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A B S T R A C T

A well-known problem in the computer science area is related to numerical data representation,
which directly affects adder circuits’ design and a reason to have different formats: IEEE Std.
754, Half-Unit-Biased (HUB), and Round-to-Nearest (RN). RN has an advantage that rounding
to nearest is equivalent to a word truncation. It avoids double rounding errors and intermediate
rounding steps with an exact conversion between formats, making it applicable to general
problems. However, there is a lack of research on the hardware implementation of the RN
representation. In this work, we propose hardware architectures for binary and floating-point
adders, analyzing for the latter its performance in terms of error and resource consumption
in FPGAs. To accomplish this, we have developed a one-bit RN-based adder that allows
modular designs, considering an efficient signal propagation to obtain new architectures for
both binary and floating-point single-precision adders. The results open new perspectives for
further applications.

. Introduction

In computer science (CS) areas as well as in physics, chemistry, biology, among others, numerical data representation is an
mportant aspect and a well-known problem to deal with. From the beginning, CS problems involve different challenges when
epresenting and manipulating data for a given application. One of these challenges is related to the accuracy issue that has always
een present in the computational representations because not every infinite number (continuous set) can be exactly represented in
finite set [1]. When this representation issue happens, a rounding technique is a solution to represent that number finitely, at the

xpense of a loss in accuracy [2]. This kind of loss is commonly called round-off error or rounding error.
Nowadays, the main format to represent floating-point numbers in CS applications is the IEEE Std. 754 (IEEE Standard for Binary

loating-Point Arithmetic) with single, double, or customized precision as the system requires. Additionally, the representation of the
ormal numbers, commonly known as the normalization operation, is one of the main characteristics of the IEEE-754 standard for
inary numbers [3]. However, round-off errors such as the double rounding error appear in a system when a number is sequentially
ounded twice. As a possible consequence, the result is not the same as rounding once to the end precision [4]. These problematic
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effects can be frequently found when the IEEE Std. 754 format is used [5]. Also, current users have to face the problem occasionally
when a more/less precise representation is necessary to maintain the accuracy/silicon area specifications and when several floating-
point formats are supported in a given environment. In this case, it is not easy to know in which format some operations are
performed [4].

As part of the heart of a large number of CS applications, adders (implementing both addition and subtraction) are one of the most
important arithmetic circuits used in computer architectures, including classical von Neumann based microprocessors, Digital Signal
Processors (DSPs), Graphics Processing Units (GPUs), or even in data-flow based architectures such as those based on a homogeneous
network of tightly coupled Data Processing Units (DPUs), called Systolic Arrays. These are often hard-wired for specific tasks, such
as multiply and accumulate operations, to yield massively parallel integration, convolution, correlation, matrix multiplication or
data sorting tasks. In general, adders are present in complex matrix operations, which are some of the most critical computations
because they are involved in different technical applications over a wide variety of exact computation subjects around CS problems.
These applications very often deal with a large amount of data, implying high computational costs and also using floating-point
arithmetic operations where rounding errors appear [2].

Although there is a considerable endeavor to find a general adder circuit solution, all of them go in different directions, from
solutions addressing shifting from 2D to 3D chip manufacturing to improve performance [6], to those that deal with new carry
chain designs [7]. In this context, in the early years, many ways of approximating science problems (based on the representation
of a real number) on computers have been introduced. Other solution approaches treated the problem dealing with particular
deterministic designs that produce imprecise results exploring its error resilience with approximate computing techniques [8,9].
Also, some approaches involve, for instance, implementations of floating-point operators with different number representations, in
which numerical results for a given operation will be identical to the result from an IEEE-754 compliant operator with support for
round-to-nearest even [10]. Likewise, some works tried to demonstrate novel designs for floating-point adders [11–15], or proposed
special Floating-point structures, generally named as fused Floating-Point Data-Path, avoiding the normalization operation. However,
these approaches produced an overhead in hardware resources derived from this process because it needs to carry out after each
arithmetic operation, improving performance but at the expense of a loss in accuracy, [16–18].

