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Abstract: This study introduces a method of structure selection based on interval predictor model (IPM) and sum of squares
formulation. The main contribution is to provide polynomial identified models that can recover static non-linearities from chaotic
data. Moreover, the dynamical behaviour of the identified models is also examined in the structure selection by considering
convex combinations of the polynomial functions that describe the IPM. Numerical experiments contemplating non-linear maps
borrowed from the literature are presented to illustrate the potential and efficacy of the proposed approach.

1 Introduction
It has been widely recognised the importance of identification for
control as a research area that deals with modelling, the design of
experiments, identification of dynamic models appropriate for
control design and evaluation of the quality of estimated models
[1–4]. Although the quality of models, also known as model
validation, has been evaluated in many different ways and
numerous works have been published [5–7], it is also well known
that non-linear systems pose challenging difficulties to find a
suitable model. For instance, it has been known for a number of
years that most conventional approaches for model validation are
not attractive when the models are chaotic [8].

The search of models for identifying chaotic models is a
common place for practitioners of control theory and investigators
of non-linear science. In both areas, an important topic has been the
investigation of how to predict chaotic time series [9–11]. To
achieve such a goal, the detection of the dynamical structure is of
great importance and it has received great attention over the past
few decades [12–16]. Although a great effort has been made in this
direction, the choice of the model structure remains an open
question [17, 18]. A simple and suitable structure is usually a hard
task to overcome. The determination of the terms or the structure
of the model has been considered critically important [18]. This
issue may be even more difficult when system identification is
devoted to finding a structure from chaotic data.

We easily find many works in which a priori knowledge, or
some sort of auxiliary information, has been used to build
parsimonious models [19–25]. Among those types of auxiliary
information, the static non-linearities, which appear as non-linear
curves in a bidimensional embedding space, have been used to
choose the model structure [17, 26–28]. This has provided
substantial help and many chaotic systems have been effectively
modelled. However, it has been pointed out that non-smooth static
non-linearity can barely be approximated by a polynomial with a
finite degree of non-linearity [17]. For instance, it has been
reported that no polynomial model of a lower degree had been
found to reproduce the tent attractor. In such studies, the solution
came up with the use of rational structures [17, 26, 29, 30]. Despite
these structures exhibiting good agreement with many chaotic
systems, they are not very useful for acquiring global differential
models because they involve poles that may eject the trajectory to
infinity [29]. Apart from that, it is well accepted that the
polynomial structure is very appealing because of the simplicity
and the intuition it offers about the system properties [18, 30].

Therefore, it would be very desirable to develop a framework,
wherein static non-linearity could be used together with
polynomial structures. In this study, we introduce the interval
predictor model (IPM) to select a structure for a polynomial non-
linear auto regressive moving average model with exogenous input
(NARMAX) [18], which allows the use of static non-linearity and
polynomial structures. The IPM is a recent technique and can be
viewed as a new field in system identification [31–33]. Here, we
use this approach to identify polynomials that allow one to make a
prediction that embraces the data range, from the point of view of
its amplitude. The sum of squares (SOS) [34] method was
employed to estimate two polynomials that give us the lower and
upper limits containing all the data set. Moreover, we have shown
that better approximation of static non-linearity, as well the largest
Lyapunov exponent (LLE) [35, 36] can be achieved by means of a
convex combination between the polynomial of lower and upper
limit. Additionally, we have found that although some models
suggested in the literature offer a good fitting for static non-
linearity, they do not present chaotic behaviour, as their LLE is
negative or zero. With the suggested approach, the convex
combination also allows us to find among pre-selected models,
those ones which are indeed chaotic.

The proposed method does not require the knowledge of the
system mathematical model since the IPM makes use of empirical
data. To the best of author's knowledge, this is the first time that an
IPM-based approach has been used to select a structure of
NARMAX models in order to recover static non-linearities from
chaotic data.

The remainder of the paper is organised as follows. Section 2
presents some background on the main issues of the paper, namely
static non-linearity, polynomial NARMAX, IPM, and SOS. The
description of the proposed method is presented in Section 3, while
the numerical experiments applied in two case studies are
presented in Section 4. Section 5 concludes the paper.

