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Amethod to estimate the (positive) largest Lyapunov exponent (LLE) from data using interval extensions is proposed.Themethod
differs from the ones available in the literature in its simplicity since it is only based on three rather simple steps. Firstly, a polynomial
NARMAX is used to identify amodel from the data under investigation. Secondly, interval extensions, which can be easily extracted
from the identified model, are used to calculate the lower bound error. Finally, a simple linear fit to the logarithm of lower bound
error is obtained and then the LLE is retrieved from it as the third step. To illustrate the proposed method, the LLE is calculated for
the following well-known benchmarks: sine map, Rössler Equations, and Mackey-Glass Equations from identified models given in
the literature and also from two identified NARMAXmodels: a chaotic jerk circuit and the tent map. In the latter, a Gaussian noise
has been added to show the robustness of the proposed method.

1. Introduction

One of the most applied techniques to confirm whether a
system is chaotic or not is based on the estimation of the Lya-
punov exponents [1]. The calculation of Lyapunov exponents
is usually based on the average divergence or convergence of
close trajectories along certain directions in state space. In
chaotic systems, two trajectories separate exponentially with
time despite having very similar initial conditions. Since the
work of [2] several numerical methods to estimate Lyapunov
exponents were proposed [3–8], just to mention a few. A
comparison between estimation methods can be found in
[9], for instance. The authors in [5] developed the first
practical algorithm to calculate the Lyapunov exponents by
estimating the growth of the corresponding set of vectors
as the system evolves. This method allows the estimation
of the complete spectrum of Lyapunov exponents. Amongst
these exponents, the (positive) largest Lyapunov exponent
(LLE) is the exponent considered to be the main reason

for the separation rate. Therefore the estimation of such an
exponent is used to build up the chaotic nature of the data
under scrutiny. The authors in [1, 7] independently used
statistical properties of the local divergence rates of nearby
trajectories of the systems under investigation to estimate the
LLE. These properties come in handy when the goal is to get
high exactness of numerical estimates of the LLE, as shown
in the work [10]. Recent and different applications using the
LLE can be found in [11–14].

In [15] a straightforward method to compute the LLE
using interval extensions and the original equations of
motion was proposed. The exponent is estimated from the
slope of the line derived from the lower bound error when
considering two interval extensions of the original system
[16, 17]. The authors of [15] demonstrated that the method
is quick and simple to be used and could be considered as
an alternative to other algorithms available in the literature.
However, it requires the original equations of motion of the
system and it can not be applied directly to time series. In
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order to overcome this limitation, a system identification
methodology based on the well-known polynomial NAR-
MAX (Nonlinear AutoRegressive Moving Average model
with eXogenous inputs) [18] approach is introduced. Such
an approach (system representation) has been shown to
adequately represent a large number of chaotic systems [18,
19]. A similar method using the same system representation
was proposed in [20] but, in their procedure, the Jacobian
matrix must be found and its values estimated. For poly-
nomial NARMAX it was argued that the Jacobian matrix
is easily obtained but that may not be the case when other
types of representation, such as Neural Networks [20], are
considered. Using the interval extensions, it is shown that
it is possible to put together the advantages pointed out in
[20] without the need to calculate the Jacobian matrix to
estimate the LLE. Moreover, as NARMAX is based on a
polynomial structure, interval extensions are easily generated
by simple arithmetic manipulations, such as commutative
and associative. In addition to that, as indicated in [15], the
proposed method requires similar or less points to achieve
convergence when compared to other methods available in
the literature.

The rest of this paper is laid out as follows. Preliminary
concepts are introduced in Section 2 and it gives the necessary
background material to understand the main idea of the
work. Then, the proposed method is presented in Section 3.
Section 4 presents the results obtained by the proposed
approachwhen applying it to three different systems that have
been identified in the literature: sine map, Rössler Equations,
and Mackey-Glass Equations. Moreover, two identified poly-
nomial NARMAX models have been considered: a chaotic
jerk circuit [21] and the tent map. In the end, a Gaussian
noise has been added to demonstrate the robustness of the
proposed technique. Finally, the conclusions are given in
Section 5.

2. Preliminary Concepts

In this section a brief review on the calculation of the LLE is
given along with the recent result on the lower bound error
and the interval extensions.