Despite this, the major dilemma here is to derive the best trade-off among the key design parameters such as precision,
performance, area, power, and so on, when dealing with different data formats for general computer solutions to develop new
algorithms to approach CS problems [19]. As this is far from being a straightforward task to be solved, adequately choosing
parameters (radix, precision, exponents, etc.) to find an optimal trade-off point (or even better, making clever optimizations to
design new adder circuits based on different number representation) is still an open question for numerical applications to solve
general CS problems.

Given this overview, an alternative to the IEEE Std. 754 floating-point representation is the Round-to-Nearest representation of
umbers, abbreviated as RN-coding. Once it is not a well-known non-standardized number system with potential advantages for CS
pplications, it is worth studying its scope under Adder circuit designs. Unlike the logarithmic number system, which represents
umbers by their logarithms, the addition is less complex to implement [19], and the rounding to nearest is equivalent to a word
runcation [20]. It avoids the double-rounding phenomenon, intrinsic to other types of representations, as well as intermediate
ounding steps, potentiating its use in architecture with Fused Floating-Point Data-Path.

Lately, Half-Unit-Biased (HUB) format [21] has emerged as an alternative number representation, based on the Round-to-Nearest
epresentation [20], showing some advantages for DSP, industrial control, or physic simulation applications. Briefly, HUB formats
nd canonical RN-representation present the same complexity to perform round-to-nearest and radix complement. Although RN
epresentation numbers need at least one bit more than HUB numbers to reach the same precision, conversion from conventional
ormats, trivial in IEEE Std. 754 and RN cases, are not exact for HUB formats. Additionally, the authors stated that the HUB format
oes not offer better performance in the issue of cryptography or related applications in which exact computation is required [21].
herefore, it is not suitable for general CS problems.

Taking these advantages of RN representation and a lack of previous works in this direction, this paper presents two new
ardware architectures, one for a binary adder and the other for a floating-point adder, both based on the RN-coding of numbers.
ith a view to accomplish this, a one-bit RN-based adder that allows modular designs, considering an efficient signal propagation,
as developed. The main goal of this work is to analyze the potential of the implementation of this number system for a new floating-
oint adder, using as main core the developed binary adder. This adder could be appropriate for fused data-path operations [18]
uch as Fused Multiply-Add (FMA) or Fused Multiply-Accumulate (FMAC), in addition to its performance in terms of precision and
esource consumption against some well-known adder libraries: VFLOAT (the IEEE-754 Standard representations) and FloPoCo.

Thus, the contributions of this paper are:

• A new hardware architecture to compute the binary arithmetic addition based on the RN Representation.
• A new hardware architecture that uses the binary adder to compute the arithmetic floating-point addition based on the RN

Representation.
• An analysis of the resource usage and the relative error of this architecture results for different data sets, fixed in single

precision.
• A state-of-the-art comparison with well-established floating-point libraries and implementations, such as VFLOAT and FloPoCo

against the proposed design implemented with the RN-coding representation in terms of precision, resource consumption on
2

reconfigurable hardware.
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Table 1
Sign alternation of the RN representation of a given number 𝑥 for two significant
bits.
𝑏𝑖 𝑏𝑖−1 𝑏𝑖−2 𝛿𝑖 = 𝑏𝑖−1 − 𝑏𝑖 𝛿𝑖−1 = 𝑏𝑖−2 − 𝑏𝑖−1
0 0 0 0 0
0 0 1 0 1
0 1 0 1 −1
0 1 1 1 0
1 0 0 −1 0
1 0 1 −1 1
1 1 0 0 −1
1 1 1 0 0

The rest of this paper is organized as follows: Section 2 explains the basic concepts of Round-to-Nearest Representation as a
rief overview, while Section 3 will address the core structure used to perform the binary addition of RN-coded numbers. Then, an
xplanation of the details of the proposed architecture named RN Floating-Point Adder is given in Section 4. Results are given in
ection 5. Conclusions in Section 6.