2 Background
This section presents some background material used in this study.
 

Definition 1 (map static non-linearities [17]): Let us consider
an nyth-order map

yk = f (yk − 1, …, yk − ny), (1)

IET Control Theory Appl., 2018, Vol. 12 Iss. 13, pp. 1889-1894
© The Institution of Engineering and Technology 2018

1889

 17518652, 2018, 13, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cta.2017.1033 by M

aynooth U
niversity L

ibrary, W
iley O

nline L
ibrary on [28/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



where f is a non-linear function. The obtained iterating past values
according to the non-linear law f ( ⋅ ) is the static non-linearity of
the dynamical map.
 

Example 2 (static non-linearity of a logistic map): Let us
consider the logistic map, defined as

yk = ryk − 1 − ryk − 1
2 . (2)

In this example, the dynamic of the map can be obtained by
iterating the sequence according to

f (x) = rx − rx2 . (3)

The function f (x) is the static non-linearity of the logistic map.
This representation is useful to understand the model dynamics
since it is well known that the sequence yk can exhibit complicated
dynamics even when f ( ⋅ ) is simple [37].
 

Definition 3 (polynomial NARMAX [38]): A polynomial
NARMAX can be defined as

yk = Fℓ[yk − 1, …, yk − ny, uk − 1, …, uk − nu,
ek − 1, …, ek − ne],

(4)

in which yk, uk, and ek are, respectively, the model output, input,
and noise terms at time k ∈ ℕ. The parameters ny, nu, and ne are the
maximum lag for output, input, and noise terms. Terms such as ek
are constantly used during the parameter estimation process to
avoid bias. In this work, Fℓ is assumed to be a polynomial with
non-linearity degree ℓ ∈ ℤ+.

A considerable number of non-linear systems have been usually
modelled using particular cases of the polynomial NARMAX, such
as the polynomial nonlinear autoregressive model with exogenous
input (NARX) or nonlinear autoregressive model (NAR). In the
former case, noise terms are not used, whereas the polynomial
NAR is used to represent autonomous systems in which the input is
not used. In this study, we use the acronym NARMAX to name all
of them.

 
Definition 4 (IPM [31]): An IPM is a technique developed to

compute the range of an output variable given a set of input–output
data. An IPM can be fully described by its upper and lower
boundaries. In this study, such boundaries are set to be polynomial
functions, so one can write

I(x) = [ f l(x), f u(x)],

where f l(x) < f u(x) for all x in the domain of interest.
The polynomial functions to be computed can be described

generically as

f p(x) = β0 + β1x + β2x
2 + ⋯ + βcx

dp, (5)

where dp is the maximum degree that is used for the upper or for
the lower polynomial function. The decision variables are the
coefficients βi, i = 0, …, c, used to construct the upper polynomial
function and for the lower polynomial function. Note that the IPM
boundaries might not have the same polynomial degree. Even
though IPMs are used to set a range for the observed data, in this
study, they are used as a tool to provide a polynomial structure for
recovering static non-linearities from chaotic data.

2.1 SOS programming

If a polynomial P(x) of degree 2dp can be written in the form
P(x) = z(x)TQz(x) where z(x) is a vector of monomials with degree
less than or equal to dp and Q is a symmetric positive definite
matrix, then one can say that P(x) is a SOS. The SOS problem can
be casted as a semi-definite programming as reported in [34]. The

SOS decomposition is obtained from the factorisation of the matrix
Q. The example in the sequel illustrates this fact.
 

Example 5: Consider the following polynomial function

P(x) = x4 − 4x3 + 13x2 . (6)

P(x) can be rewritten in the form z(x)TQz(x) as

P(x) = x2 x
1 −2

−2 13
x2

x
, (7)

where

Q = 1 −2
−2 13

is a positive definite matrix. In this way, P(x) admits a SOS
decomposition. By applying a Cholesky factorisation one can write

P(x) = x2 x
1 −2
0 3

T 1 −2
0 3

x2

x

or

P(x) = (x2 − 2x)2 + 9x2

that is a SOS.
If a polynomial P(x) is a SOS, then one can say that P(x) is

positive. The opposite is not always true [39]. However, for
polynomial functions in one variable that is the case considered in
this study, the SOS constraint is equivalent to the non-negativity.
The SOS constraint can be imposed with the help of numerical
tools available in the literature [40, 41].

