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ABSTRACT
This paper introduces a class of pseudo-orbitswhichguarantees the same lowerbounderror (LBE) for
two different natural interval extensions of discretemaps. In previouswork, the LBEwas investigated
along with a simple technique to evaluate numerical accuracy of free-run simulations of polyno-
mial NARMAX or similar discrete maps. Here we prove that it is possible to calculate the LBE for two
pseudo-orbits, extending so the results of previous work in which the LBE is valid for only one of the
two pseudo-orbits. The main application of this technique is to provide a simple estimation of the
LBE. We illustrate our approach with the Logistic Map and Hénon Map. Using double precision, our
results show that we ought simulate the Logistic Map and Hénon Map with less than 100 iterations,
which is, for instance, far less than the number usually considered as transient to build bifurcation
diagrams.

ARTICLE HISTORY
Received 11 July 2017
Accepted 1 October 2017

KEYWORDS
Nonlinear dynamics and
chaos; Numerical simulation;
Lower bound error

1. Introduction

Discretemaps, also called recursive functions, are used to
account formany typesof systems (Feigenbaum, 1978), in
particular nonlinear dynamics systems (Ferreira,
Nepomuceno, & Cerqueira, 2006; Hammel, Yorke, &
Grebogi, 1987; Lozi, 2013; Pereira, Kurcbart, & Nepomu-
ceno, 2005). To investigate these functions in nonlinear
dynamical systems, numerical computation plays a key
role (Galias, 2013; Lozi, 2013), and a myriad of numeri-
cal experiments (Peck, 2004) have been performed since
thework of Lorenz (1963) to understand the behaviour of
such nonlinear dynamical systems (Hammel et al., 1987).
They are used as direct tool to model many types
of dynamical systems (Feigenbaum, 1978) and many
types of discretization schemes for continuous nonlinear
dynamical systems make use of discrete maps (Letellier,
Mendes, & Mickens, 2007).

Numerous researchers are confident in numerical solu-
tions of nonlinear dynamical systems. All sort of dynamics
have been classified, such as chaotic (Ott, 2002) or inter-
mittent (Hirsch, Huberman, & Scalapino, 1982) dynamics,
whose conclusions are based on numerical simulations.
However, there exist doubts about these dynamics. The
work of Ford (1986), with his intriguing title: ‘Chaos: Solv-
ing the unsolvable, predicting the unpredictable’, is one
of the first attempts to articulate some discussions on
the discovered evidences by computer simulations. Later
Lozi (2013) asks if ‘In the simple case of a dynamic discrete
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system (of Hénon map) there are doubts as to the nature
of the computational results: longunstable pseudo-orbits
or strange attractors?’. Similarly, Galias (2013) expresses
the importance of developing methods to prove the
existence of chaotic attractors; the existence for Lorenz
system have been carried successfully (Tucker, 1999a,
1999b), while existence for Chua’s circuit is still open.
Nevertheless, it is important to state, that the proof in
Tucker (1999a, 1999b) is basedon ‘combination of normal
form theory and rigorous numerics’. As any discretiza-
tion schememay be seen as a recursive function, difficul-
ties have been reported to keep reliability on the results
of numerical simulation (Amigó, Kocarev, & Szczepan-
ski, 2007; Berthé, 2012; Elabbasy, Elsadany, & Zhang, 2014;
Letellier & Mendes, 2005; Lima, Claro, Ribeiro, Xavier, &
López-Castillo, 2013; Mendes & Letellier, 2004; Nepomu-
ceno & Mendes, 2017; Rodríguez & Barrio, 2012; Teix-
eira, Reynolds, & Judd, 2007). Hence, the error propaga-
tion in computer simulations requires a careful analysis
(Lozi, 2013).

Based on a preliminary work about convergence of
recursive functions on a computer (Nepomuceno, 2014),
Nepomuceno and Martins (2016) proposed a method to
calculate the lower bound error (LBE) for free-run sim-
ulations of recursive functions, with particular attention
to polynomial NARMAX (Billings, 2013). In that work, a
simulation is performed by means of two natural interval
extensions, derived from mathematical properties, such
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as commutativity, distributivity or associativity. These
two natural interval extensions produce two different
pseudo-orbits. The LBE has already been shown use-
ful in works such as Mendes and Nepomuceno (2016),
where the authors have developed a fast and robust
method to calculate the positive largest Lyapunov expo-
nent, and Nepomuceno and Mendes (2017), where the
authors analyse the consequences of error propagation
in discretization schemes to solve nonlinear differential
equations.

In Nepomuceno and Martins (2016), the results on the
LBE have been proved to be valid for only one of the
two pseudo-orbits. In this work, we present a step fur-
ther in the consolidation of the LBE. We found a class
of natural interval extensions, which derives pseudo-
orbits with equal error bound when performing the
rules of float point based on the IEEE 754-2008 stan-
dard (Goldberg, 1991; Institute of Electrical and Electron-
ics Engineers (IEEE), 2008; Overton, 2001). The investiga-
tion of different behaviours from different expressions for
the Logistic Map has also been studied in Yabuki and
Tsuchiya (2013). We may think that an arithmetical oper-
ation in computer is not exact but exact within a factor of
(1 + ε), where ε is the machine epsilon (Overton, 2001).
The associative property of multiplication allows us to
produce different pseudo-orbits, while keeping the same
error bound. In this way, we prove a theorem that states
the lower bound error for this kind of natural interval
extension, called arithmetic interval extension, and for
two pseudo-orbits. We also focus our attention on dis-
crete maps, using the Logistic Map and Hénon Map as
examples of application. Another contribution regards
the notation of the LBE to clarify a connection with abso-
lute error and relative error in floating-point arithmetic.

