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This paper reports the existence of more than one pseudo-orbit when simulating continuous nonlinear 

systems using a digital computer in a set-up different from the ones normally seen in the literature, that 

is, in a set-up where the step-size is not varied, the discretization scheme is kept the same as well as 

the initial conditions. Taking advantage of the roundoff error, a simple but effective method to deter- 

mine a lower bound error and the critical time for the pseudo-orbits is used and the connection to the 

maximum (positive) Lyapunov exponent is established considering the bit resolution and the computa- 

tional platform used for the simulations. To illustrate the effectiveness of the method and problems of 

using discretization schemes for simulating continuous nonlinear systems in a digital computer, the well- 

known Lorenz equations, the Rossler hyperchaos system, Mackey–Glass equation and the Sprott A system 

are used. The method can help the user of such schemes to keep track of the reliability of numerical 

simulations. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Numerical computation plays a key role in analysing the solu-

ions of nonlinear dynamical systems [8,11,28,48] . Numerical ex-

eriments [42] have been used since the seminal work of Lorenz

25] in order to understand complex nonlinear dynamical systems

hat exhibit chaotic behaviour. As a result, researchers have been

dentifying chaotic behaviour [41] in various systems by analysing

he generated numerical solutions. These solutions are obtained

sing discretization schemes available in popular software and

omputers easily accessible to most researchers. However, as stated

n [28] , there are many published works in which the reliability of

umerical results is not carefully verified. The same author states

hat “In the simple case of a dynamic discrete system (of Hénon

ap), there are doubts as to the nature of the computational re-

ults: long unstable pseudo-orbits or strange attractors?”. 

At first sight the natural way to deal with the problem would

e to borrow and adapt the results of earlier works on the lin-

ar case. However, this approach should be used with care since

here are important differences between the linear case and the

onlinear case. One of the first papers to deal with the problem
∗ Corresponding author. 
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f roundoff errors for the linear case in a digital computer is [46] ,

here the author studies the effects of roundoff in the floating-

oint realization of a general linear discrete filter governed by a

table difference equation. Further works on this direction with

he objective of understanding and minimizing the roundoff error

re [14,32,36,37,50] just to mention a few. Although limit cycles

ave been reported due to the roundoff [4,13,32] , the basic idea

as to design filter structures to reduce roundoff noise and coeffi-

ient sensitivity, avoid overflow oscillations and quantization limit

ycles when magnitude truncation is employed. The problem of

tructural instabilities for the linear continuous case was studied

n [34] . These results are useful to understand some consequences

f the roundoff error but their extension to the nonlinear case is

ot completely obvious. 

In the investigation of some of aforementioned problems in the

ontext of nonlinear systems, Lorenz [26] coined the term “Compu-

ational Chaos” while studying the chaotic behaviour of difference

quations used to approximate a continuous system represented

y a set of differential equations as the step-size is increased. Fur-

her results on the same subject can be found in [8,18,27,53] . Lao

18] , for instance, has introduced the concept of critical predictable

ime to provide a more precise description of computed chaotic

olutions of nonlinear differential equations. The author has sug-

ested that the computed solutions, using discretization schemes,

an not lead to accurate long-term prediction of chaotic time-series

eyond the critical predictable time. He has also pointed out that

http://dx.doi.org/10.1016/j.chaos.2016.12.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.12.002&domain=pdf
mailto:nepomuceno@ufsj.edu.br
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two digitally computed chaotic outputs generated by different dis-

cretization schemes differs after the critical predictable time even

if the used initial conditions are exactly the same. In a similar

way, Corless [5] points out four levels of abstraction when one is

dealing with modelling: “the physical reality of the problem under

study, the continuous mathematical model of that physical reality,

the numerical discretization of that mathematical model, and the

floating-point simulation of that discretization”. Regarding specifi-

cally to nonlinear dynamics, Corless [5] is still more incisive when

stating that “Results from one level may or may not transfer easily

to another level, and in particular, even qualitative features may

not be preserved in that transfer. Moreover, there is no inherent

bias either way: in any change of level we can introduce or de-

stroy chaos.”

Having in mind not the occurrence of different solutions due to

the increase of the step-size or to the use of different discretiza-

tion schemes but due to the numerical solution itself, Nepomu-

ceno [39] has shown that a simple sequence of iterations of a well-

known nonlinear system can reach a steady state value that is not

the theoretical one. In other words, the sequence did not converge

to the theoretical value due to numerical issues. In the same work,

a method to calculate the propagation of error in the computa-

tion of recursive function is presented. The investigation of prop-

agation error is not a recent issue (See for instance [6,10,11] ) but,

in fact, there are many works based on deterministic or statisti-

cal tools that provide some confidence when simulating recursive

functions. Analysing such functions, Nepomuceno [39] has calcu-

lated the propagation of the error based on the evaluation of the

sequence of arithmetic functions and Taylor expansion. Although,

the results seem reasonable, the application of such technique is

not practical for recursive functions with many terms, such as non-

linear discrete models [3] , or discretization schemes for obtaining

the numerical solutions for nonlinear differential equations when

the goal is to measure or, at least, to estimate the error. 

