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There has never been a more pressing need to develop sustainable energy systems as dramatic climate changes emerge across the
World. Some of these effects can be alleviated by the development of efficient devices that are capable of producing hydrogen gas
in an environmentally acceptable manner, which in turn can be employed as a clean fuel. In this context, the splitting of water is
especially attractive. However, this technology requires the design of new cost-effective electrocatalytic materials. In this review,
the progress made in the development of transition metal dichalcogenides (TMDs) and their composites as electrocatalysts for both
acidic and alkaline electrolysis cells and as photocatalysts for the formation of hydrogen is described and discussed. Following a
short introduction to the mechanisms of the electrochemical hydrogen and oxygen evolution reactions and the photoelec-
trochemical generation of hydrogen, an introduction to TMDs, their relevant general properties and the methods used in their
synthesis are described. Then, the performance of various TMD-based materials in the electrochemical splitting of water is
discussed, with a final brief overview of the application of TMDs in photoelectrochemical devices. Although challenges clearly
remain, TMD-based materials are emerging as promising electrocatalysts and photoelectrocatalysts for the production of hydrogen.
© 2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ac7172]

Manuscript submitted January 14, 2022; revised manuscript received May 12, 2022. Published June 6, 2022. This paper is part of
the JES Focus Issue on Advanced Electrolysis for Renewable Energy Storage.

The recent 26th UN climate change conference of the parties
“(COP26)” which was held in the UK in “2021” highlighted the ever
pressing need to reduce and eliminate the burning of fossil fuels. The
combustion of fossil fuels gives rise to the production of carbon
dioxide and other greenhouse gases, which are particularly harmful
to the environment, resulting in ozone depletion, global warming,
acid rain, and many other detrimental effects.1–3 As these green-
house gases continue to accumulate in the atmosphere, dramatic
changes are emerging in the Earth’s Climate.4

Clearly, a transition to an affordable and sustainable energy
system is urgently required and this can only be achieved by
investing in renewable energy resources, prioritising energy efficient
practices, and adopting clean energy technologies. Hydrogen is
widely regarded as a promising energy carrier and has the capacity
to fulfil our energy needs cleanly and sustainably.5 In particular,
hydrogen is a lightweight molecule with a high energy density,
higher than that of any fossil fuel. It is a sustainable, eco-friendly,
and non-toxic energy carrier with water as a by-product when
combined with oxygen, and as a fuel it releases no harmful gases.
With the increasing interest in generating hydrogen using envir-
onmentally acceptable approaches, there has been a renewed interest
in the well-known electrochemical splitting of water into hydrogen
and oxygen, which is now considered as one of the more promising
approaches in the generation of hydrogen.6,7 This reaction is
achieved by two half-cell reactions in an electrochemical cell: the
hydrogen evolution reaction (HER) at the cathode, and the oxygen
evolution reaction (OER) at the anode. In this approach, the excess
energy from renewable energy sources can be used to facilitate the
splitting of water, thereby converting this excess energy, that
otherwise may be lost, into molecular hydrogen, a clean fuel.7,8

Since these renewable energy sources are intermittent, the stored
hydrogen (green or renewable hydrogen) can be used as a fuel in fuel
cell applications, providing energy when needed.

However, energy and electrocatalysts are required to promote the
water splitting reaction, as the electrolysis of water is not a
thermodynamically viable process. Currently, the most efficient
electrocatalysts are precious noble metals, such as Pt-based,9,10

and to a lesser extent Ru-based materials,11 for the HER (in both
proton exchange membrane cells (PEM) and alkaline cells). Indeed,
platinum exhibits a very low overpotential for the evolution of
hydrogen, making it the most efficient electrocatalyst for HER.
Precious Ir/Ru-based materials are very efficient in promoting the
OER.12,13 However, the high cost and scarcity of these precious
metals limits their wide spread and large scale applications. Single
atom electrocatalysts have been investigated extensively14,15 with
the aim of reducing to a minimum the amount of the expensive metal
component. Good electrocatalytic HER performances have been
obtained with single atom Pt,16 Ru,17,18 Pd,19 Co,20 Mo,21 Fe,22 Ni,23

and W.24 However, these single metal atom electrocatalysts are
prone to aggregation, due to the large surface energy of the single
metal atoms, limiting their overall stability, while interactions with
the support materials can be complex and are not fully understood.

Another approach is to develop non-precious metal-based elec-
trocatalysts, eliminating the need to use Pt and Ru based materials.
In recent years, there has been considerable focus on identifying
earth-abundant materials that have the potential to match the
performance of the precious metal-based electrocatalysts. In parti-
cular, transition metal (TM) based electrocatalysts, including
carbides,25,26 nitrides,26,27 borides,28,29 phosphides,30 layered double
hydroxides31,32 and transition metal dichalcogenides (TMDs)33–36

are now attracting significant attention. Also, metal-free carbon-
based materials,37 such as graphene38,39 and carbon nanotubes,40

have emerged as promising and low-cost electrocatalysts for water
splitting. Among all these materials, TMDs are rapidly emerging as
alternative cost-effective electrocatalysts for the platinum-based
systems.34,41 This is not surprising as these materials, especially the
disulfides41,42 and diselenides,42,43 have a unique set of interesting
physicochemical properties and can be readily doped with a variety
of TMs36,43,44 to further enhance their catalytic activity. When
exfoliated into a few 2D layers, they not only exhibit very good
electrocatalytic activity for the production of H2(g)

45,46 and indeed
the evolution of O2(g),

47 but also a very impressive photocatalytic
activity for the solar water splitting reaction.48–50

In this review, the applications of TMD-based materials as
electrocatalysts and photoelectrocatalysts for the generation of
hydrogen through the splitting of water are reviewed. Although
there are a number of excellent review articles that describe the
synthesis and properties of TMDs51,52 and their applications in thezE-mail: Carmel.Breslin@nuim.ie
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energy sector,53–55 we focus on the emerging applications of TMDs
in the electrochemical production of hydrogen. Initially, we describe
the overall mechanisms of the HER, OER and photoelectrochemical
formation of hydrogen, the relevant properties of TMDs and a
summary of the main methods employed in their synthesis. Next, we
review and discuss the emerging applications of TMD-based
electrocatalysts in water splitting, including the various companion
materials used in the formation of the TMD-based hybrids,
composites and semiconductor heterojunctions. Finally, the chal-
lenges that remain to be resolved before TMD-based electrocatalysts
can be employed in the design of electrochemical and photoelec-
trochemical devices for the production of hydrogen are discussed.

Electrolysis and Photo-Assisted Splitting of Water

As detailed earlier the splitting of water involves two half-
reactions, the HER, Eq. 1, which occurs at the cathode, and the OER,
Eq. 2, which takes place at the anode in the electrochemical cell.
These two redox reactions have been studied extensively. It is now
generally accepted that the HER proceeds with the initial adsorption
of a hydrogen atom, either through the Volmer–Heyrovsky or the
Volmer–Tafel mechanisms.56,57 Depending on the pH of the solu-
tion, the reduction of protons or water molecules occurs to give
adsorbed hydrogen atoms on the surface of the metal or catalyst
(*M–H), where * represents an active adsorption site on the
electrocatalyst (M). This first adsorption step is known as the
Volmer reaction and this is illustrated for acidic media in Eq. 3
and for basic environments in Eq. 4.

( ) + → ( ) [ ]+ −aq g2H 2e H 12

( ) → ( ) + ( ) + [ ]+ −l g aq2H O O 4H 4e 22 2

( ) + + * → * − [ ]+ −aqH e M M H 3

( ) + + * → * − + ( ) [ ]− −l aqH O e M M H OH 42

Depending on the nature of the electrode and/or the electro-
catalyst, the H2(g) can then be formed through the combination of
two adsorbed hydrogen atoms (Tafel reaction), Eq. 5. Alternatively,
in accordance with the Heyrovsky reaction, the adsorbed hydrogen
atom may combine with an electron and a proton or water molecule,
Eqs. 6 (acidic) and 7 (basic), to give the generation of H2(g). In
many cases, the Volmer reaction becomes the rate-determining step
and for non-precious metal-based electrocatalysts, such as the
dichalcogenides, the reaction proceeds mainly with the Volmer
followed by the Heyrovsky reaction, to give the Volmer–Heyrovsky
mechanism. The pH of the electrolyte can also have a significant
effect on the rate of the HER reaction. As illustrated in Eq. 4, water
adsorption plays a crucial role in the Volmer reaction in alkaline
media and in this case, the electrocatalysts must facilitate the
adsorption of water, water dissociation and hydrogen binding.
Normally, high overpotentials are required in alkaline solutions
due to the sluggish kinetics of the HER and this remains a challenge
in the development of active and stable HER electrocatalysts in
alkaline media.58