The remainder is organized as follows. First, prelim-
inary concepts are presented, then we propose a new
theorem on the lower bound of two pseudo-orbits. We
apply the methodology for the Logistic Map and Hénon
Map, and the results are validated bymeans of a compar-
ison with an arbitrary precision.

2. Preliminary concepts

In this section, we present the concepts of natural interval
extensions, orbits and pseudo-orbits and a brief overview
of floating point arithmetic as specified by IEEE floating
point standard 754-2008 Institute of Electrical and Elec-
tronics Engineers (IEEE) (2008). These concepts are used
to establish the main contribution of this paper, as the
lower bound error is derived from two different natu-
ral interval extensions and their pseudo-orbits under the
arithmetic carried out by IEEE 754-2008.

2.1. Natural interval extension

An interval is set of real numbers such that any number
that lies between two numbers in the set is also included
in the set. As for notation, an interval X is denoted
[X , X̄], i.e. X = {x : X ≤ x ≤ X̄}. In an degenerated inter-
val, we have X = X̄ and such an interval amounts to a
real number x = X = X̄ . In this context, Moore, Kearfott,
and Cloud (2009) give the definition of natural interval
extensions of a function.

Definition 2.1 (Natural interval extension): Let f be a
function of real variable x. A function F is an natural inter-
val extension of f if F agrees with f for degenerate interval
arguments, i.e.

F([x, x]) = f (x).

An interval extension of f is thus an interval valued
function which has real values when the arguments are
real (degenerate intervals) and coincides with f in this
case. The natural interval extension is achieved by com-
bining the function rule f (x) with the equivalents of the
basic arithmetic and elementary functions.

There are natural interval extensions that are equiva-
lent in terms of intervals. This leads us to the following
definition.

Definition 2.2 (Equivalent interval extension): Two
natural interval extensions G and H of a function f are
equivalent if

G(X) = H(X) for all interval arguments.

Example 2.3: Let us consider the following extension
intervals:

G(X) = rX(1 − X), (1)

H(X) = r(X(1 − X)), (2)

L(X) = rX − rX2. (3)

If r=3 and X = [0.3, 0.4], then we have

G([0.3, 0.4]) = 3[0.3, 0.4](1 − [0.3, 0.4]) = [0.54, 0.84],

H([0.3, 0.4]) = 3([0.3, 0.4](1 − [0.3, 0.4])) = [0.54, 0.84],

L([0.3, 0.4]) = 3[0.3, 0.4] − 3([0.3, 0.4]2) = [0.42, 0.93].

Here, only G(X) and H(X) are equivalent interval exten-
sions.

It is imperative to stress that from the perspective of
classic mathematics on real numbers, diverse syntactic
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partners of two equivalent natural interval extensions
yield a similar outcome. However, the outcome might
be distinctive in interval arithmetic, specifically when the
arithmetic operations are performed on computers using
float point operations.

2.2. IEEE floating point representation

Finite IEEE floating point numbers can be expressed as in
the following form Overton (2001):

± (b0.b1b2b3 · · · bp−1) × 2E , (4)

where p is the precision of the floating point system; b0
to bp−1 is the binary expansion of significand S; E is the
exponent.

Example 2.4: Let us consider the single precision, that is,
32 bits, where 1 bit is for the signal, 8 is for the exponent
(represented in a bias format) and 23 is reserved for the
significand. The decimal 0.1 is approximated by a binary
string

00111101110011001100110011001101

where the first 0 represents the positive signal of
Equation (4), the following binary string 01111011 repre-
sents the biased exponential, E = 123 − 127 = −4, and
finally the significand is given by 1001100110011001100
1101. Recall that b0 = 1 is not represented and it is
denominated hidden bit. Using Equation (4), we have:

0.1 ≈ +(1.10011001100110011001101) × 2−4. (5)

Let x ∈ R be a real in a computer using the IEEE stan-
dard. We define x− to be the floating point number near-
est to x that is less than or equal to x, and define x+ to
be the floating point number nearest to x that is greater
than or equal to x. The IEEE standard defines the cor-
rectly rounded value of x, denoted here as round(x). If x is
a floating point number, then round(x) = x. Otherwise,
round(x) depends on which rounding modes is in effect,
as follows:

• Round down: round(x) = x−.
• Round up: round(x) = x+.
• Round towards zero: round(x) = x− if x > 0; round

(x) = x+ if x < 0.
• Round to nearest: round(x) is either x− or x+,

whichever is nearer to x.