In order to investigate the error in complex recursive functions,

Nepomuceno and Martins [40] introduced an approach to evalu-

ate a lower bound error based on the fact that although inter-

val extensions [35] are mathematically equivalent, they may gen-

erate different com puter simulation outcomes. The result of using

multiple interval extensions is the introduction of a new concept,

“multiple pseudo-orbits”, that differs from the general view that a

simulation generated by iterating nonlinear systems exhibits only

one pseudo-orbit. To compare the generated pseudo-orbits to the

true one, Hammel et al. [11] have shown that the latter exists near

a pseudo-orbit using mathematical analysis. In a somehow simi-

lar context, this paper explores the lower bound error to the con-

text of continuous nonlinear systems simulated using discretiza-

tion schemes. The lower bound error, that is, an inferior limit for

the error, has a direct consequence on the understanding of the so-

lutions generated by nonlinear dynamical systems. By means of a

very simple change in the equation to be simulated, that is, by ap-

plying a distributive property, two different pseudo-orbits are pro-

duced even when the initial conditions and step size are not var-

ied. 

To further emphasize the main point of the present work, con-

sider a recent work in which it is addressed the issue of obtaining

chaotic solutions in a finite interval of time using symbolic com-

putation, extremely high-order Taylor expansion and a super com-

puter [22] . The author states that “ ... because Lorenz [26,27] fur-

ther found that chaotic solutions are sensitive not only to initial

conditions but also to numerical algorithms: different numerical

algorithms with different time-steps may lead to completely dif-

ferent numerical results of chaos”. The present paper goes beyond

that, when it states that even when the initial conditions are ex-

actly the same, the algorithm is not changed and the step time

is kept unchanged, one can find multiple pseudo-orbits simply by
hanging the way the model is written. Instead of trying to give

 full answer to question “which pseudo-orbit is more correct?”,

uidelines are provided to help the user of discretization schemes

o analyse the variety of numerical solutions and to establish a re-

ationship between the different pseudo-orbits and the maximum

positive) Lyapunov exponent when possible. 

The rest of the paper is laid out as follows: In Section 2 , two

iscretization schemes are briefly reviewed. The proposed method

ased on the lower bound error is presented in Section 3 . To illus-

rate this approach, examples using the well-known Lorenz equa-

ions, the Rossler hyperchaos system, Mackey–Glass Equation and

he Sprott A system are given in Section 4 . Section 5 presents the

onclusions. 

. Discretization schemes 

Two discretization schemes are now briefly reviewed. The first

cheme is the well-known Runge–Kutta of 4th order, usually re-

erred to as RK4 [43] . Consider an initial value problem specified

s follows: 

˙ 
 = f (t, x ) , x (t 0 ) = x 0 , (1)

here x is some state variable (or output signal). 

With a step-size (or discretization step) h > 0 the RK4 can be

xpressed as 

 n +1 = x n + 

h 

6 

( k 1 + 2 k 2 + 2 k 3 + k 4 ) , (2)

here 

 1 = f n , 

 2 = f 

(
t n + 

h 

2 

, x n + 

h 

2 

K 1 

)
, 

 3 = f 

(
t n + 

h 

2 

, x n + 

h 

2 

K 2 

)
, 

 4 = f (t n +1 , n + hK 3 ) . (3)

The second method investigated is the Monaco and Normand-

yrot Discretization Scheme [33] . Let the dynamic system be 

˙  = f (x ) , (4)

here x = (x 1 , . . . , x m 

) ∈ R 

m are state variables, f ( ·) are (differen-

iable) functions. 

Here an alternative procedure for discretization of Eq. (4) as de-

cribed in [2] is given. A discrete model of Eq. (4) can be written

s 

 k +1 = g(x k , h ) , (5)

here x k ∈ R 

m are the discrete state variable at time t = t 0 + kh

nd t 0 is the initial time. 

In [19,30] , the Monaco and Normand-Cyrot discretization

cheme was obtained by the Lie exponential expansion of Eq. (4) as

ollows: 

 k +1 = x k + 

η∑ 

n =1 

h 

n 

n ! 
L n f (x k ) , (6)

here η is the expansion order. The Lie derivative is given by: 

 f (x k ) = 

m ∑ 

j=1 

f j 
∂x 

∂x j 
, (7)

here f j represents the j th component of the vector field. Higher

rder derivative orders can be calculated by: 

 f (x k ) = L f 
(
L n −1 

f 
(x ) k 

)
. (8)

ll simulations are performed on an IBM PC-compatible machine

sing Matlab R2016a or Fortran. All routines used in this work are

vailable upon request. 
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. The lower bound error and the critical time 

This section is an adaptation and an extension of the work of

epomuceno and Martins [40] on the lower bound error applied to

ontinuous nonlinear systems. First some definitions on recursive

unctions, interval extension and pseudo-orbits are introduced. Af-

er that, the theorem of lower bound error, which has been proved

n [40] , is presented. 

Let n ∈ N , a metric space M ⊂ R , the relation 

 n +1 = f (x n ) , (9)

here f : M → M , is a recursive function or a map of a state space

nto itself and x n denotes the state at the discrete time n . The se-

uence { x n } obtained by iterating Eq. (9) starting from an initial

ondition x 0 is called the orbit of x 0 [9] . 

Let f be a function of real variable x . Moore and Moore

35] presents the following definition. 

efinition 3.1. An interval extension of f is an interval valued func-

ion F of an interval variable X , with the property 

 (x ) = f (x ) for real arguments , (10)

here by an interval we mean a closed set of real numbers x ∈ R

uch that X = [ X , X̄ ] = { x : X ≤ x ≤ X̄ } . 
efinition 3.2. G and H are equivalent interval extensions if 

 (X ) = H(X ) for interval arguments . 