. Round-to-Nearest Representations

The RN-coding is a class of number representations introduced by [20], allowing to avoid the double-rounding errors by a simple
ord truncation. The double-rounding issue is a phenomenon that appears in a system that needs to deal with different levels of
recision, making the result of a sequence of arithmetic operations hard to predict. When a number is sequentially rounded twice,
assing for several formats supported in each environment, the result is not the same as rounding once to the end precision but
he case of directed rounding [4]. This double-rounding problem occurs with some rounding methods, e.g., with the standard IEEE
ound-to-nearest-even.

An RN-coding number 𝑥 can be achieved through the Booth recoding of its 2′𝑠 complement representation [22], in which the
alue represented by:

𝑥 ∼ 𝑏𝑚𝑏𝑚−1𝑏𝑚−2 … 𝑏𝑙+1𝑏𝑙

ith 𝑏𝑖 ∈ {0, 1} and 𝑚 > 1 can be RN represented by the digit string:

𝛿𝑚𝛿𝑚−1 … 𝛿𝑙+1𝛿𝑙 with 𝛿𝑖 ∈ {−1, 0, 1}

efined by the Booth recoding for 𝑖 = 𝑙, … , 𝑚 as

𝛿𝑖 = 𝑏𝑖−1 − 𝑏𝑖
(

with 𝑏𝑙−1 = 0 , following the Booth recoding
)

.

It is important to note that, because of the Booth recoding process, the RN representation of a given number 𝑥 will always be so
that any significant 𝛿 digit will be of the opposite sign of its significant adjacent digits, defining a sign alternation intrinsic to this
process (see Table 1).

As defined by [22], a binary RN-coded number can have two finite representations, where one has its least significant nonzero
digit equal to 1, and the other has its least significant nonzero digit equal to −1. These representations differ in the way a given
number is rounded: if the least significant nonzero digit is positive, then the number was rounded up. Oppositely, if the least
significant nonzero digit is negative, then the number was rounded down.

To define the ‘‘Round-to-Nearest Representation’’, let 𝛽 be an integer such that 𝛽 ≥ 2. The digit sequence

𝐷 = 𝑑𝑛𝑑𝑛−1𝑑𝑛−2...
(

with − 𝛽 + 1 ≤ 𝑑𝑖 ≤ 𝛽 − 1
)

(1)

is a RN-coding in radix 𝛽 of 𝑥 if

1. 𝑥 =
∑𝑛

𝑖=−∞ 𝑑𝑖𝛽𝑖 (where this 𝐷 is a radix 𝛽 representation of 𝑥);
2. for any 𝑗 ≤ 𝑛,

|

|

|

|

|

|

𝑗−1
∑

𝑖=−∞
𝑑𝑖𝛽

𝑖
|

|

|

|

|

|

≤ 1
2
𝛽𝑗 ,

that is, if we truncate the digit sequence to the right at any position, the obtained sequence is always the number of the form
𝑑𝑛𝑑𝑛−1𝑑𝑛−2𝑑𝑛−3 … 𝑑𝑗 that is closest to 𝑥.

Hence, truncating the RN representation of a number at any position is equivalent to round it to the nearest representable value.
For every bit in the RN-coded number the value is always the nearest to the final value.

As defined for the ‘‘Round-to-Nearest Representation’’ in Eq. (1), the digit sequence of a number 𝑥 is in error by
𝑒 𝑛−1
3

|𝑑.𝑑⋯ 𝑑 − (𝑥∕𝛽 )| 𝛽
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Fig. 1. RN Floating Point Format Representation for Single Precision. With 1 bit for the sign, 8 bits for the exponent, and 23 bits for the RN-coded Mantissa.

nits in the last place (ulps) with 𝑛 being the precision. An ulp of a given floating-point number 𝑥 is the value represented by its
east significant digit in radix 𝛽, calculated as

𝑢𝑙𝑝(𝑥) = 𝛽max(𝑒,𝑒𝑚𝑖𝑛)−𝑛+1

f 𝛽𝑒 ≤ |𝑥| ≤ 𝛽𝑒+1 [2], where 𝑒 refers to the exponent, an integer, satisfying 𝑒𝑚𝑖𝑛 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥 for 𝑒𝑚𝑖𝑛 < 0 and 𝑒𝑚𝑎𝑥 > 0 (which are
he minimum and maximum exponents, respectively, in a given floating-point representation). If the result of a calculation is the
loating-point number nearest to the correct result, it still might be in error by exact 1∕2 ulp and the relative error ranges between

