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A B S T R A C T   

Carbon is truly astonishing and the only element that can form so many different compounds and materials. In 
recent years, numerous nanostructured carbon-based materials have emerged and within this family, meso
porous and ordered mesoporous carbon have attracted considerable attention. In this paper, we review the recent 
developments in the applications of mesoporous carbon as an electrocatalyst for the oxygen reduction reaction 
(ORR). The ORR is one of the most studied electrochemical reactions with applications in the energy and 
environmental sectors. Following a short introduction to the methodologies employed in the fabrication of 
mesoporous and ordered mesoporous carbon, the performance of these materials in the ORR is reviewed. 
Initially, metal free heteroatom doped mesoporous carbon electrocatalysts are described, highlighting the roles 
of N, S and B as dopants. Next, mesoporous carbon materials with Fe, Co, Mn and Ni, as isolated single atom 
catalysts, are introduced. The role of mesoporous carbon as a support for nanostructured electrocatalysts is then 
discussed. Finally, the selectivity of the mesoporous carbon-based electrocatalysts for the four and two-electron 
ORR is discussed. 

While further developments and advancements are needed, it is clear that these mesoporous carbon-based 
materials have the potential to give highly efficient electrocatalysts for both the four and two electron ORR. 
Indeed, many of the reported electrocatalysts can outperform the commercial Pt/carbon electrocatalysts in 
alkaline solutions.   

1. General introduction 

Carbon is a truly remarkable element and continues to deliver a host 
of new, interesting, and fascinating materials. Its unique ability to form a 
multitude of diverse nanostructures has led to the development of ful
lerenes [1,2], carbon nanotubes [2,3], including single and multi-walled 
carbon nanotubes, graphene [2], graphene oxide, reduced graphene 
oxide [4] and graphene quantum dots [5], carbon fibres [6] and various 
porous carbon-based materials [7,8]. These carbon based materials have 
been used in a myriad of applications, extending from medical [9], 
electrochemical sensors and biosensors [10], energy conversion and 
storage [11] to adsorbents for the treatment of wastewater [12]. Family 
members such as mesoporous carbon (MC) and the more recently 
discovered ordered mesoporous carbon (OMC), which was first reported 

in 1999 [13,14], are now attracting considerable interest. The porosity 
of carbon materials is normally classified depending on IUPAC defini
tions, with pore diameters less than 2 nm giving micro porosity, while 
diameters between 2 and 50 nm are considered as mesoporous, and 
macroporous carbon has pore diameters greater than 50 nm. Therefore, 
MC and OMC have pore diameters typically between 2 and 50 nm. 

Traditional porous carbon materials have a long history and have 
been used successfully in different applications, ranging from adsorbents 
for environmental pollutants, in filtration, energy storage and as support 
materials for electrocatalysts, with numerous applications in electro
chemistry [15–17]. This is not surprising as these materials have large 
surface areas, excellent thermal and mechanical stability, high electrical 
conductivity and can be synthesised from readily available precursors, 
making them cost-effective. However, in recent years, there has been a 
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clear and increasing focus on mesoporous carbons, including MC and 
OMC [18–20]. Mesoporous carbon is particularly interesting from an 
electrochemical viewpoint, as the pore size is sufficiently small to give a 
very high surface area, but also suitably large for the diffusion of mol
ecules and electrolyte ions. On the other hand, the micropores are too 
small for the transport of electrolyte ions and molecules, while the 
macroporous carbon has a lower surface area. MC and OMC are related 
in terms of pore sizes, with OMC having a well ordered and uniform 
assembly and network of mesopores. These mesoporous materials have 
good stability, high specific surface areas, controllable pore structures 
coupled with low cost, and are attracting interest in chemistry, physics, 
material science, membrane science, catalysis, analytical chemistry and 
especially electrochemistry [21–23]. 

Mesoporous carbon has also been modified to generate hierarchical 
porous materials, which are formed by interlinking macro- and meso- 
porous structures [24,25]. This strategy has been used to enhance 
diffusion and mass transport. Likewise, the electrochemical and elec
trocatalytic activity can be enhanced through the doping of MC with 
elements such as sulfur or nitrogen [26,27]. These electron rich het
eroatoms can alter the electronic and physicochemical properties of the 
OMC/MC, increasing its electrochemical properties, with higher rates of 
charge transfer, and enhanced specific capacitance and stability. Inter
estingly, it has also been shown that the incorporation of very low 
concentrations of transition metals, typically between 0.05 and 1.05 wt 
%, can increase the electrocatalytic performance of the OMC [28,29]. In 
addition, MC has been employed frequently as a support for electro
catalysts such as metal nanoparticles [30]. 

In summary, the MC and OMC families of carbon-based materials are 
interesting with a bright future in electrochemistry and energy-based 
applications. It is possible to tune their properties by altering their 
surface area, size of the mesopores, or by the introduction of macro
pores, heteroatoms, single atom transition metals, and decoration with 
various nanoparticles or nanostructures. In particular, these materials 
have the potential to serve as electrocatalysts for the oxygen reduction 
reaction (ORR), and therefore have the potential to contribute to 
renewable energy and offer solutions to address and reduce the impact 
of climate change [31]. The ORR is not only an important reaction in 
biochemical processes, but also a central half reaction in energy con
version systems, such as fuel cells and metal-air batteries. For these 
applications, the four-electron transfer reaction that converts oxygen 
into water is the favoured reduction reaction. Nevertheless, the two 
electron transfer half reaction, which is often described as the less effi
cient, leads to the formation of hydrogen peroxide, and this is very 
relevant in the production of hydrogen peroxide and the related 
electro-Fenton, and photo-electro-Fenton technologies [32]. These 
Fenton technologies, which are based on the reaction of hydrogen 
peroxide with ferrous ions, are important in the removal of contami
nants and pollutants from aquatic environments [33,34]. Therefore, the 
recent developments in the fabrication of MC and OMC with tailored 
pore sizes and networks coupled with high conductivity are timely, 
making these materials interesting in both energy and environmental 
sectors. 

In this review, the recent developments in the application of MC and 
OMC-based ORR electrocatalysts are introduced and discussed. Initially, 
the methods typically employed in the fabrication of MC and OMC are 
reviewed, followed by a short introduction to the ORR. The remainder of 
the review is devoted to the applications of MC and OMC-based elec
trocatalysts in catalysing and facilitating the ORR, with a focus on het
eroatom doping, atomic transition metals and MC as an immobilisation 
matrix for nanostructures. Finally, the selectivity of the ORR reaction is 
reviewed to delve into the characteristics required to favour the two and 
four electron transfer reactions. 

2. A brief introduction to the formation of mesoporous and 
ordered mesoporous carbon 

There has been significant advances in the synthesis of MC and OMC, 
especially over the last two decades. A number of excellent reviews on 
the various synthetic methods that can be employed to give both MC and 
OMC are already available [35,36]. For example, Vinu and co-workers 
[36] reviewed the synthesis and applications of functionalised micro 
and mesoporous carbon materials, Eftekhari and Fan reviewed OMC and 
its applications in energy storage [21], while in an earlier review Liang 
et al. [37] provided a detailed account of the synthetic methods together 
with a historical outline of the major developments in the synthesis of 
OMC. Therefore, in this section a brief summary of some of the synthetic 
methods employed to give MC and OMC is provided, while more 
detailed reviews on the synthesis of these mesoporous materials are 
already available in the recent literature [21,35–37]. 

