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Abstract
This paper reports the use of response surface model (RSM) and reinforcement learning (RL) to solve the travelling salesman
problem (TSP). In contrast to heuristically approaches to estimate the parameters of RL, the method proposed here allows
a systematic estimation of the learning rate and the discount factor parameters.The Q-learning and SARSA algorithms were
applied to standard problems from the TSPLIB library. Computational results demonstrate that the use of RSM is capable of
producing better solutions to both symmetric and asymmetric tests of TSP.

Keywords Reinforcement learning · Travelling salesman problem · Response surface model

1 Introduction

The reinforcement learning (RL) is a technique based on
Markov decision processes, in which learning is conducted
by success and failure (Sutton and Barto 1998). In a common
structure of RL, the agent uses sensors to identify the current
state of environment in order to decide the next action. In
RL, for every action, an agent receives a reward. This piece
of information is stored and used in the choice of following
actions. RL has been widely applied in many areas of sci-
ence and engineering, such as robotics, multi-agent systems,
optimal control and optimization (Sutton and Barto 1998).

One of the most important aspects of RL is to estimate
the parameters, such as the learning rate and discount factor.
Many works, such as Sutton and Barto 1998; Schweighofer
and Doya 2003; Even-Dar and Mansour 2003; Gatti 2015;
Ottoni et al. 2016, have shown that the RL performance is
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influenced by the setting of parameters such as the learn-
ing rate (α), discount factor (γ ) and ε-greedy method. For
instance, Even-Dar and Mansour (2003) show that the con-
vergence of Q-learning is sensitive to the values of learning
rate and discount factor, while Gosavi (2008) presents an
empirical study on the effect of learning rate in the conver-
gence of RL algorithms. In order to overcome this problem,
Schweighofer and Doya (2003) introduce a concept of meta-
parameters for the RL and propose an algorithm to set
RL parameters dynamically. Murakoshi and Mizuno (2004),
based on the work of Schweighofer and Doya (2003), sug-
gest a parameter control method that responds more quickly
to sudden changes in the environment.

In the work of Kobayashi et al. (2009), a parameter
adjustment method based on the temporal difference error is
proposed. Yoshida et al. (2013) develop a framework to opti-
mize the discount factor, adopting evolutionary algorithms.
The method is based on adaptation function of the γ accord-
ing to the current state of the environment. An additional
work can be seen in Tokic et al. (2013), where the authors
investigate the determination of the parameters adopting the
framework “Reinforce Exploitation Control” and note that
the constant defining eligibility traces (λ) is connected to
the learning rate value. Other works implement algorithms
for adaptive learning rates in dynamic environments (Noda
2010; Dabney 2014; Ryzhov et al. 2015).

One of the most important and challenging application of
RL is the travelling salesman problem (TSP), which is com-
binatorial optimization problem (Gambardella and Dorigo

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-018-0374-y&domain=pdf


Journal of Control, Automation and Electrical Systems (2018) 29:350–359 351

1995; Reimann et al. 2001; Sun et al. 2001; Liu and Zeng
2009; Santos et al. 2009; Lima Júnior et al. 2010; Santos
et al. 2014; Alipour and Razavi 2015; Ottoni et al. 2015). In
this application, the estimation of the parameters is still one
of the key aspects to be investigated. In order to overcome
this problem, an attempt using a statistical methodology to
analyse the effects of RL parameters applied to the TSP has
been reported in Ottoni et al. (2015). Although the stochastic
nature of RL and the combinatorial feature of TSP seems
to at first glance not being possible to identify any rela-
tionship between parameters and results, this paper shows
that response surface model (RSM) (Myers et al. 2009) is
usually able to identify such relationship. The RSM is a
statistical technique used in the study process optimization
(Myers et al. 2009). Recent studies have addressed the RSM
in conjunction with intelligent techniques such as neural net-
works (Gonçalves Júnior et al. 2014) and genetic algorithms
(Mendes et al. 2014). Already in Gatti (2015), the RSM is
adopted in the analysis of the influence of RL parameters
in the convergence of TD(λ) algorithm into two problems:
mountain car problem and truck backer-upper problem. To
sum up, RSM can be seen as a box of statistical methods to
create typically polynomial functions to represent the answer
or the result of an experiment in terms of several independent
variables. These functions help to reduce the complexity in
finding solution (Gonçalves Júnior et al. 2014).

