
Nonlinear Dyn (2021) 104:727–737
https://doi.org/10.1007/s11071-021-06246-0

ORIGINAL PAPER

Improving chaos-based pseudo-random generators in
finite-precision arithmetic

Aleksandra V. Tutueva · Timur I. Karimov ·
Lazaros Moysis · Erivelton G. Nepomuceno ·
Christos Volos · Denis N. Butusov

Received: 11 September 2020 / Accepted: 21 January 2021 / Published online: 24 February 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract One of the widely-used ways in chaos-
based cryptography to generate pseudo-random
sequences is to use the least significant bits or dig-
its of finite-precision numbers defined by the chaotic
orbits. In this study, we show that the results obtained
using such an approach are very prone to rounding
errors and discretization effects. Thus, it appears that
the generated sequences are close to random evenwhen
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parameters correspond to non-chaotic oscillations. In
this study, we confirm that the actual source of pseudo-
random properties of bits in a binary representation
of numbers can not be chaos, but computer simula-
tion. We propose a technique for determining the max-
imum number of bits that can be used as the output of
a pseudo-random sequence generator including chaos-
based algorithms. The considered approach involves
evaluating the difference of the binary representation of
two points obtained by different numerical methods of
the same order of accuracy. Experimental results show
that such estimation can significantly increase the per-
formance of the existing chaos-based generators. The
obtained results can be used to reconsider and improve
chaos-based cryptographic algorithms.

Keywords Chaos · Pseudo-random number genera-
tor · Floating-point data type · IEEE754-2008 · NIST
tests

1 Introduction

Recently, chaos theory has found numerous applica-
tions in technical and engineering problems including
secure data transfer and processing [1–11]. Topological
mixing and sensitivity of chaotic systems allow devel-
oping cryptographic primitives for high-performance
and secure communication systems [12,13]. Usually,
chaos-based stream encryption schemes are based on
pseudo-random number generators (PRNG) [14,15].
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Some generation algorithms, such as [16–19], pro-
duce bits from chaotic orbits simulated with finite-
precision arithmetic. From all the variety of available
formats for representing real numbers in a computer,
the floating-point data type established by the IEEE
standard, is often used [20]. Most of the chaos-based
generators in a floating-point implementation can be
categorized into two groups depending on the underly-
ing way of conversion of finite-precision numbers into
pseudo-randombits or bytes. Thefirst set includes algo-
rithms involving the multiplication of numbers defin-
ing chaotic trajectories by a sufficiently large constant.
The sequence numbers are taken modulo 2, 256, or
other numbers, according to the algorithm [13,21–26].
Then the obtained result is converted to the byte for-
mat. Another technique implies bits extraction from the
mantissa of the binary representation of floating-point
numbers [16–19]. Thus, in many chaos-based PRNGs,
to obtain output sequences the last digits or least bits
of finite-precision numbers are commonly used.

It is known that the floating-point representation
allows performing calculations in a larger range of val-
ues than fixed-point numbers [20]. However, this cir-
cumstance is fraught with pitfalls. In comparison with
fixed-point arithmetic, not all real numbers can be rep-
resented exactly in the form of floating-point numbers
while the same number of bits for representation is
used. For example, the real number 0.1 can be approx-
imately read as 0.100000000000000006 using the 64-
bit floating-point data type according to the IEEE stan-
dard [20]. The imperfection of the floating-point rep-
resentation combined with the accumulation of round-
off errors even in simple arithmetic operations can dis-
tort the final result. In extreme cases, a loss of sig-
nificance, also known as catastrophic cancellation is
occurred [27]. Moreover, there is another source of
error while generating pseudo-random sequences from
chaotic orbits described by ordinary differential equa-
tions (ODE). Since such systems are computationally
difficult or impossible to solve analytically, numeri-
cal integration is traditionally used. The continuous
mathematical model is replaced by an approximate
finite-difference scheme, thereby introducing the dis-
cretization effects into the results [28,29]. Combined
with rounding errors of floating-point calculations, this
leads to uncertain mixing of the least bits of numbers
obtained through the ODE system simulation. This fact
often causes the opposite problem—the degradation of
chaotic dynamics [30–32].