OMC is normally formed using either hard- or soft-templating 
methods. In the hard templating process, the template, which is gener
ally ordered mesoporous templated silica, is employed as a mould to 
give OMC with an inverse pore structure of the silica template. Typi
cally, the silica pores in the ordered mesoporous silica are impregnated 
with the carbon precursors and then subjected to a carbonisation routine 
at high temperatures, as evident in Fig. 1(a). Using acidic or alkaline 
etching conditions, the silica template can be removed, with the volume 
once occupied by the silica becoming the mesopores within the carbon, 
giving rise to OMC. This methodology depends strongly on the inter
connected porous structure of the template. Various templates have 
been employed with the first template used in 1999 being MCM-48 
mesoporous silica [13]. Since then hard templates based on silica and 
zeolites have been employed, such as the ordered SBA-15 silica [38,39], 
core/shell type aluminosilicates [40] and hexagonal mesoporous 
aluminosilicate (Al-HMS) [41]. More recently, HZSM-5/SBA-15 
micro-mesoporous templates have been used to give ordered 
micro-mesoporous carbon [42]. The silica-based templates have a 
highly ordered mesoporous architecture and this is a key advantage in 
the formation of OMC using hard templates. Nevertheless, the acidic 
treatments required to remove the silica-based templates are aggressive 
and these not only have negative environmental impact but can also 
modify the OMC. Environmentally acceptable and sustainable alterna
tives have been employed and these include the use of iron and mag
nesium based nanoparticles/nanostructures as templates. Indeed it was 
shown by Niu et al. [43] that FeO(OH) nanorods distributed homoge
neously within the polymer matrix can serve as rigid templates. These 
nanorods were subsequently removed thermally through the decompo
sition of the FeO(OH) nanorods at elevated temperatures to yield the 
formation of MC. Iron oxide nanoparticles [44], sheet-like magnesium 
hydroxide [45] and MgO [46] have also been employed as templates, as 
these are easily removed using dilute acids. 

Recently, there has been more focus on the formation of mesoporous 
materials including carbon with soft-templating or self-templating 
strategies. The removal of silica-based hard templates requires acidic 
conditions that necessitates the use of HF, which is both toxic and cor
rosive, while the alkaline methods require high concentrations of hy
droxides. As the soft-templating method does not require the removal of 
the hard template, it is considered to be a convenient scalable, more 
environmentally acceptable and cost-effective strategy. In the soft 
templating approaches, it is possible to synthesise the OMC by the self- 
assembly of the carbon precursors and surfactant copolymers. In this 
case the surfactant template is removed during the pyrolysis step in the 
formation of the OMC structures. The size of the pores within OMC are 
dictated by the chemical nature and ratio of the copolymer and the 
organic precursors, and the weak interactions, such as hydrogen 
bonding, between them. Various OMCs have been formed using this 
approach and one of the more popular strategies is derived from the 
classical solvent evaporation induced self-assembly methodology [25, 
47–52]. For example, Meng et al. [48] synthesised a family of OMC 
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structures from the assembly of organic-organic triblock copolymers 
with soluble phenolic precursors by the evaporation induced 
self-assembly process. By simply adjusting the ratios of phenol to the 
copolymer, OMC with two-dimensional hexagonal (p6m space group), 
body-centred cubic (Im3m), three-dimensional bi-continuous (Ia3d), or 
lamellar OMC were formed. Hydrothermal synthesis has also been 
employed in the fabrication of OMC structures, where all the precursors 
are mixed and then transferred to a Teflon-lined autoclave and heated 
for several hours at relatively low temperatures [53–57]. This is then 
followed by carbonisation to give the OMC structures. 

Although the soft templating protocols are attractive, they rely 
mainly on the use of phenolic based carbon precursors with aldehyde 
cross-linkers that are not always environmentally acceptable. Therefore, 
much of the recent focus is devoted to the fabrication of OMC materials 
using sustainable and environmentally acceptable precursors. The 
classical solvent evaporation induced self-assembly methodology has 
recently been employed to synthesise OMC using a green and sustain
able strategy, where natural biopolymers, such as lignin are used. For 
example, Wang et al. [58] combined lignin extracted from walnut shells, 
Pluronic F127 as the surfactant, acetone as a solvent, and a nickel salt as 
the crosslinking agent. The solvent was then evaporated followed by 
heating at 100 ◦C to induce further cross-linking and polymerisation 
before the final calcination and carbonisation steps were applied. This 
process resulted in the formation of 2D hexagonal ordered mesopores, as 
illustrated in Fig. 1(b), with diameters varying from 4.4 to 13.0 nm 
depending on the calcination temperature and metal ion (nickel) con
centrations. Other commonly used cross-linking ions are Fe(III) [59]. 

In terms of electrochemical applications, it is well established that 
the degree of graphitisation has a significant effect on the electrical 
conductivity of MC and OMC. An increase in the electrochemical 
properties, such as capacitance and cyclic stability, is observed on 
enhancing the level of graphitisation and this is normally achieved using 
post-synthetic thermal treatments at temperatures greater than 2000 ◦C 
[60,61]. Nevertheless, these high temperatures can give rise to the 
collapse of the ordered mesoporous structure and reduce the surface 
area, limiting the potential applications of OMC when high surface area, 
porosity and electrical conductivity are all equally critical. However, it 
has been shown that the graphitisation temperature depends on the 
nature of the carbon precursors, with polyaromatic or aromatic 
carbon-based precursors normally requiring lower graphitisation tem
peratures [62]. Indeed OMCs with graphitic character have been formed 
using carbon precursors such as phenanthrene at a temperature in the 
vicinity of 1075 ◦C [63], acenaphthene with thermal treatment at 900 ◦C 
[62], and naphthalene at 750 ◦C, anthracene at 800 ◦C and pyrene at 
850 ◦C [64]. In addition, various metal catalysts, such as Ni [65,66] and 

Fe [67–70] have been used during the synthetic process to create 
graphitic domains (catalytic graphitisation) at lower temperatures. For 
example, Sevilla and Fuertes [71] used a two-step process, where the MC 
was first synthesised using mesoporous silica xerogel as the template. 
The prepared porous carbon was then impregnated with Fe, Ni or Mn 
and heated to 900 ◦C to induce graphitisation. 

Traditional porous-carbon-based electrocatalysts are limited by 
diffusion of the ions within the pores, which can be complex due to 
the size distribution of the pores, pore shapes and morphologies, 
connectivity of the pores, and the nature of the electrolyte. In addi
tion, the resistance to ion transport within the inner pores and a large 
diffusion distance can lead to a substantial IR drop, which becomes 
more significant at higher currents, adversely affecting the perfor
mance of the electrocatalysts. However, control over the pore size, its 
morphology, the generation of ordered mesopores and the combi
nation of micropores and mesopores to give hierarchical micro- 
mesoporous carbon-based materials has the capacity to reduce the 
IR drops. Indeed, Dong et al. [72] observed an increase in the rate of 
the oxygen reduction reaction through the addition of micropores to 
disordered mesoporous activated carbon. It is now possible to design 
a variety of task-specific MCs, with tuneable pore sizes and mor
phologies, including hexagonal, cubic and cylindrical pores. Clearly, 
MC is an interesting material for electrochemical-based applications, 
its porosity, including the size and morphology of the mesopores can 
be controlled, conductivity can be enhanced through graphitisation, 
it is cost-effective, and has good mechanical and chemical stability, 
and it is an environmentally acceptable material. Its role in serving as 
an electrocatalyst or as an electrocatalyst support for the techno
logically important oxygen reduction reaction (ORR) is now 
reviewed following a brief introduction and account of the ORR. 

3. Oxygen reduction and evaluation of activity 

The oxygen reduction reaction is one of the most widely studied and 
important electrochemical reactions, with applications extending from 
fuel cells and metal-air batteries to electro-Fenton-based technologies 
[33,34,73–75]. In these applications, both the anodic and cathodic re
actions are important, however it is typically the ORR half reaction that 
becomes the limiting and rate-determining reaction. The slow kinetics of 
the ORR affects significantly the performance of metal-air batteries and 
fuel cells and in recent years there has been tremendous interest in both 
the theoretical and experimental aspects of the ORR at different elec
trocatalysts [73,75–77]. 

The reduction of oxygen can proceed through a four electron or two 

Fig. 1. Synthesis protocol for OMCs using (a) N, S dual doped OMC with the hard SBA-15 silica template, reprinted with permission from Elsevier and taken from 
Duraisamy et al. [38], and (b) evaporation-induced self-assembly (EISA) with a soft template and calcination, using lignin (WSL) as the carbon precursor, F127 as a 
surfactant, and the metal ion crosslinker, reproduced with permission from the Royal Society of Chemistry and taken from Wang et al. [58]. 
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electron reduction reaction as illustrated in Eqs. (1) and (2) for the four 
electron transfer and Eqs. (3) and (4) for the two electron transfer re
action [73]. The four-electron reduction reaction is the thermodynam
ically favoured reaction with a standard reduction potential of 1.23 V vs. 
SHE, and is an essential half reaction in fuel cells, where oxygen is used 
as the fuel. On the other hand, the in situ electrochemical formation of 
H2O2 is achieved through the two electron reduction of oxygen, and this 
is a key reaction in electro-Fenton, which is an important advanced 
oxidation technology with applications in wastewater treatment [33, 
34]. 