In this paper, we apply the RSM to calculate optimal val-
ues for the learning rate and the discount factor. We show
that the learning rate and discount factor can be related to the
response of TSPby aRSM.The stationary points ofRSMare,
then, used as the parameters for RL. Computational results
demonstrate that the use of RSM is capable of producing bet-
ter solutions to both symmetric and asymmetric tests of TSP.

The remainder of this paper is organized as follows. Sec-
tion 2 presents basic theoretical concepts of the TSP, RL and
RSM. Then, Sect. 3 describes a general overview of RL. The
experiments carried out and the structure of the proposed
mathematical modelling are presented in Sects. 3.1 and 3.2,
respectively. The results are given in Sect. 4, and concluding
remarks are delivered in Sect. 5.

2 Theoretical Foundation

2.1 Travelling Salesman Problem

The TSP is designed to determine the shortest route among a
set of cities, C = (c1, c2, c3, . . . , cn) (Applegate et al. 2007;
Lima Júnior et al. 2010). A distance (or cost) associated to
each pair of city is given by ci j . As a restriction, each location
must be visited once and the agent must start and finish the
route in the same city. Generally, the TSP is formulated on
a graph G = (N , A), where N is the set of nodes (vertices)

and A is the set of arcs (i, j) of problem (Goldbarg and Luna
2005).

In this work, the TSP is addressed using two paradigms:
symmetric (TSP) and asymmetric (ATSP). In the TSP, the
cost associated with the displacement of a city i for j locale
is equivalent to the cost of going to j for i . On the other
hand, in ATSP, the sense of accomplishment of the route
can change the value of the total distance. The experiments
were performed adopting problems from travelling salesman
problem library (TSPLIB)1 (Reinelt 1991). TheTSPLIB is an
open data repositorywhich includes options of case studies of
TSP. The TSPLIB repository presents problems (instances)
for both symmetric and asymmetric TSP. In addition, the
database provides the known optimal value for each instance
of the library.

2.2 Reinforcement Learning

Reinforcement learning can be seen as an interaction between
agent and environment a sequence of discrete time steps
(t = 0, 1, 2, . . .). At each instant t , an agent receives an
environmental representation, by means a state, st ∈ S, and
selects an action at ∈ A (Sutton and Barto 1998). In the
next instant t + 1, it receives a reinforcement, rt+1 ∈ R, and
notes the new state st+1. S is the set of all states, A is the set
of actions, and R is the reward function (Sutton and Barto
1998).

The learning rate (α) and discount factor (γ ) are used in
most of the RL methods. These parameters are generally set
in the range between 0 and 1. The learning rate is responsible
for controlling the new updates effects on learning matrix.
In a different perspective, the discount factor enables the
agent to select the actions in an attempt to maximize the
sum of rewards in the future. The function Rt in Eq. (1) is
the sequence of the time discounted returns, such as

Rt = rt+1 + γ rt+2 + γ 2rt+3 + · · · =
∞∑

k=0

γ krt+k+1, (1)

where γ ∈ [0, 1] (Sutton and Barto 1998).
Next, a brief description of RL algorithms adopted in this

work is presented.

2.2.1 Q-learning

TheQ-learning (Watkins andDayan 1992) is based on updat-
ing a Q matrix from Eq. (2)

Qt+1 = Qt (s, a)

+α
[
r(s, a) + γmaxa′Q(s′, a′) − Qt (s, a)

]
, (2)

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
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where Qt (s, a) is value at time t in the Q matrix for the pair
state (s) × action (a); Qt+1(s, a) is updating the Q matrix
at instant t + 1 for the implementation action a in the state
s; r(s, a) is the immediate reward for the take of action a
in the state s; maxa′Q(s′, a′) is the use of s′, the maximum
value in the Q matrix in line with the new state s′. Algorithm
1 shows the Q-learning.