1
2
𝛽−𝑛 ≤ 1

2
𝑢𝑙𝑝 ≤ 𝛽

2
𝛽−𝑛

aintaining the same relationship with the IEEE Std. 754 format [1,3].
Besides, since there are 𝛽𝑛−1 and 𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛 + 1 possible mantissas and exponents, respectively, the floating-point RN

epresentation can be encoded in an RN-coded number in
[

𝑙𝑜𝑔2
(

𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛 + 1
)]

+
[

𝑙𝑜𝑔2
(

𝛽𝑛−1
)]

its, plus one bit used as a sign bit. The 𝑛 − 1 exponent of the 𝛽 radix occurs because of the bit added during the Booth recoding
reviously described, in such a way that an RN-coded number needs one more bit in its representation. Therefore, a single-precision
loating-point RN-coded number can be represented by the format described in Fig. 1.

Furthermore, the RN-coding allows for: (a) constant time, that is, the size of the representation does not influence the operation
ime, (b) sign inversion, that is, by inverting the sign bit as the IEEE Std. 754, and (c) rounding by truncating the representation at
ny point. Additionally, this approach permits previous rounding information to be passed along on arithmetic operations directly
nd straightforwardly, by observing the least significant nonzero digit and presuming the rounding. If this rounding occurred, it was
ade by truncating a partial value of the opposite sign, respecting the sign alteration at significant values achieved by the Booth

ecoding.

xample 1. Given the fixed point RN representation number 𝑥, where the least significant non-null bit is negative (representing the
egative using an overline 𝑑 on the digit),

𝑥 = 1.0101100101

If 𝑥 is truncated at the last position, it can be seen that the least significant non-null bit of the new truncated representation is
ow positive:

truncated(𝑥) = 1.010110010.

Meaning that if a rounding occurred on the original RN number 𝑥, we can state with certainty that the number was rounded up
because the only possible part of the representation that can be truncated (after the positive significant bit) must be negative, so it
matches the alternating signs of an RN-coded number.

3. RN binary addition

3.1. The overall strategy

In this section, the architecture used in the binary addition of RN-coded numbers is presented in Fig. 2. In the proposed addition,
numbers are encoded in a Signed Magnitude Representation, where the most significant bit represents the sign, and the following
bits depicts the magnitude of the number. In this specific representation, the sign bit corresponds to the sign of the most significant
bit of the magnitude, where the sign of the remaining bits follows the sign switching behavior explained in Section 2.

Because of this characteristic, before performing the RN addition operation, an architecture hereafter referred to as the RN Signal
Generator (see Fig. 2) is utilized to calculate the sign of each bit in the number’s magnitude. Given an RN represented binary number
𝑋 = 𝑟𝑛𝑥𝑛𝑥𝑛−1...𝑥1𝑥0 where the 𝑟𝑛 is the sign bit, 𝑥𝑛...𝑥0 is the magnitude and, consequently, 𝑟𝑛 represents the sign of 𝑥𝑛, the following
equation can be used to calculate the sign of each magnitude bit:

𝑟𝑖 = 𝑟𝑖+1 ⊕ 𝑥𝑖+1 ∀ 𝑖 ∈ N, 𝑛 > 𝑖 ≥ 0. (2)

Following Eq. (2), it is possible to design a system that calculates the XOR operations, in which 𝑟𝑖−1 would be passed to the
following XOR cell to calculate 𝑟 , acting like the carry-in bit.
4

𝑖



Computers and Electrical Engineering 90 (2021) 106947T. Araujo et al.
Fig. 2. Overall RN Binary Adder architecture design used in the addition of the binary RN-coded numbers. Two main units are presented, the RN Signal Generator
and the RN Adder, as well as their inputs and outputs signals.

Fig. 3. Topology used to calculate the sign of each magnitude bit by XOR operations following Eq. (2). Black boxes are XOR operations between X’s and gray
boxes are XOR operations between X’s and R15.