Here the question arises: what is the real source
of pseudo-random properties of sequences generated
by the mentioned algorithms from numerical chaotic
orbits? As it will be shown in this paper, even the 32
least significant bits of the mantissa of periodic signals
generated with the finite-precision arithmetic can pos-
sess pseudo-random properties. Therefore, some of the
known algorithms may possibly be based on numeri-
cal and discretization effects, and not on the specific
features of chaotic systems. In this case, it is of inter-
est to thoroughly investigate the binary representation
of such floating-point numbers to determine the max-
imum number of bits or digits that can be used as the
chaos-basedPRNGoutput to obtain reliable results. For
most of described generators, the technique for evaluat-
ing this value is unknown. High-performance methods
allow obtaining 32 output bits at a single iteration of
the chaotic system simulation [16,18]. However, the
question is, can the performance of such algorithms
be increased and how does it depend on the simulated
system and the floating-point representation.

The key novelty of the reported study consists of
two main advances. First, we explicitly show that peri-
odic signals generated with finite precision can lead
to pseudo-random properties of the least significant
bits of numbers. This effect is also aggravated by the
discretization method. We illustrate that in the case
of chaotic systems it is possible to obtain pseudo-
random sequences regardless of the oscillations mode.
Moreover, we develop the technique for estimating the
maximum number of pseudo-random bits that can be
extracted from the binary representations of chaotic
systems described by ODEs. We also propose a sim-
ple algorithm based on the error estimation between
two points of the investigated system obtained using a
pair of different finite-difference schemes. To increase
the performance of existing chaos-based generators we
determine this value for all state variables of the sys-
tem. The obtained sequences pass all statistical tests
that reveal the pseudo-random properties of examined
sequences. Using the proposed approach allows getting
3-5 timesmore pseudo-randombits per calculation iter-
ation than known algorithms.

The rest of the paper is organized as follows. In
Sect. 2, the proposed algorithm is described and exam-
ined using non-chaotic systems. Then, in Sect. 3, two
samples of chaos-based generators are investigated.
Finally, some conclusions and discussions are given
in Sect. 4.
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2 Pseudo-random bit generation from
floating-point numbers

Following IEEE 754-2008 standard [20], the binary
representation of the floating-point data type consists
of a sign, an exponent and themantissa. In our study,we
investigated the double-precision floating-point format
that comprises 1 sign bit, 11 exponent bits, and 52man-
tissa bits. To explicitly show the effects of numerical
discretization and rounding, we considered the follow-
ing ODE system

{
ẋ = y

ẏ = −x
(1)

with initial conditions x0 and y0. To obtain a finite-
difference model of harmonic oscillator (1) we applied
the first-order Euler–Cromer symplectic integration
method that is able to preserve the qualitative properties
of the originalHamiltonian system [33]. The system (1)
possesses the periodic solution as is shown in Fig. 1.

To generate bit sequences from the solution of ODE
system we followed the idea of Francois et al. [16].
We extracted the least 32 mantissa bits of variable x
of system (1) simulated over N = 106/32 iterations

(a)

(b)

Fig. 1 a Time domain and b phase trajectory of system (1)
simulated with x0 = 0.1, y0 = −0.1

with the integration step h = 0.01. The final simula-
tion time was 312.5 seconds. The obtained bits were
combined into the output sequence of length 106. We
generated 1000 sequences for different x0 values dis-
tributed uniformly in the interval [0; 1] while y0 was
constant.

To investigate the properties of obtained sequences,
in this and further experiments we used the statistical
testing suite proposed by NIST [34]. Each of the fifteen
NIST tests is aimed at searching for certain patterns that
are typical for non-random sequences. The results are
a set of probability values pvalues that illustrate how
the studied sequences are close to random. If pvalues is
not lower than the significance level α, then the test is
passed, and the sequence is taken as pseudo-random.
To examine the generator, for each test one considers
the number of passed sequences, as well as the distri-
bution of pvalues. In all experiments, we generated 103

sequences of length 106 and set α equal to 0.01. Thus,
according to the NIST tests strategies [34], proportion
of sequences passed each test must belong to the inter-
val [0.980561; 0.999439] and the pvalue calculated for
distribution of pvalues in the Pearson’s χ2 test (i.e., a
pvalue of the pvalues) must be greater than or equal to
0.0001.