1 Set the parameters: α, γ and ε

2 For each pair s,a to initialize the matrix Q(s,a)=0
3 Observe the state s
4 repeat
5 Select the action a using ε-greedy method
6 Take the action a
7 Receive immediate reward r(s, a)
8 Observe the new state s’
9 Update Q (s, a) with Eq. (2)

10 s = s’
11 until the stopping criterion is satisfied;

Algorithm 1: Q-learning

2.2.2 SARSA

The SARSA (Sutton and Barto 1998) is a traditional RL
algorithm adaptation from Q-learning. The SARSA (see
Algorithm 2) received this name because it involves in its
updated terms: st (state at time t), at (action at time t),
r(st , at ) (return to the pair st × at ) st+1 (state at time t + 1)
and at+1 (action at time t + 1). Equation (3) describes the
update of the Q matrix by SARSA with the execution of
action a in the state s:

Qt+1 = Qt (s, a) + α[r(s, a) + γ Qt (s
′, a′) − Qt (s, a)].

(3)

1 Set the parameters: α, γ and ε

2 For each pair s,a to initialize the matrix Q(s,a)=0
3 Observe the state s
4 Select the action a using ε-greedy method
5 repeat
6 Take the action a
7 Receive immediate reward r(s, a)
8 Observe the new state s’
9 Select the new action a using ε-greedy method

10 Update Q (s, a) with Eq. (3)
11 s = s’
12 a = a’
13 until the stopping criterion is satisfied;

Algorithm 2: SARSA

In Algorithms 1 and 2, the ε-greedymethod is responsible
to control between greedy and randomness in the selection
of actions (Sutton and Barto 1998).

2.3 Response Surface Models

The response surface model (RSM) is a set of statistical tech-
niques for the optimization of processes (Myers et al. 2009).
The performance measure is called the response, and input
variables are called independent variables (IV) (Myers et al.
2009). The response surface model features the same struc-
ture of the multiple linear regression models (Myers et al.
2009). Thus, Eqs. (4) and (5) have the structure of RSM
models of first and second order, with two IV (x1 and x2):

y = β0 + β1x1 + β2x2 + e, (4)

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + e. (5)

The effect of the error in the response is represented by e.
For the estimation of the model coefficients (β), it is usu-
ally adopted the method of least squares, assuming normal
distribution with zero mean and constant variance (Myers
et al. 2009). According to Myers et al. (2009), the models of
second order are more suitable to real surface problems.

3 Methodology

Application of the RL to solve the TSP requires the definition
of a model with a set of states (S), actions (A) and rewards
(R).Here themethod adopted for the development of learning
strategy is divided into four steps:

1. Definition of finite set of environmental states: in this
case, states are locations where the travelling salesman
(agent) must access. This definition ensures the reso-
lution of the TSP as a problem of sequential decision
(Lima Júnior et al. 2010). Moreover, the set S always has
the same size of the problem instance (Lima Júnior et al.
2010).

2. Definition of finite set of actions that the agent is able
to perform: each action intends to go to another location
(state) of the problem. It is noteworthy that, to avoid rep-
etition of locations on the route, actions that lead to states
already visited should not be available (Lima Júnior et al.
2010).

3. Definition of reward values for each pair state (s) ver-
sus action (a): reinforcements were defined as distances
between locationsmultiplied by−1, according toEq. (6):

ri j = −di j , (6)

where i and j are the locations,di j is the distance between
the cities i and j and ri j is the reinforcement received
by from i to j . Thus, the greater the distance, the more
negative is strengthening. Thus, it is expected that an
agent finds the shortest distance between two locations
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Table 1 TSPLIB instances

Type Instance n Optimal solution

TSP berlin52 52 7542

brazil58 58 25,395

kroA100 100 21,282

kroA200 200 29,368

ATSP br17 17 39

ftv33 34 1286

ftv44 45 1613

ftv64 65 1839

We select 4 symmetric and 4 asymmetric problems. n is the number of
cities. The fourth columns indicated the best known solution

to reduce the penalty. This approach is the same adopted
in Bianchi et al. (2009).

4. Tests are performed using Q-learning and SARSA algo-
rithms in a MATLAB platform.

3.1 Experiments

The experiments were performed in the MATLAB and
included tests on instances of TSPLIB as indicated in Table 1.
Simulations were performed involving a group of 64 com-
binations of the learning rate (α) and discount factor (γ ) for
each TSP problem. The values for α and γ are:

α = [0.01 0.15 0.30 0.45 0.60 0.75 0.90 0.99].

and

γ = [0.01 0.15 0.30 0.45 0.60 0.75 0.90 0.99].

