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a b s t r a c t 

This paper reports a smooth-piecewise model to the Cord Attractor. The fact that the Cord Attractor has 

one real fixed point and two complex conjugate fixed points does not allow to use a technique based 

on the building of two affine subsystems, which requires at least two real fixed points [Chaos 16, 013115 

(2006)]. In this work, we have presented a procedure to at least partially overcome this limitation using 

a virtual fixed point; the location of the fixed point is based on the topology of the original system. The 

switching function has been designed as a smooth function. The phase space and the local-finite largest 

Lyapunov exponent have been used to compare the resulting attractor with the original Cord Attractor. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Piecewise linear representation has been considered as an im-

ortant topic in the literature on circuits systems [1] and nonlin-

ar dynamical systems [2,3] The research is concerned merely in

athematical modelling or in the implementation of circuits. It has

een noticed that piecewise linear representation can reproduce

he same dynamics of globally nonlinear dynamics. Some systems

ave already been represented, such as Rössler and Lorenz [2] . On

he other hand, original piecewise linear systems, such as Chua cir-

uit [4–6] , can be represented by means of globally nonlinear mod-

ls [7] . 

According to [1] there are two main motivations for studying

iecewise approximation: mathematical modelling in a simpler way

nd circuit modelling to attend an implementation task. From the

oint of view of mathematical modelling, the author in [8] has de-

eloped an approximate method based on piecewise linearization

or the determination of periodic orbits of nonlinear oscillators. Re-

arding the circuit modelling approach, the authors in [9] have re-

ently developed a procedure to design chaotic systems by piece-

ise affine systems. 

Research on the approximation of nonlinear dynamical system

y a piecewise affine model is not new [3] . It has been proposed

n [10] a set of high-level canonical piecewise linear (HL-CPWL)

unctions to form a representation basis for the set of piecewise

inear functions. Although, this work represents a landmark on the
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esearch about piecewise approximation, it has been pointed out,

rom the point of view of mathematical modelling, that this tech-

ique demands a careful attention in the number of parameters

1] . Not differently, when the concern relies on circuit modelling,

s the simplest circuit structure is generally desired. In such works,

 black box system identification has usually been used. 

A different approach may be found in [3,11] where the au-

hors have developed a technique to build piecewise models by

ssociating one affine subsystem to each real fixed point. The au-

hors in [3] have also described some guidelines for constructing

iecewise affine models based on feedback circuit analysis and on

he identification of relevant terms of the differential equations.

he main advantage of this technique is the possibility to build

iecewise models from two affine systems, which is generally ex-

ected to be very simple. This is an important feature, as it is

esired to have simple models obtained from the piecewise ap-

roximation [1] . However, this technique relies on the fact that

he affine systems should be designed using real fixed points, as

t has been done for Rössler and Lorenz [2,3] . In this approach,

iecewise models are associated by one affine subsystem to each

xed point, in which the subsystems are linked by switching sur-

aces. One intrinsic requirement for this method is the existence

f at least two real fixed points. Therefore, the approach devel-

ped in [2] is no longer efficient to systems that does not attend

his requirement. This is the case of the Cord Attractor [12,13] ,

hich presents one real fixed point and two complex conjugate

xed points. To at least partially overcome this problem, this paper

resents a procedure where a virtual fixed point is created based

n the topology of the original system. It is presented an heuristic

ethod to estimate the location of this new virtual fixed point. The

https://doi.org/10.1016/j.chaos.2018.02.001
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Fig. 1. The Cord Attractor. The parameters (a, b, F, G ) = (0 . 258 , 4 . 033 , 8 , 1) , with 

initial conditions (x 0 , y 0 , z 0 ) = (0 . 1 , 0 . 1 , 0 . 1) according to [12] . 
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piecewise system is virtual. 
switch between the two affine systems is based on a smooth-like

procedure. 

To proceed some validation of our proposed method, we have

performed the visualisation of the original attractor and piecewise

model. We have also presented a comparison between the local-

finite largest Lyapunov exponent, calculated by the approaches de-

scribed in [14] and in [15] . It is worth to state that recent re-

sults on the investigation over hidden attractor [16,17] bring some

doubts on the reliability on computer simulation regarding the ca-

pacity to distinguish transient chaotic sets from an attractor, even

for very long time computation. Similar concern is also presented

from the perspective of the effects of discretization schemes. The

authors in [18] show different qualitative outcomes by the simple

fact of using different interval extension, that is, by the simple fact

of applying basic mathematical properties in the equations, such

as, associativity and distributivity. In this work, instead of trying

to give a final word on the chaotic behaviour of Cord system, we

are more interested in showing how to overwhelm the problem of

using piecewise for the case of a system, wherein complex conju-

gate fixed points are presented. In such way, we use the same dis-

cretization scheme for the original and rebuilt system using piece-

wise technique to guarantee a fair comparison. 