O2+4H++4e− →2H2O(acidic) E0 = 1.23Vvs.SHE
(1)  

O2+2H2O+ 4e− →4OH− (alkaline) E0 = 0.40Vvs.SHE
(2)  

O2+2H++2e− →H2O2(acidic) E0 = 0.70Vvs.SHE
(3)  

O2 + H2O+ 2e− →OOH− +OH− (alkaline) E0 = 0.06Vvs.SHE
(4) 

The reduction of oxygen at carbon-based electrodes is generally 
described by the associative mechanism, which is summarised by Eqs. 
(5) to (9) for the four electron reduction reaction to give water as the 
final product and Eq. (10) for the production of hydrogen peroxide. Here 

the oxygen molecule is adsorbed and this adsorption step depends on the 
availability of free surface active sites for O2 adsorption. The adsorption 
of O2 is in competition with the adsorption of OH- ions from water and 
therefore active sites that favour the adsorption of O2 are crucial in this 
first step. It has been suggested that the selectivity of the two competing 
ORR reactions, i.e., the four and two electron reduction reactions, is 
determined by the relative prevalence of Eqs. (7) and (10) [78]. In 
addition, hydrogen peroxide can decompose into water as illustrated in 
Eq. (11), making it difficult to electrochemically generate H2O2. 

O2 →∗O2 (5)  

∗O2 + H++ e− →∗OOH (6)  

∗OOH+H++ e− → H2O+∗O (7)  

∗O+H++ e− →∗OH (8)  

∗OH+H++ e− →H2O (9)  

∗OOH+H++ e− →H2O2 (10)  

2H2O2→2H2O+O2 (11) 

In terms of kinetics, it has been suggested that the rate-determining 
step is the adsorption of the oxygen molecules, Eq. (5), for strongly 
binding metals/alloys. On the other hand, for weakly binding electro
catalysts, Eq. (6) becomes the rate-determining step [78]. Eq. (8) 

Fig. 2. (a) CV for Fe,N-MCNs in 0.1 M KOH 
solution saturated with Ar and O2, (b) ORR 
polarisation curves for Fe,N-MCNs prepared at 
different temperatures and compared with 
commercial Pt/C, (c) Jd at 0.50 V and E1/2 of 
the catalysts formed at different temperatures, 
(d) polarisation curves of Fe,N-MCNs at various 
rotating rates in 0.1 M KOH solution, (e) K–L 
fitted plots at various potentials for Fe,N-MCNs, 
(f) Durability studies at 0.3 V vs RHE 
comparing Fe,N-MCNs and commercial Pt/C, 
reprinted with permission from the American 
Chemical Society and taken from Du et al. [79].   
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The performance of electrocatalysts in the ORR is normally assessed 
using electrochemical techniques, such as cyclic voltammetry, linear 
sweep voltammetry and rotating disc electrode (RDE) experiments [77, 
78,81]. As illustrated in Fig. 2(a), the potential at which the reduction of 
dissolved oxygen occurs can be readily obtained using cyclic voltam
metry. In the RDE experiment, a linear sweep voltammogram is recor
ded at slow scan rates, typically between 1 and 10 mV s− 1 and at about 
1600 rpm. A sigmoidal wave typical of the steady-state mass transport is 
obtained as shown in Fig. 2(b). From these RDE experiments, the EOnset 
value can be determined. It is frequently (but not always) defined as the 
potential at which the current density for the ORR reaches the threshold 
of 0.1 mA cm− 2. Another useful parameter is the E½ potential, which 
corresponds to the half-wave potential. The limiting current, JL, is given 
by the Levich equation, Eq. (12), where D is the diffusion coefficient,ν is 
the kinematic viscosity, ω is the angular velocity of rotation, and the 
other symbols n, F, A and C, correspond to the number of electrons 
transferred, Faraday’s constant, the geometric surface area of the elec
trode and concentration of electroactive species [77]. The Kouteck
ý-Levich equation, Eq. (13), is also frequently applied, where JK 
represents the kinetic current and JL is the diffusion-limited current. A 
typical plot is shown in Fig. 2(e). Using this relationship, the rate con
stant ke and the number of electrons transferred, n, can be obtained. This 
in turn can be used to determine the level of selectivity for the four and 
two electron transfer reactions. Electrocatalysts with higher ORR ac
tivity tend to give higher EOnset values and higher E½ values, while the 
limiting currents depend mainly on the n value [77,78]. 

JL = 0.62nFAD2/3ω1/2ν− 1/6C (12)  

1
J
=

1
JK

+
1
JL

=
1

nFAkeC
+

1
JL

(13) 

Tafel slopes obtained by fitting experimental data to the Tafel 
equation, Eq. (14), where b is the Tafel slope (b = 2.303RT/αF) are also 
frequently employed. The Tafel slope is related to the overpotential 
required to increase the current density by one order of magnitude. It 
can also be employed to give insights into the reaction mechanism and 
the rate-determining steps [80]. 

η = a + blog J (14) 

Currently, the best performing electrocatalysts are based on sup
ported platinum nanoparticles with Pt/C being the most successful and 
commercially available [75]. Platinum-based electrocatalysts are not 
only expensive, but also the platinum nanoparticles are prone to 
leaching from the carbon support, which leads to secondary pollution 
while CO poisoning during the electrochemical reaction can reduce the 
overall performance of the cell. Furthermore, the availability of plat
inum is becoming an issue, as the Earths reserves are becoming depleted 
due to the excessive use of platinum in modern industries. Therefore, 
there is increasing interest in the development of more sustainable ORR 
electrocatalysts from Earth abundant elements that are cost-effective 
and readily scalable. It is no surprise that carbon-based materials, 
including MC and OMC are attracting considerable interest in the 
development of ORR electrocatalysts, as they are environmentally 
acceptable, inexpensive with very good stability and are readily avail
able [81,82]. 

4. Metal-free heteroatom doped mesoporous carbon and the 
ORR 

In general, the strategy to develop highly efficient carbon-based 
materials involves tuning of the pore size, the introduction of defects, 
such as intrinsic carbon defects, and defects arising from doping and 
graphitisation, aiming to enhance the surface area and to provide suf
ficient active sites for the electrochemical ORR [83,84]. During the last 
two decades, MCs and OMCs, with their fascinating properties of high 
surface areas, large pore volumes, and a tuneable nanostructure, have 

been shown to exhibit superior electrochemical ORR behaviour [85]. In 
testing the ORR activity of the electrocatalysts using the RDE setup, the 
MC-based electrocatalysts are normally dispersed in a solvent (e.g. water 
or alcohol) and a small amount of Nafion or other ionomer is added, 
which acts as a binder. Then they are deposited onto a substrate elec
trode, such as a glassy carbon surface, with catalyst loadings varying 
from approximately 25 μg cm− 2 to 600 μg cm− 2 [38,86–88]. 

It is well established that pristine carbon-based materials exhibit low 
electrocatalytic activity for the ORR [89], but the ORR activity is much 
higher when defects are introduced and this can be achieved by doping 
with heteroatoms. One well known dopant is nitrogen, and nitrogen 
doped OMCs and MCs have been investigated extensively [22,23,43,85, 
90–93]. Various nitrogen-based precursors can be employed as the ni
trogen source in the fabrication of N doped MCs and OMCs. These 
include conducting polymers such as polyaniline, as it has a high N/C 
ratio [91,94], and polypyrrole [95], and graphitic carbon nitride, g-C3N4 
as it releases large amounts of N-containing gases at high temperatures 
[27]. Other nitrogen sources include melamine [96], 2-pyridinecarbox
aldehyde, pyrrole [19], folic acid [97], amino acids and poly amino 
acids as they are all rich in nitrogen [98]. There is also increasing in
terest in forming nitrogen-doped MC materials from biomass waste [99]. 
The nitrogen doping levels are typically between 3 and 9% [97,98,100] 
although higher levels have been achieved using a microwave assisted 
synthetic approach with a nickel foam substrate [96]. 