Moreover, each combination was simulated five times
with 1000 episodes. The response of an episode is the total
distance (cost) travelled by the agent on the route (Ottoni
et al. 2015).

The value for ε was defined based in Ottoni et al. (2015).
Ottoni et al. (2015) analyse the effects of ε in three TSP
instances: berlin52, brazil58 and kroA100. They found good
results with ε = 0.01.

3.2 Mathematical Modelling

In this work, mathematical models of second order for each
instance described in Table 1 using Q-learning and SARSA
have been fitted, in a total of 16 models. These models aims
at representing sensitivity to parameters (α and γ ). The struc-
ture of the proposed models is composed of three variables:
y, α and γ . The response variable (y) is the average distance
travelled by the salesman on the route. For each of the five
repetitions of each instance, an average was calculated for

each combination of α and γ . In addition, the independent
variables are I V1 = α and I V2 = γ . Thus, the models have
the form of Eq. (7):

y = β0 + β1α + β2γ + β3α
2 + β4γ

2 + β5αγ + e. (7)

Equation (8) represents the structure of adjusted models
having as output the predicted response ŷi . In this case,
the error does not appear in Eq. (8) as ei is the difference
between an observation (yi ) and its predicted response (ŷi ),
or ei = yi − ŷi .

ŷ = β0 + β1α + β2γ + β3α
2 + β4γ

2 + β5αγ. (8)

To facilitate the identification of models, each structure
received a code, given by the union of the first letter of the
algorithm and the instance name. For example, for the model
representing the simulations of the Q-learning algorithm in
berlin52 problem, the code is Qberlin52.

For the adjustment of the models was adopted RSM pack-
age of statistical software R (Lenth 2009; Core Team 2013).

4 Results

The results for the adjustment of the response surface model
are described below. The analysis of results with RSM com-
prises three stages:

1. Analysis of model adjustment measures: the objective is
to verify if themodelsmeet some statistical requirements,
such as normality of the residues and significance of the
coefficients.

2. Analysis of contours and surfaces graphics: the goal is
to visualize graphically as the response variable is influ-
enced by the levels of parameters α and γ .

3. Analysis and simulations with stationary points in order
to check the optimality of the response in a model. In
addition, the values of the stationary points are adopted
in new experiments to analyse the performance of the
parameters set by the models.

4.1 Adjustment Measures

4.1.1 Residual Analysis

One of these tests is to determine whether the residues of
the models are normally distributed (Hines et al. 2006). Let
ei = yi − ŷi , i = 1, 2, . . . , n, where yi is a note and ŷi is
the corresponding value estimated from the regressionmodel
(Hines et al. 2006). We used the Kolmogorov–Smirnov test
(KS test) (Lopes 2011) to check the assumption. The cor-
responding p values of the KS test for the 16 second-order
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Table 2 Adjustment measures: p values of the KS test (pKS), R2 and
adjusted R2

Model pKS R2 R2
a

Qberlin52 0.6801 0.8914 0.8896

Sberlin52 0.2491 0.9037 0.9022

Qbrazil58 0.2769 0.9008 0.8992

Sbrazil58 0.3649 0.9080 0.9065

QkroA100 0.1068 0.8959 0.8942

SkroA100 0.0579 0.9025 0.9010

QkroA200 0.0000012 0.7897 0.7864

SkroA200 0.1943 0.8965 0.8948

Qbr17 0.0564 0.7159 0.7114

Sbr17 0.3025 0.8377 0.8352

Qftv33 0.4205 0.8712 0.8691

Sftv33 0.3692 0.8872 0.8854

Qftv44 0.4019 0.8817 0.8798

Sftv44 0.1803 0.8932 0.8915

Qftv64 0.0536 0.9015 0.8999

Sftv64 0.0025 0.9091 0.9076

models are shown in Table 2 denoted by pKS. In the KS test,
the initial hypothesis (H0) is that the residues follow a nor-
mal distribution (pKS > 0.05), and the alternative hypothesis
(H1) otherwise (pKS < 0.05) (Lopes 2011).