2.1.The LLE Calculation. To review the basic ideas laid out in
[7], consider the following equation:

𝑆 (Δ𝑛)
= 1𝑁 − 𝑚

𝑁∑
𝑛=𝑚+1

ln( 1󵄨󵄨󵄨󵄨U𝑛󵄨󵄨󵄨󵄨 ∑
𝑥
𝑛󸀠
∈U𝑛

󵄨󵄨󵄨󵄨𝑥𝑛󸀠+Δ𝑛 − 𝑥𝑛+Δ𝑛󵄨󵄨󵄨󵄨) , (1)

where U𝑛 is the set of all other delay vectors in an 𝜖-
neighbourhood of the vector 𝑥𝑛 (data from trajectories of
the system under investigation) and |U𝑛| is the number of
elements in U𝑛. The initial and final point of each window
over the time series is given by 𝑚 and 𝑁, respectively. The
LLE can be estimated by searching for a linear scaling in
plot 𝑆(Δ𝑛) versus Δ𝑛. In order to find the linear scaling, it is
necessary to tune the parameter 𝜖, to find the neighbourhood,

and to define the number of elements in U𝑛. This will not
be necessary for the method proposed in Section 3; however
there is the need of finding the equations of motion of the
system under investigation and this will be accomplished by
using a system identification methodology as reviewed in the
next section.

2.2. The Polynomial NARMAX. A NARMAX model can be
written as follows [22]:

𝑦𝑛+1 = F
ℓ [𝑦𝑛, . . . , 𝑦𝑛−1−𝑘𝑦 , 𝑢𝑛, . . . , 𝑢𝑛−1−𝑘𝑢 , 𝑒𝑛, . . . , 𝑒𝑛−1−𝑘𝑒] , (2)

where𝑦, 𝑢, and 𝑒 are, respectively, the output, input, and noise
terms at the discrete time 𝑛 ∈ N. The parameters 𝑘𝑦, 𝑘𝑢, and𝑘𝑒 are the maximum lag considered for output, input, and
noise, respectively. Noise terms are frequently included in the
parameter estimation process to avoid bias in the estimates.
Here Fℓ[⋅] is assumed to be a polynomial with nonlinearity
degree ℓ ∈ Z+. Nonlinear systems are frequently modelled
using particular cases of the polynomial NARMAX, such as
NAR, NARX, and NARMA [16, 23–25]. In this paper, they all
are treated under the name polynomial NARMAX. Further
details of this mathematical representation can be found in
[18].

The great advantage of using the polynomial NARMAX
representation is that the problem of finding the relevant
terms and the estimates of their coefficients can be cast into
a linear regression problem and therefore the well-known
least squares method can be applied. In the eighties, Billings
[18] devised an efficient method to take the advantage of
the classical methods for solving the least squares problem
to include the structure selection using the so-called ERR
(Error Reduction Ratio) which attempts to measure the
contribution of each term to the overall variance of the output
signal. Such a method was called OLS (Orthogonal Least
Squares method) and has been successfully used to obtain
dynamically valid models from data generated by nonlinear
systems behaving chaotically (see, e.g., [26, 27]). Additionally,
it is straightforward to generate interval extensions from the
polynomial NARMAX, as seen in Definition 1.

2.3.The Lower Bound Error. This subsection is an adaptation
from [16, 17] on the lower bound error applied to continuous
nonlinear systems.

Let 𝑛 ∈ N, a metric space𝑀 ⊂ R; the relation

𝑥𝑛+1 = 𝑓 (𝑥𝑛) , (3)

where 𝑓 : 𝑀 → 𝑀, is a recursive function or a map of a state
space into itself and 𝑥𝑛 denotes the state at the discrete time𝑛. The sequence {𝑥𝑛} obtained by iterating (3) starting from
an initial condition 𝑥0 is called the orbit of 𝑥0 [28, 29].
Definition 1 (see [16]). An interval extension of 𝑓 is an
interval valued function 𝐹 of an interval variable 𝑋, with the
property

𝐹 (𝑥) = 𝑓 (𝑥) for real arguments, (4)
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where an interval is a closed set of a real number𝑥 ∈ R, where

𝑋 = [𝑋,𝑋] = {𝑥 : 𝑋 ≤ 𝑥 ≤ 𝑋} . (5)

Example 2. Let us consider 𝑥𝑛+1 = 1 − 𝑎𝑥2𝑛 + 𝑦𝑛. Some
examples of interval extensions are