* − + * − → * + * + ( ) [ ]gM H M H M M H 52

* − + ( ) + → * + ( ) [ ]+ −aq gM H H e M H 62

* − + ( ) + → * + ( ) + ( ) [ ]− −l aq gM H H O e M OH H 72 2

The OER is an equally important half-reaction in the electrolysis
of water and this reaction can be summarised in Eq. 8 for acidic
solutions and in Eq. 9 for basic media. This reaction, which involves
the transfer of four protons coupled with four electrons and bond
breakage and formation, is more complex, and kinetically sluggish

compared with the HER. Indeed, the overall efficiency of the
electrocatalytic water splitting reaction in an electrolysis cell is
usually limited by the OER. The standard reduction potential, Eo, for
the OER is 1.23 V vs SHE, however much higher applied potentials
are needed for the production of O2(g), resulting in high over-
potentials. While the mechanism of the OER is complex and
strongly dependent on the nature of the electrocatalyst, the most
widely recognised OER mechanism is the adsorbate evolution
mechanism (AEM). In this case, the first step in an alkaline
electrolyte is the adsorption of OH−(aq) at an adsorption site
(*M), to give the adsorbed *M–OH species, Eq. 10. The *M–OH
intermediates then further combine with OH−(aq) to give the
formation of H2O(l) and adsorbed *M–O atoms, Eq. 11. This is
followed by the formation of adsorbed *M–OOH, Eq. 12, which
then reacts with additional OH−(aq) to give O2(g) and H2O(l),
Eq. 13.

( ) → ( ) + ( ) + [ ]+ −l aq g2H O 4H O 4e 82 2

( ) → ( ) + ( )
+ / = − ( ) [ ]

−

−
aq l g

V

4OH 2H O O

4 e E vs SHE 1.23 0.059 pH 9
2 2

0

* + ( ) → * − + [ ]− −aqM OH M OH e 10

* − + ( ) → * + ( ) + [ ]− −aq lM OH OH MO H O e 112

* − + ( ) → * − + [ ]− −aqM O OH M OOH e 12

* − + ( ) → * + ( ) + ( ) + [ ]− −aq g lM OOH OH M O H O e 132 2

In addition to fresh water, there is now increasing interest in
employing seawater as the electrolyte in the electrolysis cell as it
provides an unlimited eco-friendly resource.59,60 However, the
presence of high concentrations of chloride (approximately 0.5 M
in seawater), and the associated chloride oxidation reaction to yield
Cl2(g) under acidic conditions, Eq. 14, and hypochlorite at the anode
in more alkaline solutions, Eq. 15, present a major challenge. These
oxidation reactions can compete with the OER. The OER is more
thermodynamically favourable than the oxidation of the chloride
anion, irrespective of the pH of the solution phase. For example, in
alkaline solutions, the equilibrium potential of the OER is lower by
about 490 mV compared with the oxidation of the chloride anion.
However, high overpotentials are required to promote the OER,
while the oxidation of chloride anions is a more facile two-electron
oxidation reaction with a kinetic advantage. Normally, the evolution
of chlorine, Eq. 14, is the predominant reaction in acidic chloride-
containing aqueous solutions. Although the formation of hypo-
chlorite, Eq. 15, has a kinetic advantage over the evolution of
oxygen, the OER has been achieved in alkaline seawater solutions.59

Furthermore, the chloride anion is well known to promote the
corrosion of a wide range of metal-based materials61 and this can
have a significant effect on the longer term performance of the
electrocatalysts when employed in seawater. Therefore, the devel-
opment of electrocatalysts that have good stability in the presence of
high concentrations of chloride anions coupled with selectivity for
the OER are essential for practical applications in seawater electro-
lysis.

( ) → ( ) + / = [ ]− −aq g E2Cl Cl 2e V vs SHE 1.36 V 142
0

( ) + ( ) → ( ) + ( )
+ / = − ( ) [ ]

− − −

−
aq aq aq l

E

Cl 2OH OCl 2H O

2e V vs SHE 1.72 0.059 pH 15
2

0

Another approach that has received considerable attention is the
use of light with semiconductors to generate electron (e−) and hole
(h+) pairs that facilitate the reduction of water to give H2(g) and the
oxidation of OH− ions or H2O to give O2(g), Fig. 1a. Ever since the
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pioneering work of Honda and Fujishima in 1972, where a
photoelectrochemical cell consisting of TiO2 as the semiconductor
anode and platinum as the counter electrode under UV irradiation
and electrochemical bias was employed to split water,62 there has
been significant focus on finding more efficient and high performing
semiconducting materials. Typically, photoelectrochemical (PEC)
splitting of water consists of a semiconductor photoanode and a
metal cathode Fig. 1b, a semiconductor cathode and a counter
electrode, Fig. 1c, or a semiconductor anode and cathode, Fig. 1d.
As illustrated in Fig. 1b, an electron is promoted from the valence
band to the conductance band on the absorption of photons that have
sufficient energy to match the bandgap energy. This results in the
generation of a h+ in the valence band and an e− in the conduction
band. The e− can flow to the cathode where the reduction of water
occurs to give H2(g) and this separation of charge minimises the
e−/h+ recombination reaction. Provided the h+ resides in a suffi-
ciently low energy level to make the oxidation of OH− a thermo-
dynamically feasible reaction, the h+ can facilitate the oxidation
event, and in the process generate O2(g). There is also considerable
interest in the use of hybrid photovoltaic–photoelectrochemical
(PV–PEC) systems,63,64 where the production of H2(g) arises from
the coupling of a photovoltaic solar cell with a water electrolysis
system. In each of these approaches, the properties of the semi-
conductor are important. Much focus is placed on the design of earth
abundant and metal free semiconductors with good stability and
durability that are capable of harnessing light in the visible region
and that are cost-effective.65–67 Considering all the different
materials that are potentially promising as electrocatalysts for the
splitting of water, acting as HER and OER electrocatalysts and
furthermore as semiconductors for the photocatalytic splitting of

water, TMDs are emerging as promising materials. As will become
evident in the following sections, the synthesis of TMDs can be
carried out with relative ease, the TMDs can be exfoliated, they can
be easily combined with other materials and have a bright future in
the electrochemical splitting and photoelectrocatalytic splitting of
water.

Introduction to Transition Metal Dichalcogenides (TMDs)

Since the discovery of graphene, various new 2D materials have
been discovered or rediscovered,68–71 and among these, TMDs are
emerging as intriguing and efficient electrocatalytic layered mate-
rials with high surface areas and good chemical stability.69–71 The
TMDs can not only promote the electrolysis of water, but have
interesting semiconducting properties, that can be tuned and
exploited in PEC cells. This ability to form TMDs with a range of
conductivities, spanning from semiconductors70,71 to metallic-like
conduction and superconductors,72 means that they can be tailored
for a range of different applications. The TMDs can be represented
as MX2, where M is a transition metal, belonging to group IV–IX,
(typically Mo, W, V, Re, Ta, Ti) and X is a chalcogen atom, S, Se or
Te. The M atoms are arranged in a lattice and are sandwiched
between two chalcogen atoms, as illustrated in Fig. 2a, to give
X–M–X. Covalent bonding exists between the M and X atoms, while
the layers are stacked, with the adjacent layers being held by weak
van der Waals forces.

In terms of crystal phases, the TMDs can exhibit different phases,
with the two main heterogeneous polymorphic structures being the
octahedral coordination phase (1T), which shows metallic-like
properties, and the trigonal prismatic phase (2H), which gives

Figure 1. Schematic representation of (a) generation of e−/h+ at an semiconductor on absorption of a photon of light, sufficient to match the bandgap energy,
and electron-transfer reactions on activation of a (b) photoanode and (c) photocathode coupled with counter electrodes, and (d) a photocathode coupled with a
photoanode, where the Eo/SHE of H+/H2(g) is 0 V and Eo/SHE of O2(g)/H2O is 1.23 V, under acidic conditions (pH = 0).
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semiconductor-like properties. A third distorted octahedral (1T’
phase) phase can also be observed and this phase has semi-metallic
characteristics.74 These are schematically illustrated in Fig. 2b. The
1T phase has a low charge transfer resistance and improved
electrocatalytic activity, making it a very interesting material for
electrochemical applications.75 The 2H phase is normally the
thermodynamically favoured phase. However, it has been shown
that some family members naturally crystalise in the 1T or 1T’
phases.76 One of the more popular methods used in the conversion of
the 2H to the 1T phase involves solution phase intercalation, where
the intercalated Li+, Na+ or K+ facilitate charge transfer.77–79