Applying the RL to estimate the parameters of Q-learning
and SARSA allows to find at least one suitable model for all
instances. Only the models QkroA200 (pKS = 1.19× 10−6)
and Sftv64 (pKS = 0.0025) did not confirm the residues
normality hypothesis, because pKS < 0.05. Nevertheless,
the results of these models QkroA200 and Sftv64 are pre-
sented in the next sections. Although these models does not
present the normality of residues confirmed, their station-
ary points present competitive responses when compared to
other literature results (see Table 6).

4.1.2 R2 and Adjusted R2

Other components analysis of the adequacy of a response sur-
face model is: coefficient of multiple determination (R2) and
adjusted coefficient of multiple determination (R2

a) (Myers
et al. 2009). These coefficients set between 0 and 1 indicating
how much variability is explained by the model. When R2

and R2
a approach 1, it is an evidence of a good model (Hines

et al. 2006). Table 2 presents the adjusted values for R2 and
R2
a .
The importance to use more than one index to evaluate

the quality of the models can be illustrated with the models
QkroA200 andSftv64.Although theKS test does not confirm
the normality of the residuals, the values of R2 and R2

a are
significant, whichmeans a good explanation of the variability

of data. This evidence is confirmed when the stationary point
of these models are used, as shown in Tables 5 and 6.

4.1.3 Tests on Individual Regression Coefficients

The tests on individual regression coefficients check the
hypothesis for the significance of each variable in the model.
The hypotheses for testing the significance of any individual
regression coefficient, say β j are H0: β j = 0 and H1: β j �= 0
(Myers et al. 2009). If H1: β j �= 0 is accept (p < 0.05), then
this indicates that corresponding variable x j is significant
from the model.

Tables 3 and 4 present the adjusted coefficients for each
model under study, adopting the Q-learning and SARSA,
respectively. The significance testing of individual coeffi-
cients for this work showed that for the 16 models, the
coefficients are significant (p < 0.05). Only for the Qbr17
model the terms γ (p = 0.606) and αγ (p = 0.84998) are
not significant. The term intercept refers to the linear coeffi-
cient (β0) of the proposed model, as shown in Eq. (7).

4.2 Surface and Contours Graphics

The RSM provides graphical tools for analysis contour plot
and response surface (Myers et al. 2009). The contour plot
gives a two-dimensional view between the IVs (α and γ )
and the response variable (y) of the model. Thus, in this type
of graph, the IVs are given in the scales x and y and the
response values are represented by the contour lines. In this
sense, a contour plot is similar to a topographic map, where
the latitude values are represented (axis x), longitude (axis
y) and elevation (contours). Thus, from contour lines it is
possible to identify regions that approach the minimum or
maximum of the adjusted response.

In this work, the contours plot shows in two dimensions as
the learning rate (α) and the discount factor (γ ) influence the
distance (contours–response variable) by travelling salesman
on the route. Figure 1 shows the contour plot for Sberlin52
model, referring to experiments with berlin52 proceedings
and adoption of SARSA algorithm. The red region indicates
the set of points, given by the relationship between α and γ ,
which produce lower values for the response variable.

As for the analysis in three dimensions, the tool adopted
is the response surface graph. Figure 2 presents this display
surface for Sberlin52 model. Similar to the contour plot, it
is possible to identify regions of α and γ approaching the
minimum of the response variable (distance). The IVs (α
and γ ) are displayed on the scales x and y in the 3D graphic.
The response variable (distance–axis z) is represented by
the surface. In these 3D graphs, the red region also indicates
where the response variable (distance) tends to beminimized.

123



Journal of Control, Automation and Electrical Systems (2018) 29:350–359 355

Table 3 Coefficients for models with Q-learning, where p states for
the level of significance are given in italics