It is important to emphasise that the proposed method does not
require the dynamical system (that generates the input–output
pairs) to be described as an SOS polynomial. The SOS polynomial
constraint will be imposed to obtain the IPM that contains all data
generated by the dynamical system.

3 Structure selection via IPM
In what follows we describe the method that has been used to
select the model structure to represent a chaotic system. Instead of
requiring the knowledge of the chaotic system mathematical
model, the proposed approach uses data to estimate them. This is
achieved by means of solving a SOS optimisation problem as
detailed below.

The data used to compute the IPM are obtained from the first-
order non-linear map

yk = f (yk − 1) . (8)

Denote (yk − 1, yk) the input–output pairs for k = 1, …, N. For the
sake of simplicity, hereafter the following change of notation will
be considered xk = yk − 1. It should be clear that systems under
consideration are autonomous. However, a delayed version of the
output is used to emulate an input, which takes part in the structure
selection procedure.

The conditions for designing an IPM based on N input–output
data points (xk, yk) from the non-linear map (8) follow the same
lines as in [42] and are presented in the following optimisation
problem.

 
Optimisation problem 6: If there exist γ > 0, polynomials f u(x)

and f l(x) as in (5), a SOS multiplier ϕ(x) and a polynomial
p(x) ≤ 0, describing the interval of interest for the design of the
IPM, such that the following optimisation problem is satisfied
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min γ s.t.
Ex f u(x) − f l(x) < γ . (9)

yk − f l(xk) > 0, k = 1, …, N, (10)

yk − f u(xk) < 0, k = 1, …, N, (11)

f u(x) − f l(x) + ϕ(x)p(x) is SOS, (12)

where Ex[ ⋅ ] is the expected value with respect to x, then

I = f l(x), f u(x)

is an IPM that contains all the data.
When x is a standard joint random vector with joint probability

density f x(x), the cost function in (9) can be calculated analytically
for each of the monomials as

E xn = ∫
x

x
xn f x(x) dx,

where {x: x ≤ x ≤ x}.
The measurements f (xk), k = 1, …, N must be located inside the

IPM, i.e. between the upper function f u(x) and the lower function
f l(x). Inequalities (9) and (10) have been used to ensure this
condition. Moreover, the SOS constraint (12) is employed to
compute the coefficients of the polynomial functions that describe
the IPM assuring that the upper function is always above the lower
function in the interval of interest. For polynomials in one variable,
the SOS constraint is equivalent to the non-negativity. The
polynomial p(x) can be constructed as

p(x) = (x − x)(x − x) . (13)

In this way, p(x) is guaranteed to be negative or equal to zero in the
interval x ≤ x ≤ x. It is important to remember that optimisation
problem 6 is a convex problem that can be solved using standard
semi-definite software such as SeDuMi [43].

Our main goal is to recover a model that, when compared with
the original system, provides a trade-off between static non-
linearity and dynamical behaviour. Once this goal is achieved in
optimisation problem 6, one has an upper polynomial function
f u(x) and a lower polynomial function f l(x) that provide a region
of minimum spread for the data and consequently a good static
behaviour for the model. To search for a model which also
provides the desired dynamical behaviour, convex combinations of
the upper and lower polynomial functions have been considered in
the form

f
^(x) = α f u(x) + (1 − α) f l(x), 0 ≤ α ≤ 1 . (14)

 
Remark 7: The α parameter can be used as a degree of freedom

to provide a model with an appropriate trade-off between static and
dynamic behaviour. In the numerical experiments, a line search on
α has been employed. More sophisticated optimisation methods
could be employed to search for α.
 

Remark 8: It is important to remember that the dynamical
model can be obtained directly from the static non-linearity f

^(x),
computed from the optimisation problem 6. The performance
criteria used to evaluate the obtained model make use of the static
model f

^(x) and of the dynamical model f
^(yk − 1) as well.