The results of the NIST statistical testing for
sequences obtained from the linear system (1) are
shown in the left column of Table 1. As one can see,
despite that the simulated system is non-chaotic, the
generated sequences passed all tests successfully. It can
be assumed that the main source of error is the first-
order discretization method. To prove this assumption,
we repeated the experiment, replacing the ODE solver
based on Euler–Cromer integration with the fourth-
order Runge–Kutta method, which is default imple-
mented in most modern simulation software [35]. The
integration step was equal to 0.01. The results are pre-
sented in Table 2. Failure of the Run test shows that in
studied sequences the series of 0 and 1 are alternated
too slowly, as in periodic sequences. The results of the
Approximate Entropy test pointed out that the distribu-
tion of m-bit words is not close to uniform. Moreover,
failure of theCumulative sums andRandomExcursions
tests indicates the uneven distribution of 1 at the begin-
ning of sequences, as well as various subsequences.
Thus, the experimental results are consistent with our
hypothesis that one of the significant sources of bits
mixing is the low-order numerical integration method.
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Table 1 The results of NIST statistical testing with α = 0.01
for sequences obtained from system (1) simulated using Euler–
Cromer integration

Statistical test Ratio pvalue Result

Frequency 0.118120 0.988 Success

Block frequency 0.118812 0.985 Success

Runs 0.846338 0.987 Success

Longest run of ones 0.000546 0.982 Success

Rank 0.098920 0.992 Success

Discrete Fourier 0.657933 0.990 Success

Non-overlapping match 0.380407 0.986 Success

Overlapping math 0.801865 0.990 Success

Universal statistical 0.095426 0.991 Success

Linear complexity 0.045088 0.986 Success

Serial 0.053969 0.988 Success

Approximate entropy 0.548314 0.993 Success

Cumulative sums 0.375313 0.987 Success

Random excursions 0.406499 0.991 Success

Random excursions var 0.106246 0.987 Success

If somebits of numbers generatedbyfinite-difference
schemes of periodic systems possess pseudo-random
properties, then it is of interest to determine their max-
imum number. We propose the algorithm based on
the difference between the binary representation of
two solutions obtained by different integration schemes
from the same initial point. It consists of the following
steps:

1. Choose the set of initial conditions size N for the
studied ODE system. Based on the results of a large
number of experiments, we recommend choosing at
least 1000 values that are distributed over the entire
interval of state variables changes.

2. Get twovariousfinite-difference schemes for numer-
ical simulation. One can use two schemes obtained
by different discrete operators of equal order.

3. Calculate one integration step for all initial condi-
tions using two chosen finite-difference schemes.

4. Compare the binary representations of all state vari-
ables and find a vector of indices b of first bits from
which they become different.

5. Calculate the mean values of b as Bj = mean�bi, j�
for the entire set of initial conditions where is varied
from 1 to N and j is the state variable index.

Table 2 The results of NIST statistical testing with α = 0.01
for sequences obtained from system (1) simulated using Runge–
Kutta integration

Statistical test Ratio pvalue Result

Frequency 0.134172 0.979 Fail

Block frequency 0.020269 0.987 Success

Runs 0.408275 0.991 Success

Longest run of ones 0.000269 0.983 Success

Rank 0.111389 0.988 Success

Discrete Fourier 0.125927 0.989 Success

Non-overlapping match 0.653773 0.991 Success

Overlapping math 0.518106 0.990 Success

Universal statistical 0.450297 0.989 Success

Linear complexity 0.361938 0.985 Success

Serial 0.299736 0.988 Success

Approximate entropy 0.0133805 0.977 Fail

Cumulative sums 0.064015 0.963 Fail

Random excursions 0.000586 0.963 Fail

Random excursions var 0.915317 0.975 Fail

If we subtract the obtained values B from 64, we obtain
the number of bits for each variable that are suitable for
use as the PRNG output.

On step 2 we highly recommend using a pair of
semi-explicit methods, since this is the simplest way to
get two different finite-difference schemes with simi-
lar arithmetic operations. Using integration with differ-
ent approximation methods, for example, explicit and
implicit Euler methods, will reduce the accuracy of the
proposed estimation. Moreover, using a pair of semi-
explicit methods allows one to estimate the maximum
number of bits for extraction even in the case when
equations described the chaotic system include trigono-
metric and other mathematical functions, the imple-
mentation of which is not strictly standardized [20].
At the moment, it is impossible to predict theoretically
the rounding error propagation of calculations results
with such functions, especially if the absolute values
of numbers with which the operations are performed
are close [36]. Thus, we propose to use an empirical
approach based on two semi-implicit models. In the
case of stiff systems, extrapolation methods of a higher
order can be used with semi-explicit integration as the
basic method.
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Table 3 The results of NIST statistical testing with α = 0.01
for sequences obtained from system (1), 39 bits case