The absolute rounding error associated with x is
defined as

abserr(x) = |κ| (6)

where

κ = round(x) − x, (7)

and the relative rounding error is

relerr(x) = |δ|, (8)

where

δ = round(x) − x

x
. (9)

Therefore, for a binary floating point system with preci-
sion p, we have:

round(x) = x(1 + δ) (10)

= x + κ (11)

for some δ and κ satisfying

|δ| ≤ ε, (12)

|κ| ≤ γ . (13)

where ε = 2−p and γ = ε × 2E if round mode in effect is
rounding to nearest and considering xwithin the normal-
ized range (Overton, 2001).

A key feature of the IEEE standard is that it requires cor-
rectly rounded arithmetic operations. Let x and y denote
float point numbers, let+,−,× and÷ the standard arith-
metic operations, and let ⊕,�,⊗ and � the equivalent
operations as they are actually implemented on comput-
ers. The rule is as follows: if x and y are floating point
numbers, then (Overton, 2001)

x ⊕ y = round(x + y) = (x + y)(1 + δ), (14)

x � y = round(x − y) = (x − y)(1 + δ), (15)

x ⊗ y = round(x × y) = (x × y)(1 + δ), (16)

x � y = round(x ÷ y) = (x ÷ y)(1 + δ). (17)

We can write that the result of an arithmetic operation
relies in the interval given by themultiplication of (1 − ε)

and (1 + ε). Taking the addition as example, we have

(x + y)(1 − ε) ≤ x ⊕ y ≤ (x + y)(1 + ε) (18)

which is equivalent to say

x ⊕ y ∈ [(x + y)(1 − ε), (x + y)(1 + ε)]. (19)

We may continue likewise for subtraction, multiplication
and division. Henceforth we may revise Equations (14)
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to (17) using a description of intervals as follows.

x ⊕ y ∈ Z = [Z, Z̄] = [(x + y)(1 − ε), (x + y)(1 + ε)],
(20)

x � y ∈ Z = [Z, Z̄] = [(x − y)(1 − ε), (x − y)(1 + ε)],
(21)

x ⊗ y ∈ Z = [Z, Z̄] = [(x × y)(1 − ε), (x × y)(1 + ε)],
(22)

x � y ∈ Z = [Z, Z̄] = [(x ÷ y)(1 − ε), (x ÷ y)(1 + ε)].
(23)

It is known that certain properties of classic arithmetic,
such as associativity of addition, do not hold in the con-
text of floating point arithmetic (Institute of Electrical and
Electronics Engineers (IEEE), 2008; Overton, 2001). Conse-
quently, twomathematical equivalent sequencesof arith-
metic operations can yield two different results, as in the
case of orbits and pseudo-orbits of maps.

2.3. Orbits and pseudo-orbits

Let n ∈ N, a metric spaceM ⊂ R, the relation

xn+1 = f (xn), (24)

where f : M → M, is a recursive function or a map of a
state space into itself and xn denotes the state at the
discrete time n. The sequence {xn} obtained by iterating
Equation (24) starting from an initial condition x0 is called
the orbit of x0 (Gilmore, Lefranc, & Tufillaro, 2012).

Definition 2.5 (Orbit): Given a map xn+1 = f (xn), an
orbit of the map is a sequence of values of the map,
represented by {xn} = [x0, x1, . . . , xn].

The calculation of an orbit is usually carried out by a
finite-precision computer, leading to a pseudo-orbit. A
pseudo-orbit of a map is an approximation of a mathe-
matical orbit in a specific hardware or software. There
is no unique pseudo-orbit, as there are different hard-
ware, software and numerical precision standards, such
as IEEE 754-2008, which may yield different outputs for
each extension interval. Here it is important to emphasize
that some pseudo-orbitsmay produce better results than
others. For this reason, there has been different inves-
tigations to obtain the most precise pseudo-orbits; for
example bymanipulating natural interval extensions, see
e.g. Horner’s method (Lambers & Sumner, 2016; Muller
et al., 2010; Rodríguez & Barrio, 2012; Stahl, 1997), or by

using specific interval extensions, such as mean value
forms, which usually produce narrower widths (Caprani &
Madsen, 1980; Dymowa, 2011; Rall, 1983). In this paperwe
do not focus on the reduction of the propagation error or
the width of the error bounds.

Definition 2.6 (Pseudo-orbit): Given a map xn+1 =
f (xn), an ith pseudo-orbit {x̂i,n} is an approximation of an
orbit such that

{x̂i,n} = [x̂i,0, x̂i,1, . . . , x̂i,n],

with the absolute error given by

abserri,n = |κi,n| (25)

where

κi,n = x̂i,n − xn. (26)

The relative error is given by

relerri,n = |δi,n| (27)

where

δi,n = xn − x̂i,n
xn

. (28)

Thus, for a floating point system, we have:

x̂i,n = xn(1 + δi,n) (29)

= xn + κi,n, (30)

for some δi,n and κi,n satisfying

|δi,n| ≤ εi,n, (31)

|κi,n| ≤ γi,n. (32)