3.1 Static metrics

To validate the static non-linearity of the identified map f
^(xk), its

static non-linearity should be considered and somehow compared
with the original system. The MSE and ME were used to assess the

static behaviour of the identified models. Considering the static
non-linearity defined by (1), the MSE can be written as

MSE =
∑i = 1

M f (xi) − f
^(xi)

2

M , (15)

where M is the number of points used to compute the static non-
linearity, f (xi) is the map static non-linearity computed for xi and
f
^(xi) its estimate. The ME can be expressed as follows (16):

ME = max f (xi) − f
^(xi) , i = 1, …, M, (16)

which is the greatest distance between the original map f (x) and
the estimated map f

^(x).

3.2 Dynamic metric

The reckoning of the LLE has been considered as an answer to the
issue of distinguishing the presence of chaos in a dynamical
system. It consists of computing the exponential divergence of
nearby trajectories. There are different methods to compute this
exponent, as shown in [35, 36]. To evaluate f

^(xk), the method
proposed in [44] is a very simple way to compute the LLE based
on the lower bound error [45, 46] of two pseudo-orbits of a chaotic
system. Due to its simplicity and effectiveness, this method was
employed in this work to compute the LLE for the identified
models.

4 Numerical experiments
Numerical experiments are used to illustrate the potential of the
technique presented in this study. The routines were implemented
in Matlab, version 8.3.0.532 (R2014a) using YALMIP [40] and
SeDuMi [43] in an Intel(R) Core(TM) i5-4210, 2.4 GHz, 8 GB
RAM, Windows 10.

The procedure performed in both examples was based on the
following steps. Firstly, a set of N = 100 input–output pairs
(yk − 1, yk) have been generated from each map to be identified.
Secondly, optimisation problem 6 was solved to obtain the IPM
(upper polynomial function f u(x) and lower polynomial function
f l(x)) that contains all the data points. Finally, (14) was employed
to search for α that provides both static and dynamic metrics with
good performance. In what follows the IPM-based structure
selection, proposed in this study, has been employed for two well-
known maps borrowed from the literature.

4.1 Tent map

Consider the tent map described by

yk = 1 − 1.999 yk − 1 − 0.5 , (17)

where y0 = 1 is the initial condition.
Table 1 presents the results obtained by applying the proposed

procedure, considering different degrees of polynomial functions in
the IPM with convex combinations for a set of α values. Some
interesting aspects can be observed from Table 1. For example, it
can be seen that the estimated map f

^(x) with an IPM of degree
d = 2 and for α = 1, presents LLE = 0.9239, showing a good
agreement with the original LLE of the tent map (LLE = 0.9993
[47]). It is also noteworthy that the dynamical behaviour of the
identified polynomial model is even closer to the tent map than the
rational model identified in [30] (LLE = 0.7369). However, not all
polynomials of degree d = 2 can reproduce the dynamical
behaviour of the original tent map, in some cases, the obtained
model did not present positive LLE. More than that, Table 1 shows
that even polynomials of higher degree (d = 4, 6) can produce
models that do not meet the expected LLE. As can be seen from
Table 1, a line search has been used on α in order to get solutions
that fit both system static and dynamic behaviour. It can be noted
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also that the estimated LLE is highly dependent on the chosen α
while MSE and ME present minor variations. This procedure is
particularly interesting because it can be seen as a fine-tuning in
order to guarantee the chaotic behaviour of the system. For
instance, the polynomial model obtained in [30] (see Table 2)
presents some good values of MSE and ME. However, the
computation of LLE presented a negative value. In this study, we
provide a systematic procedure to find models that exhibit chaotic
behaviour. This sort of ‘chaotification’ has already been
investigated in the literature (see [48]). However, in this study, this
procedure is made along with the parameter estimation stage,
which provides obvious benefits to the system identification field. 

As can be seen from Table 1, the parameter d = 6 produces the
largest number of models with a positive LLE. However, it is
important to state that there is no evidence that LLE is directly
related to the values of d, since greater values of d can generate

overparameterised models that are not capable of reproducing the
non-linear behaviour.

If a thinner grid is performed in the parameter α one might find
better performance in terms of both MSE and LLE, as can be seen
in Table 2. Moreover, by using the proposed technique, one can
find polynomial models that outperform the rational structure
proposed in [30] with smaller values for MSE, ME and with LLE
closer to its real value.