Statistical test Ratio pvalue Result

Frequency 0.230755 0.991 Success

Block frequency 0.540204 0.992 Success

Runs 0.021554 0.992 Success

Longest run of ones 0.042212 0.989 Success

Rank 0.428095 0.989 Success

Discrete Fourier 0.334538 0.988 Success

Non-overlapping match 0.415422 0.993 Success

Overlapping math 0.735908 0.992 Success

Universal statistical 0.878618 0.989 Success

Linear complexity 0.765632 0.995 Success

Serial 0.071620 0.990 Success

Approximate entropy 0.029011 0.988 Success

Cumulative sums 0.370262 0.992 Success

Random excursions 0.310049 0.989 Success

Random excursions var 0.016602 0.988 Success

To test the proposed algorithm, we examined sys-
tem (1) and obtained the pair of finite-difference
schemes using Euler–Cromer integration:{

xn+1 = xn + hyn
yn+1 = yn − hxn+1

(2)

{
yn+1 = yn − hxn
xn+1 = xn + hyn+1

(3)

where h is the integration step.
Using both state variables to generate pseudo-

random sequences from system (1), can cause the fail-
ure of Serial and Overlapping templates tests, since the
right-hand side functions differ only in a sign. There-
fore, at stage 2 of the proposed algorithm, we consid-
ered the single variable x . We performed all the steps
and got the number 39. Then we repeated the simula-
tion of the investigated system with the scheme (2) for
different initial values N = 106/39 times, obtained
a subarray of length 106 and performed the NIST
tests (Table 3). The obtained sequences passed all the
tests. Then we increased the number of extracted bits
to 40 and repeated the statistical testing (Table 4). One
can note that this led to a change in the distribution
of 0 and 1 bits in sequences and the Frequency test
was failed. Moreover, the sequences did not pass the
Random Excursions tests.

Table 4 The results of NIST statistical testing with α = 0.01
for sequences obtained from system (1), 40 bits case

Statistical test Ratio pvalue Result

Frequency 0.093157 0.975 Fail

Block frequency 0.699313 0.990 Success

Runs 0.883171 0.991 Success

Longest run of ones 0.059358 0.989 Success

Rank 0.038062 0.988 Success

Discrete Fourier 0.680755 0.989 Success

Non-overlapping match 0.651693 0.990 Success

Overlapping math 0.047673 0.989 Success

Universal statistical 0.233162 0.991 Success

Linear complexity 0.328297 0.981 Success

Serial 0.092041 0.990 Success

Approximate entropy success 0.036592 0.986 Success

Cumulative sums 0.504219 0.982 Success

Random excursions 0.030806 0.967 Fail

Random excursions var 0.556460 0.976 Fail

Let us consider the proposed algorithm to generate
pseudo-random bits from chaotic systems.

3 Chaos-based pseudo-random number generation

We have chosen two chaotic systems of different
dimensions as sample systems. In both cases, we used
the first-order integration methods with h = 0.001.
Since the obtained finite-difference schemes in compu-
tational costs are comparable to chaotic discrete maps,
the proposed PRNGs will also possess a high speed in
terms of computing in a single iteration as their coun-
terparts based on discrete-time chaotic systems.

3.1 Rossler system

As the first sample nonlinear system, we choose the
well-known Rossler oscillator [37], described as:

⎧⎪⎨
⎪⎩
ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)

(4)

where a, b and c are parameters. Following the bifur-
cation diagram (Fig. 2), we chose two values of c cor-
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Fig. 2 Bifurcation diagram
for the Rossler system for
varying c

responding to chaotic behavior (c = 15) and harmonic
oscillations (c = 5) while a and b were equal to 0.1.