𝑋𝑛+1 = 𝐹 (𝑋𝑛) = 1 − 𝑎𝑥𝑛𝑥𝑛 + 𝑦𝑛 = 1 − 𝑎 (𝑥𝑛𝑥𝑛) + 𝑦𝑛
= 1 + 𝑦𝑛 − 𝑎 (𝑥𝑛𝑥𝑛) . (6)

Equations (6) are mathematically equivalent but they
present different sequence of their basic arithmetic opera-
tions. On floating point standard neither commutative nor
distributive properties hold [30, 31]. Therefore, (6) may
exhibit different results when a computer-based approach is
used to estimate their values.We have exploited these features
in this work to estimate the LLE.

Definition 3. Let 𝑖 ∈ N represent a pseudo-orbit, which is
defined by an initial condition, an interval extension of 𝑓,
some specific hardware and software, numerical precision
standard, and discretization scheme. A pseudo-orbit is an
approximation of an orbit and can be represented by {𝑥𝑖,𝑛}
or 𝑥𝑖,0, 𝑥𝑖,1, 𝑥𝑖,2, . . ., such that

󵄨󵄨󵄨󵄨𝑥𝑛 − 𝑥𝑖,𝑛󵄨󵄨󵄨󵄨 ≤ 𝛿𝑖,𝑛, (7)

where 𝛿𝑖,𝑛 ∈ R is the error and 𝛿𝑖,𝑛 ≥ 0.
A pseudo-orbit characterises an interval where the gen-

uine orbit lies. Henceforth an interval related to each estima-
tion of a pseudo-orbit is given by

𝐼𝑖,𝑛 = [𝑥𝑖,𝑛 − 𝛿𝑖,𝑛, 𝑥𝑖,𝑛 + 𝛿𝑖,𝑛] . (8)

From (7) and (8) it is clear that

𝑥𝑛 ∈ 𝐼𝑖,𝑛, ∀𝑖 ∈ N. (9)

Theorem4 [16] establishes that at least one of two pseudo-
orbits must have an error greater than or equal to the lower
bound error.

Theorem 4. Let two pseudo-orbits {𝑥𝑎,𝑛} and {𝑥𝑏,𝑛} be derived
from two interval extensions. Let 𝛿𝛼,𝑛 = |𝑥𝑎,𝑛 − 𝑥𝑏,𝑛|/2 be the
lower bound error of amap𝑓(𝑥); then 𝛿𝑎,𝑛 ≥ 𝛿𝛼,𝑛 or 𝛿𝑏,𝑛 ≥ 𝛿𝛼,𝑛.
3. The Proposed Method

Themethod proposed in this work can be summarized by the
following steps:

(1) Fit a model to the data series. Polynomial NARMAX
models were the choice in this work.

(2) Choose two different interval extensions of the system
under investigation following Definition 1.

(3) With exactly the same initial conditions simulate the
two interval extensions.

Table 1: LLE for sinemap investigated in [34].The reference value is
calculated using the original equations of the systems, as proposed
in [15].

[15] Our method
LLE 1.133 1.114

(4) Use the least squaresmethod to fit a line to the slope of
the logarithm curve of the absolute value of the lower
bound error defined in Section 2.3. The slope of the
line is the LLE.

To the interested reader, a detailed description and expla-
nation of why this simple method works may be found in
[15, 32].

4. Results

In this section, some examples are given to illustrate the
usefulness of the proposed methods.

4.1. Example 1: Sine Map. A unidimensional sine map is
defined as

𝑥𝑛+1 = 1.2𝜋 sin (𝑥𝑛) . (10)

The LLE from the original equation (10) was calculated
using the method proposed in [15]. To this end, two interval
extensions given by the following equations were considered:

𝐺 (𝑋𝑛) = 1.2𝜋 sin (𝑋𝑛) ,
𝐻 (𝑋𝑛) = 1.2(𝜋 sin (𝑋𝑛)). (11)

The curve of the logarithm of the error bound is depicted
in Figure 1(a) and slope of the linear regression, that is, the
LLE, is shown to be 1.133. This value is in good agreement
with the values found in the literature such as the one given
in [33].