Consider the following example of Definition 3.2 . 

xample 3.3. Let the following extension intervals: 

G (X ) = rX (1 − X ) 

(X ) = r(X (1 − X )) 

L (X ) = r X − r X 

2 . 

onsidering r = 4 and X = [0 . 1 , 0 . 2] yields 

G ([0 . 1 , 0 . 2]) = 4[0 . 1 , 0 . 2](1 − [0 . 1 , 0 . 2]) = [0 . 32 , 0 . 72] , 

([0 . 1 , 0 . 2]) = 4([0 . 1 , 0 . 2](1 − [0 . 1 , 0 . 2])) = [0 . 32 , 0 . 72] and 

L ([0 . 1 , 0 . 2]) = 4[0 . 1 , 0 . 2] − 4([0 . 1 , 0 . 2] 2 ) = [0 . 24 , 0 . 76] . 

n this example only G ( X ) and H ( X ) are equivalent interval exten-

ions. 

Associated to a map an orbit may be defined as follows: 

efinition 3.4. An orbit is a sequence of values of a map, repre-

ented by { x n } = [ x 0 , x 1 , . . . , x n ] . 

There is no unique pseudo-orbit, as there are different hard-

are, software, numerical precision standard and discretization

chemes, which may yield different output for each extension in-

erval. 

efinition 3.5. Let i ∈ N represents a pseudo-orbit, which is de-

ned by an initial condition, an interval extension of f, some specific

ardware, software, numerical precision standard and discretization

cheme . A pseudo-orbit is an approximation of an orbit and can be

epresented as 

 ̂

 x i,n } = [ ̂  x i, 0 , ̂  x i, 1 , . . . , ̂  x i,n ] , 

uch that 

 x n − ˆ x i,n | ≤ δi,n , (11) 

here δi,n ∈ R is the error and δi, n ≥ 0. 

A pseudo-orbit defines an interval where the true orbit sits.

ence an interval associated with each value of a pseudo-orbit

ay be defined as 

 i,n = [ ̂  x i,n − δi.n , ̂  x i,n + δi.n ] . (12)
rom (11) and (12) it is clear that 

 n ∈ I i,n , for all i ∈ N . (13)

heorem 3.6 [40] . Let two pseudo-orbits { ̂ x a,n } and { ̂ x b,n } derived

rom two interval extensions. Let δα,n = 

| ̂ x a,n − ˆ x b,n | 
2 be the lower-bound

rror of a map f ( x ), then δa, n ≥ δα, n or δb, n ≥ δα, n . 

Theorem 3.6 establishes that at least one of the two pseudo-

rbits must have an error greater or equal to the lower-bound

rror. This has a practical meaning. If this lower-bound error is

reater than the required precision, the simulation should not be

arried on without further analysis. It should kept in mind that

imulation of a continuous nonlinear system using a discretization

cheme presents multiple pseudo-orbits, to which Theorem 3.6 can

e directly applied. 

The analysis on the pseudo-orbits described here is carried out

ased on two aspects. First, it is taken into account the very def-

nition of chaotic systems proposed by Devaney and therefore er-

ors will eventually lead to large scale divergence [1] . Second, a

ery simple strategy to produce a measure related to these errors

s presented using only heuristic arguments. Following this ratio-

ale, note that the lower bound error is a measure of the distance

etween the simulated dynamical systems (or pseudo-orbit) and

he real orbit. If a system behaves chaotically the distance between

hese two entities must be exponentially divergent, and therefore

 slope in a logarithm plot of the lower bound error is what is

eeded to capture such a divergence and quantified it as a number

hich is precisely the definition of the positive Lyapunov exponent

For more details the reader is referred to [31] ). 

Since all simulations performed in a digital computer should, in

rinciple, follow IEEE 754-2008 norm, some of its contents should

e observed. They are: “This standard provides a discipline for per-

orming floating-point computation that yields results independent

f whether the processing is done in hardware, software, or a com-

ination of the two.” and “Floating-point arithmetic is a systematic

pproximation of real arithmetic (...) and certain properties of real

rithmetic, such as associativity of addition, do not always hold for

oating-point arithmetic.” Based on these statements the following

emma can be derived. 

emma 3.7. Two interval extensions starting from the same initial

ondition eventually produces a different result at the same time n. 

roof. Suppose that the contrary is true, then the two interval ex-

ensions produces the same result for all n . Since they are not ex-

ctly the same, this contradicts the statement of the IEEE 754-2008

orm that states that there is no guarantee that basic arithmetic

roperties, such as the distributive property, hold. This leads to ab-

urd and completes the proof. �

With this in mind, it is clear that, for chaotic systems, two in-

erval extensions will diverge and the critical time when the orbits

each the maximum distance can be established as shown in the

ollowing lemma. 

emma 3.8. Let a chaotic system be described by function f ( n ) . Let

 ( n ) be an interval extension of f ( n ) . Then δα, n ≤ D /2 as n → N c ,

here D is the diameter of the phase space and N c is a critical time

r number of iterates, where the simulation loses the significance of

ll digits. 

roof. Lemma 3.7 establishes that f ( n ) and g ( n ) will eventually

roduce different results, even from the same initial condition. For

haotic system, this means that the results will diverge from each

ther. The maximum distance between these two pseudo-orbits is

he diameter of the phase space and therefore the lower bound er-

or is limited to the half of this value. The critical time N c may be

alculated using the value of the largest Lyapunov Exponent and
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Fig. 1. Illustration of Lemma 3.8 for the logistic map. The largest Lyapunov exponent is given by the inclination of the fitted line, that is, λ = 0 . 186 (here measured in base 

10). The critical time N c = 84 is also indicated in the figure. 
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the precision, P , of the simulation as follows 

N c = 

log 10 (D/ 2) + P 

λ
. 