Ammonium ions, NH4
+, have also been employed to stabilise the 1T

phase,80 while it has been shown that non-metal doping, for example
with P, can also be used to promote the formation of the metallic 1T
phase.71

In addition, it is well established that the basal plane is
electrochemically inert, particularly in the case of the more well-
known MoS2, WS2, MoSe2 and WSe2, and that the electrocatalytic
activity arises from the edge sites.81 Therefore, the introduction of
strain or defects on the basal plane of these layered structures offers
more active sites (kinks, terraces, corner atoms, chalcogenide and/or

transition metal vacancies, point defects, and grain boundaries),
which facilitate fast electron transfer.82 Edge sites, distorted active
sites and terrace sites are schematically shown in Fig. 3. Methods
such as defect engineering, including exposure to an oxygen plasma,
electron beam irradiation or heteroatom doping,82,83 can all be
employed to give a high density of active sites. Indeed, the creation
of defects and distortions to give active sites on these layered
structures has become an intense research topic in recent years with
various transition metal doped TMDs emerging.36,84,85

Recently, there has been much interest and focus on asymmetric
TMDs, which are described as Janus TMDs, with an asymmetric
X–M–Y structure, such as SMoSe. In this case, as illustrated in the
schematic in Fig. 2c, the transition metal layer is sandwiched
between two different chalcogen layers and this gives rise to a
reduction in structural symmetry, which in turn can lead to different
electronic and optical properties. These Janus TMD layers are
attracting considerable attention in both electrocatalysis87,88 and
photocatalysis.89 In addition, TMD heterostructures are emerging as
new materials with intriguing properties. In this case, different TMD
monolayers are stacked to form heterostructures held by weak van
der Waals forces, such as MoSe2/WS2.

90 These heterostructures

Figure 2. Schematic representation of (a) MoSe2 (MX2), (b) Different polymorphism of MoSe2 reproduced with permission from S. Ramaraj et al.73 Copyright
2019 American Chemical Society (c) representation of the Janus TMDs reproduced with permission from Wang et al.66 Copyright 2018 Royal Society of
Chemistry.
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have a band alignment in which the conduction band minimum and
valence band maximum are located in different monolayers. This
gives rise to the formation of interlayer excitons and facilitates
interlayer charge transfer, providing a new platform to engineer
more efficient electrocatalysts.

Synthesis and formation of TMDs and 2D TMD layered
sheets.—Another attractive aspect of TMDs is their facile synthesis.
However, it should be noted that the Janus TMDs with two different
chalcogen surfaces are considerably more challenging to experi-
mentally form and are typically fabricated using modified chemical
vapour deposition (CVD) techniques.91 In general, TMDs are
formed using two main approaches and these are summarised in
Table I. The hydrothermal synthesis, where H2O is employed as the
solvent system, is relatively simple, where the precursors are combined
and then autoclaved at low temperatures. For example, Sakthivel et al.92

formed Ni-doped MoSe2 nanoplates by dissolving Na2MoO4 and
Ni(NO3)2 in water, followed by the dropwise addition of selenium and
hydrazine (reducing agent) over a 30 min period. Then, the reaction
mixture was transferred to an autoclave and maintained at 180 °C for 12
h, as illustrated in Fig. 4. Indeed, hydrothermal synthesis can be
employed to give different morphologies, including nanoflowers,93

nanoflakes,94 nanoplates,95 nanoparticles96 and quantum dots.96

Moreover, hydrothermal synthesis is very suited to the formation of
dichalcogenide-based composites or hybrids, where the dichalcogenide is
combined with other conducting materials, including carbon nanofibers

(CNF),97 metal nanoparticles98 and graphene.99 Furthermore, the dichal-
cogenides can be grown on different support materials, for example on
carbon cloth,100 and are easily doped with metals and non-metals.101,102

The dichalcogenides can also be synthesised using solvents other than
water. Organic solvents can be employed to alter the viscosity, polarity
and solubility of the precursor reagents and intermediates. In this
solvothermal synthesis, the precursors are mixed in an organic solvent
or polar organic/water mixture with appropriate reducing reagents. The
mixture can then be sealed in an autoclave and heated, similar to the
hydrothermal approach.103 Alternatively, the entire synthesis can be
carried out using the reflux technique at temperatures in the vicinity of
150 to 320 °C under a nitrogen atmosphere.104

In addition, there is considerable interest in chemical vapour
deposition (CVD) and vapour phase deposition of the TMDs as these
methodologies can be employed to obtain high quality, low-defect,
ultrathin, epitaxial films of TMDs on a variety of different
substrates.112,113,115,118,119 The CVD-based methods are ideally
suited for the formation of 2D vertically aligned TMDs120 and Janus
structures.121 Typically, sulfurisation or selenisation of the metal or
metal oxide is used and this approach can be employed to give large-
area 2D TMDs. The relevant metal, for example Mo117,122 or a metal
oxide, such as WO3.

123 is initially deposited on a substrate and this is
followed by subsequent reactions with the chalcogen vapour. With
precise control over the thickness of the metal oxides, which can be
achieved using atomic layer deposition, very good control over the
number of TMD layers can be accomplished.122 Attention has also

Figure 3. HRTEM images of 1T and distorted phase of Mn doped MoSe2, reproduced from Ramaraj et al.86 Copyright 2019 American Chemical Society.
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Table I. A summary of the two main synthetic approaches employed to generate MX2.

Method Advantages MX2/shape/composites References

Hydrothermal/Solvothermal Low temperatures, 100 °C–200 °C, short processing times, economic, suitable for large-scale synthesis,
and an environmentally acceptable water-based synthesis. A range of different dichalcogenides in
different morphology, and crystallinity, can be readily combined with other materials.

MoS2 nanostructures 105

Addition of organic solvents can be used to tune the properties of the final product, including shape,
size, efficient, fast and simple approach.

VS2 quantum dots 106

MoSe2 nanoflowers 93
SnS2 nanoflakes 94
FeSe2 nanoflakes 107
MoS2/MoO3 nanosheets 108
Gd-MoSe2/CNF 97
ReSe2 nanoflakes 109
WS2 nanoplates 95
Co/CoTe2 nanoparticles 96
CoSe/MoSe2 110
EuMoSe2 nanoflower 111
Mo1–xNbxSe2 nanosheets 104
Mesoporous NiCoSe2 103

Chemical Vapour Deposition High quality, defect-free, thin TMDs with very good adherence to a variety of different substrates. MoS2/ReS2 heterojunctions 112
Methods Vertically aligned, Janus and TMD heterostructures can be formed. ZrSe2 nanosheets on sapphire 113

Atomically thin MoS2 114
Atomically thin WS2 115
MoSe2 on molten glass 116
WSe2/MoSe2 heterostructures 117
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been focused on the thermolysis of suitable Mo and S precursors.
For example, ammonium thiomolybdate, which can act as a single
precursor, to produce, MoS2, NH3 and S vapours, has been
employed to give MoS2.

124 However, polar organic solvents are
needed to solubilise these precursors and this can give rise to carbon-
containing impurities.

While it is now possible to form two-dimensional (2D) TMDs,
including few layered sheets, using chemical vapour deposition, the
TMDs are formed as bulk materials in most cases. Therefore,
exfoliation of the bulk TMDs is required to give the 2D TMDs.
As the dichalcogenide layers are held together by weak van der
Waals forces, the bulk TMDs are exfoliated into a few layers. This is
normally achieved using methods such as thermal exfoliation,
mechanical exfoliation, hydrothermal and liquid-phase exfoliation
(LPE).125 The LPE process is considered to be one of the most
efficient exfoliation methods, being cost-effective, scalable and
simple, and it has been used to give a variety of low dimensional
structures, not only 2D-sheets, but 1D crystals and quantum
dots.126,127 A suitable solvent system is first selected, then the
bulk TMDs are normally exfoliated using ultrasound and finally
separated using centrifugation. The sonication process uses ultra-
sound energy to effectively “peel off” layers, from the bulk TMDs.
Parameters such as the solvent system, sonication time, and
sonication energy are all important. Typically, pyrrolidinone-based
organic solvents are used, and while these are very effective, their
toxicity and poor environmental acceptability are significant draw-
backs. More recently, there has been much focus on the design of
water-containing solvent systems and more environmentally accep-
table solvent systems such as ethanol128,129 and isopropanol.130

Aqueous solutions of macromolecules, including Nafion,131

alginate132,133 and chitosan134 have also been employed in the
formation and stabilisation of 2D TMD nanosheets.