In the proposed algorithmwe used two semi-explicit
systems of equations obtained using the pair of Euler–
Cromer methods:⎧⎪⎨
⎪⎩
xn+1 = xn + h(−yn − zn)

yn+1 = yn + h(xn+1 + ayn)

zn+1 = zn + h(b + zn(xn+1 − c))

(5)

⎧⎪⎨
⎪⎩
zn+1 = zn + h(b + zn(xn − c))

yn+1 = yn + h(xn + ayn)

xn+1 = xn + h(−yn+1 − zn+1)

(6)

3.2 5D hyperchaotic Sprott B system

The ODE system proposed by Ojoniyi et. al [38]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = yz − v

ẏ = x − y − u

ż = 1 − xy

u̇ = ax + y

v̇ = x

(7)

has more arithmetic operations than the Rossler sys-
tem. It can be assumed that the number of bits that are
suitable for pseudo-random generation is greater than
in the case of the three-dimensional system (4) without
the use of special techniques for errors reducing [39].

We performed our experiments with a = 0.01 and
a = −0.9 obtained from the bifurcation diagram pre-

sented in Fig. 3. With a = 0.01 system (7) generates
chaotic oscillations. The value a = −0.9 corresponds
to the non-chaotic mode.

Togenerate bits, applying theEuler–Cromer integra-
tion we used the following finite-difference schemes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1 = xn + h(ynzn − vn)

yn+1 = yn + h(xn+1 − yn − un)

zn+1 = zn + h(1 − xn+1yn+1)

un+1 = un + h(axn+1 + yn+1)

vn+1 = xn + hxn+1

(8)

In our algorithm, as the second scheme, we chose
the following equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn+1 = vn + hxn
un+1 = un + h(axn + yn)

zn+1 = xn + h(1 − xn yn)

yn+1 = yn + h(xn − yn − un+1)

xn+1 = xn + h(yn+1zn+1 − vn+1)

(9)

Let us consider the investigation results for sequences
obtained by generators based on the two described
chaotic systems.

3.3 Experimental results

We applied the proposed algorithm for 1000 different
initial conditions of the Rossler model and the hyper-
chaotic Sprott B system using pairs of finite-difference
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Fig. 3 Bifurcation diagram
for the 5D hyperchaotic
Sprott B system for varying
a

Table 5 The results of evaluating the pseudo-random properties
of the least bits of numbers generated by the Rossler system

Parameter Indices (B) Total extracted
bits

c = 15 Bx = 27, By = 22, Bz = 33 110

c = 5 Bx = 28, By = 22, Bz = 33 109

schemes (5), (6) and (8), (9) to estimate the maxi-
mum number of bits with pseudo-random properties.
To show that the main source of mixing of the least bits
is the discretization and inaccuracy of operations with
finite numbers, we studied the harmonic and chaotic
modes of the sample cases. We completed all the steps
of the proposed algorithm and got the indices presented
in Tables 5, 6 for both systems, respectively. The right-
most column shows the sum of bits that can be used for
generation, obtained by subtracting each value of vec-
tor B from64.As one can see, in both caseswe obtained
similar estimates for chaotic and non-chaotic oscilla-
tions. The small difference can be explained by the
features of floating-point calculations, which imply the
normalization of numbers before performing an arith-
metic operation. Since in the normalized form of the
taken parameter values possess different exponents and
mantissae, then the calculation result may be rounded
differently. Hence, the number of significant bits of
the mantissa affected by the changes can increase or
decrease.

We tested the sequences obtained by extracting the
least significant mantissa bits of numbers of numerical

Table 6 The results of evaluating the pseudo-random properties
of the least bits of numbers generated by the Sprott B system

Parameter Indices (B) Total extracted
bits

a = 0.01 Bx = 30, By = 28, Bz =
31, Bu = 29, Bv = 24

178

a = −0.9 Bx = 30, By = 31, Bz =
31, Bu = 28, Bv = 24

176

orbits calculated using (5) and (8) for both systems,
respectively. The results for α = 0.01 are shown in
Tables 7, 8, 9 and 10 and for α = 0.005—in “Appen-
dices A and B”. As one can see, all tests were success-
fully passed. It can be noted that, in comparison with
the case of the linear system, the number of pseudo-
random bits extracted from each variable increased
insignificantly. Moreover, the sequences obtained from
the non-chaotic oscillations successfully passed ran-
dom tests too. This confirms our assumption about the
large degree of influence of discretization effects and
rounding errors. Moreover, the performance of exist-
ing chaos-based pseudo-random generators, such as
algorithms described in [16,18], can be significantly
increased with the proposed estimation technique. We
can improve the generation speed by more than five
times using high-dimensional chaotic systems simu-
lated by methods of the first or second order of accu-
racy. This enhances the advantages of chaos-based
stream ciphers in comparison with traditional encryp-
tion schemes, especially in the case of multimedia pro-
cessing [40].
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Table 7 The results of NIST statistical testing with α = 0.01
for sequences obtained from the Rossler system, chaotic mode
(c = 15)