This completes the proof. �

To illustrate Lemma 3.8 consider the following example. 

Example 3.9. Let the logistic map with the following two inter-

val extensions x n +1 = f (x n ) = rx n (1 − x n ) and x n +1 = g(x n ) = rx n −
rx n x n , where r = 3 . 9 and x 0 = 0 . 1 . The lower bound error and Lya-

punov exponent ( λ = 0 . 186 ) are shown in Fig. 1 (for the sake of

simplicity logarithm base 10 is used). Let D = 1 and P ≈ 16, since

the logistic equation was simulated on a 64-bit Matlab R2016a en-

vironment, then 

N c = 

log 10 (1 / 2) + 16 

0 . 186 

= 84 . 4 . (14)

Note that i ) N c ≈ 84 is in very good agreement with the value

shown in Fig. 1 , ii ) the line fitted to the curve gives the Lyapunov

exponent and iii ) the independent term, 15.6, gives a good estima-

tion of the precision P . 

In the next section illustrative examples will be given to

demonstrate the usefulness of the main ideas of the paper. 

4. Illustrative examples 

Consider the Lorenz equations [25] defined by the following set

of differential equations 

d x 

d t 
= σ (y − x ) 

d y 

d t 
= x (ρ − z) − y 

d z 

d t 
= xy − βz. (15)

The Lorenz equations in (15) can be numerically solved using the

discretization schemes reviewed in Section 2 . 

It is worth emphasizing that any other chaotic system can be

used to illustrate the main ideas of this paper. Therefore the main

point is not show that the lower bound error can be applied to the

Lorenz equations, but to any chaotic system and more than that

to any discretization scheme. This will be clear in the next sub-

sections. 
.1. Equivalent interval extensions of the Lorenz equations 

Consider now two equivalent interval extensions of Eq.

15) given by 

d x 1 
d t 

= σ (y 1 − x 1 ) 

d y 1 
d t 

= x 1 (ρ − z 1 ) − y 1 

d z 1 
d t 

= x 1 y 1 − βz 1 (16)

nd 

d x 2 
d t 

= σ (y 2 − x 2 ) 

d y 2 
d t 

= x 2 ρ − x 2 z 2 − y 2 

d z 2 
d t 

= x 2 y 2 − βz 2 . (17)

ote that the two set of equations, Eqs. (16) and (17) , are mathe-

atical equivalent. However, they are written slightly different, as

ndicated by the underline terms and they will be shown to ex-

ibit different outcomes. To this end, consider the solution of the

orenz equations with σ = 10 , ρ = 28 and β = 8 / 3 , initial con-

itions (x 0 , y 0 , z 0 ) = (0 , 1 , 1 . 05) and step-size h = 0 . 005 for both

qs. (16) and (17) . Fig. 2 shows the result for variable x 1 and x 2 
or t ∈ [40, 60] considering that no modification was implemented

n the code of routine ode4 . As can be seen, just before t = 48

TU (Lorenz Time Units [53] ), the two pseudo-orbits diverge from

ach other significantly. Actually they grow apart exponentially as

hown in Fig. 3 . 

In particular, for the first point t 1 greater that t = 47 LTU, the

ower error bound using these two pseudo-orbits is 

α,t 1 = 

| ̂  x 1 ,t 1 − ˆ x 2 ,t 1 | 
2 

= 

| − 1 . 237 − (−2 . 074) | 
2 

= 0 . 4185 , (18)

hich is a considerable error of around 20% of absolute value of

ˆ  2 ,t 1 . 

.2. RK4 - equivalent interval extensions of the discretization scheme 

In the second example, Eq. (16) is considered and the code of

he discretization scheme, that is RK4, is modified by applying
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Fig. 2. Result of simulation for x 1 (−) and x 2 (−o −) . The simulation is performed using the set of Eqs. (16) for x 1 and (17) for x 2 . The parameters σ = 10 , ρ = 28 , β = 8 / 3 , 

step-size h = 0 . 005 and initial conditions (x 0 , y 0 , z 0 ) = (0 , 1 , 1 . 05) are exactly the same. 
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Fig. 3. Exponentially growing of the difference between the two pseudo-orbits x 1 and x 2 , as seen in Fig. 2 . 
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he distributive property. The modification was implemented by

hanging the following line from 

 (: , i ) = yi + (hi / 6 ) ∗ (F (: , 1 ) + 2 ∗ F (: , 2 ) + 2 ∗ F (: , 3 ) + F (: , 4 )) ;
o 

 (: , i ) = yi + (hi / 6 ) ∗ (F (: , 1 ) + 2 ∗ (F (: , 2 ) + F (: , 3 )) + F (: , 4 )) ;
bserve that the unique change is mathematically equivalent, as 

 ∗ F (: , 2 ) + 2 ∗ F (: , 3 ) = 2 ∗ (F (: , 2 ) + F (: , 3 )) . 

Although the mathematical equivalence, this simple change can

esult in two different pseudo-orbits as can be seen in Fig. 4 . The

ame pattern shown in the first case is also observed here. The

rror grows exponentially and eventually becomes large enough to

rovoke a very different outcome (See Fig. 5 ). 