While the TMDs are normally first synthesised and exfoliated to
give a few sheets of the TMDs, which are then immobilised onto a
suitable substrate, it has been shown that electrodeposition can be
employed to form TMDs directly at a substrate.135 For example, Tan
and Pumera136 employed electrosynthesis from an aqueous solution
containing ammonium tetrathiotungstate to give highly active WS3–x
films for hydrogen evolution. Likewise, Jo et al.137 employed a
nitrate-assisted electrochemical deposition routine to form immobi-
lised NiS and FeSe, that were very effective in the electrolysis of
water. Although electrodeposition is a very well established research
field, with significant potential for the electrosynthesis of layered
TMDs, this approach is still at an early stage of development.
Mechanistic insights into the electrodeposition process and more
detailed comparisons between the electrosynthesis and chemical

synthesis routines are required to pave the way for the establishment
of electrodeposition/electrosynthesis as a suitable methodology for
the formation of TMDs directly at various substrates. In conclusion,
it is clear that TMDs have great versatility, as summarised in Fig. 5,
and are emerging as interesting materials for a range of applications,
including electrocatalysts for the splitting of water.

Performance of MoS2-based electrocatalysts for the HER half-
cell.—MoS2 has been studied extensively as an electrocatalyst for
the HER and it is the most widely investigated of all the TMDs for
the electrochemical production of hydrogen.84,138–146 As illustrated
earlier, much progress has been made in the synthesis and exfolia-
tion of MoS2. Some of the more widely used methodologies in the
fabrication of MoS2-modified electrodes involve the dispersion of
the MoS2 sheets in a suitable solvent followed by drop casting147,148

or spin coating.149 Alternatively, the MoS2 can be deposited onto the
substrate using chemical vapour deposition,139 or physical vapour
deposition,150 while it is also possible to combine MoS2 with non-
reactive and inert polymers, such as poly(vinylidene fluoride), and
then bake the deposit at about 110 °C.151

Typically, the HER activity is measured using polarisation curves
and rotating disc voltammetry. The experimental data are fitted to
the Tafel equation. This equation, which is the logarithmic approx-
imation of the Butler-Volmer equation, can be described by Eq. 16,
where b is the Tafel slope (b = 2.303RT/αF) and the intercept can be
employed to determine the exchange current density, j0, (a =
–(2.303RT/αF)log j0). The other parameters in this equation are α,
the charge transfer coefficient, F is Faraday’s constant, and T
represents the thermodynamic temperature. The Tafel slope repre-
sents the overpotential required to increase the current density by
one order of magnitude and consequently it is a convenient measure
of the electrocatalytic activity of the HER electrocatalysts. While the
Tafel slope can be employed to formulate mechanistic details, with
the theoretical slopes being about 118 mV dec–1 for the Volmer
reaction, approximately 39 mV dec–1 for the Heyrovsky reaction and
close to 29.5 mV dec–1 for the Tafel reaction, the presence of
localised active sites can often make the HER mechanism too
complex for this theoretical analysis.152 Superior electrocatalytic
activities are characterised by low Tafel slopes, high exchange
current densities and low overpotentials.

Figure 4. Hydrothermal synthesis of Metal doped MoSe2, reproduced with
Sakthivel et al.92 Copyright 2019 American Chemical Society.

Figure 5. Summary of the versatility of TMDs.
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In many of the TMD-based experiments, the HER studies are carried
out in nitrogen or argon saturated solutions, using Ag∣AgCl or
Hg∣HgO as the reference electrodes, depending on the pH of the
solution. The potential is then converted to the RHE (reversible
hydrogen electrode) scale. However, the HER activity is also studied
in solutions saturated with hydrogen gas and in these cases, the RHE
can be employed as the reference electrode in the cell.153 This
approach has been designed to avoid drifts in the equilibrium
potential, which if not stable, can influence the measured kinetics
of the HER.153 Interestingly, in a recent study, it was shown by Xu et
al.153 that the Tafel slopes recorded for Pt(111) in N2(g) and H2(g)
saturated H2SO4 solutions were identical at 30 mV dec–1 for
overpotentials >50 mV. As the HER currents are high for Pt, the
N2(g) saturated solution becomes saturated with H2(g) relatively
easily. However, deviations were observed at lower overpotentials.
Therefore, the presence or absence of hydrogen may influence the
kinetics of the TMD-based electrocatalysts at low overpotentials.

The performances of some MoS2-based electrocatalysts are
illustrated in Tables II and III, where the data in Table II illustrate
the performance in acidic solution, while the data in Table III,
summarise recent studies carried out in alkaline media. The over-
potential required to give a current density of 10 mA cm−2 is shown
in both tables. While this approach is commonly used with Tafel
slopes to compare electrocatalysts, exchange current densities are
not always provided. Clearly, there is a need to establish a set of
activity parameters that can be used more consistently to compare
and evaluate the efficiency of electrocatalysts in water splitting.
Furthermore, these studies are carried out in simple electrochemical
cells and testing in electrolysers under realistic operating conditions
may give somewhat different results.

In both media, it is clear that more efficient HER activity can be
achieved through doping. Non-metallic dopants, such as N,154,159,178

O,179 O combined with P140 and F and N co-doping180 have all been
employed to improve the HER activity. Indeed Zhang et al.159

demonstrated that N doping can enhance the conductivity of the
MoS2 basal plane, while Wang et al.180 have shown that the inert
basal plane can also be activated by employing N and F co-doping.

Table II. Summary of performance of various MoS2, doped MoS2 and MoS2 heterostructures and composites in the production of H2(g) in acidic
solutions at near room temperatures.

Electro-catalyst Media η/mV(10 mA cm− 2) Tafel Slope/mV dec−1 Stability References

1T-MoS2 H2SO4 100 40 — 138
1T-MoS2 H2SO4 187 43 1000 cycles 139
Defective 2H-MoS2 H2SO4 160 46 1000 cycles 147
N-MoS2 H2SO4 168 40.5 5000 cycles 154
Pt-MoS2 H2SO4 100 96 5000 cycles 155
Ru-2H-MoS2 H2SO4 178 77 3000 cycles 156
Fe- MoS2 H2SO4 88 75 24 h 151
Se-O-MoS2 H2SO4 108 47 1000 cycles 149
Ni-MoS2 H2SO4 68 32 10,000 cycles 84
Pt-Pd-MoS2 H2SO4 64 64 — 157
MoS2/rGO H2SO4 100 41 1000 cycles 158
O,P-MoS2 H2SO4 277 (50 mA cm−2) 53 — 140
N-MoS2 H2SO4 168 40.5 5000 cycles 154
N-MoS2 QDs H2SO4 165 51.2 — 159
MoS2/CNT/graphene H2SO4 140 100 — 160
MoS2/Bi2Te3/SrTiO3 H2SO4 189 58 3000 s 161
MoS2/Co/NS/CNTs@CoS2 H2SO4 72 59 20 h 162
1T-MoS2/GO H2SO4 209 45 1000 cycles 163
Co-MoS2/N,S-rGO H2SO4 178 63 12 h 164
Pt (20 wt% Pt/C) H2SO4 50 33 — 165

Table III. Summary of performance of various MoS2, doped MoS2 and MoS2 heterostructures and composites in the production of H2(g) in alkaline
solutions at near room temperatures.

MoS2 composites Media η/mV(10 mA cm−2) Tafel Slope/mV dec−1 Stability/Durability References

MoS2/MoSe2 KOH 235 96 — 166
MoS2/WS2-rGO) KOH 118 59 20 h 167
MoS2/CF/graphene/FeCoNi(OH)x KOH 225 (500 mAcm−2) 92 100 h 168
MoS2/Ni3S2/NF KOH 98 61 48 h 169
MoS2/Co/NS/CNTs@CoS2/CC) KOH 56 43 20 h 162
Fe- MoS2 KOH 92 49 24 h 151
Ru/Ni-MoS2 KOH 32 41 20 h 170
Ru-2H-MoS2 KOH 51 65 3000 cycles 156
NiCo2S4/1T-MoS2 KOH 107 66 24 h 171
MoS2/Co(PO3)2N-porous carbon KOH 119 142 20 h 172
MoS2/CoS2/PC KOH 200 93 20 h 173
MOF-derived Co3O4/MoS2 KOH 205 98 12 h 174
Co-O-MoS2 KOH 113 50 50 h 175
MoS2/NiCo-LDH KOH 78 76 48 h 176
Co-MoS2 KOH 48 52 3000 cycles 36
Pt/C KOH 20 49 — 177
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Another approach is to use transition metals as single metal atom
dopants or as nanoparticles. Using DFT calculations, Deng et al.155

concluded that metal atoms in Groups 4 to 8 of the periodic table,
including V, Ti, Fe, Mn, Cr, bonded with six S atoms, while metal
atoms from Groups 9 to 12, such as Pt, Ag, Pd, Co, and Ni, preferred
to bond with only four S atoms. This difference can result in
variations in the HER activity as the unsaturated S atoms can
facilitate the adsorption of hydrogen atoms. The authors predicted
that metal atoms in Groups 4 to 8 would possess low activity, while
atomic doping using elements from Groups 9 to 12 could be
employed to enhance the HER activity. The authors found that the
HER activity of doped MoS2 varied in the order of Pt > Co > Ni,
using experimental measurements, in good agreement with the DFT
calculations.155 Indeed, many of the metal atom dopants in Table II
involve elements in Groups 9 to 12, which may be connected to
unsaturated S atoms in MoS2 providing an effective defect engi-
neering strategy.