As the nitrogen atom is larger and has a higher electronegativity than 
carbon atoms, its incorporation into a carbon matrix gives rise to the 
polarisation of the matrix and the creation of defects. This leads to the 
generation of adsorption sites for the oxygen molecule, Eq. (5). It is also 
well known that the nature of the N functionalities can influence the rate 
of the ORR. On doping carbon with nitrogen, various N-containing 
centres can be generated, including pyridinic-N, pyrrolic-N and 
graphitic-N (quaternary N). There is a general consensus that it is the 
graphitic-N and also possibly the pyridinic-N that provide the active 
sites in N-doped carbon for the ORR [101]. However, these active sites 
need to be fully accessible to the reactants to ensure their utilisation. In 
addition to the nature of the N species, and pore accessibility, the ORR 
activity is also very dependent on the degree of graphitisation, which 
dictates the conductivity and stability of the doped carbon and also on 
the surface area, morphology of the porous structures and pore size 
distribution [102,103]. For example, Ferrero et al. [93] attributed the 
high performance of their nitrogen-doped MC microspheres to the 
relatively high nitrogen content of 8 wt%, an accessible mesoporosity 
that provides efficient mass transport both to and from the catalytic 
sites, a pore volume of 1.43 cm3 g− 1 and a large specific surface area of 
1160 m2 g− 1. Indeed, these materials were shown to outperform the 
commercial Pt/C electrocatalysts, with higher ORR activity, more robust 
characteristics and were unaffected by methanol crossover. 

Other interesting dopants are P [90,95,104–109], S [32,110–117] 
and B [118–122] and these have been employed together with N-doping 
to enhance the ORR. In particular, co-doping with N and P or N and S 
gives higher ORR activity compared to N-doped carbon. Furthermore, it 
has been shown that multi-heteroatom doping, with N, P, and S, com
bined with an hierarchically porous carbon network outperformed the 
commercial Pt/C electrocatalyst in alkaline electrolytes [112]. The 
synthetic process of this ternary S, P, and N doped hierarchical carbon is 
summarised in Fig. 3. Interestingly, it has been shown that higher ORR 
activity can be achieved by first doping with P and then with N. This 
approach gave higher levels of graphitic-N, with some of the first doped 
P sites serving as locations for the N dopants [123]. Likewise, the 
co-doping with N and S is interesting, as the sulfur atom has a radius 
higher than either N or C. This, in turn, induces structural defects within 
the carbon framework to give more active sites for oxygen adsorption. 
Likewise, the presence of B dopants can alter the band structure of the 
carbon framework and facilitate the adsorption of oxygen [122]. 

Most of the reported ORR studies have been carried out in KOH and 
this is connected mainly with the fact that N-doped MC has higher ORR 
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activities in alkaline compared to acidic media [91]. This is reflected in 
Table 1 where the performance of some MC materials with different 
heteroatom dopants is summarised. It is difficult to compare these 
directly as they have different pore structures, pore volumes, pore dis
tributions and surface areas and have been formed using various ap
proaches. Nevertheless, it is evident that some of best ORR activity is 
seen with N doped MC that has additional large pores [103,124] high
lighting not only the influence of defects but also the important role of 
diffusion within the porous structures. In addition to the defects intro
duced by doping with heteroatoms, intrinsic carbon defects, such as 
edge defects and sp3-type carbon, can also promote the ORR [125,126]. 

5. Modification of mesoporous carbon with transition metals 

The presence of transition metals as both single atoms and nano
structures can further improve the ORR performance of the MC elec
trocatalysts. The influence of transition metal single atom 
electrocatalysts is summarised in Section 5.1, while incorporated tran
sition metal nanostructures are described in Section 5.2. However, it 
should be noted that in many of these studies both centres co-exist, with 
both the atomic metal sites and nanoparticles contributing to the ORR. 

5.1. Single atomic transition metal modified mesoporous carbon and ORR 

Among the N-, P-, S- and B- heteroatom doped MC materials, non- 
precious single atom transition metal-containing N-doped MC 
comprise some of the more promising ORR electrocatalysts with per
formances comparable, or even superior, to the commercial Pt/C elec
trocatalysts in alkaline solutions. Transition metals such as Fe [31,79,88, 
133–136], Co [137–140], Mn [141,142], Ni [140] and various bime
tallic combinations [133] are widely employed with N-doped MC/OMC, 
while Fe has also been employed with N, S co-doped MC [143]. There 
are fewer mentions of Ni, as it has been associated with a poisoning 
effect on the ORR activity [144]. In Fig. 4 the TEM micrograph of a 
Co-N-MC electrocatalyst is shown, together with the elemental mapping, 
indicating uniformly doped MC, while the linear sweep voltammograms 
illustrate how Co-N-MC, Cu-N-MC and Ni-N-MC, compare with the 
commercial Pt/C electrocatalysts [140]. In Table 2, the performance of 
some of these single atom-based MC electrocatalysts is summarised. In 
general, the EOnset potentials are in the vicinity of 1.0 V vs. RHE, while 
many of the E½ values are higher than 0.90 V vs. RHE. On comparing 
these values with the data presented in Table 1, it is evident that the 
single atom transition metal modified MC-based electrocatalysts are 
generally more efficient in facilitating the ORR. 

It is believed that the transition metal (M) coordinates to the nitrogen 
moieties to give M-Nx active centres, that are covalently bonded to the 
carbon structure. This facilitates the adsorption of oxygen and its reac
tion intermediates with the metal centre through electron-donating or 
-withdrawing with the π-electron system of the carbon support. In the 
case of the combination of Fe with S and N doped MC, the impressive 
ORR activity was attributed to the dual N, S doping, Fe-Nx and possibly 
FeS [143]. Likewise, it was deduced that Co-Nx sites can effectively 
boost the ORR in Co and N modified MC [145]. Nevertheless, these sites 
must be accompanied by high surface areas and pore volumes to enable 
the adsorption of the oxygen molecule at the active sites, coupled with 
efficient transport of electrolyte, reactants and products to and from the 
active sites, and high concentrations of pyridinic-N and graphitic-N 
species [145]. Therefore, it is not surprising that the ORR activity of 
transition metal and N doped MC or OMC depends strongly on the 
synthetic methodologies employed to integrate the nitrogen, carbon and 
the transition metal. Parameters such as the nature of the nitrogen and 
carbon precursors, transition metals, heating and post treatments are all 
important in dictating the properties of the final product [143]. 

In a recent study, Lilloja and co-workers [133] doped a commercial 
mesoporous engineered catalyst support with nitrogen and bimetallic 
CoFe, FeMn, and CoMn. Phenanthroline was employed as the nitrogen 
source, as it is also well known to form complexes with transition metal 
salts. Using XPS, the authors found that the nitrogen was present as 
graphitic-N, pyridinic-N, and pyrrolic-N but also a considerable amount 
of metal-coordinated nitrogen species were identified. The materials 
containing iron, exhibited impressive ORR activity similar to that of 
commercial Pt/C with Eonset and E1/2 values of approximately 1.0 V and 
0.9 V vs. RHE, respectively. Likewise, Wang et al. [31] observed very 
impressive ORR activity in 0.1 M KOH using Fe with N-doped MC. A E1/2 
of 0.926 V vs. RHE and an impressive current density of 92.5 mA cm− 2 at 
0.85 V was reported. Furthermore, very good long-term stability was 
achieved over a 90 h period with over 90% of the activity retained. 

While the metal-Nx structures provide active adsorption sites with 

Fig. 3. Synthesis of S, N, P doped hierarchical porous carbon through the py
rolysis of thiourea (THU), with N- and P-doped porous carbon derived from 
cattle bone, reprinted with permission from RSC and taken from Zan 
et al. [112]. 

Table 1 
Summary of some hetero-atom doped MC and their ORR activity in 0.1 M KOH.  

Doping/Synthetic Process Electrochemical 
Parameters 

Refs. 