.3. Monaco and Normand Cyrot scheme - equivalent interval 

xtensions of the Lorenz Equations 

The third illustrative example uses the discretization scheme

iven by Monaco and Normand-Cyrot. To demonstrate the exis-

ence of more than one pseudo-orbit, the same procedure used
or the first two examples was followed. To this end, consider

he following discretized equation for the variable x of the Lorenz

 Eq. (15) ) by applying the Monaco and Normand-Cyrot scheme in

q. (6) for η = 3 : 

 k +1 = x k −
h 

2 

2 

(
(y k − x k ) σ

2 + (y k − x k (ρ − z k )) σ
)

+ 

h 

3 

6 

(y k − x k (ρ − z k ))(σ
2 + σ ) − σh (x k − y k ) 

− h 

3 

6 

σ (x k − y k )(σ
2 + (ρ − z k ) σ ) + 

h 

3 

6 

σ x k (βz k − x k y k ) 

(19) 

ow consider two equivalent interval extension of Eq. (19) : 

 1 ,k +1 = x 1 ,k −
h 

2 

2 

(y 1 ,k − x 1 ,k ) σ
2 + (y 1 ,k − x 1 ,k (ρ − z 1 ,k )) σ

+ 

h 

3 

6 

(y 1 ,k − x 1 ,k (ρ − z 1 ,k ))(σ
2 + σ ) − σh (x 1 ,k − y 1 ,k ) 

− h 

3 

6 

σ (x 1 ,k − y 1 ,k )(σ
2 + (ρ − z 1 ,k ) σ ) 

+ 

h 

3 

σ x 1 ,k (βz 1 ,k − x 1 ,k y 1 ,k ) (20) 

6 
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Fig. 4. Result of simulation for x 3 (−) and x 4 (−o −) . The simulation is performed using the set of Eq. (16) for x 3 and x 4 . The difference is that for x 3 , the original ode4 

code was used and for x 4 a slight difference on the code was implemented. The parameters σ = 10 , ρ = 28 , β = 8 / 3 , initial conditions (x 0 , y 0 , z 0 ) = (0 , 1 , 1 . 05) and step-size 

h = 0 . 005 are exactly the same. 
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Fig. 5. Exponentially growing of the difference between the two pseudo-orbits x 3 and x 4 , as seen in Fig. 4 . 
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duce the results. 

1 Despite being in a different context, some interesting and not intuitive bifurca- 

tion diagram of the photo conductor model is shown in [49] where the bifurcation 

parameter is the time duration of the simulation. The main result shown in that pa- 

per is that the time solution using a discretization scheme changes with time and 

can show a chaotic window even when it is known that the original systems does 

not exhibit it. 
and 

x 2 ,k +1 = x 2 ,k −
h 

2 

2 

(y 2 ,k − x 2 ,k ) σσ + (y 2 ,k − x 2 ,k (ρ − z 2 ,k )) σ ) 

+ 

h 

3 

6 

(y 2 ,k − x 2 ,k (ρ − z 2 ,k ))(σ
2 + σ ) − σh (x 2 ,k − y 2 ,k ) 

− h 

3 

6 

σ (x 2 ,k − y 2 ,k )(σ
2 + (ρ − z 2 ,k ) σ ) 

+ 

h 

3 

6 

σ x 2 ,k (βz 2 ,k − x 2 ,k Y 2 ,k ) (21)

The difference between Eqs. (20) and (21) is that in the former one

writes σ 2 and in the latter σσ , as indicated by an underline. As

in the previous results, the two pseudo-orbits diverge from each

other ( Fig. 6 ) and after around t = 50 LTU, the magnitude of the

error is of the same magnitude of the state variable, as seen in

Fig. 7 . 

The question that arises from the analysis of these examples

is: with the same initial condition, same scheme of discretization

and equivalent set of differential equations, which orbit is the true

one? This is not an easy question to answer, since there is almost

no option but to use finite precision machine. Even the precision

of the machine is increased as performed by Liao and Wang [24] ,
imilar problems can occur. Although symbolic computation can

e considered, the problem of iterating functions can be easily be-

ome intractable, although with advent of powerful computing sys-

ems the limit beyond the point where the trajectories diverge has

een set further away (but it is still finite) [20,21,23] . 

One extreme consequence of such problems is that when the

imulation reaches a value where level of error is high, and with-

ut any further analysis, the whole process should be carefully

nalysed (See Section 4.6 ). The basic explanation is that after this

alue there is no guarantee that a fixed point or cycle limit, or any

ther periodical orbital has been reached. 1 This is the very same

ssue already discussed in [39,40] . On the practical side this re-

eals the great importance of having access to the code used in a

esearch work. Without the code, it may be impossible to repro-
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Fig. 6. Result of simulation for x 1 (−) and x 2 (−o −) according to Eqs. (20) and 

(21) . The parameters are σ = 10 , ρ = 28 , β = 8 / 3 , initial conditions (x 0 , y 0 , z 0 ) = 

(0 . 1 , 0 , 0) and step-size h = 0 . 01 are the same for x 1 and x 2 . 
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Fig. 7. Exponentially growing of the difference between the two pseudo-orbits x 1 
and x 2 according to Eqs. (20) and (21) . 
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.4. Equivalent interval extensions, data precision and positive 

yapunov exponent 

In this section the following interval extension of Eq. (15) , dif-

erent from the extensions on Eqs. 16 and 17 , will be considered i )

o illustrate the influence of the data precision chosen when simu-

ating the Lorenz system and ii ) to establish the connection of the

seudo-orbits to the positive Lyapunov exponent. 

d x 4 
d t 

= σ (y 4 − x 4 ) 

d y 4 
d t 

= x 4 (ρ − 1) + x 4 − x 4 z 4 − y 4 

d z 4 = x 4 y 4 − βz 4 (22) 

d t 
Typically the dynamical behaviour of nonlinear systems can be

uantified by the so-called Lyapunov exponents spectrum, since

he exponent values measure the divergence or convergence rates

f trajectories in the directions of the flow [54] . In order to

erify the existence of chaotic behaviour from time-series origi-

ated from the solution of a nonlinear system, the methods avail-

ble in the literature estimate the positive Lyapunov exponent

16,17,44] . A rather simple modification of the algorithm proposed

n [16,44] will be used here to estimate the positive Lyapunov ex-

onent using interval extensions of the system under investigation

 31 ]. 

