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Abstract – This work presents a method to choose the integration step-size h for discretization of nonlinear and
chaotic dynamic systems, in order to obtain a simulation with numerical reliability. In this context, the Lower Bound
Error is used as an auxiliary technique in the search for the optimal value of h, considering the Fourth Order Runge
Kutta as the discretization method. The Lorenz equations, Rössler equations and Duffing-Ueda oscillator were used
as case studies. This work, besides investigating the most adequate step-size h for each case, shows that the choice
of very small values of h results in significantly inferior solutions, despite the consensus that the smaller the step-size,
the higher the accuracy.

Keywords – dynamical system, discrete time systems, chaos, numerical simulation, lower bound error.

1. INTRODUCTION

Numerical calculation assumes an essential part in examining the solutions of nonlinear dynamic systems [1–4].
Since the work of Lorenz in 1963 [5], numerical experiments have been used in order to understand complex nonlinear
dynamical systems that exhibit chaotic behaviour [6]. However, due to inherent properties of the digital computers
the results found by numerical simulations are, in many cases, imprecise [1]. Moreover, [3] expresses that there are
many published papers wherein the reliability of numerical outcomes is not cautiously verified. In addition, the same
author say that “In the simple case of a dynamic discrete system (of Hénon map), there are doubts as to the nature
of the computational results: long unstable pseudo-orbits or strange attractors ? ”.

One of the causes of computational errors is related to the rounding method used by the machines. One of the
first papers to deal with the problem of rounding off errors for the linear case in a digital computer is [7], where the
author studies the effects of round-off in the floating point realization of a general linear discrete filter governed by a
stable difference equation. Besides this, there are also recent works aiming to understand and minimize the round-off
error [8–12]. To investigate the round-off errors in recursive functions, [13] introduced a technique to evaluate the
lower bound error based on the on the fact that the interval extensions [14] are mathematically equivalent but may
exhibit different computer simulation results.

There are other sources of computation errors when analyzing nonlinear systems, such as errors introduced during
integration of continuous time systems by using numerical methods, which are constructed by skipping higher-order
terms in the Taylor expansion of the solution [1]. In order to obtain results for numerical problems, researchers
often use discretization methods available in popular tools on accessible computers. In that regard, [10] reported the
existence of multiple pseudo-orbits for nonlinear dynamics systems when discretization schemes are used in a set-up
where the step-size is not varied and the initial conditions are kept unchanged.
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In this context, one of the most used discretization methods in the simulation of nonlinear dynamic systems is the
fourth order Runge Kutta [15–17]. Regarding this method, the choice of the integration step-size h is fundamental to
the accuracy and stability of the model to be simulated [18–20]. Therefore, with the knowledge that chaotic dynamical
systems are sensitive to the initial conditions, any error in a single step of numerical integration is amplified by
the inherent divergence of trajectories. Hence, it is unreasonable to expect that a numerical method will accurately
track the trajectory of its initial condition for long periods of time, since trajectories of nearby initial conditions do
not remain close to the chosen one [21]. In this sense, in order to obtain numerical solutions with high precision, a
common procedure is to decrease h to very small values [22]. However, given the recursivity of the process, the canceling
result [23] and the propagation of the error due to this recursivity, this can result in even worse solutions. Thus, this
work shows an alternative method to choose the most suitable step-size h for simulation and analysis of nonlinear
dynamic systems, which uses the Lower Bound Error as an auxiliary technique to evaluate which h guarantees the
highest numerical reliability in the simulation, considering the error propagation in a iterative process simulated in a
computer.

The rest of the paper is laid out as follows: In Section 2, the preliminary concepts are briefly reviewed. The
proposed method based on the lower bound error is presented Section 3. The results as well as the discussion are
presented in Section 4, while concluding remarks and perspectives for future research are shown in Section 5.