N-doped/hydrothermal self-assembly Eonset = − 0.08 V vs. SCE 
Tafel slope = 73 mV/dec 

[100] 

N-doped/ direct pyrolysing (biomass source of 
carbon) 

E½= 0.75 V vs. RHE [127] 

N-doped/ solvent-free self-assembly Eonset = 1.003 V vs. RHE 
E½= 0.858 V vs. RHE 
Tafel slope = 70 mV 
dec− 1 

[27] 

N doped spheres/ micelles/high-molecular- 
weight block polymer 

Eonset = − 0.11 V vs. Ag/ 
AgCl 

[103] 

N-doped hierarchical micro-MC/ templating E½= − 0.243 V vs. SCE  [124] 

N-doped/ SBA-15 template Eonset = 0.9 V vs. RHE [92] 
N-doped OMC hollow spheres Eonset = 0.88 V vs. RHE 

E½ = 0.82 V vs. RHE 
[19] 

N-doped/ silica microspheres template. Eonset = 0.927 V vs. RHE [93] 
N-Doped Hollow MC nanospheres Eonset = 0.84 V vs. RHE 

Tafel slope = 65 mV 
dec− 1 

[128] 

N and S co-doping/soft template method E½ = 0.81 V vs. RHE [129] 
N and O co-doped/ SBA-15 mesoporous silica 

template 
Eonset = 0.94 V vs. RHE [91] 

N and S co-doped/ hydrothermal Eonset = 0.79 V vs. RHE 
Tafel slope, 72.0 mV 
dec− 1 

[130] 

N, P and S tri-doped MC/template Eonset = 0.923 V vs. RHE 
E½ = 0.821 V vs. RHE 

[131] 

B-doped/ SBA-15 hard template Eonset = − 0.16 V vs. Ag/ 
AgCl 

[122] 

B and N co-doped /hydrothermal Eonset = 0.975 V vs. RHE 
Tafel slope = 89.5 mV 
dec− 1 

[132]  
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fast charge transfer, facilitating the ORR, they can be prone to corrosion 
and dissolution, especially in acidic environments. Indeed on testing the 
durability of Fe/N modified MC in H2SO4, Kwak et al. [88] observed a 
loss in both the N and Fe and a decreased portion of Fe-Nx which serves 
as the main active site. Therefore, most of these studies are carried out in 
alkaline KOH solutions. 

Interestingly, there remains some debate concerning the intrinsic 
nature of the active site in N-doped carbon materials and this may also 
be very relevant for MC and OMC-based materials. In many of the syn
thetic methods, transition metals such as Fe-based salts are employed as 
cross-linking agents [59], and it has been argued by several authors that 
these transition metals may have a role to play in the ORR. It has been 
proposed that the transition metal promotes the formation of the cata
lytic sites during the pyrolysis reactions but is not actively involved in 
the ORR [146,147]. On the other hand, other groups argue that the 
transition metal coordinates with nitrogen and directly participates in 
the active sites for the ORR [148,149]. In a more recent study, Wan et al. 
[92] found no evidence to show that the iron-based salts used during the 
pyrolysis phase, played a role in the electrocatalysis of the ORR at MC or 
OMC. 

5.2. Mesoporous carbon as a support for nanostructured electrocatalysts 

Mesoporous carbon has also been shown to provide an effective 
support for transition metal nanoparticles, transition metal alloy nano
structures and indeed other nanosized electrocatalysts [150–153]. It 
provides a conducting support with an efficient electron transport 
pathway, while facilitating coupling between the transition metal elec
trocatalyst and the carbon to enhance the catalytic performance. It is 
well known that nanoparticles are prone to aggregation or agglomera
tion. However by immobilising them in a conductive support, such as 
MC, these self-aggregation reactions can be minimised to enhance the 
stability and electrocatalytic properties of the nanostructures. Again, 
heteroatom doping, to give N-doped MC supports, is interesting as the 
heteroatoms can influence the distribution of electron density and pro
vide active adsorption sites. Furthermore, bonds between the hetero
atoms and metal atoms can be formed which in turn can create polarity 
and charge distribution to enhance the electrocatalytic activity and the 
ORR performance. 

Nevertheless, blocking of the pore space by the nanoparticles can 
reduce the diffusional processes that are necessary to achieve efficient 
transport of the reactants and products during the ORR. In particular, 
efficient transport between the pores and the bulk solution is required to 
ensure that the active sites are electrochemically accessible. In addition, 
the nitrogen doped carbon with metal nanoparticles are typically syn
thesised by thermal treatments of the transition metal, nitrogen, and 

Fig. 4. (a) TEM image of the Co-N-MC, (b) HAADF-STEM image of the Co-N-MC, (c) carbon element mapping, (d) N element mapping, and (e) Co element mapping 
of as-prepared Co-N-MC, (f) TEM image of the as-prepared Cu-N-MC, (g) LSV curves for Co-N-MC, Ni-N-MC, Cu-N-MC, and Pt/C in O2–saturated 0.1 M KOH at 10 mV 
s− 1 and 1600 rpm, reprinted with permission from Elsevier and taken from Tang et al. [140]. 

Table 2 
Summary of some MCs with single atom transition metals and their ORR activity 
in KOH.  

Electrocatalysts C precursors Electrochemical 
Parameters 

Refs. 

Fe-Nx graphitic 
carbon 

2,2-bipyridine EOnset = 0.97 V vs. 
RHE 

[67] 

Fe - N doped MC polyvinyl-pyrrolidone EOnset = 0.99 V vs. 
RHE 
E½ = 0.92 V vs. RHE 

[79] 

Co,Fe - N doped MC 1,10-phenanthroline EOnset = 1.0 V vs. 
RHE 
E½ = 0.9 V vs. RHE 

[133] 

Fe - N doped MC nicarbazin EOnset = 0.99 V vs. 
RHE 

[134] 

Fe-doped MC glucose EOnset = 1.02 V vs. 
RHE 
E½ = 0.84 V vs. RHE 
Tafel slope = 93 mV 
dec− 1 

[136] 

Co - N doped MC polyvinyl-pyrrolidone E½ = 0.82 V vs. 
RHE 
Tafel slope = 51.8 
mV dec− 1 

[137] 

Co - N,P doped MC, 
(single Co-N2P2 

sites) 

hexachloro- 
cyclotriphosphazene and 
tannic acid 

E½ = 0.878 V vs. 
RHE 

[139] 

Mn - N doped MC phenanthroline EOnset = 0.96 V vs. 
RHE 
E½ = 0.86 V vs. RHE 

[141] 

FeS - N, S doped MC tetramethoxysilane and 
formic acid 
(sol-gel synthesis) 

EOnset = 1.00 V vs. 
RHE 
E½ = 0.87 V vs. RHE 
Tafel slope = 74 mV 
dec− 1 

[143] 

Co - N doped MC 2,4,6-tri(2-pyridyl)−
1,3,5-triazine 

EOnset = 1.0 V vs. 
RHE 
E½ = 0.83 V vs. RHE 

[145]  
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carbon precursors. The high temperatures make it difficult to control the 
distribution and aggregation of the metal nanoparticles. Different stra
tegies have been employed to protect the transition metal nanoparticles 
and one method involves their protection by a thin carbon layer [154, 
155], as shown in Fig. 5(a). This is particularly important when the 
nanoparticles are exposed to high temperatures and the aggressive 
etching conditions that are employed to remove the templates. Under 
these aggressive conditions, the transition metal nanoparticles can un
dergo dissolution and corrosion. Furthermore, the protection of the 
nanoparticles by a carbon layer can increase the long-term durability of 
the electrocatalytic nanoparticles and this is especially relevant in acidic 
media. 

Another approach involves a low temperature synthesis to prepare 

the dispersed metal catalysts in the solution phase prior to the higher 
temperature processing [158]. By controlling the temperature, more 
control over the nucleation of the nanoparticles can be achieved while 
aggregation can be effectively suppressed. 

Several nanoparticles and nanostructures have been successfully 
immobilised within MC to give impressive ORR activity and these 
include a number of iron-based nanostructures, including iron nano
particles [159], Fe3O4 [160,161], Fe2O3 [162], Fe/Fe2O3 [163], FeCo 
[164], CoFe2O4 [165,166], Fe1− xS [167], Fe3C [168–171], FeS [172], 
and Fe2P [173,174] nanostructures. Similarly, a number of cobalt-based 
nanostructures have been employed, such as Co nanoparticles 
[175–180], single-atom-like Co with Co nanoparticles [181], CoO 
[182–184], Co/CoO [185], Co3O4 [186,187], CoP [153,188], CoCu 

Fig. 5. Schematic of (a) the protection of metals by carbon layers and immobilised in MC, reprinted with permission from Elsevier and taken from Zhang et al. [154], 
(b) incorporation of trichalcogenides within MC, reprinted with permission from Elsevier and taken from Huang et al. [156], and (c) the preparation of NiCo2O4/HCS 
reprinted with permission from the American Chemical Society and taken from Yuan et al. [157]. 
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[189], CoFe [190], CoS or CoxSy [191–195], CoSe [196,197], Co9S8 
[198], CoNi [199], Co/CoS/Fe [200], Co-VN [201], NiCo2O3 [202], 
CoFe2O4 [165,203], MnCo2O4 [204], CoN/CoO [205], Co(II)1-xCox/3Mn 
(III)2x/3S [206] and Co½Fe½S [207] nanostructures. A similar approach 
has been employed with the nickel-based systems, with the nano
structures comprising amorphous nickel oxides [208], spinel-type ox
ides [209–211], sulfides [212], binary metal sulfides (NiCo2S4) [213], 
rock salt type NiO–CoO solid solutions [202], and metal phosphorus 
trichalcogenides (NiPS3) [156]. 