Fig. 1 depicts the static recovered by using the polynomial and
rational models identified in [30], the original tent map and the
model estimated using the technique presented in this study. 

For the sake of completeness, the rational and polynomial
dynamical models from [30] are repeated here. A polynomial
model for the tent map from [30] is given by

yk = 2.7627yk − 1 − 1.6938yk − 1
2 − 1.2405yk − 1

3 (18)

and a rational model for the tent map from [30] is given by

D = 1 − 2.416yk − 1 + 2.407yk − 1
2 ,

yk = 1
D 0.02608 − 1.325yk − 1

2 + 1.325yk − 1 .
(19)

The estimated polynomial for the tent map from this study with
d = 6 and α = 0.56 has been compared with the polynomial and
rational models identified by Correa et al. [30]. The performance
metrics of this model are presented in Table 2 and the model can be
written as

yk = − 0.03304 + 3.91075yk − 1 − 25.73878
yk − 1

2 + 131.54011yk − 1
3 − 286.49149

yk − 1
4 + 265.92687yk − 1

5 − 89.15479yk − 1
6 .

(20)

From Fig. 1 one can see that the polynomial model (20) provides
smaller ME than the polynomial and rational models from [30].
Besides, the structure selected by SOS programming still retains a
very small MSE, showing a static non-linearity in good agreement
with the one presented by the tent map. It is worthwhile to mention
that the difference between the LLE of this polynomial and the
LLE of the tent map is smaller than the one presented by the
models identified by Correa et al. [30], allowing to conclude that
there is a good commitment between static and dynamic behaviour
of the identified model.

4.2 Sine map

Let us now consider the sine map

yk = 3.142sin(yk − 1), (21)

where y0 = 1.5 is the initial condition.

Table 1 Identification of tent map with a grid in the parameter α. Estimated f
^(xk) with different degrees d and their respective

mean squared error (MSE), maximum error (ME) and LLE. (–) means that the identified model has a negative LLE
d = 2 d = 4 d = 6

α MSE ME LLE MSE ME LLE MSE ME LLE
0 0.0115 0.2867 — 0.0037 0.2042 — 0.0012 0.1282 —
0.1 0.0083 0.2584 — 0.0027 0.1841 0.2949 0.0009 0.1157 0.2801
0.2 0.0062 0.2300 — 0.0020 0.1640 0.5753 0.0007 0.1033 0.8549
0.3 0.0053 0.2017 — 0.0015 0.1440 0.6354 0.0006 0.0908 0.8597
0.4 0.0056 0.1734 — 0.0014 0.1239 — 0.0006 0.0783 0.7489
0.5 0.0071 0.1451 — 0.0015 0.1038 0.5922 0.0007 0.0659 0.8272
0.6 0.0098 0.1473 — 0.0020 0.0838 0.7390 0.0009 0.0634 0.9651
0.7 0.0137 0.1722 0.5989 0.0027 0.0895 0.8355 0.0013 0.0740 0.6645
0.8 0.0187 0.1972 0.7252 0.0038 0.1042 — 0.0018 0.0847 0.8623
0.9 0.0250 0.2222 0.6444 0.0052 0.1193 — 0.0023 0.0955 0.8775
1 0.0324 0.2474 0.9239 0.0068 0.1347 — 0.0030 0.1064 0.9300

 

Table 2 Comparison among polynomial and rational
models obtained by [30] for the tent map and via IPM
structure selection with degree d = 6

MSE ME LLE
polynomial (d = 3) [30] 0.0062 0.1971 —
rational [30] 0.0006 0.0925 0.7369
proposed method: polynomial d = 6
α = 0.34 0.0006 0.0858 0.6563
α = 0.56 0.0008 0.0592 0.9275
α = 0.71 0.0013 0.0751 0.9901

 