From the data generated by iterating themodel in (10) the
following polynomial NARMAX given in [34] was identified:

𝑦𝑛+1 = 2.6868𝑦𝑛 − 0.2462𝑦3𝑛 . (12)

Considering two equivalent interval extensions of the identi-
fied model (12) we have

𝐼 (𝑋𝑛) = 2.6868𝑋𝑛 − 0.2462𝑋3𝑛
𝐽 (𝑋𝑛) = 2.6868𝑋𝑛 − (0.2462𝑋𝑛)𝑋2𝑛. (13)

Figure 1(b) shows the logarithm of the lower bound error for
the two interval extensions given by (13). Table 1 summarizes
the results. Note that the similarity of the LLE can be also used
to validate the model.
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Sine map
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(a) Simulation of (11), with results for 𝐺(𝑋𝑛) and 𝐻(𝑋𝑛) and the same
initial condition; that is,𝑋0 = 0.1. LLE calculated is the inclination of the
curve given by 1.133.

Sine map-NARX model
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(b) Simulation of (13), with results for 𝐼(𝑋𝑛) and 𝐽(𝑋𝑛) and the same
initial condition; that is, 𝑋0 = 0.1. LLE calculated is the inclination of
the curve given by 1.114.

Figure 1: LLE calculation of sine map: (a) original equations and (b) identified model. The 𝑥-axis is the number of iterates and the 𝑦-axis is
the log of the lower bound error.

4.2. Example 2: Rössler Equations. Rössler’s Equations [35]
are given by

𝑥̇ = −𝑦 − 𝑧,
̇𝑦 = 𝑥 + 𝑎𝑦,

𝑧̇ = 𝑏 + 𝑧 (𝑥 − 𝑐) .
(14)

This system has been identified in [33] and the resulting
polynomial NARMAX model is given by the following
equation:

𝑥 (𝑘) = +0.1972 × 10𝑥 (𝑘 − 1) − 0.104 × 10𝑥 (𝑘 − 2)
+ 0.7456 × 10−4𝑥 (𝑘 − 4) 𝑥 (𝑘 − 2)3 𝑥 (𝑘 − 1)
− 0.2053 × 10−4𝑥 (𝑘 − 5) 𝑥 (𝑘 − 4)4 − 0.285
× 10−4𝑥 (𝑘 − 5) 𝑥 (𝑘 − 1)4 + 0.2484
× 10−4𝑥 (𝑘 − 3)2 𝑥 (𝑘 − 2)3 + 0.1238
× 10−2𝑥 (𝑘 − 2) 𝑥 (𝑘 − 1)2 + 0.4353
× 10−4𝑥 (𝑘 − 5)4 + 0.2258
× 10−2𝑥 (𝑘 − 5) 𝑥 (𝑘 − 2) 𝑥 (𝑘 − 1)2 + 0.3123
× 10−4𝑥 (𝑘 − 4)5 + 0.7531 × 10−2𝑥 (𝑘 − 1)4
− 0.2703 × 10−2𝑥 (𝑘 − 3)2 𝑥 (𝑘 − 1)2 − 0.7807
× 10−2𝑥 (𝑘 − 1)3 − 0.7077
× 10−4𝑥 (𝑘 − 3)2 𝑥 (𝑘 − 2)2 𝑥 (𝑘 − 1) − 0.3304
× 10−2𝑥 (𝑘 − 3) 𝑥 (𝑘 − 2)3 − 0.8847

× 10−2𝑥 (𝑘 − 5) 𝑥 (𝑘 − 1) + 0.7631
× 10−2𝑥 (𝑘 − 4) 𝑥 (𝑘 − 1) − 0.387
× 10−4𝑥 (𝑘 − 5)3 𝑥 (𝑘 − 1)2 + 0.4676
× 10−2𝑥 (𝑘 − 3)3 𝑥 (𝑘 − 1) .

(15)

Equation (15) was considered as the first interval exten-
sion. The second interval extension is determined by rewrit-
ing the term

+0.7456 × 10−4𝑥 (𝑘 − 4) 𝑥 (𝑘 − 2)3 𝑥 (𝑘 − 1) (16)

in (15) as

+0.7456 × 10−4𝑥 (𝑘 − 4) 𝑥 (𝑘 − 2) 𝑥 (𝑘 − 2)2 𝑥 (𝑘 − 1) , (17)

for instance. Several other interval extensions could be
determined but two of them would suffice for the purposes
of finding the LLE.