A summary of the activity of some of these electrocatalysts is pro
vided in Table 3. It is difficult to directly compare these materials as a 
variety of carbon precursors are employed together with different syn
thetic methodologies. Nevertheless, many of the EOnset and E½ values are 
>0.95 V and > 0.90 V vs. RHE, respectively. On comparing Tables 1–3, it 
is evident that doping of the MC with nitrogen and the presence of single 
atom transition metals or nanostructures is beneficial. Indeed, it is 
generally accepted that the M-Nx/C, where M is Fe, Co or Mn, provides 
the active sites for the ORR [171,204]. 

In addition to the oxides and sulfides, other transition metal species 
have been employed. Recently, trichalcogenides, which are held 
together by Van der Waals forces, but can be exfoliated into two 
dimensional sheets, as illustrated in Fig. 5(b), have been used 

successfully. Transition metals with a spinel structure (AB2O4, where A 
and B are transition metals), such as MFe2O4 or MCo2O4, are also 
emerging as promising electrocatalysts for the ORR [214]. The spinel 
oxides exhibit good electrical conductivities due to the different valence 
states of the metals, but this conductivity can be further improved by 
combining them with highly conducting supports. It is no surprise that 
they have been incorporated and immobilised into MC supports [165, 
166]. Interestingly, Yuan et al. [157] fabricated mesoporous NiCo2O4 
assembled on hollow carbon spheres, as illustrated in Fig. 5(c), and then 
introduced oxygen vacancies into the electrocatalyst by annealing in an 
oxygen-deficient atmosphere. Good performance was achieved, with 
Eonset of 0.90 V vs. RHE, E1/2 of 0.78 V vs. RHE and a diffusion-limited 
current density of 5.8 mA cm-2. The hollow carbon support was essen
tial, while the oxygen vacancies enhanced the performance of the ORR. 

6. Four and two electron transfer at the mesoporous carbon- 
based electrocatalysts 

Despite the promising electrocatalytic activity of MC and OMC-based 
electrocatalysts, it remains challenging to predict or indeed design an 
electrocatalyst with high selectivity for the four or two electron transfer 
ORR. Most electrocatalysts promote both reactions with the production 
of water and hydrogen peroxide. Furthermore, electrocatalysts that are 
efficient in the formation of H2O2, are often active for the further 
reduction of H2O2 to H2O. It is generally accepted that the *OOH 
adsorbed intermediate plays a central role in the pathway of the ORR, 
with its binding energy depending on the composition of the electro
catalyst. The selectivity towards H2O2 depends on two competing re
actions involving the *OOH species, Eqs. (7) and (10). These two 
pathways differ depending on how the *OOH is reduced, with the 
breakage of the O− OH bond leading to the production of H2O, while the 
breakage/de-adsorption of the *− OOH, keeping the O− O bond intact, 
gives H2O2. Nevertheless, there are materials which have excellent 
selectivity for H2O2, but computational studies indicate that the 
breakage of O− OH is more facile than *− O [215]. This highlights the 
complexity, involving both thermodynamic and kinetic aspects, of this 
seemingly simple reduction reaction. 

In Table 4 the results from a number of recent studies are summar
ised, with the selectivity or experimentally determined n values, where a 
value close to 2.0 indicates excellent selectivity for the hydrogen 
peroxide reaction, while a value in the vicinity of 4.0 signifies the pro
duction of water. It appears from this table that in the absence of tran
sition metals and their active sites, N-doped MC favours the production 
of H2O2, but this can be altered with the addition of iron. Indeed, Roldán 
et al. [216] showed that the addition of even minor amounts of iron to 
N-doped MC favoured the four-electron reduction reaction giving rise to 
a mixed four- and two-electron transfer mechanism. As illustrated in 
Table 4, the incorporation of Fe–Nx and Fe3C into MC is very effective in 
producing H2O as the main product with very good selectivity for the 
four electron-transfer process. On the other hand, it appears that the 
addition of oxygenated species, for example to give Co-O-C, favours high 
selectivity for the two electron transfer reaction, as displayed in Fig. 6 
[178,217]. Indeed, it has been shown using computational studies, that 
a lower energy barrier exists for the adsorption of *OOH on 
COOH-terminated carbon. This in turn promotes the generation of H2O2 
with very good selectivity [7]. 

Nevertheless, there are some conflicting reports on the selectivity of 
these transition metal modified N doped carbon materials. For example, 
there are variations on the role of cobalt, with some reports concluding 
that Co-N-C is capable of promoting the four-electron pathway [145, 
181,185], while others indicate that it favours the two electron-transfer 
reaction [218]. Likewise, MnO-containing mesoporous nitrogen-doped 
carbon has been shown to trigger the four electron transfer reaction 
[219], but it has also been shown to exhibit selectivity for the two 
electron ORR [142]. It has also been shown that NiOx is efficient and 
selective towards the two-electron oxygen reduction reaction when 

Table 3 
Summary of some transition metal nanoparticles (NPs) anchored to MC and their 
ORR activity in KOH.  

Electrocatalysts C precursors Electrochemical 
Parameters 

Refs. 

Fe2O3–N-MC dopamine EOnset = − 0.050 V vs. 
Ag/AgCl 
E½ = − 0.15 V vs. Ag/ 
AgCl 

[162] 

Fe3O4–N-MC p-phenylenediamine EOnset = 0.93 V vs. RHE 
E½ = 0.83 V vs. RHE 
Tafel slope = 70 mV 
dec− 1 

[160] 

CoFe2O4–N-MC albumin EOnset = 0.98 V vs. RHE 
E½ = 0.85 V vs. RHE 

[165] 

CoFe2O4− MC furfuryl alcohol and 
oxalic acid 

EOnset = − 0.23 V vs. 
Ag/AgCl 
Tafel slope = 99 mV 
dec− 1 

[166] 

Fe1− xS-N,S-MC melamine and poly 
(vinyl alcohol) 

EOnset = 0.989 V vs. 
RHE 
E½ = 0.84 V vs. RHE 
Tafel slope = 79 mV 
dec− 1 

[167] 

Fe3C–N-MC g-C3N4 and polyaniline EOnset = 1.22 V vs. RHE 
E½ = 0.888 V vs. RHE 

[168] 

Fe3C-Fe-N-doped 
MC 

glucose and urea EOnset = 0.99 V vs. RHE 
Tafel slope = 55 mV 
dec− 1 

[170] 

Co-Co-Nx C polyacrylonitrile, 
pyrrole 

EOnset = 1.05 V vs. RHE 
E½ = 0.799 V vs. RHE 
Tafel slope = 124 mV 
dec− 1 

[177] 

CoO–Co-N MC dicyandiamide EOnset = 0.80 V vs. RHE 
E½ = 0.78 V vs. RHE 
Tafel slope = 68 mV 
dec− 1 

[182] 

Co3O4–N-O MC aniline/polyaniline E½ = 0.82 V vs. RHE 
Tafel slope = 78 mV 
dec− 1 

[186] 

CoSx-N-O MC glucose E½ = 0.835 V vs. RHE 
Tafel slope =
97mV dec− 1 

[191] 

Co0.88Se-N-MC peptone EOnset = 0.981 V vs. 
RHE 
E½ = 0.826 V vs. RHE 

[197] 

MnCo2O4–N,S-MC carboxymethyl cellulose EOnset = − 0.079 V vs. 
Ag/AgCl 
E½ =− 0.160 V vs. Ag/ 
AgCl 

[204]  
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immobilised in MC [208]. This was attributed to end-on adsorption of 
the *OOH intermediate at the amorphous NiOx-C, favouring the two 
electron ORR process. On the other hand, Mao et al. concluded that Ni 
doping into Co-N-MC promoted the four electron transfer reaction 
[220]. 