Statistical test Ratio pvalue Result

Frequency 0.013991 0.992 Success

Block frequency 0.544254 0.986 Success

Runs 0.650830 0.989 Success

Longest run of ones 0.015444 0.989 Success

Rank 0.060912 0.988 Success

Discrete Fourier 0.028056 0.988 Success

Non-overlapping match 0.270265 0.989 Success

Overlapping math 0.620465 0.987 Success

Universal statistical 0.242986 0.993 Success

Linear complexity 0.015816 0.985 Success

Serial 0.794391 0.993 Success

Approximate entropy 0.129620 0.988 Success

Cumulative sums 0.660012 0.990 Success

Random excursions 0.082513 0.985 Success

Random excursions var 0.123038 0.984 Success

Table 8 The results of NIST statistical testing with α = 0.01
for sequences obtained from the Rossler system, harmonic mode
(c = 5)

Statistical test Ratio pvalue Result

Frequency 0.057510 0.993 Success

Block frequency 0.753844 0.994 Success

Runs 0.739918 0.988 Success

Longest run of ones 0.116065 0.984 Success

Rank 0.228367 0.991 Success

Discrete Fourier 0.037320 0.985 Success

Non-overlapping match 0.266235 0.992 Success

Overlapping math 0.163513 0.989 Success

Universal statistical 0.666245 0.990 Success

Linear complexity 0.448424 0.981 Success

Serial 0.181557 0.988 Success

Approximate entropy 0.233162 0.987 Success

Cumulative sums 0.518106 0.992 Success

Random excursions 0.931185 0.990 Success

Random excursions var 0.926487 0.993 Success

4 Discussion

The obtained results pointed out that one should be
very careful while simulating chaotic systems using a

Table 9 The results of NIST statistical testing with α = 0.01
for sequences obtained from the hyperchaotic Sprott B system,
chaotic mode (a = 0.01)

Statistical test Ratio pvalue Result

Frequency 0.259616 0.991 Success

Block frequency 0.308561 0.991 Success

Runs 0.404728 0.993 Success

Longest run of ones 0.195864 0.988 Success

Rank 0.036352 0.991 Success

Discrete Fourier 0.463512 0.986 Success

Non-overlapping match 0.145326 0.991 Success

Overlapping math 0.135720 0.994 Success

Universal statistical 0.996335 0.992 Success

Linear complexity 0.459717 0.982 Success

Serial 0.875539 0.996 Success

Approximate entropy 0.711601 0.991 Success

Cumulative sums 0.399442 0.990 Success

Random excursions 0.046269 0.990 Success

Random excursions var 0.406499 0.984 Success

Table 10 The results of NIST statistical testing with α = 0.01
for sequences obtained from the hyperchaotic Sprott B system,
harmonic mode (a = −0.9)

Statistical test Ratio pvalue Result

Frequency 0.520102 0.995 Success

Block frequency 0.087162 0.991 Success

Runs 0.869278 0.987 Success

Longest run of ones 0.024688 0.988 Success

Rank 0.221317 0.990 Success

Discrete Fourier 0.488534 0.982 Success

Non-overlapping match 0.165340 0.992 Success

Overlapping math 0.144504 0.984 Success

Universal statistical 0.072066 0.989 Success

Linear complexity 0.933472 0.990 Success

Serial 0.492436 0.990 Success

Approximate entropy 0.138069 0.995 Success

Cumulative sums 0.832561 0.992 Success

Random excursions 0.741918 0.987 Success

Random excursions var 0.055714 0.985 Success

discrete computer with finite-precision numbers. On
the one hand, rounding and discretization errors lead
to the pseudo-random properties of the least bits even
in the case of linear systems. However, when chaotic
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systems are considered, this causes dynamics degra-
dation and the periodicity that reduces the security of
chaos-based cryptosystems [41–43].Moreover, the dis-
cretization effects can lead to the fact that the chaotic
system model gains new properties that the continuous
prototype does not possess [28]. Therefore, electronic
circuitswith chaotic behavior seem tobe amore reliable
source of random numbers [44]. It can be assumed that
for finite-precision numbers obtained from the analog-
to-digital converter, the generation method based on
extracting the least bits from the fractional part of the
number will yield weakly correlated sequences with
pseudo-random properties. The topic of our further
studies will be the investigation of such approaches.