In order to simulate Eq. 22 and the original system in Eq. 15 ,

he RK4 method implemented in Fortran 90 was used. Two dif-

erent compilers, Gnu-Fortran (gfortran) and ifort-Intel ®, for both

inux and OS operational systems were used and 32, 64 and 128

it precisions were considered. Depending on the version of the

ompilers, gfortran and ifort ® differ from each other on the 128

it implementation (the latter shows a higher precision). It should

e pointed out that the compilers can internally manipulate the

ode for optimization which can lead to a different or an equal

nterval extension. 2 Since the results for both compilers and op-

rational systems are quite similar, only the results for the GNU

ompiler running on a linux machine are shown for the Lorenz

xample. 

Fig. 8 shows the exponential growth of the difference between

he trajectories for the Lorenz system in Eqs. 15 and 22 , consider-

ng 128, 64 and 32 bit for the precision and step size h = 0 . 0 0 0 01 .

he only step necessary to estimate the Lyapunov exponent is to

t a line equation to the region where the exponential growth is

oticeable. The value of the exponent is the slope of the estimated

quation. For higher precisions, that is, for 128 and 64 bits, the es-

imated exponent, λ ≈ 0.94, is in good agreement with the value

eported in [52, p. 62] as λ = 0 . 9056 . For 32 bit precision, the ex-

onential growth is also clear but the estimate of the Lyapunov

xponent is no longer close to the value reported in the literature,

lthough it is still positive. This seems to indicate that the 32 bit

recision is not suitable for simulating the Lorenz equations. 

Although it could be argued that the step size is too small,

ig. 9 shows that the results, when step size is h = 0 . 001 , remain

ractically the same. Further simulations shows that is the case

hen the step size is reasonably increased. Note that the starting

oint where the trajectories start to diverge vary with the chosen

recision. 

To show that the equivalent interval extensions can be used

o reliably estimate the positive Lyapunov exponent consider the

ossler hyperchaos system [45] : 

d x 1 
d t 

= −y 1 + z 1 

d y 1 
d t 

= x 1 + ay 1 + w 1 

d z 1 
d t 

= b + x 1 y 1 

d w 1 

d t 
= cw 1 − dz 1 (23) 

here a = 0 . 25 , b = 3 , c = 0 . 05 , d = 0 . 5 and the initial conditions

re set to (x 1 (0) , y 1 (0) , z 1 (0) , w 1 (0)) = (−10 , 6 , 0 , 10) . To estimate

he positive Lyapunov exponents the two equivalent interval ex-

ensions were simulated using a RK4 algorithm, the ifort ® com-

iler installed on a mac system, 128 bit precision and step size

 = 0 . 001 . 
That is specially true for ifort . 
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Fig. 8. Exponentially growing of the difference between the two pseudo-orbits y 1 and y 4 for a ) 128 bits, b ) 64 bits and c ) 32 bits, and step size h = 0 . 0 0 0 01 . The slope of 

the equation for the linear regression of the region where the exponential growth is evident is in good agreement with the results in the literature for higher precisions. 

The parameters σ = 10 , ρ = 28 , β = 8 / 3 and the initial conditions (x 0 , y 0 , z 0 ) = (0 . 1 , 0 , 0) are exactly the same. 
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d x 2 
d t 

= −y 2 + z 2 

d y 2 
d t 

= x 2 + ay 2 + w 2 

d z 2 
d t 

= b + x 2 (z 2 + e ) − ex 2 

d w 2 

d t 
= cw 2 − dz 2 (24)

and 

d x 3 
d t 

= −y 3 + z 3 

d y 3 
d t 

= (x 3 − e ) + e + ay 3 + w 3 

d z 3 
d t 

= b + x 3 y 3 

d w 3 

d t 
= cw 3 − dz 3 (25)

where the dummy parameter e is set 1. 

Fig. 10 shows the exponential growth due to the simulation of

Eqs. 23–25 even when the step, the discretization algorithm, RK4,

and the initial conditions are kept unchanged. The estimate of the

positive Lyapunov exponent ( λ ≈ 0.11) is very close to the value

reported in [52, p. 153] , that is, λ = 0 . 1120 . 
.5. The Mackey–Glass equation 

In this subsection an example based on the Mackey–Glass equa-

ion is presented. This is an interesting system used in many pa-

ers as an example of a chaotic and infinite dimensional system,

ince it is a time-delay system [7,29] . The equation is given by 

˙ 
 1 (t) = 

ax 1 (t − τ ) 

1 − x 1 (t − τ ) c 
− bx 1 ( t) (26)

here a = 0 . 2 , b = 0 . 1 , c = 10 , τ = 30 with initial condition x (0) =
 . 3 . The simulation was carried out on Matlab environment using

K4 with integration step of 0.3 s. It was necessary 13,728 points

o estimate the largest Lyapunov exponent as 0.0074, which is very

lose to the value reported in the literature (See [47] ). To achieve

hat, the following interval extension was used 

˙ 
 2 (t) = a 

(
x 2 (t − τ ) 