3.2. Tackling the signal problem

Fig. 3 shows our design approach to calculate the signs of 𝑋 to reduce the well-known ripple propagation delay time. This
approach takes advantage of the associative property of the XOR operation by calculating parts of each sign separately, such that
the sign calculation for each magnitude bit is done in parallel computing time.

Thus, Eq. (2) is broken into two major branches, the first one having the most significant half from 𝑋, and the other containing
the remaining half. These two branches work in parallel, such that the first branch result is final, while the result from the second
branch is inputted in an XOR alongside the result from the least significant bit of the previous branch.

Also, to further increase this unit’s performance, each major branch was divided into four smaller branches. This was done by
calculating some 𝑟𝑖 bits by expanding Eq. (2) until 𝑟𝑖 is written only in terms of the bits in 𝑋, such that the output is achieved much
faster.

3.3. Getting the RN Full Bit Adder

With the signs fully mapped to each bit in the magnitude, the binary addition is performing by the RN Adder unit. Before detailing
this unit, the RN Full Bit Adder architecture, represented in Fig. 4, is explained.
5
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Fig. 4. RN Full Bit Adder architecture, used to perform the sum of two bits along a carry-in in the proposed RN representation, following the resulting Eqs. (3)–(5).
As inputs the architecture receive 7 signals, named as: A, rA, B, rB, Cin, rCin and rE, producing as outputs: S, rS, Cout and rCout.

This full adder applies a combinational logic simplification of the addition of two RN-coded bits along with a carry-in to output
the result S, and a carry-out, where the prefix r in inputs and outputs indicates they are a sign bit, where 0 is positive, and 1 is
negative. The rE input stands for the expected result sign for this adder, being used to maintain the sign alternation intrinsic to the
RN representation used in the architecture, as explained in Section 2.

A truth table was elaborated in such a way that the addition is done by the combinational logic associating A, rA, B, rB, Cin
and rCin to reflect the standard sum of three signaled digits in the interval {−1, 0, 1}, while respecting the expected result rE. The
following equations used to implement the RN Full Bit Adder were achieved by simplifying the truth table of the addition:

𝑆 = 𝐴𝐵 𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 (3)

𝑟𝑆 = 𝐴𝐵𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝐵 𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝐵𝐶𝑖𝑛 𝑟𝐸 +

𝐴𝐵𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝐵𝐶𝑖𝑛 𝑟𝐶𝑖𝑛 + 𝐴𝐵 𝐶𝑖𝑛 𝑟𝐶𝑖𝑛 +

𝐴𝑟𝐴𝐵 𝑟𝐵 + 𝐴𝐵𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝑟𝐴𝐵 𝑟𝐶𝑖𝑛 𝑟𝐸 +

𝐴𝐵 𝑟𝐵 𝐶𝑖𝑛 𝑟𝐸

(4)

𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 𝑟𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝐶𝑖𝑛 𝑟𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝑟𝐴𝐵 𝑟𝐵 +

𝐴𝐵 𝑟𝐵 𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝐵 𝑟𝐵 𝐶𝑖𝑛 𝑟𝐸 +

𝐴𝑟𝐴𝐵 𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝑟𝐴𝐵 𝐶𝑖𝑛 𝑟𝐸 +

𝐴𝑟𝐴𝐵 𝑟𝐵 𝐶𝑖𝑛 + 𝐴𝐵 𝑟𝐵 𝐶𝑖𝑛 𝑟𝐶𝑖𝑛 +

𝐴𝐵 𝑟𝐵 𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝑟𝐴𝐵 𝐶𝑖𝑛 𝑟𝐶𝑖𝑛 +

𝐴𝑟𝐴𝐵 𝐶𝑖𝑛 𝑟𝐸 + 𝐴𝑟𝐴𝐵 𝑟𝐵 𝑟𝐸

(5)

𝑟𝐶𝑜𝑢𝑡 = 𝐴𝑟𝐴 + 𝐵 𝑟𝐵 + 𝐴𝐵 𝑟𝐸. (6)