2. Definitions

Definition 2.1 (Interval extension- R. E. Moore. [14]) Let f be a function of real variable x. An interval extension
of f is an interval valued function F of an interval variable x, with the property

F (x) = f(x) for real arguments,

where an interval means a closed set of real numbers x ∈ R such that X = [X,X] = {x : X ≤ x ≤ X}.

To illustrate Definition 2.1, consider the example in the sequel.

Example 2.1 Let xn+1 = f(xn) = rxn(1− xn). A few examples of interval extension of f are:

Xn+1 = F (Xn) = r(Xn(1−Xn)), (1)

= rXn − rX2
n, (2)

= r(Xn −X2
n), (3)

= rXn − (rXn)Xn. (4)

In Example 2.1, Equations 1-4 are mathematically equivalent, but they have different sequences of its basic arith-
metic operations [24, 25]. Floating point standard does not have commutative and distributive operations, so they
may exhibit different pseudo-orbits [23, 26, 27].

Definition 2.2 G and H are equivalent interval extensions if

G(X) = H(X) for interval arguments.

Consider the following example of Definition 2.2.

Example 2.2 Let the following extension intervals:

G(X) = rX(1−X)),

H(X) = r(X(1−X)),

L(X) = rX − rX2.

Considering r = 5 e X = [0.4, 0.5]:

G([0.4, 0.5]) = 5[0.4, 0.5](1− [0.4, 0.5])) = [1, 1.5],

H([0.4, 0.5]) = 5([0.4, 0.5](1− [0.4, 0.5])) = [1, 1.5],

L([0.4, 0.5]) = 5[0.4, 0.5]− 5([0.4, 0.5])2 = [0.75, 1.7].

In this example, only G(X) and H(X) are equivalent interval extensions.
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Definition 2.3 Let n ∈ N, a metric space M ⊂ R, the relation

x(n+1) = f(xn), (5)

where f : M →M is a recursive function or a map of a state space into itself and xn denotes the state at the discrete
time n. The sequence xn obtained by iterating Equation 5 starting from an initial condition x0 is called the orbit of
x0 [28].

Definition 2.4 An orbit is a sequence of values of a map, represented by {xn} = [x0, x1, . . . , xn].

Definition 2.5 Let i ∈ N represents a pseudo-orbit, which is defined by an initial condition, an interval extension of
f , some specific hardware, software and discretization scheme. A pseudo-orbit is an approximation of an orbit and is
represented as

{x̂i,n} = [x̂i,0, x̂i,1, . . . , x̂i,n],

such that

|xn − x̂i,n| ≤ δi,n, (6)

where δi,n ∈ R is the error and δi,n ≥ 0.

A pseudo-orbit defines an interval where the true orbit relies. Hence an interval associated with each value of a
pseudo-orbit may be defined as

Ii,n = [x̂i,n − δi,n, x̂i,n + δi,n]. (7)

From Equations 6 and 7, it is easy to realize that:

xn ∈ Ii,n, ∀i ∈ N. (8)

There is no unique pseudo-orbit, as there are different hardware, software, numerical precision standard and
discretization schemes, which may yield different output for each extension interval.

Definition 2.6 (Lower Bound Error, [13]). Let x̂a,n and x̂b,n two pseudo-orbits derived from two interval extensions.
Let δα,n = |x̂a,n − x̂b,n|/2 be the lower bound error of a map f(x), then δa,n ≥ δα,n or δb,n ≥ δα,n.

The proof of Definition 2.6 can be obtained directly from [13] and will not be reproduced here. Definition 2.6
establishes that as a minimum one of the two pseudo-orbits ought to have an error greater or equal to the lower-bound
error. If this lower-bound error is greater than the required precision, the simulation ought to no longer be carried on
without in addition evaluation.

3. Method

This section presents the methodology applied to obtain the results of this work. The criteria used to choose the
models, the discretization scheme, the integration steps and the stopping criterion, as well as the algorithms used in
the work are established.

