other systems described in
the literature allow to analyze only 1 point in real time [22] and
4 points without real time analysis [23]. The tests to verify the
quality of the measurements of the system were carried out suc-
cessfully and presented good results. The expected error of angular
position with 95.45% probability for static tests is close to 5% for
both CF and KF use.

Finally, the complete system was used during a typical running
on the treadmill MovementLX160. The test was performed at speed
of 4.5 km/h. The objective of the test is to analyze the kinematic
data of the trunk, pelvis, hip, knee and ankle during the gait to ver-
ify the performance of the system for dynamic analysis. A compar-
ison with a commercial system Qualisys Motion-Capture is present
in Table 3. The results are clearly correlated with the results using
post-processed video. Additionally, we have compared our results
ur results with the presented in [28,40].

[28] [40]

Bias Upper Lower Bias Upper

0.3 2.3 �6.2 0.8 7.9
0.4 8.1 – – –
– – – – –
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with other works in literature using the Bland and Altman method
as can be seen in Table 4. For the angle /, our method presents the
lowest bias. The other values in Table 4 show that our method is at
least comparable with other techniques in the literature.

Regarding the possible applications of the system, having the
possibility to measure the range of movements using the maxi-
mum and minimum values is an excellent help in the treatment
for injury rehabilitation. Usually, after the injury, the patient initi-
ates the treatment with functional limitations, and it is important
to follow the progress during the procedure with gradual restora-
tion of movement. For example, anterior cruciate ligament (ACL)
injuries often require intervention followed by an extensive course
of rehabilitation because, without treatment, they frequently result
in functional and athletic limitations [46]. In the context of high-
level sport, the system can be used to improve the performance
of athletes. [36] concluded that Usain Bolt compared to his com-
petitors took fewer and less frequent strides, which was a deter-
ministic factor in his 1st place finish. Therefore, it can be applied
to try to adjust strides characteristics and consequently improve
the performance.
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