1 − x 2 (t − τ ) c 

)
− bx 2 (t) . (27)

In this example, the critical time N c is also calculated. From

he generated time-series, the diameter of phase space and the

ositive Lyapunov exponent (using natural base) can be estimated

s D = 1 . 381 and λ = 0 . 0074 , respectively. The precision is P = 16

ince the simulations were performed on a 64-bit platform. Finally,

he critical time can be determined as 

 c = 

log 10 (1 . 381 / 2) + log (10 

16 ) 

0 . 0074 

= 4902 . (28)

The critical time clearly indicates the end of exponential grow-

ng of the lower bound error as can be seen in Fig. 11 . This has
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Fig. 9. Exponentially growing of the difference between the two pseudo-orbits y 1 and y 4 for a ) 128 bits, b ) 64 bits and c ) 32 bits, and step size h = 0 . 001 . The slope of the 

equation for the linear regression of the region where the exponential growth is evident is in good agreement with the results in the literature for higher precisions. The 

parameters σ = 10 , ρ = 28 , β = 8 / 3 and the initial conditions (x 0 , y 0 , z 0 ) = (0 . 1 , 0 , 0) are exactly the same. 
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wo important consequences. First, the simulation can be trusted,

t most, up to t = N c from the numerical point of view. Second,

he critical time determines the reliable chunk of data that can be

sed for the estimation of the positive Lyapunov exponent. 

Although it has been shown that the equivalent interval exten-

ions can be used to estimate the positive Lyapunov exponent, care

hould be taken to generalize such results. Section 4.6 will show

hat two interval extensions of the Sprott A system can lead to

ompletely different outcomes which emphasizes the main point

f this work. 

.6. The Sprott A example 

In order to show that the solutions of the equivalent inter-

al extensions may be different altogether and not a solution due

o a parameter displacement [19] , consider the conservative sys-

em proposed independently by William Graham Hoover and Julien

linton Sprott [12,15,38,51,52] : 

d x 

d t 
= y 

d y 

d t 
= yz − x 

d z 

d t 
= 1 − y 2 . (29) 

Despite the simplicity, the so-called Sprott A system has inter-

sting features such as no fixed points and volume preservation.

pplying the Normand-Cyrot discretization scheme of third order
o the system in Eq. 29 and considering two equivalent interval

xtensions yields to the following discretized models: 

x 1 ,k +1 = (6 × x (1 , k ) − 3 × h 

2 × x (1 , k ) 

+ 6 × h × y (1 , k ) − h 

3 × y (1 , k ) 3 

− h 

3 × x (1 , k ) × z(1 , k ) + 3 × h 

2 × y (1 , k ) × z(1 , k ) 

+ h 

3 × y (1 , k ) × z(1 , k ) 2 ) / 6 . 

 1 ,k +1 = (−6 × h × x (1 , k ) − h 

3 × x (1 , k ) + 6 × y (1 , k ) 

+ 4 × h 

3 × x (1 , k ) × y (1 , k ) 2 

− 3 × h 

2 × y (1 , k ) 3 − 3 × h 

2 × x (1 , k ) × z(1 , k ) 

+ 6 × h × y (1 , k ) × z(1 , k ) 

+ h 

3 × y (1 , k ) × z(1 , k ) − 5 × h 

3 × y (1 , k ) 3 

× z(1 , k ) − h 

3 × x (1 , k ) × z(1 , k ) 2 

+ 3 × h 

2 × y (1 , k ) × z(1 , k ) 2 + h 

3 × y (1 , k ) × z(1 , k ) 3 ) / 6 .

z 1 ,k +1 = (3 × h − h 

3 × x (1 , k ) 2 + 3 × h 

2 × x (1 , k ) × y (1 , k ) 

− 3 × ts × y (1 , k ) 2 + h 

3 × y (1 , k ) 4 + 3 × z(1 , k ) 

+ 3 × h 

3 × x (1 , k ) × y (1 , k ) × z(1 , k ) 

− 3 × h 

2 × y (1 , k ) 2 × z(1 , k ) 

− 2 × h 

3 × y (1 , k ) 2 × z(1 , k ) 2 ) / 3 . (30)

nd 

x 2 ,k +1 = (−(x (2 , k ) × (−6 + h 

2 × (3 + h × z(2 , k )))) 

+ h × y (2 , k ) × (6 + 3 × h × z(2 , k ) 

+ h 

2 × (−y (2 , k ) 2 + z(2 , k ) 2 ))) / 6 . 
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Fig. 10. Estimation of the positive Lyapunov exponent using equivalent interval extensions for the Rossler hyperchaos system in Eq. 23 . The equations were simulated using 

a RK4 algorithm coded in Fortran 90 and compiled using the ifort ® compiler. Step-size h = 0 . 001 and 128 bit precision. X-coordinate, error between: a ) Eqs. 23 and 24 , b ) 

Eqs. 23 and 25 and c ) Eqs. 24 and 25 . The parameters are a = 0 . 25 , b = 3 , c = 0 . 05 , d = 0 . 5 and the initial conditions are set to (x 1 (0) , y 1 (0) , z 1 (0) , w 1 (0)) = (−10 , 6 , 0 , 10) . 
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3 7,429,765 iteration of Eq. 30 . 
4 2,147,483,647 iterations of Eq. 31 . 
y 2 ,k +1 = (6 × y (2 , k ) + h × (x (2 , k ) × (−6 − h × (3 × z(2 , k ) 