3.1 Case studies

As case studies, three models systems were chosen, which exhibit nonlinear dynamics, such as chaos. The chosen
models are for the Lorenz equations, the Rössler equations and the forced Duffing Ueda oscillator, all of them extensively
studied in the literature. For each model, the purpose is to use two equivalent interval extensions to produce two
different pseudo-orbits.

3.2 Discretization scheme and step-sizes

The Fourth Order Runge Kutta (RK4) is defined as the discretization scheme to be used in order to simulate the
models in this work. This choice is due the fact that RK4 is a well known discretization scheme and widely used by
the researchers. Function 1 describes the algorithm used to solve the proposed systems of differential equations.

The step-size h are adjusted from h = 0.09 : −0.01 : 0.003, i.e. the values of h are increased in intervals of 0.01
from 0.003 to 0.09. Hence, this range cover values considered high to very small values of h, often used in temporal
discretization to obtain solutions of ordinary differential equations. Due to the technical limitations of the computer
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Function Fourth Order Runge Kutta(RK4)()

Result: yout = y0 + (dt/6)*(f1+2*f2+2*f3+f4)
1 initialization;
2 define initial conditions and integration step-size;
3 function yout = rk4(fun,dt,t0,y0);
4 /*compute f1, f2, f3 and f4;
5 f1 = fun(t0,y0);
6 f2 = fun(t0+dt/2,y0+(dt/2)*f1);
7 f3 = fun(t0+dt/2,y0+(dt/2)*f2);
8 f4 = fun(t0+dt,y0+dt*f3);
9 yout = y0 + (dt/6)*(f1+2*f2+2*f3+f4);

available for the study, solutions of the proposed models for h < 0.003 become unfeasible, since the process becomes
computationally complex as a result of the number of iterations required.

To avoid any influence concerning different software, operating systems and hardware in the simulation of the
models, all routines are performed in a computer with a processor I5 5200 @ 2.20 GHz and Windows 10 Build OS
14393.693 operation system. To produce the result of this paper, all routines were performed in Matlab, version
R2016a.

Procedure 1 shows how the parameters are defined in order to obtain the results for each interval extension.

Procedure Parameters definition and solution of the systems equations

1 for g = 0.09 : −0.001 : 0.003 do

2 define the parameters of the system;
3 Let y0 the initial conditions;
4 Let dt the integration step-size ;
5 dt← g;
6 define the simulation interval int ;
7 int=[0:dt:final];
8 yin = y0;
9 for i = 1 to length (int) do

10 time = i*dt;
11 /*firstly choose one interval extension, then execute this. Later, run the routine again with other interval

extension. */ ;
12 youtput = rk4((t,y)systemeq(t,y,parameters),dt,time,yin);
13 Y = [Y youtput];
14 yin = youtput;

15 end

16 data=Y ;
17 save the data for all values of g ;
18 clear all data from work space ;

19 end

3.3 Stop simulation criterion

To stop the simulation when a required numerical precision is no longer satisfied, a criterion based on the relative
error of a sequence of values is established. Let εα,n be the relative precision at iteration n:

εα,n =
|x̂a,n − x̂b,n|

|x̂a,n + x̂b,n|
(9)

where n ∈ N. In this work, ε = 0.001. Thus, the integration step-size h that guarantees the highest numerical
reliability considering the chosen stop criterion may be verified. Procedure 2 show how this can be easily implemented.

It is worth emphasizing that any other chaotic system can be used to illustrate the main ideas of this paper.
Therefore the main point is not show that the proposed method can be applied to the three case studies, but to any
system defined by a set of differential equations and more than that to any discretization scheme with fixed step-size.
Furthermore, this method can also be applied in a scenario related to the simulation errors due to the discretization
schemes, complementing the results achieved by [10].
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Procedure Evolution of relative error and choice of step-size

1 n=1;
2 timemax=0;
3 for g = 0.09 : −0.001 : 0.003 do

4 systemeq1=load data of the first interval extension, given value of g;
5 systemeq2=load data of the second interval extension, given value of g;
6 Let er = 0.001 the stop criteria ;
7 for k=1:length(systemeq1) do

8 ere =
|systemeq1−systemeq2|
|systemeq1+systemeq2 |

9 end

10 maxm = iteration of simulation within the established criteria;
11 timemax(n)= g ×maxm ;
12 if timemax(n) > timemax(n− 1) then

13 return hselected = timemax(n)
maxm(n) .