Another approach involves the coupling of MoS2 with other
conducting materials to form composites or hybrids. In this case,
graphene is widely employed as a companion material.158,163,164,181

For example, it was shown by Li et al.158 that highly dispersed MoS2
nanoparticles were formed on graphene sheets, with an abundance of
accessible electrocatalytic edge sites. The graphene also provided an
interconnected conducting network between the MoS2 and substrate
electrode to give efficient electron transport. In a more recent study,
it was found that GO effectively inhibited the transition of MoS2
from the conducing 1T phase to the semiconducting 2H phase,163

while Tang et al.181 employed N-doped rGO combined with MoS2
nanosheets with enlarged interlayer spacing (9.5 Å). The larger
interlayer spacing was achieved by using polyoxometalates, which
also gave well dispersed rGO sheets, due to charge repulsion. The
authors concluded that the improved HER activity was due to the
enlarged interlayer spacing in the MoS2. Metal doping has also been
employed with MoS2/rGO composites to alter the electronic proper-
ties and accordingly improve the electron transfer, with the dopant
metals including Zn,182 Cu,183–185 Co,164,186 Ni,187,188 Pd189 and
Pt.190 Other carbon-based materials such as carbon nanotubes
(CNTs),191 N-doped CNTs,192 carbon fibres (CNF) as cloths193 and
foams,194 and carbon black (CB)176,195 have been combined with
MoS2 to provide conducting channels and facilitate charge transport
along the carbon network. It has also been shown that the density of
the highly active terminal disulfide and sulfide groups at the edge of
MoS2 can be tuned by modifying the ratio of the carbon additive
(CB) and MoS2.

195

Given variations in the experimental measurements and in the
synthesis of the MoS2-based electrodes, including the number of
layers, interlayer spacings and intercalated molecules, it is difficult
to compare the performance of the MoS2 composites/hybrids, doped
MoS2 and MoS2 heterostructures, shown in Tables II and III.
However, it is indeed clear that the electrocatalytic activity of
2H-MoS2 and 1T-MoS2 can be enhanced through doping, and by

forming various hybrid or composite materials. For comparison
purposes, the corresponding data are provided for the commercial Pt/
C electrocatalysts. Although some of these MoS2-based electro-
catalysts come reasonably close to the performance of the Pt/C, they
are still nevertheless not able to compete with the high performing
Pt-based electrocatalysts. It is also evident that some of the largest
overpotentials are seen in the alkaline solutions. This is consistent
with MoS2 being a relatively good electrocatalyst in acidic media,
facilitating the adsorption and recombination of the adsorbed H
intermediates. However, it is a poorer electrocatalyst for the water
dissociation steps that are associated with the HER process in
alkaline solutions.

One avenue that can be employed to improve the sluggish
kinetics in alkaline media, involves the use of layered double
hydroxides (LDH) and these have been combined with MoS2.
LDHs are layered materials that are very efficient in the adsorption
and dissociation of hydroxyl species and it has been shown that
MoS2/NiCo-LDH

176,196 and MoS2/NiFe-LDH,
197 are efficient elec-

trocatalysts for the HER in alkaline media. As LDHs can be
dissolved in acidic media, they can also be employed to give the
spatial confinement of MoS2, resulting in thin layers and rich defects
and this has been achieved with MoS2/MgAl-LDH with intercalated
MoO4

2− anions.198 In the presence of H2SO4, the LDHs dissolve to
give the 1T-MoS2, while they are retained in alkaline solutions and
are sandwiched between the layered TMDs, as illustrated in Fig. 6.

Performance of the MoSe2-based electrocatalysts for the HER
half-cell.—Although the metal disulfides have generated consider-
able interest in the electrocatalytic generation of H2(g), transition
metal diselenides have more recently been shown to have higher
electrochemical activity than their corresponding disulfide counter-
parts. Furthermore, selenium is more abundant and cost-effective
due to its high concentration in minerals and is an essential trace
element.86 Specifically, the metallic property of Se is higher than S,
and it has more electroactive unsaturated edge sites, higher metallic
binding with transition metals, higher capacitance, a narrower band
gap, larger atomic size and polarisability than S.86 In addition, due to
its wide interlayer spacing (0.646 nm), compared with MoS2 (0.615
nm) and graphene (0.34 nm), the insertion and extraction of
electrolyte ions are more efficient.199 Furthermore, Tsai et al.200

has shown that MoSe2 has more active edge sites, with both Mo and
Se active edges.

In terms of an electrocatalyst for HER, there is very good
evidence to show that MoSe2 is a more superior electrocatalyst than
MoS2 for the HER in acidic environments.79,200–203 For example,
Gholamvand et al.203 compared the HER activity in acidic media of
solution-processed films of MoS2, WS2, MoSe2, WSe2, MoTe2 and
WTe2 nanosheets and concluded that the performance varied in the
order selenide > sulfide > telluride and MoSe2 exhibited the best
performance. Likewise, Tang et al.201 on comparing MoS2 with
MoSe2 found that the MoSe2 was a better electrocatalyst than MoS2

Figure 6. Schematic formation of 1T-MoS2 by confinement with LDHs. Reproduced with permission from Yang et al.198 Copyright 2019, Elsevier.
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for the HER and explained this finding in terms of the Gibbs energy
change for the adsorption of hydrogen at the electrocatalyst. It is
generally accepted that a value close to 0 eV results in a good HER
electrocatalyst. Indeed, using DFT calculations, it was shown that
MoSe2 has a favourable adsorption energy in acidic media.
However, in alkaline solutions, MoSe2 has unfavourable water
adsorption and dissociation steps, and for efficient HER activity,
additional components are often added. For example, CoSe, which is
efficient in the adsorption and dissociation of water, has been
combined with MoSe2 to enhance the Volmer step in the alkaline
HER.204,205 Indeed, Shu et al.206 concluded that with appropriate
defects and edges, MoSe2 is able to compete with the Pt-based HER
electrocatalysts.

Various methods have been used to enhance the HER perfor-
mance of MoSe2, and these include the formation of MoSe2
hybrids with conducting materials, such as CNTs,207 graphene,208

MXenes,209,210 and g-C3N4 (graphitic carbon nitride).211

Furthermore, Janus-type TMDs, such as Te-deficient Janus RGO/
1T-TeMoSe nanostructures have also shown excellent hydrogen
evolution activity,121 while the promising HER activity of SMoSe
nanodots has been attributed to the high-density of active edge sites,
basal-plane Se-vacancies coupled with a high-percentage of the 1T
phase.212 There has been a lot of focus on fabricating bimetallic
heterostructures for enhancing the HER activity. Heterostructures
consisting of FeSe2/MoSe2 were shown to have a higher HER
activity than the individual MoSe2 and FeSe2 components.213

Likewise, the MoSe2/NiSe2 combination was shown to be more
superior than its individual components.214 The very good perfor-
mance of the MoSe2-based electrocatalysts in the HER is illustrated
in Table IV, where it is evident that a number of the electrocatalysts
are more efficient than the MoS2-based system, Tables II–IV.
Furthermore, several of the MoSe2 composites/hybrids have low
overpotentials accompanied by low Tafel slopes, ranging from 40 to
50 mV dec−1 in acidic solutions. Impressive low Tafel slopes with
values as low as 45 and 55 mV dec−1 have also been observed in
alkaline media, Table IV.