Model Coef. β p

Qberlin52 Intercept 19,051 < 2 × 10−16

α − 23, 477 < 2 × 10−16

γ − 9839 < 2 × 10−16

α2 15,476 < 2 × 10−16

γ 2 17,169 < 2 × 10−16

αγ 6262 9.6 × 10−14

Qbrazil58 Intercept 70,114 < 2 × 10−16

α − 89, 081 < 2 × 10−16

γ − 39, 545 < 2 × 10−16

α2 56,615 < 2 × 10−16

γ 2 67,766 < 2 × 10−16

αγ 29,422 < 2 × 10−16

QkroA100 Intercept 92,844 < 2 × 10−16

α − 134, 710 < 2 × 10−16

γ − 50, 035 1.74 × 10−14

α2 85,159 < 2 × 10−16

γ 2 92,922 < 2 × 10−16

αγ 32,659 3.67 × 10−12

QkroA200 Intercept 195,160 < 2 × 10−16

α − 230, 422 < 2 × 10−16

γ − 119, 200 3.1 × 10−13

α2 161,552 < 2 × 10−16

γ 2 197,427 < 2 × 10−16

αγ 25,827 0.0238

Qbr17 Intercept 118.8969 < 2 × 10−16

α − 95.6770 < 2 × 10−16

γ 3.5651 0.606

α2 77.0405 < 2 × 10−16

γ 2 32.8138 < 2 × 10−16

αγ − 0.3029 0.952

Qftv33 Intercept 3157 < 2 × 10−16

α − 3927 < 2 × 10−16

γ 1639 < 2 × 10−16

α2 2682 < 2 × 10−16

γ 2 2648 < 2 × 10−16

αγ 728 3.24 × 10−8

Qftv44 Intercept 4380 < 2 × 10−16

α − 5600 < 2 × 10−16

γ − 2087 1.48 × 10−15

α2 3684 < 2 × 10−16

γ 2 3564 < 2 × 10−16

αγ 1243 3.09 × 10−11

Qftv64 Intercept 6097 < 2 × 10−16

α − 8162 < 2 × 10−16

γ − 2986 3.41 × 10−16

Table 3 continued

Model Coef. β p

α2 5100 < 2 × 10−16

γ 2 5266 < 2 × 10−16

αγ 2072 4.97 × 10−15

Table 4 Coefficients for models with SARSA

Model Coef. β p

Sberlin52 Intercept 18,656 < 2 × 10−16

α − 22, 730 < 2 × 10−16

γ − 7097 1.9 × 10−11

α2 14,985 < 2 × 10−16

γ 2 14,487 < 2 × 10−16

αγ 6718 < 2 × 10−16

Sbrazil58 Intercept 68,807 < 2 × 10−16

α − 85, 423 < 2 × 10−16

γ − 30, 211 2.16 × 10−13

α2 54,619 < 2 × 10−16

γ 2 58,197 < 2 × 10−16

αγ 30,530 < 2 × 10−16

SkroA100 Intercept 91,178 < 2 × 10−16

α − 129, 538 < 2 × 10−16

γ − 37, 187 6.76 × 10−10

α2 81,825 < 2 × 10−16

γ 2 79,626 < 2 × 10−16

αγ 34,971 4.60 × 10−15

SkroA200 Intercept 191,276 < 2 × 10−16

α − 236, 975 < 2 × 10−16

γ − 75, 721 1.07 × 10−11

α2 147,295 < 2 × 10−16

γ 2 14,7568 < 2 × 10−16

αγ 62,817 1.59 × 10−14

Sbr17 Intercept 116,829 < 2 × 10−16

α − 86, 174 < 2 × 10−16

γ 12.367 0.01779

α2 67.467 < 2 × 10−16

γ 2 26.247 2.26 × 10−8

αγ 10.321 0.00656

Sftv33 Intercept 3110 < 2 × 10−16

α − 3888 < 2 × 10−16

γ − 1281 4.64 × 10−14

α2 2658 < 2 × 10−16

γ 2 2278 < 2 × 10−16

αγ 877 9.28 × 10−13

Sftv44 Intercept 4298 < 2 × 10−16

α − 5442 < 2 × 10−16
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Table 4 continued

Model Coef. β p

γ − 1593 3.93 × 10−11

α2 3550 < 2 × 10−16

γ 2 3079 < 2 × 10−16

αγ 1401 3.29 × 10−15

Sftv64 Intercept 6006.3 < 2 × 10−16

α − 7976.9 < 2 × 10−16

γ − 2320.6 7.81 × 10−12

α2 4975.0 < 2 × 10−16

γ 2 4590.5 < 2 × 10−16

αγ 2228.6 < 2 × 10−16
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Fig. 1 Contours graphics for Sberlin52 model

4.3 Stationary Points

The identification of stationary points (minimum or maxi-
mum) is interesting to check the values that optimize the
predicted response in RSM models (Myers et al. 2009). In
the TSP, the goal is to minimize the distance travelled on the
route. Thus, the desired stationary points on the modelled
surfaces are the minimum RSM functions.