14 else

15 return hselected = timemax(n−1)
maxm(n−1) .

16 end

17 Plot the evolution of relative error;

18 end

4. Results

In this section, the results of the three case studies are presented. Two different set of parameters and initial con-
ditions are used for each case study. The results show which are the integration step-sizes that guarantee, considering
the proposed method, the greatest numerical reliability in the simulations using interval extensions and the lower error
limit as an auxiliary technique for this purpose.

4.1 Lorenz equations

Consider the Lorenz equations [5] defined by the following set of differential equations:

dxl

dt
= σ(yl − xl)

dyl
dt

= xl(ρ− zl)− yl
︸ ︷︷ ︸

dzl
dt

= xlyl − βzl (10)

Consider now one equivalent interval extensions of Equation 10 given by:

dxl1

dt
= σyl1 − σxl1

dyl1
dt

= xl1ρ− xl1zl1 − yl1
︸ ︷︷ ︸

dzl1
dt

= xl1yl1 − βzl1. (11)

Note that Equations 10 and 11 are mathematical equivalent. However, they are written slightly different, as indicated
by the underline terms. Consider, then, the solutions of Lorenz Equations with parameters and initial conditions
shown in Table 1. The step-sizes h are kept the same for both interval extensions. Adjusting the step-size with a
factor D = 0.001 between values h = 0.09 and h = 0.003, a simulation time that satisfies ε = 0.001 was obtained for
each value of h. Hence, the h that guarantees the highest numeric reliability in the simulation can be chosen.

Figure 1 shows the results of each simulation in LTU ( Lorenz time units) considering the proposed step-sizes of
h. The values obtained are related to the variables xl and xl1 of the Lorenz equations. In the first case, the most
appropriate step-size is h = 0.005, which guaranteed 41.51 LTU of simulation within the established criteria. Moreover,
as the integration step-sizes decreases, the reliable simulation time varies until reaching a maximum value, from which
the decrease of h reduces the reliable simulation time. Given that h = 0.005 is the most adequate size-step, the lowest
value of h used (h = 0.003) shows a significant worsening of 20.66% when compared to it, considering the simulation
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Table 1: Lorenz system parameters and initial conditions.

Parameters rho beta Initial Contidions
sigma rho beta x 0 y 0 z 0

First case 10 28 8/3 0 0 0
Second case 8 24.08 7/3 1 0.1 2

time that satisfies ε = 0.001. In the second case, the most appropriate step-size is h = 0.075, which guaranteed
48.23 LTU of simulation within the established criteria. When compared to h = 0.003, h = 0.075 shows a superiority
of 24.15%. In addition, Figure 1b shows the reliable simulation time given the elapsed time of each simulation. In
this sense, it is possible to establish a balance between quality of results and computational performance, allowing the
choice of the best step-size to be more versatile.
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Figure 1: Lorenz system - Accomplished time of reliable simulation given each value of h and its relation with elapsed
time simulation.

Figures 2a shows a specific window for the performed simulations, which uses the criterion presented in Section 3,
for h = 0.005 and h = 0.075, respectively. It is worth emphasizing that no modifications are made to the performed
routines and, despite the mathematical equivalence, the simulation results in two different pseudo-orbits in both cases.
Figures 2b shows the evolution of relative error between the two pseudo-orbits xl and xl1 given h = 0.005, which
values are plotted using Logarithmic scale. As seen, the error grows exponentially and quickly becomes large enough
to cause very different outputs.