TMD-based electrocatalysis for the OER half-cell reaction.—
The OER is a sluggish electrochemical reaction in the splitting of
water, and accordingly the development of electrocatalysts that do
not require high overpotentials is crucial in the design of efficient
water electrolysis cells. Furthermore, these electrocatalytic materials
need to exhibit good stability when polarised to the relatively high
potentials where the OER occurs, >1.23 V vs SHE. While there is
clear evidence to show that MoSe2-based electrocatalysts are very
efficient in the HER and have a more superior activity than the
MoS2-based systems, the performance of MoSe2 in the OER remains
to be critically assessed and fully evaluated. It appears that MoSe2 is
a relatively poor electrocatalyst in the OER and therefore it has been
combined with copper, nickel or cobalt structures that can facilitate
the oxidation of water. For example, the inert basal plane of MoSe2
has been decorated with Cu2S nanocrystals,220 Co/Ni nanoparticles

to give co-catalysts,221 and various CoSe2/MoSe2 composites have
been employed to facilitate the OER.222,223

Furthermore, the partial oxidation of MoSe2 and other TM
diselenides can occur when polarised to high potentials. This gives
rise to the formation of oxides/hydroxides that can play a significant
role in the OER. Indeed, Zhang et al.222 fabricated ultrathin sheets of
CoSe2 with abundant selenium vacancies using a plasma-exfoliation
method. The selenium vacancies were used to promote the conver-
sion of CoSe2 to the highly active CoOOH, while the CoSe2 ultrathin
sheets served as an efficient transport corridor for the electrolyte.
Furthermore, Tang et al.224 employed MoSe2 nanosheets as a
sacrificial template to facilitate the transformation of FeCoMoSe, a
trimetallic selenide heterostructure, to an active amorphous FeCo-
oxyhydroxide during the OER. Interestingly, the nanosheet mor-
phology was maintained giving rise to an exposed space for the
newly formed FeCo-oxyhydroxides. The electrocatalyst showed
excellent OER activity with an overpotential of 264 mV at 10 mA
cm−2 and good stability over 100 h in an alkaline medium. On
studying the OER activity of MoSe2/Cu2S, Hassan et al.220 observed
the formation of an overlayer of copper hydroxide, which can
facilitate O–O bond formation and the transformation from M–O to
M–OOH, Eqs. 12 and 13. The authors observed the oxidation of Cu
(I) to Cu(II), Se(−II) to SeOx and Mo(IV) to Mo(VI) on the surface of
the electrocatalyst, but concluded that the MoSe2/Cu2S core was
preserved during the OER. Likewise, De Silva et al.225 concluded
that the active surface of Ni3Se2 and Ni3Te2 evolved into a mixed
anionic (hydroxo)chalcogenide, with prolonged exposure to KOH,
but the dichalcogenide core was retained.

Other reports, where diselenides are employed to facilitate the
OER, include the fabrication of MoSe2/CoSe2/CoAl-LDH, which
exhibits an overpotential of 320 mV at 10 mA cm−2 and a Tafel
slope of 71 mV dec−1 in KOH.223 In addition, a CoSe2/MoSe2
composite has been combined with PEDOT, where the conducting
polymer was employed to increase the interlayer spacing, minimise
aggregation of the diselenide sheets and expose more edge planes. In
these cases, there was no discussion on the nature and role of any
oxides/hydroxides formed during the OER. While it does appear that
diselenide heterostructures have real potential in the OER, more
fundamental studies on the nature and role of the oxide/hydroxides
or surface hydroxy species that are generated during the OER are
needed. This in-situ formation of surface active oxide phases,
combined with the layered MoSe2-based structures is an interesting
way of enhancing the OER, but it may also reduce the overall
stability of the electrocatalysts.

Likewise, the disulfides may exhibit instability in aqueous
solutions in the presence of dissolved O2(g), with the ultimate
conversion of MoS2 into sulfate and molybdate anions.226

Furthermore, MoS2 has a relatively poor OER activity, with a
weak binding strength between the oxygen-containing intermediates
and MoS2. However, by combining MoS2 with other materials, such
as CoS2, the energy barriers of the oxygen-containing intermediates
are reduced and the composites can become effective in the OER.173

Table IV. Summary of performance of various MoSe2-based composites in HER activity, at near room temperature.

MoSe2-based electrocatalysts Media η/mV (10 mA cm−2) Tafel Slope/mV dec−1 Stability/Durability cycles/h References

MoSe2-rGO-CNTs H2SO4 206 46 20 h 215
1T/2H-MoSe2 H2SO4 192 48 1000 216
SMoSe nanodots H2SO4 140 40 — 212
N-1T-2H MoSe2/graphene H2SO4 98 49 20000 217
CoSe2/MoSe2/rGO H2SO4 107 56 1000 208

KOH 182 89
FeSe2/MoSe2/rGO H2SO4 101 55 1000 218

KOH 179 80
1T/2H-MoSe2/Ti3C2 KOH 150 90 30 h 210
MoSe2/CoSe2/CFP KOH 137 55 24 h 205
Perovskite oxide/MoSe2 KOH 128 45 — 219
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Consequently, various MoS2 heterostructures have been formed and
considered for the OER, as the heterostructures can provide
additional active sites and higher charge transfer. Layered metal
hydroxides are especially promising materials for the formation of
MoS2 heterostructures as the LDH has very good performance as an
OER electrocatalyst. A number of MoS2/LDH heterostructures have
been formed with impressive OER activity and this has been
attributed to electronic interactions between MoS2 and the
LDH.168 In a recent study, Ji et al.168 combined MoS2 nanosheets
with graphene and FeCoNi-LDHs to give a very efficient OER
electrocatalyst, with a current density of 0.5 A cm−2 at an over-
potential of 225 mV and a Tafel slope of 29.2 mV dec−1 in KOH.
Additional LDHs, such as NiFeCr-LDH,227 CoAl-LDH,228

CeCoAl-LDH,229 NiAl-LDH230 and NiFe-LDH197 have also been
used to form MoS2/LDH heterostructures for OER, while MoS2
heterostructures have been formed using cobalt phosphides, which
are known as good OER electrocatalysts.231

Nickel sulfides are also highly active for OER, and it is no surprise
that they have been combined with MoS2 to give heterostructures, such
as MoS2/Ni9S8,

232 MoS2/Ni3S2,
233 MoS2/Fe5Ni4S8,

234 MoS2/NiS2
combined with N-doped graphene foams,235 Ni3S2/MoS2

236 and
MoSe2/Ni3S/FeOOH.

237 Indeed, MoS2/Co9S8/Ni3S2/Ni has been em-
ployed to promote the OER across a wide pH range with overpotentials
of 166, 228, and 405 mV in alkaline, acidic, and neutral solutions.238

The doping of MoS2 by noble metals and non-metals provides another
convenient way to activate the basal plane and Ru-doped CuO/MoS2,

239

Co-doped MoS2,
240 and Fe-doped MoSe2

241 have all been employed as
an electrocatalyst for OER. While it is clear that various MoS2-based
materials have been fabricated and used successfully as OER electro-
catalysts, very little attention has been devoted to the possible
dissolution and modification of the MoSe2 during the OER.

TMD-based electrocatalysts in electrolysis cells.—Currently,
two commercial electrolyser technologies exist, the well-known
proton exchange membrane (PEM), and the alkaline water electro-
lysers. The PEM cells are efficient, but the highly acidic environ-
ment requires corrosion resistant materials such as Pt and Ir

electrocatalysts. The TMDs are not sufficiently stable in this acidic
environment and are more suited to the alkaline electrolysers and to
the more recently proposed anion-exchange membrane water elec-
trolysers. These latter electrolysis cells are attracting significant
attention, as they facilitate the use of dilute KOH solutions, or even
pure water.242 The TMD-based electrocatalysts may be effective in
the development of these electrolysers as they are likely to be stable
in these less aggressive electrolytes.242

To ensure good adhesion between the TMDs and the conducting
substrate, especially during the evolution of gases, Ni foam
(NF),243,244 carbon cloth (CC),245 carbon fibre (CF)246 and porous
carbon substrates173 are normally employed as the substrate sup-
ports. It has also been shown that a sulfur-doped carbon (SDC)
substrate can facilitate the HER when employed as a support for
CoMoS4,

247 indicating the important role of the substrate material.
This enhanced activity was attributed to the formation of a new
Co9S8 phase. Additionally, the porous substrates with large surface
areas can serve to facilitate the release of hydrogen and/or oxygen
bubbles. As illustrated in Table V, many of the cell potentials
recorded in KOH compare very favourably with the traditional noble
metal systems, such as RuO2∣∣Pt/C, which exhibit a cell potential of
1.58 V. However, the challenge with the TMD composites or
hybrids as anodes and cathodes in alkaline electrolysis cells is the
chemical and structural changes that can occur at the high cell
potentials. For example, it has been shown by Hu et al.248 that on
employing 1T-MoS2/PMoS2/CoP in an alkaline electrolysis cell that
the CoP almost disappeared from the surface, as a result of its partial
oxidation to Co oxides/oxyhydroxides (CoOx). While Co-based
oxides can be very beneficial as electrocatalysts, these changes to the
surface chemical composition can impact the longer term stability of
the electrolysis cell. Interestingly, as highlighted in Table V a
sandwiched multi-layered Ni3S2/1T-MoS2/Ni3S2 composite with
good corrosion resistance in chloride-containing electrolytes was
successfully employed in salty water splitting.249 The authors
concluded that the central MoS2 layer gives rise to an electron-
deficient Ni2S2 layer with superior OER activity, while the Ni3S2
layers provided good corrosion protection.