The remainder of this paper is organised as follows.

Section 2 presents the general approach of piecewise affine

model building. The Cord Attractor is shown in Section 3 .

Section 4 presents the methodology proposed for cases with

no fixed points or with some complex fixed points. The results are

presented in Sections 5 and 6 brings the final remarks. 

2. Background 

This section presents an overview of the method used for build-

ing models using piecewise affine as proposed in [11] . The Cord

Attractor is also summarised. 

2.1. Piecewise affine modelling 

The number of affine subsystems is related to the number of

fixed points. The definition of an affine systems is 

˙ x = A x + b (1)

where A and b are constants. Clearly, such an affine system with

respect to the origin x = 0 can be considered as a linear system

centred at some point p = −A 

−1 b . Thus, the affine sub-model can

be rewritten as 

˙ x = A (x − p ) (2)
A structure of piecewise affine model is described as 

˙ 
 = 

m ∑ 

i =1 

f i [ s (x )] A i (x − p i ) , (3)

here x ∈ R is the state vector, m is the number of affine subsys-

ems, and p i ∈ R 

n is the fixed point to which the affine subsystem

s associated. Constant matrices A i ∈ R 

n ×n defines the local linear

ynamics of the affine subsystems and s ( x ) is the switching surface

etween the domains where the subsystems are active and f i [ · ] is

 switching function. The switching function may be described by

 smooth or Boolean function. 

Nonlinear dynamical systems investigated in works, such as in

11] , usually present at least two real fixed points which allows

ne to easily apply the Eq. (3) . This is not the case for the Cord

ttractor, as we see on the next section. 

.2. The Cord Attractor 

The Cord Attractor [13] is defined by the following equations 

˙ x = −y − z − ax + aF 

˙ 
 = xy − bxz − y + G 

˙ z = bxy + xz − z. (4)

he authors in [12] explain that such system has been obtained

y a replacement of the nonlinear terms (−y 2 − z 2 ) of the sys-

em proposed in [19] by the linear terms (−y − z) . This modifi-

ation has resulted in an increment on the observability of the

ystems, as well, in a generation of the a new attractor, called

ord Attractor . In this work, we use the same parameters used

n [12] , that is, (a, b, F , G ) = (0 . 258 , 4 . 033 , 8 , 1) , with initial con-

itions (x 0 , y 0 , z 0 ) = (. 1 , . 1 , . 1) . The Cord Attractor can be seen in

ig. 1 . 

The fixed points of Eq. (4) with parameters (a, b, F , G ) =
(0 . 258 , 4 . 033 , 8 , 1) are given by 

p 1 = 

∣∣∣∣∣∣
x = 7 . 9091 

y = −0 . 0065 

z = 0 . 0299 

(5)

p 2 , 3 = 

∣∣∣∣∣∣
x = 0 . 1034 ± 0 . 1397 i 

y = 1 . 1856 ± 0 . 6237 i 

z = 0 . 8517 ± 0 . 5876 i 

(6)

here p 1 is real and p 2, 3 are complex conjugate. 

. Material and methods 

This section presents the method used here to design a piece-

ise approximation to the Cord Attractor. 

.1. Virtual fixed point 

The main contribution of this paper is the application of the

oncept of virtual fixed point to model a system with just one real

xed point. The creation of virtual fixed point allows to use the

ethod developed in [2,3] and described in Eq. (4) . Our inspiration

omes from the fact that the complex fixed points are not touched

y orbits of the system, but the global dynamics is influenced by

ts value. Keeping this in mind, we proposed the virtual fixed point

ust have the following features: 

1. Being real. 

2. Being located on the switching surface. This is a sufficient

condition to guarantee that this fixed point in the smooth-
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Fig. 2. Projections of the attractors. First column: original system with parameters chosen as (a, b, F, G ) = (0 . 258 , 4 . 033 , 8 , 1) , with initial conditions (x 0 , y 0 , z 0 ) = 

(0 . 1 , 0 . 1 , 0 . 1) . Second column: piecewise smooth system according to Eq. (9) for the same initial conditions. 
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.2. Switching function 

Similarly to what have been done in [11] , the surface can be de-

ermined based on the topological properties of the attractor. Ob-

erving the attractor we have used a smooth function defined by

 (x ) = 

1 

1 + e −τ (s (x )) 
(7) 

here the parameter τ is chosen empirically. 