As can be seen the interval extensions used to simulate
the systems are mathematically equivalent, but they differ in
the sequence of arithmetical operations. Figure 2 shows the
logarithm of the lower bound error of the simulation using
the two specified interval extensions. Table 2 summarizes the
result of LLE for Rössler Equations. The literature suggests
a value of 1.242 and the estimated value using the model
procedure suggested in [33] is 1.566. The estimated value
seems slightly different, but if the confidence interval to
calculate the LLE using data is taken into consideration, one
could consider 1.242 ± 0.399 instead and therefore the value
of LLE calculated in [33] is in good agreement with the value
in the literature. Similar reasoning can be applied to the value
estimated using the method presented in this paper, that is,
1.530.
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Table 2: LLE for Rössler’s Equations studied in [33].

[33] (data) [33] (model) Our method
LLE 1.242 1.566 1.530
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Figure 2: LLE calculation for Rössler’s Equations. The 𝑥-axis is the
simulation time and the 𝑦-axis is the log of the lower bound error.
Using a polynomial NARMAX and interval extension, our method
has estimated the LLE to be equal to 1.530, while the authors in [33]
calculated it as 1.566.

4.3. Example 3: Mackey-Glass Equations. The Mackey-Glass
is an interesting system used inmany papers as an example of
a chaotic and infinite dimensional system, since it is a time-
delay system [36, 37]. The system equation is given by

𝑥̇1 (𝑡) = 𝑎𝑥1 (𝑡 − 𝜏)1 − 𝑥1 (𝑡 − 𝜏)𝑐 − 𝑏𝑥1 (𝑡) , (18)

where 𝑎 = 0.2, 𝑏 = 0.1, 𝑐 = 10, and 𝜏 = 30. The authors
in [20] identified the following model to this system using a
sequence of 234 data points sample at 𝑇𝑠 = 3:

𝑥 (𝑘) = 0.24662 × 10𝑥 (𝑘 − 1) − 0.16423
× 10𝑥 (𝑘 − 2) + 0.60992𝑥 (𝑘 − 3) + 0.73012
× 10−1𝑥 (𝑘 − 5)2 𝑥 (𝑘 − 10)2
+ 0.38566𝑥 (𝑘 − 3) 𝑥 (𝑘 − 10)
+ 0.66999𝑥 (𝑘 − 1) 𝑥 (𝑘 − 10)2
+ 0.88364𝑥 (𝑘 − 1)3
− 0.67300𝑥 (𝑘 − 4) 𝑥 (𝑘 − 10)2 − 0.11929
× 10𝑥 (𝑘 − 1)2 − 0.50451
× 10−1𝑥 (𝑘 − 4) 𝑥 (𝑘 − 5) − 0.24765𝑥 (𝑘 − 1)4
+ 0.42081𝑥 (𝑘 − 4) 𝑥 (𝑘 − 9) 𝑥 (𝑘 − 10)2
− 0.70406𝑥 (𝑘 − 1) 𝑥 (𝑘 − 10)3

Table 3: LLE for Mackey-Glass Equation studied in [20].

Literature (data) Literature (model) Our method
LLE 0.007 0.006 0.006

0.006t − 35.396
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Figure 3: LLE calculation for Mackey-Glass Equations. The 𝑥-axis
is the simulation time and the 𝑦-axis is the log of the lower bound
error. Using a polynomial NARMAX and interval extension, our
method has estimated the LLE to be equal to 0.006, the same value
found in the literature using the dynamical equations.

− 0.14089𝑥 (𝑘 − 5) 𝑥 (𝑘 − 8)2
+ 0.14807𝑥 (𝑘 − 1) 𝑥 (𝑘 − 7) 𝑥 (𝑘 − 10) .

(19)

The interval extension used in this example is obtained
just by replacing the term

+0.24662 × 10𝑥 (𝑘 − 1) (20)

by

+0.24662 × (10𝑥 (𝑘 − 1)) , (21)

which means that only the order of multiplication has been
changed. Figure 3 presents the logarithm of the error for the
Mackey-Glass Equation. Using themethod proposed here the
LLE is found to be exactly the same as the value provided by
[20], as reported in Table 3. It is worth emphasizing that there
is no need to calculate the Jacobianmatrix of themodel in the
proposed method.