It is clear that for n = 0, Equations (29) and (32) are equiv-
alent to Equations (10) and (13), that is, δi,0 = δ and εi,0 =
ε, wherein the index i could be dropped as there is no
pseudo-orbit in action, but the process of rounding. It is
important to stress out that the IEEE standard does not
mention any general approach to calculate εi,n or γi,n for
n ≥ 1. This has been the focus ofmanyworks, particularly
those related to interval arithmetic (Moore et al., 2009).
Herewemaydefine an interval associatedwitheachvalue
of a pseudo-orbit, Ii,n such that

xn+1 ∈ Ii,n = [f (xn)(1 − εi,n), f (xn)(1 + εi,n)] (33)

= [f (xn) − γi,n, f (xn) + γi,n]. (34)

Let {x̂a,n} and {x̂b,n}be twopseudo-orbits, herewedenote
the LBE as ��,n, where � is the LBE calculated at a point
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n using a set of pseudo-orbits indicated by �. In this
paper, � is defined with just two interval natural exten-
sions, denoted by � = [{x̂a,n}, {x̂b,n}]. A preliminary result
in Nepomuceno and Martins (2016) indicates that γa,n ≥
��,n or γb,n ≥ ��,n. In this paper we provide a class of
pseudo-orbit which allows to state that γa,n = γb,n ≥
��,n. It is important to stress that γa,n = γb,n does not
imply κa,n = κb,n. In otherwords, the class of natural inter-
val extensions we are going to introduce here presents
the equivalent bounds for the absolute error, but the
absolute error for a specific instant nmaybedifferent (see
Figure 1(a)).

3. Lower bound error

The key point of this paper is the analysis of a specific
class of natural interval extensions based on the asso-
ciative property of multiplication. This leads us to the
following definition of equivalent arithmetic intervals, cf.
Definition 2.2.

Definition 3.1 (Arithmetic interval extension): Two
equivalent natural interval extensions G and H of a func-
tion f are arithmetic interval equivalent if they produce the
same resulting interval following Equation (20) to (23).

Manipulations on terms of a function by means of
associative property of multiplication will keep the same
bounds of error. We indicate this key aspect in the follow-
ing Lemma.

Lemma 3.2: Associative property of multiplication does
not change theerror bounds in floatpoint arithmetical oper-
ation using IEEE 754-2008.

Proof: Let us consider a generic mathematical operation
a × b × c, its float point equivalent a ⊗ b ⊗ c, and the
machine epsilon ε. We have

a ⊗ b ⊗ c = a ⊗ (b ⊗ c)

((a × b)(1 + ε)) ⊗ c = a ⊗ ((b × c)(1 + ε))

(((a × b)(1 + ε)) × c)(1 + ε) = (a × ((b × c)(1 + ε)))(1 + ε)

(a × b × c)(1 + ε)2 = (a × b × c)(1 + ε)2

�

Example 3.3: Let us consider the map of the Logistic
Equation f (x) = rx(1 − x). The equivalent interval exten-
sions G(x) = rx(1 − x) and H(x) = r(x(1 − x)) are arith-
metic interval equivalent, since we just apply the asso-
ciativepropertyabc = a(bc). Indeed the resulting interval

for G(x) is as follows

ZG = r ⊗ x ⊗ (1 � x)

= r ⊗ x ⊗ [(1 − x)(1 − ε), (1 − x)(1 + ε)]

∈ [rx(1 − ε), rx(1 + ε)] ⊗ [(1 − x)(1 − ε),

× (1 − x)(1 + ε)]

= [rx(1 − x)(1 − ε)2(1 − ε), rx(1 − x)(1 + ε)2(1 + ε)]

= [rx(1 − x)(1 − ε)3, rx(1 − x)(1 + ε)3] (35)

whereas for H(x) we have

ZH = r ⊗ (x ⊗ (1 � x))

= r ⊗ (x ⊗ [(1 − x)(1 − ε), (1 − x)(1 + ε)]

= r ⊗ ([x(1 − x)(1 − ε)(1 − ε), x(1 − x)(1 + ε)

× (1 + ε)]

= [rx(1 − x)(1 − ε)3, rx(1 − x)(1 + ε)3]. (36)

Thus

f (x) ∈ [rx(1 − x)(1 − ε)3, rx(1 − x)(1 + ε)3] = ZG = ZH
(37)

As we can see, the intervals in (35) and (36) are the same.
Although, the computational outcome for G(x) and H(x)
is likely unique, they present the same error bounds due
to round off.

Another important point to emphasize in this case is
that f (·) is a map, and the error produced by round off is
the same forG(x) andH(x) for any iteration of amap. This
is the key aspect that we are going to apply to develop a
stronger result on lower bound error.

Arithmetic equivalent extensions can be used to refine
the following theorem proved in Nepomuceno and Mar-
tins (2016).

Theorem 3.4: Let {x̂a,n} and {x̂b,n} be two pseudo-orbits
derived from two natural interval extensions. Let ��,n =
|x̂a,n − x̂b,n|/2 be the lower bound error associated with
the set of pseudo-orbits � = [{x̂a,n}, {x̂b,n}] of a map, then
γa,n ≥ ��,n or γb,n ≥ ��,n.