5 Conclusion

In this paper we considered pseudo-random bits gen-
eration using the double-precision floating-point data
type.We have shown that several bits of themantissa of
numbers obtained using numerical integration for solv-
ing linear differential equations have pseudo-random
properties according to the NIST suite. We proposed
the novel algorithm to calculate the maximum number
of bits that are suitable for pseudo-random sequences
generation from the binary representation of floating-
point numbers.We applied this technique in a compara-
tive study of linear oscillator and chaotic ODE systems
as a source of pseudo-randomness. It was found that in
both cases sequences derived from the least bits of the
mantissa of floating-point numbers successfully passed
NIST statistical tests. We explicitly showed that using
the proposed approach, it is possible to increase the
performance of chaos-based pseudo-random number
generators.
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Appendix A: The results of NIST statistical testing
with α = 0.005 for sequences obtained from the
Rossler system

See Tables 11 and 12.

Table 11 chaotic mode (c = 15)

Statistical test Ratio pvalue Result

Frequency 0.993 0.769527 Success

Block frequency 0.997 0.350485 Success

Runs 0.999 0.939005 Success

Longest run of ones 0.993 0.751866 Success

Rank 0.995 0.126658 Success

Discrete Fourier 0.994 0.278461 Success

Non-overlapping match 0.991 0.288249 Success

Overlapping math 0.995 0.851383 Success

Universal statistical 0.996 0.848027 Success

Linear complexity 0.991 0.015707 Success

Serial 0.996 0.632955 Success

Approximate entropy 0.991 0.031848 Success

Cumulative sums 0.992 0.257004 Success

Random excursions 0.990 0.948298 Success

Random excursions var 0.990 0.097743 Success

Table 12 harmonic mode (c = 5)

Statistical test Ratio pvalue Result

Frequency 0.996 0.798139 Success

Block frequency 0.996 0.155499 Success

Runs 0.989 0.394195 Success

Longest run of ones 0.995 0.344048 Success

Rank 0.992 0.068571 Success

Discrete Fourier 0.990 0.248014 Success

Non-overlapping match 0.998 0.179584 Success

Overlapping math 0.997 0.973718 Success

Universal statistical 0.993 0.366918 Success

Linear complexity 0.990 0.149495 Success

Serial 0.992 0.244236 Success

Approximate entropy 0.992 0.011709 Success

Cumulative sums 0.996 0.618385 Success

Random excursions 0.991 0.544254 Success

Random excursions var 0.991 0.216713 Success
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Appendix B: The results of NIST statistical testing
with α = 0.005 for sequences obtained from the
hyperchaotic Sprott B system

See Tables 13 and 14.

Table 13 chaotic mode (a = 0.01)

Statistical test Ratio pvalue Result

Frequency 0.994 0.689019 Success

Block frequency 0.993 0.363593 Success

Runs 0.999 0.143686 Success

Longest run of ones 0.993 0.126658 Success

Rank 0.994 0.039587 Success

Discrete Fourier 0.991 0.428095 Success

Non-overlapping match 0.995 0.342451 Success

Overlapping math 0.998 0.239266 Success

Universal statistical 0.991 0.063217 Success

Linear complexity 0.990 0.246750 Success

Serial 0.996 0.402962 Success

Approximate entropy 0.991 0.220159 Success

Cumulative sums 0.994 0.566688 Success

Random excursions 0.994 0.079051 Success

Random excursions Var 0.996 0.568739 Success

Table 14 harmonic mode (a = −0.9)

Statistical test Ratio pvalue Result

Frequency 0.998 0.717714 Success

Block frequency 0.994 0.202268 Success

Runs 0.996 0.070299 Success

Longest run of ones 0.995 0.260930 Success

Rank 0.995 0.235589 Success

Discrete Fourier 0.993 0.221317 Success

Non-overlapping match 0.993 0.184549 Success

Overlapping math 0.996 0.599693 Success

Universal statistical 0.989 0.415422 Success

Linear complexity 0.990 0.240501 Success

Serial 0.993 0.123038 Success

Approximate entropy 0.993 0.131879 Success

Cumulative sums 0.998 0.846338 Success

Random excursions 0.993 0.281232 Success

Random excursions Var 0.990 0.410055 Success
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