In the TSP, the goal is to minimize the distance travelled
on the route. Thus, the desired stationary points are the min-
imum modelled surfaces. It is noteworthy that the definition
of stationary points refers to a second optimization problem
in this work, that is, find the values of the parameters α and γ

that minimize the predicted response ŷ in each the adjusted
models. The optimization problem is formulated as
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Fig. 2 Response Surface for Sberlin52 model

Table 5 Stationary points for Q-learning and SARSA

Q-learning SARSA

Problem α γ α γ

berlin52 0.7273 0.1539 0.7421 0.0729

brazil58 0.7534 0.1282 0.7656 0.0587

kroA100 0.7651 0.1348 0.7782 0.0626

kroA200 0.6927 0.2566 0.7854 0.0894

br17 0.6208 0 0.6667 0

ftv33 0.7032 0.2128 0.7074 0.1450

ftv44 0.7321 0.1652 0.7491 0.0882

ftv64 0.7735 0.1313 0.7879 0.0615

minimize
α,γ

ŷ

subject to 0 ≤ α ≤ 1
0 ≤ γ ≤ 1

Table 5 shows the stationary points obtained from the
canonical analysis in software R (Myers et al. 2009; Lenth
2009).

The next step is to verify the RL performance using the
stationary points for the parametersα andγ . Thus, the combi-
nations have been simulated with five replicates with 10,000
(ten thousand) episodes. Table 6 shows the best results found
for each instance with the adjusted values of learning rate
and discount factor (stationary points) for Q-learning and
SARSA algorithms, respectively.

In addition, experiments were conducted by adopting the
parameters used in other works: α = 0.1 and γ = 0.3 (Gam-
bardella and Dorigo 1995; Bianchi et al. 2009), α = 0.8 and
γ = 0.9 (Sun et al. 2001), α = 0.1 and γ = 0.9 (Liu and
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Table 6 Best solution found with the Q-learning and SARSA for each problem by adopting the values of the stationary points (SP) and parameters
as other works

TSPLIB Q-learning SARSA

Problem Optimal D95 S01 Z09 L10 SP D95 S01 Z09 L10 SP

berlin52 7542 8871 10,920 8710 15,126 8619 9169 12,206 9115 16,441 8048

brazil58 25,395 27,895 41,816 34,881 54,371 27,487 28,284 44,791 34,798 49,156 26,685

kroA100 21,282 25,363 47,580 37,749 64,022 24,925 26,764 55,873 42,301 67246 24263

kroA200 29,368 37,704 83,341 76,833 121,336 38,254 38,468 98,795 82,088 121879 35311

br17 39 39 39 40 40 39 39 39 39 42 39

ftv33 1286 1525 1650 1517 2245 1464 1533 1810 1501 2245 1381

ftv44 1613 1980 2372 2057 2631 1873 2033 2692 2091 2692 1812

ftv64 1839 2411 3281 2631 4682 2279 2432 3605 2570 4638 2139

Optimal: optimal solution of TSPLIB. Solutions with parameters described in D95: Gambardella and Dorigo (1995), S01: Sun et al. (2001), Z09:
Liu and Zeng (2009), L10: Lima Júnior et al. (2010). In the column SP, the solutions are obtained with parameters of stationary points in Table 5

Zeng 2009) and α = 0.9 and γ = 1 (Lima Júnior et al. 2010;
Santos et al. 2014). These combinations were also simulated
in five replicates with 10,000 episodes, and the best results
are presented in Table 6.

For SARSA algorithm, stationary points achieved the
best results in all instances. The results show that for the
Q-learning, the parameters set by RSM reached the best
performance in seven instances and a second place in the
kroA100 problem, inwhich parameters used byGambardella
and Dorigo (1995) achieved the best result. Here it is impor-
tant to stress the ability of RSM to indicate good parameters.
Taking as example the parameters used by Gambardella and
Dorigo (1995) for the ftv44 problem, it is clear to see that
the pair of parameters α = 0.1 and γ = 0.3 is located
in a green contour in the Fig. 3, quite far away from the
red area, in which it is possible to find the stationary point
(α = 0.7320604 e γ = 0.1652470). In this same aspect,
still analysing Fig. 3, the point defined by the parameters of
Lima Júnior et al. (2010) (α = 0.9 and γ = 1) is in the blue
region of the graph. In this respect, the contour plot offers a
visual aspect that helps to define the are with the best values
of α and γ .