. Results 

We have chosen a switching surface as follows s (x ) = x − 4 . 0

nd τ = 60 . 

The virtual fixed point is given by 

p v = 

∣∣∣∣∣
x = 4 

y = 0 

z = 0 

(8) 

The approximated system is thus given by 

˙ 
 = f [ s (X )] A + (X − P v ) + (1 − f [ s (X )]) A −(X − P −) (9)

here 

p v = P −
 + = 

[ −0 . 258 −1 −1 

0 6 . 9 −7 . 9 

0 −31 . 8607 6 . 9 

] 

 − = 

[ −0 . 258 −1 −1 

0 −4 . 5 3 . 5 

0 −14 . 1155 −4 . 5 

] 

 − = 

∣∣∣∣∣
x = 7 . 9 

y = 0 

z = 0 

(10) 

It is already known that we may take the real fixed point from

he original attractor slightly different without changing piecewise

odel. We have used this possibility to change the fixed point

rom Eqs. (5) to (10) . 

Fig. 2 presents the attractor projections of original system and

he smooth piecewise. As procedure to check the similarity of the

odel, we have used the computation of the largest positive Lya-

unov exponent ( λ). In fact, we have carried out the computa-

ion of finite-time local Lyapunov exponent, in the sense described

n [20] , as we performed the computation over a finite set of

oints. As we are dealing with models, the technique proposed

n [14] presents the robustness and simplicity for such task (see
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Fig. 3. Lower bound error from (a) original system (b) piecewise system. Largest Lyapunov exponent: (a) 0.08 (b) 0.11 are calculated as the slope of line in the first part of 

the graph. 
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Fig. 3 , which are shown the computation of the largest positive

Lyapunov exponent). The attractors of the original and piecewise

are presented in Fig. 2 . The original system has shown λ = 0 . 08 ,

while λ = 0 . 11 for the piecewise. We also performed the computa-

tion of the λ using the package Lyapmax [15] , which adopts the al-

gorithm proposed by Wolf [21] . We have used 10 0.0 0 0 points and

we have found λ = 0 . 07 and λ = 0 . 06 for the original and piece-

wise, respectively. 

Although it seems obvious some similarity between the origi-

nal system and smooth-piecewise approximation, we cannot state

that there is a topological agreement between these two systems

as these attractors did not align precisely. Future work should ad-

dress the validation of this approach using topological analysis, as

described in [22,23] . It is also possible that this topological analysis

can reveal some insights about the location of virtual fixed point. 

5. Conclusion 

This paper presents a smooth-piecewise model to the Cord

Attractor. The fixed points of the Cord Attractor are given by

Eqs. (5) and (6) , which means, that this system has one real fixed

point and two complex conjugate fixed points. The methodology

proposed in [2,3] requires two real fixed point to connect two

affine subsystems. It has been proposed the creation of a virtual

fixed point to at least partially overcome this problem. This vir-

tual fixed point should be obviously real. The switching surface has

been chosen as the location of the virtual fixed point. 

After determining the virtual fixed point, a switching surface

has been tested. The phase space and local-finite largest Lyapunov

exponent have been applied to compare the smooth-piecewise

model and the original Cord Attractor, which shows a satisfactory

agreement. Although, we believed that creation of virtual fixed

point is an important step towards a more comprehensive un-

derstanding of the piecewise approximation, not all answers have

been considered. Usually one of the obstacle of this technique is

the determination of the switching surface. This has been consid-

ered by means of topological analysis with some satisfactory suc-

cess. Now, for this category of problems, that is, systems with less

than two real fixed points, other problem comes out: the location

of the fixed point. Here, we have placed the virtual fixed point

on the switching surface. But there is no guarantee that it is go-

ing to work with systems presenting only complex fixed points.

For instance, the authors in [24] have shown a collection of fif-

teen simple chaotic systems with no equilibria and their complex

fixed-points. Five of them have no equilibria points, which requires

a creation and location of two virtual fixed points. These systems

are certainly challenging themes for future investigations. We also

believe that a rigorous topological analysis, as detailed in [22,23] ,

can also share light on this topic. 
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