Theorem 3.4 is limited in that at least one of the two
pseudo-orbits has an error bound equal or greater than
the lower bound error ��,n. We refine here this result for
a class of natural interval extensions, namely the class
of equivalent arithmetic interval extensions (Definition 3.1),
for which error bound are the same. So a stronger result
for the lower bound error is given by the following
theorem.
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(a) (b)

Figure 1. (a) Logistic Map for two pseudo-orbits and (b) evolution of lower bound error. (a) Simulation of Equations (39) and (40), with
results for G(Xn) (− × −) and H(Xn) (− o−) and the same initial condition X0 = 0.1. n stands for the number of iterations and (b)
Evolution of lower bound error ��,n of Equation (38). The values are plotted using log10. When n= 83, ��,n > 0.1, and thus all digits
have lost significance.

Theorem 3.5: Let {x̂a,n} and {x̂b,n} be two pseudo-orbits
derived from two arithmetic interval extensions. Let ��,n =
|x̂a,n − x̂b,n|/2be the lower bounderror associated to the set
of pseudo-orbits � = [{x̂a,n}, {x̂b,n}] of a map, then γa,n =
γb,n ≥ ��,n.

Proof: The two interval natural extensions are arith-
metic interval extensions. By Lemma 3.2, it holds that
εa,0 = εb,0 = ε. As γ = ε × 2E , we also have γa,0 = γb,0.
By induction, this result can be further extended to γa,n =
γb,n. Now we need to show the definition of ��,n implies
γa,n = γb,n ≥ ��,n. It is known that Ia,n ∩ Ib,n = ∅ if and
only if

x̂b,n − γb,n ≤ x̂a,n + γa,n

and

x̂a,n − γa,n ≤ x̂b,n + γb,n.

Thus, by Equation (34), |x̂a,n − x̂b,n| ≤ γa,n + γb,n (see
Theorem 3.2 in Nepomuceno & Martins, 2016). Sup-
pose that γa,n = γb,n < ��,n, it implies that γa,n + γb,n <

2��,n = |x̂a,n − x̂b,n|, which is a contradiction. Therefore,
γa,n = γb,n ≥ ��,n. �

Theorem 3.4 establishes that at least one of the two
pseudo-orbits must have a bound error greater or equal
to the lower bound error. Theorem 3.5 extends this result
and states that twopseudo-orbits,which arederived from
twoarithmetic interval extensions, have their bounderror
greater than the lower bound error. This difference has a
practicalmeaning: if this lowerbounderror is greater than
the required precision, we must interrupt our simulation,
as both pseudo-orbits are no longer reliable.

Table 1. Summary of the main notations for error of floating
point representation and computation of a pseudo-orbit. For n =
0, we have κi,0 = κ , γi,0 = γ , δi,0 = δ and εi,0 = ε, where the
index i can be just dropped as we have only the round mode to
the nearest in effect.

Definition Floating Point Pseudo-orbit

Absolute error κ = round(x) − x κi,n = x̂i,n − xn
Limitant of absolute error |κ| ≤ γ |κi,n| ≤ γi,n

Relative error δ = round(x) − x

x
δi,n = x̂i,n − xn

xnx

Limitant of relative error |δ| ≤ ε |δi,n| ≤ εi,n

3.1. Summary of notation

Notation is recapitulated in Table 1. We can notice that
for n = 0, the floating point is the initial condition of the
pseudo-orbit, that is, κi,0 = κ , γi,0 = γ , δi,0 = δ and εi,0 =
ε, where the index i can be droppedwithout any damage.
The main contribution of this paper is to state that γa,n =
γb,n ≥ ��,n.

4. Numerical experiments

Numerical experiments were conducted by means of an
arbitrary precision technique. We used the software Max-
ima to compute a pseudo-orbit with a precision much
higher than common computations. We used 1000 digits
in Maxima and compare our results with 16 digits preci-
sion in Scilab 5.5.2. We are interested in noticing whether
the error calculated by the absolute difference between
Scilab and Maxima results are equal or greater than the
lowerbounderror.We illustrate our resultswith the Logis-
tic Map and Hénon Map.
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4.1. Logistic map

Let the logistic map (May, 1976) defined by

xn+1 = rx(1 − x). (38)

with r=3.9 and x0 = 0.1. Let two arithmetic interval
extensions be:

G(xn) = rxn(1 − xn) (39)

and

H(xn) = r(xn(1 − xn)). (40)

We compared the first ten iterations using double pre-
cision, i.e around 16 digits of precision, with another sim-
ulation with 1000 digits of precision. In both cases, our
lower bound is correct, that is, the module of the dif-
ference between the Maxima result and the two natural
interval extensions G(Xn) and H(Xn) are equal or greater
than the lower bound error. Table 2 shows these ten first
values. Appendix presents the code executed byMaxima.
The code line with true as result indicates that the error
of each pseudo-orbit is greater than the lower bound.
The value obtained by Maxima after the 10th iteration is
given by

x10 =

537948645688298809066288385414421252457
904090752732170600455542715349546559676
182749500840788738608085567373632215672
744170192816742919433742996537129905709
746766127038898588764092437192223368127
212213527694597407931652212238049148048
511344308788342883935422845687587707841
315189287670577453218653237764283713863
665017413010842537037054504348421366464
616846822403037740290136707985403129494
055555373233114708689612217293241135643
356324713734411729802482278651521288550
738883540304381914688553216548441436963
390397750773329223657066700828287398478
411010681662922523469885906359952736570
361460429260964913757169005885846182835
324439815759501634227118527512730337696
588933677857091039906043305882918361403
093098361698215523311209139941041229444
005656944236824812007534572812618929386
310410242541746697089279560798912764244
285365756004530014850331177395907198257
858824610321778535193528841461304953684
816117265437059953849384086883856191280
584004759890502596051919722861142653632
405227843041774850104642355298188103284
865207401