3.4. The proposal for the RN Adder

Given that the RN Full Bit Adder unit takes advantage of the alternation of signs, it is important to preserve this behavior. This
is done by taking advantage of the signaled digit used in the RN Representation to normalize the addition result. In this way, the
alternation of signs is preserved when the expected sign is different from the resulting one. This is done using the same approach
for the Booth recoding used to convert a 2’s complement number to RN. Here, the equation 𝑥 = 2𝑥− 𝑥 can be utilized in part of the
binary string, and for instance,

01011 = 8 + 2 − 1 = 9

has the same value of

11011 = 16 − 8 + 2 − 1 = 9

but the second representation preserves the sign alternation. In the proposed architecture, this is done by setting the carry-out bit
to 1 with the negation of rE as its sign and setting 𝑟𝑆 = 𝑟𝐸. This is the same procedure used to derive, from the truth table, Eqs. (3),
(4), (5), and (6).

With the core of the addition explained, the RN Adder unit (see Fig. 5) previously mentioned is divided into blocks referred as
RN Adder Sets (depicted in Fig. 6) such that 𝑛 (the length of the numbers being added) must be divisible by 3, which is the number
of bits being added in each set. This division, which can be parameterized for specific needs, was selected because it poses a good
balance between the parallel addition inside of the set and the carry bit treatment between them.

The RN Adder Sets are connected between each other using the carry-out signal (Cout) and negated result sign (rS) from a block,
which are passed respectively to the carry-in signal (Cin) and expected result sign (rE) of the next one. The result sign is negated
for the next expected sign to guarantee the sign alternation previously mentioned.

Every set (detailed in Fig. 6) is composed of four RN Adder Modules (as presented in Fig. 7), each being responsible for the
addition of three bits of A and B for one of the four possible combinations of Cin and rE. The correct result is chosen based on these
inputs. This is done so that the performance costly sum in the RN Adder can be performed in parallel across all sets independently
of previous results, that are used only to select the correct one in a multiplexer in each set.
6
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Fig. 5. RN Adder unit, responsible for the sum of RN-coded numbers vA and vB paired with their sign bits rA and rB, based on the RN Adder Sets. Each set is
composed of four RN Adder Modules, each being responsible for the addition of three bits of A and B for one of the four possible combinations of Cin and rE,
where the correct result is chosen based on these inputs.

Fig. 6. RN Adder Set architecture, used to perform the parallel sum of three RN-coded bits for all possible combinations of the expected result and carry-in, in
which the correct answer is then chosen using the outputs from a previous block.

Because the least significant bit in the addition has no expected result sign, the three least significant bits are added in the RN
Adder using a single RN Adder Module with a chosen positive expected result with no carry-in. A negative expected result without
carry-in could also be applied with no difference in the unit’s result. Also, because of the RN representation sign alternation, each
set and module in Fig. 6 will pass only the carry-in value to the next unit, and not its sign, since the expected result and carry-in
must always have the same sign.

The RN Binary Adder architecture then outputs the concatenation of the result sign and the results of each set (and the first
module) in the RN-coded value S, as well as the carry-out value and sign bits Cout and rCout.

Observing the RN Binary Adder unit detailed in Figs. 2, 5, 6, 7, a graphical scheme of the unit’s execution time was developed
for an arbitrary 25 bits input (a single-precision mantissa plus the hidden-bit and a sign bit), as presented in Fig. 8. By analyzing
Fig. 8, it can be seen that the unit has 13 sequential steps. Each group of individual nodes has different meanings depending on the
stage analyzed. Also, each node can be defined by XOR gates for the RN Signal Generator stage, or by RN Full Bit Adders for the RN
Addition stage, or by multiplexers for the Set Result Selection stage in the RN Adder Sets.

Considering a fully connected ripple carry architecture, for both the signal generators and the adders, and a given input of 25
7

bits, a total of 48 sequential steps would be necessary to calculate the binary addition of two RN-coded numbers. Given this, the
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Fig. 7. RN Adder Module, composed of three RN Full Bit Adders sequentially connected to add three RN-coded bits.