Some of these conflicting variations may be due to the nature of the 
M-Nx sites, with different levels of M-N2 and M-N4, altering the 
adsorption of *OOH. The presence of intrinsic carbon defects, which 
depend on the synthetic approaches used in the fabrication of the MCs, 

may also alter the nature of the ORR [125,126]. Furthermore, these 
transition metal modified and nitrogen doped carbon-based electro
catalysts have been shown to produce water from the indirect oxygen 
reduction reaction, which involves two parallel reactions, the so called 
2 + 2 reduction process, with H2O2 as an intermediate, Eqs. (15) and 
(16). Therefore, residence time within the pores can influence selec
tivity, with an increase in the residence time favouring this indirect 
process to yield the four-electron transfer reaction. Therefore, selectivity 
towards H2O2 may also be dependent on the mass transport within the 
mesopores. 

O2+2H++2e− →H2O2 E0= 0.68 (15)  

H2O2+2H++2e− →2H2O E0= 1.77 (16) 

In a recent study, Lee et al. [231], investigated the effect of the 
structure of a nitrogen-doped porous carbon network, comprising both 
mesopores and macropores, on the catalytic activity of Fe–N–C elec
trocatalysts, and showed that the four electron transfer reaction was 
favoured, with an n value of 3.9. They found that the mesopores and 
macropores played different roles, with the mesopores contributing to 
the generation of electrochemically active sites, while the macropores 
facilitated accessibility to the active sites. Interestingly, they concluded 
that the nature of the porous structure with interconnected macro, 
micro- and mesopores was the important characteristic with the surface 
area and the nitrogen content exerting less influence on the ORR. 
Similarly, Mo et al. [232], used space confinement in N-doped porous 
carbon spheres to promote the four electron transfer reaction. The au
thors concluded that the space confinement within the pores induced the 
further conversion of peroxides to water, facilitating the four electron 
transfer ORR. These studies highlight the role of the mesoporous 
structure in dictating the selectivity of the reduction of oxygen. 

In summary, there is clear evidence to suggest that the selectivity of 
the ORR depends not only on the heteroatom dopants and transition 
metal M-Nx sites (Table 4), but also on the mesoporosity, inter
connectivity and nature of the porous networks [232]. In general, the 
four electron ORR is favoured in the presence of Fe–Nx sites, while space 
confinements can further convert peroxides into water. On the other 
hand, N-doped or oxygen-containing MCs appear to follow the 
two-electron transfer mechanism. 

7. Conclusion and future perspectives 

In recent years, tremendous progress has been made in the fabrica
tion of mesoporous, ordered mesoporous and hierarchically porous 
carbon-based materials. It is now possible to tailor the porosity, surface 
area, morphology, and surface chemistry of these materials. In partic
ular, the hierarchical nanoarchitectures with an interconnecting porous 
network of mesopores, micropores and macropores offer low resistance 
to mass transport, making them also ideal in electrochemical-based 
applications. Not alone are these materials finding applications in the 
ORR, but they are attracting considerable interest as biomedical mate
rials, supercapacitors, batteries, adsorbents in carbon capture, and 
sensors. 

Before the full potential of these interesting materials is unlocked, 
further advances in their synthesis and especially in the scale-up of cost- 
effective synthetic methods that are environmentally acceptable is 
required. In this context, one emerging and interesting approach is the 
use of biomass precursors, which are low-cost, renewable and readily 
available. However, this requires further research, including mecha
nistic studies into the pyrolysis step, polymerisation processes, and the 
inclusion of in-situ appropriate dopants. In terms of environmental 
considerations, the hard template methods require the use of aggressive 
chemicals, such as HF and high concentrations of NaOH at elevated 
temperatures and therefore the soft template methods are more envi
ronmentally acceptable. More insights into how the mesoporous struc
ture can influence performance are also needed in order to provide a 

Table 4 
Summary of recent electrocatalysts with selectivity for the two and four electron 
transfer reduction of oxygen.  

Materials/ C precursors Textural 
properties 

Dopant selectivity 
/ n 

Refs. 

MC/ SiO2 template/(1 
methyl-1H-pyrrole-2-yl) 
methanol 

pore size =
3–4 nm 

N 90% H2O2 [23] 

MC/ 1-Ethyl-3-methylimi
dazolium dicyanamide 

specific 
surface area 
(SSA) = 1300 
m2 g− 1z 

eta potential 
= 20 mV 

N 95–98% 
n = 2.1 

[221] 

OMC/SBA-15 silica with 
aniline, 
dihydroxynaphthalene 

SSA = 877 
m2g− 1 

pore size =
3.3 nm 

N n = 2.4 [86] 

MC/ silica template with 
phenanthrene or 1,10 
phenanthroline or 
phenothiazine 

SSA =
823–972 m2 

g− 1 

pore size =
3.6 nm 

N, S n = 2.5 [32] 

MC/silica with 1,10-phe
nanthroline, 
phenothiazine, 
dibenzothiophene 

SSA = 881 
m2g− 1 

N, S 80% H2O2 [222] 

MC/ silica with polyaniline, 
or polypyrrole 

pore size =
33 nm 

N, S n = 2.0 [216] 

MC/ SiO2 template with 
resorcinol 

pore size =
5.48 nm 

C–O 
groups 

90% H2O2 [87] 

MC/soft template, 
resorcinol and Pluronic, 
H2O2 

pore size = 4 
nm 

C-O 
groups 

94% H2O2 [7] 

MC/ cigarette filters pore size =
13–16 nm 

N, B n = 3.96 [118] 

MC/silica with dopamine 
and phytic acid 

SSA = 676 m2 

g− 1 
N, P n = 3.4 [223] 

MC/silica with dopamine SSA = 1068 
m2 g− 1 

pore size =
11.4 nm 

N n = 3.8 [224] 

MC/ resol, triblock 
copolymer as soft 
template and SiO2, iron- 
functionalised resin 

pore size = 3 
nm 
with 
micropores 

N n = 3.8 [225] 

MC/ dopamine, graphene 
oxide 

pore size =
42 nm 
SSA = 98.65 
m2 g− 1 

Fe/N 
Fe3C 

n = 3.6 [226] 

MC/ mesoporous silica, 
Furfuryl alcohol, oxalic 
acid 

pore size =
3.84 
1103 m2 g− 1 

NiCo2O4 n = 3.9 [166] 

MC/ SBA 15, 1,10- 
phenanthroline 

pore size =
9.2 nm 
SSA = 533 
cm2 g− 1 

Fe–Nx n = 3.7 [227] 

MC/ phenanthroline, 
melamine 

SSA = 705 m2 

g− 1 

pore size = 2 
nm 

Fe3C, N n = 4.0 [228] 

MC/ pyrrole, aniline – N, S, Fe1/ 

2Co1/2S 
n = 3.81 [229] 

MC/ polyvinylpyrrolidone, 
citric acid, glycine 

– Fe-N, 
Fe3N 

n = 3.71 [230]  
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greater understanding of how to design tailor-made mesoporous mate
rials for specific applications. In this context, a near atomic-level char
acterisation, involving in-situ real time spectroscopy and microscopy 
measurements coupled with computational studies would be beneficial. 

Nevertheless, these materials, with appropriate dopants, such as N, 
P, S, and transition metals, including Fe, Co and Mn, have shown very 
good electrocatalytic activity in the ORR, with performances compara
ble or even higher than the commercial Pt/C electrocatalysts in alkaline 
solutions. It is also clear that the ORR activity depends on the nature and 
doping levels of the dopants, the surface area, the electronic conduc
tivity and the mesoporosity. Therefore, there is clear potential to further 
optimise these electrocatalysts, by developing more control at the mo
lecular level of the doping process and defect structure, while ensuring 
that there is no destruction of the mesoporous network or deterioration 
in the conductivity of the MC. 