101023

Since ��,10 = 2.275957200481570908 · 10−15, we can
see that the lower bound error is valid by proceedingwith
the following basic operations:

κG,10 = |x10 − G(X10)|
= 1.110223024625157 · 10−14 > ��,10 (41)

and

κG,10 = |x10 − H(X10)|
= 6.550315845288424 · 10−15 > ��,10. (42)

Figure 1(a) shows the simulation of the two pseudo-
orbits (39) and (40) from iteration 70–101. Figure 1(b)
shows the evolution of lower bound error in logarithm
scale.When n=83, the lower bound error is superior than
0.1. Itmeans that all the digits have been lost significance.
From this results, it is clear that we cannot trust the sim-
ulation of Logistic Map with r=3.9 and x0 = 0.1 using
Scilab and double precision beyond n=83, which is a
contrary view of works, such as Ott (2002), that suggests
a transient of 500 points to build the bifurcation diagram.

4.2. Hénonmap

Let the Hénon map (Hénon, 1976) be defined by

xn+1 = yn + 1 − ax2n (43)

yn+1 = bxn, (44)

where a=1.4, b=0.3 with x0 = y0 = 0.1.
Let two arithmetic interval extensions be:

G(xn) = yn + 1 − ax2n (45)

and

H(xn) = yn + 1 − (axn)xn. (46)

Observe that in this case only associative property is
applied, and Equation (44) is kept the same for both
extensions. Following Lemma 3.2 it is clear that ZG = ZH,
in a similar way as Equation (37).

Figure 2(a) shows the simulation of the two pseudo-
orbits (45) and (46) from iteration 70–101. Figure 2(b)
shows the evolution of lower bound error in logarithm
scale.When n=92, the lower bound error is superior than
0.1. It means that all the digits have lost significance.

To check the validity of the lower bound error, we pro-
ceed in a similar way that the logistic map. The value
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Table 2. Simulation of the first ten values of the algorithm presented in Section A.1, where xn and yn are arithmetic
interval extension extension G(xn) and H(xn), respectively, and presented in Equation (39) and (40) for the logistic map.
The third column is the lower bound error of these two pseudo-orbits.

n G(Xn) H(Xn) LBE (��,n)

1 1.000000000000000056D-01 1.000000000000000056D-01 0.000000000000000000D+00
2 3.510000000000000342D-01 3.510000000000000342D-01 0.000000000000000000D+00
3 8.884161000000000419D-01 8.884161000000000419D-01 0.000000000000000000D+00
4 3.866184397170808196D-01 3.866184397170808751D-01 2.775557561562891351D-17
5 9.248640249724618956D-01 9.248640249724620066D-01 5.551115123125782702D-17
6 2.710131851083771859D-01 2.710131851083767973D-01 1.942890293094023946D-16
7 7.705036505625796339D-01 7.705036505625790788D-01 2.775557561562891351D-16
8 6.896283226260394583D-01 6.896283226260406796D-01 6.106226635438360972D-16
9 8.347602871063352081D-01 8.347602871063334318D-01 8.881784197001252323D-16
10 5.379486456882877077D-01 5.379486456882922596D-01 2.275957200481570908D-15

(a) (b)

Figure 2. (a) Hénon Map Map for two pseudo-orbits and (b) evolution of lower bound error. (a) Simulation of Equations (45) and (46),
with results for G(xn) (− × −) and H(xn) (− o−) and the same initial condition x0 = 0. n stands for the number of iterations and (b)
Evolution of lower bound error ��,n of Equations (43) and (44). The values are plotted using log10. When n ≥ 92, ��,n > 0.1, and thus all
digits have lost significance.

obtained by Maxima after 10 iterates is given below.

x10 = −

5309907282872740139933927160476594448
3913106737780297402886306091412947126
9098529892917600878645273468905127265
1484954547918653873808672953665890461
6120212133039045534881737240250885469
9269794390560573884800164217991883163
6127469867650289654447644572337371770
3623417135499471848270350256366057276
2274446556000481099814630715310703825
3069995224536458395653318629512059434
35166928774884653262411063

5075883674631298446548049111661087093
6472376994021911632121206424789533957
7859894786481485811156857245932918211
5501791693204142684887253405561412715
3523595568774329994713901337653176413
3648761368190565436156142210276559442
7495506046899009788830881007015705108
6425781250000000000000000000000000000
0000000000000000000000000000000000000
0000000000000000000000000000000000000
00000000000000000000000000

Since ��,10 = 4.440892098500626162 · 10−16, we can
see that the lower bound error is valid by proceedingwith
the following operations:

κG,10 = |x10 − G(X10)|
= 1.554312234475219 · 10−15 > ��,10 (47)

and

κH,10 = |x10 − H(X10)|
= 6.661338147750939 · 10−16 > ��,10. (48)

4.3. Symbolic validation

We checked our results using ten iterations of symbolic
computations by means of Maxima. In both cases, when
n=10 the error of the used pseudo-orbits appeared
greater than the lower bounderror. The code is presented
in Section A.3 and A.4. A close look on Table 2 and 3 indi-
cates some values equal to zero. One of the reasons is that
the difference caused by two different pseudo-orbit may
not be observed in the first few iterations, as the rounding
mode may produce equal float point numbers for both.
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Table 3. Simulation of the first ten values of the algorithm presented in Section A.2, where xn and yn are arithmetic
interval extensions G(xn) and H(xn) of Equations (45) and (46) for the Hénon map. The third column is the lower
bound error.

n G(Xn) H(Xn) LBE (��,n)

1 1.000000000000000000D+00 1.000000000000000000D+00 0.000000000000000000D+00
2 -3.999999999999999112D-01 -3.999999999999999112D-01 0.000000000000000000D+00
3 1.076000000000000068D+00 1.076000000000000068D+00 0.000000000000000000D+00
4 -7.408864000000000560D-01 -7.408864000000000560D-01 0.000000000000000000D+00
5 5.543222792130558796D-01 5.543222792130558796D-01 0.000000000000000000D+00
6 3.475516150752601119D-01 3.475516150752600564D-01 2.775557561562891351D-17
7 9.971877085659263118D-01 9.971877085659264228D-01 5.551115123125782702D-17
8 -2.878711720383697603D-01 -2.878711720383702044D-01 2.220446049250313081D-16
9 1.183138576202735326D+00 1.183138576202735104D+00 1.110223024625156540D-16
10 -1.046104998310160905D+00 -1.046104998310160017D+00 4.440892098500626162D-16

We checked for different initial conditions and parame-
ters: this pattern continues to appear. This point is left to
future investigations.

4.4. Conservativeness of the result

Although it seems that the LBE presents a deep conser-
vative position, that is, the LBE produces an overestima-
tion of the error, there are some evidences that show
the opposite. First, the numerical examples show the LBE
quite close to a very rigorous computation of the pre-
cise error (see eqs. (41)–(47) and (42)–(48)). Besides, the
fact that it has been possible to calculate the largest
positive Lyapunov Exponent from the LBE in other work
(see Mendes & Nepomuceno, 2016) is an evidence that
computation is very close to the error propagation. As
explained in Mendes and Nepomuceno (2016), starting
two chaotic maps from the same initial condition, two
different pseudo-orbits usually produce the same diver-
gence of those observed due the sensitivity of initial
conditions which are often observed for chaotic systems.

5. Conclusion

This paper investigates a technique to evaluate the LBE of
discrete maps. We found a class of natural interval exten-
sions that produce an equivalent bound error in recursive
functions or discrete maps. This step allows us to com-
pute the LBE for twopseudo-orbits, while previous results
were applied for only one of the two pseudo-orbits. The
focus of this work is on discrete maps. The relevance of
the method relies on its simplicity to calculate the LBE
and its multiple applications, for example in discretiza-
tion schemes of differential equations, optimization
techniques, polynomial NARMAX, Lyapunov Exponent
computation to cite a few computational techniques.

The propagation of the error is performed by means
of a simple code. The results agree in general with the lit-
erature that shows an exponential growing of the error
for chaotic systems (Adler, Kneusel, & Younger, 2001). For

instance, Figure 2(b) is very similar with results presented
in Figure 1 in Galias (2013). Both results indicate a maxi-
mum of around 100 iterations for Hénon Map using dou-
ble precision before losing the significance of simulation,
that is, when the error reaches the magnitude of the vari-
able. The comparison of the proposed method and the
technique described in Galias (2013) seems an interesting
direction for further research.

Much of efforts and results in the the study of nonlin-
ear dynamics relies on the use of numerical simulations,
to validate (Billings, 2013), to verify accuracy (Hammel
et al., 1987) and even to make mathematical proofs of
existence of strange attractors (Tucker, 1999a, 1999b).
Therefore ourmethodmay be useful as an additional tool
to falsify non-reliable simulations.

We verified our results for the first ten iterates using
an arbitrary precision by means of the software Maxima.
Asmentioned by Adler et al. (2001), amathematical pack-
age cannot be used as a black box. Accordingly wewould
like to stress the importance of having access to the code
and full details of numerical simulations, otherwise, it
may be impossible to reproduce results from only given
equations.

We hope that in a near future we can investigate other
classes of pseudo-orbits with similar results. Another
interesting research is the identification of classes of
pseudo-orbits for which the LBE grows or tends to zero.
In the same line, we intend to investigate LBE methods
to reduce the propagation of error in recursive functions,
as well as to narrow the1 width of interval arithmetic
methods.

Note

1. Scilab is a free software which may be downloaded from
www.scilab.org.
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Appendix

Appendices present the code used in this paper. As already
mentioned, it seems crucial that researchers have access to the
code of a paper.