Fig. 1  First return map. Original tent map (straight red line), polynomial
model [30] (dashed dotted black line), rational model [30] (dotted blue
line), and SOS model (magenta dashed line)
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Following the procedure introduced in this study, the
polynomial models of degree d = 6 were identified for different
values of α. Table 3 shows the results obtained for the metrics
MSE, ME and LLE considered in this work. The results are
compared with polynomial and rational models presented in [30].
The polynomial model and the rational NAR model for the sine
map identified by Correa et al. [30] are presented in the sequel.
The polynomial model for the sine map from [30] is given by (22)

yk = 2.9893yk − 1 − 0.2479yk − 1
3 (22)

and the rational model for the tent map from [30] is given by (23)

D = 1 − 0.5117 × 10−3yk − 2
2 − 0.3722 × 10−2

yk − 3
2 + 0.8053 × 10−2yk − 1yk − 2 − 0.2728 × 10−2yk − 1

yk − 3 + 0.1174yk − 1
2 ,

yk = 1
D 3.9570yk − 1 − 0.3951yk − 1

3 .

(23)

By applying the approach presented in [44], the LLE for the sine
map (21) is LLE = 1.1016. In this sense, one can note from Table 3
that the rational model from [30] provides the closest LLE value.
However, it can also be noted from Table 3 that the polynomial
models can provide structures that present smaller MSE and ME
than the rational model from [30]. These polynomial models are
still able to produce a chaotic behaviour close to the original sine
map. The first-order identified map for α = 0.45 and degree d = 6
is given by

yk = − 0.00184 + 3.11530yk − 1 + 0.00276
yk − 1

2 − 0.49364yk − 1
3 − 0.00095

yk − 1
4 + 0.01829yk − 1

5 + 0.00007yk − 1
6 .

(24)

Fig. 2 illustrates the static recovered by using the polynomial
and rational models identified in [30], the original sine map and the
model estimated using the technique presented in this study with
d = 6 and α = 0.45. One can see that the polynomial obtained with
the proposed technique provides the best static estimation with a
LLE that can reproduce the chaotic behaviour. Therefore, it is
possible to conclude that the model identified from the proposed
approach can reproduce static non-linearity and the chaotic
dynamic of the identified sine map. The same discussion about the
α parameter can be applied to this example. For some values of α,
the LLE is not positive, meaning that the estimated model is not
chaotic. 

Although, the models obtained so far represent a significant
improvement to the previous work, we believe that there is some
room to reduce the number of terms of our models. Future work
should address this direction, with particular attention, for instance,
for chaotic systems which exhibits hysteresis such as those
proposed in [49]. This family of chaotic systems proposed by
Sprott is usually designed by a jerk equation. Some of the non-
linearity could be addressed by Hammerstein models as described
in [27]. An additional perspective can be seen in [50], where the
authors have proposed a technique to consider separately linear and
non-linear behaviour from data. In the current examples, this
procedure could lead to simpler models both for tent or sine map.

However, it should be emphasised that instead of separating linear
and non-linear behaviour, our work treats them as a single
phenomenon to be identified by a model. This task is well achieved
by using the SOS to identify a model structure from the chaotic
data. It is also noteworthy that the model structures obtained by the
proposed technique are easily handled and suitable to control
problems, especially the ones focused on the data-based identified
model.

5 Conclusions
This study has presented an IPM-based procedure for the structure
selection problem to recover static non-linearities from the chaotic
data. The SOS formulation has been employed to provide the upper
polynomial function f u(x) and the lower polynomial function f l(x)
that describe the IPM. The convex combinations of f u(x) and f l(x)
have been used to search for a specific model that satisfies the user
requirement for a given purpose, just varying a single parameter α.
The MSE, ME and LLE metrics have been adopted to evaluate the
identified models. In this way, it has been possible to estimate low
degree representative polynomials for a given chaotic data set. We
have used a line search on α to provide solutions that fit both
system static and dynamic behaviour. This procedure has been
shown to be a good tool to provide models with chaotic behaviour.
The tent map and sine map were used to illustrate the proposed
approach. In both cases, the identified models, with less complex
structures, were capable of outperforming existing results from the
literature.

Although the line search has provided better models, there is no
guarantee that they represent optimal solutions. Future work
should, therefore, include more sophisticated optimisation methods
in this stage. It is also desirable to investigate techniques to further
simplify the models.
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