Although these doped MC-based electrocatalysts perform well, 
relatively little is known about the catalytically active sites and the 
specific role that they play in the mechanism of the ORR. Indeed, this 
can be seen when considering the selectivity of the mesoporous catalysts 
in the two- and four-electron transfer ORR, where in some cases simi
larly doped electrocatalysts have shown vastly different selectivity for 
the reduction of oxygen. It remains exceedingly challenging to control 
the defect structure and catalytically active sites and this, in turn, makes 
it more difficult to understand the precise role of the defects in the ORR. 
The MC and OCM electrocatalysts are typically prepared by pyrolysis- 
based methodologies making it difficult to control the nature of the 
defect structure and provide a direct link between the defects and the 
ORR activity. Clearly, the development of new approaches that can be 
used to control the nature of the defects is required. Only with these 
advances will a greater understanding of the role of the defects and 
active sites in the ORR be obtained. It is also evident that these MC-based 
materials can serve as effective supports for nanostructured electro
catalysts. However, more details on how these nanostructures are 
immobilised and held within the pores, or anchored to the surface is 
needed, while the precise roles of the nanostructures and the M-Nx 

catalytic sites in the ORR is currently lacking. 
In terms of practical applications the stability of these materials is 

another important factor. Not only is the overall stability relevant, but so 
too is the stability of the defects and catalytic sites that promote the 
ORR. Currently, a clear understanding of how these sites evolve during 
the ORR is not available and this will require in-situ characterisation 
measurements. 

In conclusion, MC-based materials with interesting mesoporous 
networks that can be readily doped and functionalised have clearly the 
potential to serve as electrocatalysts for the technologically important 
ORR. With further optimisation of these electrocatalysts, in terms of 
performance, cost and overall stability, it is likely that they will easily 
surpass the performance of the precious Pt-based carbon electrocatalysts 
in the very near future. 
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[40] M. Enterría, F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, Hierarchical 
micro-mesoporous carbons by direct replication of bimodal aluminosilicate 
templates, Microporous Mesoporous Mater. 190 (2014) 156–164, https://doi. 
org/10.1016/j.micromeso.2014.02.008. 

[41] J. Lee, S. Yoon, S.M. Oh, C.H. Shin, T. Hyeon, Development of a new mesoporous 
carbon using an HMS aluminosilicate template, Adv. Mater. 12 (2000) 359–362, 
https://doi.org/10.1002/(SICI)1521-4095(200003)12:5<359::AID- 
ADMA359>3.0.CO;2-1. 

[42] R.A.L. Sobrinho, G.R.S. Andrade, L.P. Costa, M.J.B. de Souza, A.M.G.P. de Souza, 
I.F. Gimenez, Ordered micro-mesoporous carbon from palm oil cooking waste via 
nanocasting in HZSM-5/SBA-15 composite: preparation and adsorption studies, 
J. Hazard. Mater. 362 (2019) 53–61, https://doi.org/10.1016/j. 
jhazmat.2018.08.097. 

[43] W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, Mesoporous N- 
doped carbons prepared with thermally removable nanoparticle templates: an 
efficient electrocatalyst for oxygen reduction reaction, J. Am. Chem. Soc. 137 
(2015) 5555–5562, https://doi.org/10.1021/jacs.5b02027. 

[44] U. Jeong, H. Kim, S. Ramesh, N.A. Dogan, S. Wongwilawan, S. Kang, J. Park, E. 
S. Cho, C.T. Yavuz, Rapid access to ordered mesoporous carbons for chemical 
hydrogen storage, Angew. Chem. Int. Ed. 60 (2021) 22478–22486, https://doi. 
org/10.1002/anie.202109215. 

[45] X. Wang, S. Chen, C. Liu, Y. Yu, M. Xie, X. Guo, High-temperature deoxygenation- 
created highly porous graphitic carbon nanosheets for ultrahigh-rate 
supercapacitive energy storage, J. Energy Chem. 71 (2022) 521–527, https://doi. 
org/10.1016/j.jechem.2022.03.051. 

[46] X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, MoP nanoparticles 
supported on indium-doped porous carbon: outstanding catalysts for highly 

G. Collins et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.electacta.2022.141678
https://doi.org/10.1038/363685a0
https://doi.org/10.1002/smll.201101594
https://doi.org/10.1002/smll.201101594
https://doi.org/10.1002/1439-7641(20010216)2:2&tnqh_x003C;78::AID-CPHC78&tnqh_x003E;3.0.CO;2-7
https://doi.org/10.1002/1439-7641(20010216)2:2&tnqh_x003C;78::AID-CPHC78&tnqh_x003E;3.0.CO;2-7
https://doi.org/10.1016/j.cej.2021.132951
https://doi.org/10.1016/j.cej.2021.132951
https://doi.org/10.1002/smll.202102683
https://doi.org/10.1021/acsanm.1c03933
https://doi.org/10.1021/acsanm.1c03933
https://doi.org/10.1016/j.jcis.2022.04.140
https://doi.org/10.1002/adfm.201909265
https://www.scopus.com/inward/record.uri?eid=2-s2.0-46149113117&tnqh_x0026;partnerID=40&tnqh_x0026;md5=94618c538165952dcfbc4547dc0ea1d2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-46149113117&tnqh_x0026;partnerID=40&tnqh_x0026;md5=94618c538165952dcfbc4547dc0ea1d2
https://doi.org/10.1016/j.aca.2008.05.070
https://doi.org/10.1126/sciadv.1500564
https://doi.org/10.1126/sciadv.1500564
https://doi.org/10.1016/j.jhazmat.2021.126904
https://doi.org/10.1021/jp991673a
https://doi.org/10.1039/a906872d
https://doi.org/10.1016/j.carbon.2004.12.028
https://doi.org/10.1039/c2ta00028h
https://doi.org/10.1016/j.carbon.2005.05.027
https://doi.org/10.1002/anie.200907289
https://doi.org/10.1016/j.ijhydene.2021.01.047
https://doi.org/10.1016/j.ijhydene.2021.01.047
https://doi.org/10.1002/smtd.202001039
https://doi.org/10.1002/smtd.202001039
https://doi.org/10.1039/c6qm00298f
https://doi.org/10.1021/cm100139d
https://doi.org/10.1021/cs5008206
https://doi.org/10.1021/acs.chemmater.7b04829
https://doi.org/10.1021/acs.chemmater.7b04829
https://doi.org/10.1007/s12274-009-9022-y
https://doi.org/10.1007/s10008-022-05145-7
https://doi.org/10.1007/s10008-022-05145-7
https://doi.org/10.1016/j.cej.2021.130878
https://doi.org/10.1016/j.surfcoat.2018.06.008
https://doi.org/10.1016/j.surfcoat.2018.06.008
https://doi.org/10.1039/c8ta06864j
https://doi.org/10.1039/c8ta06864j
https://doi.org/10.1038/35084046
https://doi.org/10.1016/j.carbon.2022.01.057
https://doi.org/10.1016/j.carbon.2022.01.057
https://doi.org/10.1016/j.carbon.2015.09.002
https://doi.org/10.1149/1945-7111/abad6f
https://doi.org/10.3390/ma13102254
https://doi.org/10.1002/admi.202101998
https://doi.org/10.1002/admi.202101998
https://doi.org/10.1039/c7cs00787f
https://doi.org/10.1002/anie.200702046
https://doi.org/10.1002/anie.200702046
https://doi.org/10.1016/j.ijhydene.2022.03.250
https://doi.org/10.1016/j.micromeso.2003.11.012
https://doi.org/10.1016/j.micromeso.2014.02.008
https://doi.org/10.1016/j.micromeso.2014.02.008
https://doi.org/10.1002/(SICI)1521-4095(200003)12:5&tnqh_x003C;359::AID-ADMA359&tnqh_x003E;3.0.CO;2-1
https://doi.org/10.1002/(SICI)1521-4095(200003)12:5&tnqh_x003C;359::AID-ADMA359&tnqh_x003E;3.0.CO;2-1
https://doi.org/10.1016/j.jhazmat.2018.08.097
https://doi.org/10.1016/j.jhazmat.2018.08.097
https://doi.org/10.1021/jacs.5b02027
https://doi.org/10.1002/anie.202109215
https://doi.org/10.1002/anie.202109215
https://doi.org/10.1016/j.jechem.2022.03.051
https://doi.org/10.1016/j.jechem.2022.03.051


Electrochimica Acta 439 (2023) 141678

13

efficient CO2 electroreduction, Angew. Chem. Int. Ed. 57 (2018) 2427–2431, 
https://doi.org/10.1002/anie.201712221. 
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