Two routines are given for each studied case. All routines are
performed in Scilab 5.5.2 in a double precision. The first routine
is ex01.sci and presents the result for Logistic Map. The sec-
ond routine ex02.sci is devoted to HénonMap. Observe that
we present the results using format(25), which exhibits all
decimal digits in Scilab for double precision. In order to improve
the screen exhibition, one should set the display number of
columns properly.

To validate the results symbolic computation was per-
formed by Maxima 13.04.2. The routines ex01val.wxm and
ex01val.wxm are used to validate with higher precision the
results obtained for the Logistic Map and Hénon Map, respec-
tively.

A.1. ex01.sci

//Logistic Map - Scilab
r = 3.9;
x(1,1) = 0.1;
y(1,1) = x(1);
for k = 1:100
//G(x)
x(1,k+1) = (r*x(k))*(1-x(k));
//H(x)
y(1,k+1) = r*(y(k)*(1-y(k)));
end;
format(’e’,25)
[x(1:10)’ y(1:10)’ abs(x(1:10)’-y(1:10)’)/2]

//Lower bound error
lbe=abs((x-y)/2);

//Figure 1 (a)
scf(1)
clf
plot(70:101,x(70:101),’o-k’)
plot(70:101,y(70:101),’x-k’)
xlabel("$n$",’fontsize’,5)
ylabel("$G(X_n), H(X_n)$",’fontsize’,5)
//subplot(212),plot(log10(abs(y-z)))
a=get("current_axes")//get the handle of the

newly created axes
a.axes_visible="on"; //makes the axes

visible
a.font_size=5; //set the tics label font

size
a.box="off";
f=gcf(); f.background=-2;
xs2pdf(1,’logistic.pdf’);

//Figure 1 (b)
scf(2)
plot(5:101,log10(lbe(5:101)),’o-k’)
xlabel("$n$",’fontsize’,5)
ylabel("$\log_{10}(\ell_{\Omega,n})$",

’fontsize’,5)
a=get("current_axes")//get the handle of

the newly created axes
a.axes_visible="on"; //makes the axes

visible
a.font_size=5;//set the tics label font size
a.box="off";
//set(gca(),"data_bounds",matrix([5,2000,

-16,4],2,-1));
f=gcf(); f.background=-2;
xs2pdf(2,’lbe.pdf’);

A.2. ex02.sci

//Henon Map - Scilab
x=0;y=0;a=1.4;b=0.3;
w=x;z=y;
for k=1:150
//G(x)
x(k+1)=y(k)+1-a*x(k)^2;
y(k+1)=b*x(k);
//H(x)
w(k+1)=z(k)+1-(a*w(k))*w(k);
z(k+1)=b*w(k);
end
format(’e’,25)
//Table
[x(2:11) w(2:11) abs(x(2:11)-w(2:11))/2]

//Lower bound error
lbe=abs((x-w)/2);

//Figure 2 (a)
scf(1)
clf
plot(60:120,x(60:120),’o-k’)
plot(60:120,w(60:120),’x-k’)
xlabel("$n$",’fontsize’,5)
ylabel("$G(X_n), H(X_n)$",’fontsize’,5)
//subplot(212),plot(log10(abs(y-z)))
a=get("current_axes")//get the handle of the

newly created axes
a.axes_visible="on"; //makes the axes

visible
a.font_size=5; //set the tics label font

size
a.box="off";
f=gcf();
f.background=-2;
xs2pdf(1,’henon.pdf’);



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 473

//Figure 2 (b)
scf(2)
clf
plot(7:151,log10(lbe(7:151)),’o-k’)
xlabel("$n$",’fontsize’,5)
ylabel("$\log_{10}(\ell_{\Omega,n})$",

’fontsize’,5)
a=get("current_axes")//get the handle of

the newly created axes
a.axes_visible="on"; //makes the axes

visible
a.font_size=5; //set the tics label font

size
a.box="off";
//set(gca(),"data_bounds",matrix([5,2000,

-16,4],2,-1));
f=gcf(); f.background=-2;
xs2pdf(2,’lbehenon.pdf’);

A.3. ex01val.wxm

(%i1) fpprec:1000;
(%o1) 1000
(%i2) x:1/10;
(%o2) 1/10
(%i3) for i: 1 thru 9 do x:39/10*x*(1-x);x;
(%o3) done

(%o4) 537948645688298809066288385414[963
%digits]104642355298188103284865207401/

100000000000000000000000000000[964 digits]00
0000000000000000000000000000

(%i5) is(abs(x-5.379486456882877077D-01)
>2.275957200481570908D-15);

(%o5) true
(%i6) is(abs(x-5.379486456882922596D-01)

>2.275957200481570908D-15);
(%o6) true

A.4. ex02val.wxm

(%i1) fpprec:1000$
(%i2) x:0$
(%i3) y:0$
(%i4) a:14/10$
(%i5) b:3/10$
(%i6) for i: 1 thru 10 do
(aux:x,
x:y+1-a*x^2,
y:b*aux);
(%o6) done
(%i7) is(abs(x-(-1.046104998310160905D+00))

>4.440892098500626162D-16);
(%o7) true
(%i8) is(abs(x-(-1.0461049983101

60017D+00))>4.440892098500626162D-16);
(%o8) true
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