4.4. Example 4: A Chaotic Jerk Circuit. A chaotic jerk circuit
given in [21] was also used to further illustrate the proposed
approach.The circuit is composed of resistors, capacitors, and
operational amplifiers as shown in Figure 4. In this work, a
polynomial NAR with nonlinearity degrees ℓ = 4 and 𝑘𝑥 = 4
was used to identify the variable 𝑥 of the chaotic jerk circuit,
as shown in Figure 5. The data was produced by means of
the simulation of the electronic circuit using LTspice. The
obtainedmodel has 67 terms, which have been omitted in this
manuscript for the sake of simplicity.
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Table 4: LLE for the variable𝑥 of the chaotic jerk circuit investigated
in [21]. The reference value was computed using circuit acquired
data.

[21] Our method
LLE 0.0735 0.0787
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Figure 4: The chaotic jerk circuit proposed by [21].
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Figure 5: LLE calculation for chaotic jerk circuit. The 𝑥-axis is the
simulation time and the 𝑦-axis is the log of the lower bound error.
Using a polynomial NARMAX and interval extension, our method
has estimated the LLE to be equal to 0.0787, which represents a good
agreement with the value suggested by [21].

For this case, the interval extensions can be found by
changing the order in which the model terms were com-
puted. The two interval extensions were generated by the
simple order commutation of elements in the polynomial,
as illustrated in Example 2. The interval extensions used to
simulate the systems are mathematically equivalent, but are
not computationally equivalent. Figure 5 shows the logarithm
of the lower bound error of the simulation using the two
specified interval extensions and Table 4 summarizes the
results of the LLE for the chaotic jerk circuit. For comparison
purposes [21] shows that, by using experimental data, the
value of LLE can be estimated as 0.0735. On the other hand,
the proposed methodology estimates the LLE value as 0.0787

Table 5: LLE for tent map.

Analytical Our method
LLE 0.9993 1.0461
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Figure 6: LLE calculation for the tentmap.The 𝑥-axis is the number
of iterates and the 𝑦-axis is the log of the lower bound error. Using
a polynomial NARMAX and interval extension, our method has
estimated the LLE to be equal to 1.0461, while the correct value is
0.9993.

which is in a good agreement with the value for the original
system.

4.5. Example 5:The TentMap. To verify the robustness of the
proposed approach under the presence of noise, a tent map
(see (22)) was used as a system to be identified, within an
additive zero mean Gaussian noise with standard deviation𝜎 = 0.02.

𝑥 (𝑘) = 1 − 1.999 |𝑥 (𝑘 − 1) − 0.5| . (22)

A polynomial NAR was identified with ℓ = 4 and 𝑘𝑥 = 2,
yielding the model

𝑥 (𝑘) = 0.1133𝑥 (𝑘 − 1) + 14.0488𝑥 (𝑘 − 1)4 + 0.5214
− 28.3140𝑥 (𝑘 − 1)3 + 14.2003𝑥 (𝑘 − 1)2
− 1.9861𝑥 (𝑘 − 2) + 1.9682𝑥 (𝑘 − 2)2 .

(23)

The interval extensions can be found by changing the order in
which two termswere computed. In this example, the interval
extensions were generated by the simple position change of
the terms 0.1133𝑥(𝑘 − 1) and +0.5214. Figure 6 presents
the logarithm of the error for the identified model whereas
Figure 7 shows the first return map of both identified and
original tent map.

Despite the presence of noise affecting the system, the
LLE found by themethod proposed in this paper was in good
agreement with the one analytically computed from the tent
map, as shown in Table 5.
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Figure 7: First return map for the tent map (∘, in black) and for the
identified model (△, in red).

5. Conclusion

This paper presents a system identification approach to cal-
culate the LLE based on the interval extensions. The method
proposed here can be seen as an extension of the method
developed in [15] in which the LLE is calculated by taking
into consideration the properties of the exponential growing
of the lower bound error [16]. The method is designed
specifically for the calculation of the LLE from chaotic data,
which was not possible to undertake with method proposed
in [15]. A polynomial NARMAX model was used to identify
the system, but other representations could also be used
in the first step. Nevertheless, the polynomial NARMAX
represents a very suitable mathematical representation to
produce interval extensions, which can be obtained by simple
manipulation upon the terms of the identified polynomial
model. Compared to existing approaches, such as the one
indicated in [20], the proposed method does not require the
calculation of the Jacobian matrix and, more importantly, is
very simple to use. We believe that the proposed method is
also a good alternative for computing Lyapunov exponents
from limited data. However, the computation of Lyapunov-
exponent spectrum, as performed in [38], is left for future
investigations.
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