Table V. Performance as an alkaline electrolysis cell operating at near room temperature.

Cathode//Anode Substrate/Electrolyte
Cell Voltage

/V
Current density/mA

cm−2
Stability
>/h References

MoS2/CoS2 Porous C (PC)/KOH 1.59 10 20 173
CoS2/MoS2 Carbon cloth (CC)/

KOH
1.59 10 26 245

CoS2/MoS2 NF/KOH 1.61 10 10 243
Fe-MoS2 NF/KOH 1.52 10 25 250
MoS2/Ni9S8 NF/KOH 1.72 50 14 232
MoS2/Ni3S2 NF/KOH 1.54 100 12 251
MoS2/NiS CC/KOH 1.54 10 24 252
MoS2/Ni3S2 NF/KOH 1.50 10 48 233
MoS2/NiS2/CoS2 Ni foam (NF)/KOH 1.54 10 34 253
MoS2/Co3S4/Ni3S2 NF/KOH 1.72 50 — 254
MoS2/NiCoS NF/KOH 1.50 10 22 255
N-MoS2/N-Ni3S2 NF/KOH 1.79 100 10 244
O-CoS2/MoS2 CF/KOH 1.60 10 20 246
MoWS2/Ni3S2 NF/KOH 1.62 10 50 256
MoS2/AB (acetylene black) NF/KOH 1.51 10 12 257
Gr/MoS2/FeCoNiPx∣∣Gre/MoS2/FeCoNi(OH)x CF/KOH 1.59 100 100 168
CoS-β-Co(OH)2/MoS2+x NF/KOH 1.58 10 28 258
MoS2/MXene NF/KOH 1.64 10 50 259
Perovskite oxide/K-MoSe2 NF/KOH 1.95 100 2500 219
NiSe CC/KOH 1.52 100 12 135
NiCo2Se4 CC/KOH 1.58 10 10 260
NiSe2/FeSe2 Ni-Fe foam/KOH 1.46 10 100 261
Ni3S2/1T-MoS2/Ni3S2 Alkaline seawater 1.82 100 100 249
Pt/C∥(IrO2C KOH 1.65 10 10 262
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There has been relatively few studies devoted to the application
and design of TMD-modified electrodes for the PEM electrolysers,
where the electrolyte is a solid polymer electrolyte and the cell
operates under acidic conditions. However, in a recent study, Mo et
al.263 incorporated transition metal doped MoS2 into an industrial-
type PEM. The two electrodes were separated by a Nafion 115
membrane. The transition metal atom-doped MoS2 was processed as
an ink and then deposited using spray casting onto one side of the
membrane. An IrO2 OER catalyst and Nafion ionomer solution was
sprayed onto the other side of the Nafion membrane and the cell was
operated at 80 °C. The authors found that the Co-doped MoS2
yielded the highest current density, comparing well with the
commercial Pt/C electrocatalyst. This was attributed to the fully
acidified Nation membrane, which gives rise to a very acidic
environment, enabling the efficient adsorption of hydrogen atoms
at the MoS2-based cathode. Similarly, Karikalan et al.247 formed a
single-cell PEM electrolyser using CoMoS4/SDC as the cathode
electrocatalyst, IrO2 as the anode electrocatalyst, and Nafion 117 as
the membrane. The electrocatalyst inks were prepared and then
brush coated onto the Nafion, followed by hot pressing to give strong
adhesion between the electrocatalysts and the membrane. The cell
was operated at 27 °C. The PEM cell exhibited impressive stability
with no evidence of any deterioration over a 100 h period at 110 mA
cm−2. When the CoMoS4 and CoMoS4/SDC membranes were
compared, it was found that the simple CoMoS4 showed poor
stability and this was attributed to the presence of the SDC, which
facilitated the formation of the Co9S8 phase in CoMoS4/SDC.

Performance of 2D TMDs in photoelectrochemical water
splitting.—Photoelectrochemical (PEC) water splitting integrates
water electrolysis with solar energy harvesting and is becoming a
promising technology to convert intermittent solar energy into
hydrogen. Consequently, electrocatalysts that can not only minimise
the overpotential for the HER, but that can facilitate the absorption
of light energy, are essential. Furthermore, in order to realise cost-
effective and efficient PEC devices, stable and highly active HER
photocathodes must be integrated with a semiconductor photo-
absorber and relevant cocatalysts. The Si semiconductor, with a
band gap of 1.18 eV and with a CB suitable for the HER, has been
employed as both the photoanode and photocathode in PEC cells.
However its durability, due to surface photo-corrosion and energy
conversion efficiency, is still not sufficient for widespread applica-
tions. Furthermore, the corrosion of many of the existing semicon-
ductors when exposed to water remains an issue, and as a result
different semiconducting oxides have been explored and
employed,264,265 aimed at enhancing the stability of the semicon-
ductors.

Clearly, more efficient new materials or co-catalysts that can be
combined with the existing semiconductors to enhance durability
and performance are required. Among the various new cost-effective
and high surface area semiconductors being considered as photo-
electrodes in PEC devices, 2D TMDs are attracting considerable
attention, as they exhibit tunable bandgap energies with the potential
to absorb photons in the visible, ultraviolet and infrared regions of
the electromagnetic spectrum. In this case, it is the 2D, 2H crystal
phase (semiconductor) that absorbs light to generate the e−/h+ pair.
However, the 2D, 1T metallic phase can serve as an electron
acceptor and supress the charge recombination process.
Accordingly, both the 2H and 1T phases have applications in PEC
cells. Furthermore, 2D TMDs have the potential to act as the
semiconductor photo-absorber, photocathode where the hydrogen
gas is generated, as a co-catalyst or as a semiconductor heterojunc-
tion. The co-catalysts serve to capture the excited electrons in the CB
and consequently minimise charge recombination reactions.
Likewise, hybrid materials consisting of at least two different
semiconductors that lead to the formation of a p–n junction, with
an alternate layer of a p-type and n-type semiconductor, can reduce
charge recombination. This occurs as the electrons accumulate in the
n-type region and the holes reside in the p-type region.

Consequently, the photoelectrochemical activity is increased as
charge recombination is suppressed.266

Some 2D TMDs have been employed as a photoelectrode without
the addition of another semiconductor or co-catalyst. For example,
Liu et al.120 used 2D vertically aligned SnS2 nanosheets, Fig. 7a, as
photoanodes for PEC water splitting with a high photocurrent
density of 1.92 mA cm−2 (100 mA cm−2 solar energy). However,
in most cases, other materials are combined with the TMDs to
enhance the production of H2(g). Indeed, 2D TMDs have been
combined with various semiconducting materials and especially with
Si to form a range of hybrids. For example, Si nanowire photo-
cathode arrays sheathed in TMD layers were formed and it was
found that Si/MoS2, Si/MoSe2, Si/WS2, and Si/WSe2 photocathodes
all exhibited excellent PEC performance, with photocurrents of
20–30 mA cm−2 (at 0 V vs RHE) in 0.5 M H2SO4 with negligible
degradation of the HER for 3 h under solar irradiation (100 mW
cm−2).267 In another study, vertically aligned MoS2 nanoflakes
formed at SiO2/Si were used as a photoelectrode with a current
density of 0.51 mA cm−2 (in 0.5 M H2SO4 at −0.8 V (Ag∣AgCl),
with a 75 W xenon lamp).268 Likewise, chemically exfoliated
1T-MoS2 was combined with planar p-Si to give photocathodes
for PEC hydrogen generation, Fig. 7b, with a high current density of
17.6 mA cm−2 and very good stability.269

The modification of TiO2 with MoS2 can also significantly
enhance the photocatalytic performance and production of
hydrogen.145,270,271 This improved performance is attributed to the
transfer of electrons from the CB of TiO2 to the MoS2 nanosheets,
assisted by the good contact between the 1T-MoS2 metallic phase
and TiO2.

145 However, in other studies, it has been suggested that
the MoS2/TiO2 is a heterojunction semiconductor, where the high
photocatalytic activity, arises from the transfer of the photo-
generated electrons from MoS2 to TiO2.

272 This difference in the
mechanism of the enhanced PEC activity appears to be connected
with the ratio of the 1T-MoS2 and 2H-MoS2 phases. Other
semiconductors have been integrated with TMDs and these include a
MoS2/g-C3N4 heterostructure, which was fabricated using CVD and
pulsed laser deposition. It was found that the hybrid had low e−/h+

recombination rates, reaching values of 252 μmol h−1 for H2(g)
generation rates.273 Other examples include Fe2O3/BiVO4/MoS2
with a H2(g) production rate of 46.5 μmol cm−2 over 2 h,274

MoS2/ZnIn2S4 giving a maximum rate of 201 μmol h−1 for H2(g),
275

and MoS2/ZnS with a maximum rate of 606 μmol h−1 g−1 of
H2(g).