5 Conclusion

This paper has addressed the problem of estimating the
parameters of RL for the TSP. We applied the RSM to relate
the response variable (average distance travelled) to the learn-
ing rate α and discount factor γ . Our main contribution is to
present a systematic approach to overcome the problem of
ad hoc estimations of these parameters. As a consequence,
our results present better performance to those present in the
literature without a systematic approach.

TheTSP is frequently discussed in the literature, andmany
methods have been investigated, such as ant colony algorithm
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Fig. 3 Contours graphics for Qftv44 model. The stationary point α =
0.7320604 and γ = 0.1652470 estimated in this paper is in the area
(red) that approaches the minimum of the adjusted response. On the
other hand, the set of parameters (0.1; 0.3) and (0.9; 1) heuristically
adopted by Gambardella and Dorigo (1995) and Lima Júnior et al.
(2010), respectively, is clearly distant from the red area (Color figure
online)

(Dorigo andGambardella 1997),memetic algorithms (Buriol
et al. 2004), genetic algorithms (Deng et al. 2015), tabu search
(Fiechter 1994), particle swarm optimization (Marinakis and
Marinaki 2010), neural networks (Siqueira et al. 2007), simu-
lated annealing (Chen andChien2011) andothers (Applegate
et al. 2007; Cook 2011; Marinakis et al. 2011; Ouaarab et al.
2014). Important contributions were also conducted to works
that applied the RL in solving the TSP. Gambardella and
Dorigo (1995) perform a connection between the ant system
(AS) and RL.

Another recurrent approach in solving combinatorial opti-
mization problems is the development of hybrid solutions
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between genetic algorithms (GAs) and reinforcement learn-
ing (Liu and Zeng 2009; Santos et al. 2009; Lima Júnior et al.
2010). Lima Júnior et al. (2010) propose the adoption of Q-
learning algorithm as a strategy of exploration/ exploitation
for GRASP metaheuristics and GAs. Similarly, Santos et al.
(2009) also discuss resolutions with RL, GRASP and GAs,
but adopting a parallel implementation. Liu and Zeng (2009),
in turn, proposes the RMGA algorithm, which also includes
GAs and RL. Following the same line of combining tech-
niques for the resolution of the TSP, the work Bianchi et al.
(2009) applies acceleration heuristics in RL.

In this paper, we show that RSMallows to identify how the
performance of the RL is influenced by the levels of learning
rate and discount factor. This is made possible to the set of
tools available for RSM. The contours and response surface
graphics provide an important visual aspect as the sensitivity
of the RL values ofα and γ . The analysis of stationary points,
in turn, allows inferring for each model which parameter
values tend to optimize the response.

The parameters set by RSM achieved the best overall per-
formance in SARSA simulations, among the combinations
of α and γ analysed. As for the Q-learning, stationary points
obtained the best performance in seven instances and a sec-
ond position in one instance The analysis of surface and
contours graphics identifies regions close to the stationary
point that optimize the response of TSP. It is a valuable help
to estimate the parameters without a trial and error approach.
Additionally, as it has been noticed to the parameters sug-
gested by Gambardella and Dorigo (1995), the RSM the
contour plots is very practical tool to avoid low performance
parameters.

In future works, we intend to investigate the sensitivity of
the RL parameters in other combinatorial optimization prob-
lems and also other traditional areas of the RL application,
such as mobile robotics and multi-agent systems. Also, we
plan to improve the mathematical modelling by RSM for a
three-parameter function: α, γ and also ε, thus adding the
effects of the policy ε-greedy in settings of response sur-
face model. Additionally, it will be worth to compare the
results with other techniques, such as artificial neural net-
work, as it has been done by Erzurumlu and Oktem (2007);
Desai et al. (2008) or polynomial NARMAX (Billings 2013).
Other possible future works are to evaluate dynamicmethods
of parameter definition for theTSP.As done bySchweighofer
and Doya (2003), for adaptive algorithms it is necessary to
define the initial values for the parameters. In this respect,
an important point would be to adopt RSM to model mathe-
matically the influence of the initial conditions for α, γ and
ε.
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