+ h × (1 − 4 × y (2 , k ) 2 + z(2 , k ) 2 ))) + y (2 , k ) 

× (6 × z(2 , k ) + h × (−(y (2 , k ) 2 × (3 + 5 × h × z(2 , k ))) 

+ z(2 , k ) × (h + 3 × z(2 , k ) + h × z(2 , k ) 2 ))))) / 6 . 

z 2 ,k +1 = h − h × y (2 , k ) 2 + z(2 , k ) + h 

2 × y (2 , k ) 

× (x (2 , k ) − y (2 , k ) × z(2 , k )) + 

(h 

3 × (y (2 , k ) 4 − (x (2 , k ) − 2 × y (2 , k ) 

× z(2 , k )) × (x (2 , k ) − y (2 , k ) × z(2 , k )))) / 3 . (31)

The choice of the Normand-Cyrot discretization scheme is based

on a recent recommendation in [8] where the author states that

the Taylor models could be an interesting alternative for circum-

vent the long term integration of nonlinear dynamical systems al-

though they are not available in most widespread software pack-

ages. The Normand-Cyrot is simply the Taylor method in a short

formulation. Furthermore Letellier et al. [19] showed that this

method has outperformed other available methods in the case of

numerically finding the solution for conservative systems. 

Mathematically Eq. (30) and (31) are the same. For small val-

ues of the step size h , both equations can reproduce the origi-

nal Poincarè section ( z = 0 ). However when the step size is in-

creased and reaches h = 3 . 74095 × 10 −01 (double precision used in

the Fortran code), the Poincarè Sections are no longer representa-

tive of the original section but more importantly they differ from

each other. The first Poincarè shown in Fig. 12 a) was built using
,0 0 0,0 0 0 crossing points 3 and there is no sign that the trajectory

ill eject to infinity. In the second Poincarè section, the trajectory

jects to infinity after only 768 crossings. 4 This clearly shows that

ne of the equivalent interval extension resulted in stability of the

olution and the other one in instability and as a result the two

olutions no longer are topologically equivalent. Therefore the pro-

osed method can also aid the user of discretization schemes to

hoose the range of step sizes when the main consideration is to

aithfully reproduce the original dynamics. 

. Conclusions 

This paper has demonstrated the existence of multiple

seudo-orbits for nonlinear dynamics systems when discretiza-

ion schemes are used even when the step-size is not varied and

he initial conditions are kept unchanged. As examples the Lorenz

quations, the Rossler hyperchaos system, the Mackey–Glass equa-

ion and the Sprott A system were investigated and it was shown

hat simple changes on the differential equations or in the equa-

ions of numerical method produce different outcomes, even if pa-

ameters and initial conditions are kept the same. The bit resolu-

ion, the step size value and the compiler used were also investi-

ated. As a consequence a lower bound error and a critical time

ased on the very definition of pseudo-orbits and on the assump-
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Fig. 11. Estimation of the positive Lyapunov exponent using equivalent interval extensions for the Mackey–Glass system in Eq. (26) . The equations were simulated using a 

RK4 algorithm coded in Matlab R2016 with step-size h = 0 . 3 and 64 bit precision. X-coordinate, error between: a ) Eqs. (26) and (27) . The parameters are a = 0 . 2 , b = 0 . 1 , 

c = 10 , τ = 30 with initial condition x (0) = 0 . 3 . The critical time N c , calculated by Eq. 28 is indicated on the x-axis. 

Fig. 12. Poincarè sections considering the crossing at z = 0 for a ) Eq. 30 and b ) Eq. 31 . The Normand-Cyrot discretization scheme (Fortran, gfortran , double precision) was 

used with step-size h = 3 . 74095 × 10 −01 and initial conditions (x 0 , y 0 , z 0 ) = (0 , 5 , 0) . 

t  

o  

s

 

d  

f  

y  

h  

t  

m  

d  

b  

f  

j  

c  

t  

r

 

e  

i  

j  

c  

c

 

t  

m  

s

 

e  

m  

e  

s

A

 

C

R

 

ion that after a long period of simulation the error of pseudo-

rbits grows was proposed to help the user of the discretization

chemes. 

Although a solution for this problem based on earlier papers

ealing with the linear case was not provided, some different

acets of the nonlinear case have been characterized and anal-

sed. On one side if the user of discretization schemes knows that

is/her simulation reaches an error value as shown in the illus-

rative examples, his/her objective and even the reliability of nu-

erical result could be questioned. On the other side it has been

emonstrated that the maximum (positive) Lyapunov exponent can

e easily estimated using two pseudo-orbits, when the parameters

or the simulation such as step-size and resolution (precision) are

udiciously chosen. The same goes for the critical time, which indi-

ates the range of reliable data used for simulation purposes or for

he estimation of the Lyapunov Exponent, when two pseudo-orbits

each the maximum distance between them. 

It has also been shown that the solutions originated from two

quivalent interval extensions for the same system, with the same

nitial conditions and step size, can be so different that one tra-

ectory ejects to infinity and the other does not. This outcome
ould be used as an aid to the user of discretization schemes when

hoosing the step size. 

Finally it is worth emphasizing the importance to have access to

he code used for simulation. As there is no equivalence between

athematical equations and interval extensions, it may be impos-

ible to reproduce and check results in the literature. 

Future research is intended to be made in two directions: gen-

ralization of the results of the lower bound error for the case of

ore than two pseudo-orbits and deeper knowledge on how the

rror propagates when simulating continuous nonlinear dynamic

ystems when a lower bit resolution is considered. 
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