276

The 2D TMDs are also finding numerous applications as co-
catalysts in PEC devices, replacing noble metal photocatalysts. For
example, Tiwari et al.277 employed MoS2/rGO as a co-catalyst with
Cu2O. This ternary hybrid, Cu2O/MoS2/rGO, exhibited a photoelec-
trochemical current density of 8.46 mA cm−2 which was 26 times
higher than that observed with Cu2O. This was attributed to
suppression of the charge recombination reaction and inhibition of
the photo-corrosion of Cu2O, giving higher photocurrents and
greater stability.

One of the more significant characteristics of 2D TMDs is their
ability to stabilise the semiconductor photocatalyst/absorber, by
preventing (or partially preventing) the photogenerated holes from
attacking or corroding the semiconductor. Photocorrosion of semi-
conductors is normally associated with the accumulation of photo-
induced holes on the outer surface, which cause irreversible
oxidation of the semiconductor. This is particularly important as a
number of very well-known photocatalysts, including Si, can suffer
from severe photocorrosion. The enhanced photostability afforded
by 2D TMDs has been observed with Cu2O,

277 CdS278,279 and Si
semiconductors,280,281 Furthermore, MoS2 has been employed as a
protective layer for the stabilisation of various Group III–V
absorbers, such as GaInAsP/GaAs. In this case, it was found that
the thin film MoS2 modified photo-absorber was >5 times more
stable and less prone to corrosion than a PtRu modified surface.282

Interestingly, it has also been shown that when 2H-MoS2 is
combined with MXenes to form a hybrid electrocatalyst for HER,
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its presence suppresses the oxidation of the MXene layers,283 which
are well known to have relatively poor stability in water and are
prone to irreversible oxidation.68

Another promising recent development is the reported synthesis
of Janus TMD monolayers (XMY), where one of the S layers is
replaced by Se atoms (SMoSe).284,285 This has been achieved by
exposing a monolayer of MoS2, formed using CVD, to a H2(g)
plasma to strip the top S layer, Se powder was then introduced to
give selenisation and formation of the SMoSe monolayers.284 These
emerging TMDs lack structural symmetry and this gives rise to an
intrinsic dipole moment due to the different electronegativities of the
two chalcogen atoms. The layer with the lower electronegativity will
become positively charged, while the layer with the larger electro-
negativity will adopt a negative charge. Ji et al.49 computed dipole
moments and electrostatic potentials for a range of Janus TMDs.
Dipole moments of 0.19 D and 0.77 D were computed for SMoSe
and OMoTe, respectively, with the higher dipole due to the greater
difference in electronegativity of the O and Te atoms. Surface
potential differences as high as 0.77 eV and 3.26 eV were computed
for SMoSe and OMoTe, respectively, and these are sufficient to
cause electronic band bending. Indeed, these Janus TMDs can be
considered as heterojunction semiconductors, leading to the effective
separation of holes and electrons onto the two different surfaces and
consequently the photoelectrochemical activity is enhanced. So far
the reported studies on the applications of Janus TMDs in PEC
devices are computational but these calculations predict that the
Janus TMDs have the potential to be ideal photocatalysts in the
photoelectrochemical generation of hydrogen.49,286–289

Conclusions, Outlook and Future Directions

It is clear that TMDs and especially 2D TMDs are emerging as
promising high surface area materials that are effective in the
electrocatalytic generation of H2(g), with potential as OER electro-
catalysts and have clear and impressive applications in PEC devices.
Although not included in this review, TMDs are also attracting
considerable attention in the photocatalytic (PC) splitting of water,
where the only inputs are sunlight and water.290 Very good progress
has been made in the synthesis and characterisation of 2D TMDs,
metal atom doped 2D TMDs, TMD composites and hybrids,
semiconductor heterojunctions and more recently in Janus 2D
TMDs. While the bandgap energy can be tailored by tuning the
number of 2D layers, defects can be introduced through defect
engineering, and TMDs can be combined with a variety of
companion materials, the true applications of 2D TMDs are only
emerging. Several challenges still remain before 2D TMDs can be
employed successfully in HER, OER and PEC applications.

One significant aspect that requires further study is the activation
of the basal plane to increase the electronic conductivity of the
thermodynamically stable 2H phase. Only the edge sites of the 2H
phase are electrocatalytically active. More focus should be placed on
increasing the density of edge sites and on activating the inert basal
plane. Furthermore, the influence of these activation effects, such as
the introduction of chalcogenide vacancies, point defects, and grain
boundaries on both the electronic conductivity and overall stability
of the semiconducting TMDs is needed. Furthermore, the stability of
the 1T-TMDs remains an issue and it is currently difficult to produce
and maintain the pure metastable IT or IT’ phases. In many cases,
the TMDs can exist as a mixture of both the 1T and 2H phases.
Although in many publications, where the TMDs are employed as
HER electrocatalysts, the durability of the TMDs is assessed over
several hours, there is little focus placed on following the changes in
phase stability over the experiment. Consequently, surface charac-
terisation techniques, such as high resolution SEM/TEM, XRD and
XPS, should not only be carried out on the freshly synthesised
TMDs, but also following the HER experiments.

Fortunately, due to the weak van der Waals forces that exist
between the TMDs layers, the bulk TMDs can be exfoliated into 2D
layers using non-aggressive solution phase processes. However, as
with all 2D materials agglomeration of the exfoliated layers can
occur and the exfoliation efficiency can vary depending on the
composition of the TMDs. This can have a significant effect on the
bandgap energy, which depends on the number of TMD layers. More
mechanistic insights into the exfoliation mechanisms of the dis-
ulfides and diselinides, coupled with the longer term stability of the
exfoliated layers, is needed to expand the potential applications of
the 2D layered TMDs.

The overall stability of the TMDs, especially when employed as
an OER electrocatalyst, remains a concern, with conflicting views on
the electroactive sites, with some authors suggesting that the OER
occurs at oxide phases that are formed, while others attribute the
activity to the TMDs. It is clear that some oxidation of the TMDs
occurs when polarised to high potentials and the exact role of these
oxide phases is not only relevant to the OER activity, but also
important in other potential applications of the TMDs. Likewise, the
holes generated on absorption of light energy may lead to a change
in the valency of the transition element, with the conversion of Mo
(IV) to Mo(V). The role of these potential alterations and the
mechanism by which TMDs confer stability and reduce the rate of
photocorrosion of a range of semiconductors is not fully understood.
One of the more common approaches when employing TMDs in
HER, OER and PEC devices is to combine them with other materials
to form TMD hybrids and composites. In many cases, especially
when combined with semiconductors, interfacial junctions are

Figure 7. Schematic (a) showing vertically aligned TMDs reproduced with permission from Liu et al.120 Copyright 2017, Royal Society of Chemistry and (b)
the interface heterojunction formed between the Si semiconductor and 1T MoS2, reproduced with permission from Ding et al.269 Copyright 2014, American
Chemical Society.
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formed and the stability of these junctions is critical in terms of the
overall stability of the hybrid.

While most studies, including PEC, HER and OER activity, have
been carried out in either alkaline (KOH) or acidic (H2SO4)
electrolytes, relatively few experiments have been carried out in
seawater. This is not surprising as this medium has a very high
concentration of corrosion promoting chloride anions. However,
seawater is an unlimited eco-friendly resource and the development
of corrosion resistant or corrosion protected TMD-based electro-
catalysts or photoelectrocatalysts would have far reaching applica-
tions. Finally, the development of synthetic processes that can be
easily scaled-up with more control over morphology and surface
defects is needed. Although, CVD-based methods are attractive and
can be employed to give vertically aligned TMDs and Janus TMDs
that are not achieved using other synthetic methods, they never-
theless lack scalability. The further development of synthetic
protocols that can be easily scaled, but can be used to give different
morphologies, including both lateral and vertically aligned TMDs
will further enhance the applications of TMDs in the energy storage
sector.

While a number of challenges remain, TMD nanostructures and
especially the 2D TMDs have a promising future in the fabrication
of electrocatalysts and photoelectrocatalysts to promote and enhance
the HER activity and generate H2(g). In particular, several 2D TMDs
have not yet been considered for the splitting of water, with much of
the reported work focussing on MoS2 and MoSe2. The development
of new electrolysers, such as the anion exchange membrane
electrolysers, where the electrocatalysts can function in less acidic
or basic environments, is also timely as the TMDs are more suited to
these less aggressive environments.
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