4.2 Rössler equations

Consider the Rössler equations [29] defined by the following set of differential equations:

dxr

dt
= −(yr + zr)

dyr
dt

= xr + α ∗ yr

dzr
dt

= β + zrxr − zrζ
︸ ︷︷ ︸

(12)

Consider now one equivalent interval extensions of Equation 12 given by:

dxr1

dt
= −yr1 − zr1

dyr1
dt

= xr1 + α ∗ yr1

dzr1
dt

= β + zr1(xr1 − ζ)
︸ ︷︷ ︸

(13)

In a similar way to what was done in Subsection 4.1, Equations 12 and 13 are mathematical equivalent. Consider the
solutions of the Rössler equations given the parameters shown in Table 2. The step-sizes h for both interval extensions
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(a) Free-run simulations of Equations 10 and 11. xl (-) and xl1

(–) were obtained with same initial conditions ( (x0, y0, z0) =
(1, 1, 1)), parameters (σ = 10, ρ = 28 and β = 8/3) and
step-size (h = 0.005). n stands for the number of iterations.
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(b) Evolution of relative error δα,n of xl and xl1, as seen in
Figure 2a given ε = 0.001 as adopted precision.

Figure 2: Free-run simulations of Equations 10 and 11 and its respective evolution of relative error δα,n

Table 2: Rössler system parameters and initial conditions.

Parameters rho beta Initial Contidions
α β ζ x 0 y 0 z 0

First case 0.2 0.2 5 0 0 0
Second case 0.38 0.3 4.82 1 −10 1

are kept unchanged. Adjusting the step-size with a factor D = 0.001 between values h = 0.09 e h = 0.003, considering
the first case, the most appropriate step-size is h = 0.088, shown in Figure 3a. h < 0.088 result in a lower reliability
in the obtained data, where h = 0.003 shows a decrease of 44.45 % when compared to h = 0.088, which reached 558.4
Rössler time units. In the second case, the most appropriate step-size is h = 0.049, which guaranteed 228.7 Rössler
time units of simulation within the established criteria. When compared to h = 0.003, h = 0.049 shows a superiority
of 33.10%. In addition, Figure 3b and shows the reliable simulation time given the elapsed time of each simulation.
Figures 4 and shows the result of simulations for xr e xr1 and the evolution of relative error.
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Figure 3: Rössler system -Accomplished time of reliable simulation given each value of h and its relation with
elapsed time simulation.
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(a) Free-run simulations of Equations 12 and 13. xr (-)
and xr1 (–) were obtained with the same initial conditions
( (x0, y0, z0) = (0, 0, 0)), parameters (α = 0.2, β = 0.2 and
ζ = 5) and step-size (h = 0.088).
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(b) Evolution of relative error δα,n of xr and xr1, as seen in
Figure 4a, given ε = 0.001 as adopted precision.

Figure 4: Free-run simulations of Equations 12 and 13 and its respective evolution of relative error δα,n

4.3 Duffing-Ueda oscillator

Consider a periodically forced nonlinear Duffing-Ueda oscillator [30, 31]:

d2y

dt2
+ k

dy

dt
+ µy3 = Acos(t). (14)

Equation 14 can be written as an autonomous system of two equations:

dxd

dt
= yd

dyd
dt

= δcos(t)− λyd − x3
d (15)

Consider now one interval extension of Equation 15 written as:

dxd1

dt
= yd1

dyd1
dt

= δcos(t)− λyd1 − xd1 ∗ xd1 ∗ xd1

(16)

Following the same procedures described in Subsections 3, 4.1 and 4.2, the most appropriate step-size for solving
Duffing-Ueda oscillator, considering the first case, is h = 0.059, as shown in Figure 5a. This result was obtained
solving the set of Equations 15 and 16 given the parameters presented in Table 3. h < 0.059 decrease the reliability
in the obtained data, in accordance with the results obtained with the Lorenz and Rössler Equations. h = 0.003
shows a expressive decrease of 47.13% when compared to h = 0.059, which reached 335.1 Duffing time units of reliable
simulation, given the proposed criteria.

The second case clearly shows the importance of the careful choice of the step-size in the simulation of chaotic
systems, since the proposed method allowed the choice of an step-size that ensured that the simulation occurred
within the established criteria, as shown by Figure 6c and 6d. In the second case, given that h = 0.087 is the most
adequate size-step, the lowest value of h used (h = 0.003) shows a expressive worsening of 84.84% when compared
to it, considering the simulation time that satisfies ε = 0.001. Moreover, it is important to observe the disparity
regarding the computational cost involved, since the best solution obtained also presents by far computationally
superior performance. In addition, Figure 5b and 5d shows the reliable simulation time given the elapsed time of each
simulation.

All results presented are summarized in Table 4.

5 Conclusions

This work presented a method to choose the appropriate integration step-size h for a given range, which guarantees
rigorous numerical reliability in the simulation of nonlinear and chaotic dynamic systems. In this context, the Lower
Bound Error was used as an auxiliary technique in the choice of such value.
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Table 3: Duffing Oscillator system parameters and initial conditions.

Parameters Initial Contidions
δ λ x 0 y 0

First case 7.5 0.05 3 4
Second case 8 0.01 1 0
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Figure 5: Accomplished time of reliable simulation given each value of h and its relation with elapsed time simulation.

Three case studies were presented: the analysis of the Lorenz equations, Rössler equations and a periodically
forced nonlinear Duffing-Ueda oscillator. For each case, two set of different parameters and initial conditions were
considered. In all cases a similar behavior can be seen by adjusting the values of h, so that, as the value of h decreases,
the reliability in the simulation increases to a optimal value. However, by decreasing the value of h beyond this optimal
value, the solutions presented a significant loss in the simulation reliability of the analyzed models, contradicting what
is pointed-out in specialized literature. This is a consequence on how the error propagates when simulating continuous
nonlinear dynamic systems, as the ways computers store numbers lead to limited precision. As the integration step
decreases, more computations are required to obtain the system outcome, and consequently, the error propagation
increase during the simulation.

Hence, were established the most adequate values of h for each analyzed system, guaranteeing a longer simulation
time that satisfies the predefined precision. Thus, it can be seen that very small values of h do not guarantee a greater
precision in the simulation of non-linear dynamic systems, as would be expected. In addition, choosing h using this
method avoids the choice of very small values that can have, in addition to the problems presented in this study, a
highest computational cost than what is really necessary.

Future works intend to apply this method using others discretization schemes, in order to verify the influence of
each method on the reliability of the simulations of complex and chaotic systems. Moreover, forthcoming studies
pretend to find better ways to, computationally, simulate the model, and not only to detect failures in the simulation.
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(a) Free-run simulations of Equations 15 and 16. xr (-) and
xr1 (–) were obtained with the same initial conditions. Pa-
rameters (δ = 7.5, λ = 0.05) and step-size (h = 0.059).
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(b) Evolution of relative error δα,n of xr and xr1, as seen in
Figure 6a, given ε = 0.001 as adopted precision.
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(c) Free-run simulations of Equations 15 and 16. xr (-) and
xr1 (–) were obtained with the same initial conditions. Pa-
rameters (δ = 8, λ = 0.01) and step-size (h = 0.087).

0 2000 4000 6000 8000 10000 12000

n

10
-8

10
-6

10
-4

10
-2

lo
g

1
0
(

,n
)

(d) Evolution of relative error δα,n of xl and xl1, as seen in
Figure 6c given ε = 0.001 as adopted precision.

Figure 6: Free-run simulations of Equations 15 and 16 and its respective evolution of relative error δα,n
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Rössler equations
0.088 44.45

Second case 0.049 33.10
First case

Duffing oscillator
0.059 47.13

Second Case 0.087 84.84

[7] I. Sandberg. “Floating-Point-Roundoff Accumulation in Digital-Filter Realizations”. Bell system technical journal ,
vol. 46, no. 8, pp. 1775–1791, 1967.
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