Fig. 8. Execution time graphical scheme for the RN Binary Adder unit, where each row is executed in parallel time, while the connections between nodes
represent the passing of results from previous to the next executions step.

proposed RN Binary Adder architecture uses parallel execution to reduce the number of execution steps by 72.927% when compared
to this hypothetical ripple carry architecture.

4. RN floating-point Adder pipelined architecture

Considering the particularities of the RN representation presented in Section 2 and the RN Binary Adder unit detailed in Section 3,
an architecture capable of performing floating-point addition is proposed, with characteristics of a data-flow architecture (without
FSM-based control), where a signal exchange synchronizes the flow of the pipeline stage information.

Taking advantage of the sign switching at significant values intrinsic to the RN-coding, it is possible to represent each signaled
bit of a given value by merely appending a sign bit similar to the one used in the IEEE Std. 754, which corresponds to the sign of
the hidden-bit appended to the mantissa when evaluating the floating-point number. Alongside the sign bit, the floating-point RN
representation proposed is structured by a commonly biased exponent and an RN-coded mantissa, in which the most significant bit
of the mantissa has the opposite sign of the hidden-bit.
8
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Fig. 9. RN Floating-Point Adder architecture design. A six-stage pipelined architecture based on the RN Adder was developed to execute the floating-point addition
of two single-precision floating-point RN represented numbers.

Based on this, a six-stage pipelined architecture was developed to execute the floating-point addition of two single-precision
floating-point RN represented numbers. The diagram of that architecture, hereafter referred to as the RN Floating-Point Adder, is
presented in Fig. 9.

As observed in Fig. 9, the first step taken in the RN Floating-Point Adder architecture is to normalize the inputs using the
Input Normalizer unit. This unit is responsible for equalizing the exponents of inputs 𝐴 and 𝐵, where the mantissa of the lower
input is right-shifted after the hidden-bit is appended to it, to have the same exponent of the greater input. During this process,
the characteristic rounding by truncation of the RN representation is utilized to round the shifted mantissa, saving resources and
potential execution time, as well as ensuring this rounding is done at constant time. The outputs of this component are then passed
to the Input Register, defining the first pipeline stage of the architecture.

Following the input normalization, the extended normalized mantissas are inputted in the RN Signal Generators presented in
Section 3, which generate the signs for each magnitude bit of the mantissa. It is output, along with the magnitude of 𝐴 and 𝐵’s
mantissas and the exponent, is passed to the Signal Register, marking the second pipeline stage of the RN Floating-Point Adder.
9
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Fig. 10. Simulation and Synthesis flow details used for Software and Hardware design analysis. For Software, RStudio IDE was used as a statistical estimator.
For Hardware analysis, the Vivado tool was used for the implementation process of the proposed architecture, as well as for a logic resource estimation.

After this, the mantissas, defined by the pairs (𝑣𝐴, 𝑟𝐴) and (𝑣𝐵, 𝑟𝐵), are passed to an altered RN Adder unit that uses one clock
cycle to perform the binary addition. Because of this clock cycle, the exponent is passed through a register to synchronize its time
with the rest of the signals, establishing the third pipeline stage of the architecture.

Subsequently, the outputs of the RN Adder unit alongside the output exponent from the Delay Register are then passed to the
Addition Register, outlining the fourth pipeline stage of the RN Floating-Point Adder.

Thereafter, the result of the addition is passed through the Leading Zero Counter (LZC) unit. The LZC takes one clock cycle and
is responsible for left-shifting the result for the number of leading zeros, fitting the hidden-bit in the Most Significant Bit (MSB)
position, and outputting the shifted value and the shift count. In the same way that was done with the RN Adder unit, because of
the clock cycle used by the LZC, the previous outputs from the addition are delayed using the LZC register, which marks the fifth
pipeline stage.

Finally, the results from the LZC and the addition are passed to the Output Normalizer. This unit is used (a) to remove the
hidden-bit from the resulting mantissa, (b) to normalize the exponent with the LZC shift count or the addition carry-out, (c) to
concatenate the sign, exponent, and mantissa in a single output S and (d) to detect representation overflow and underflow, which
then pass its outputs to the Output Register, defining the sixth and last stage of the RN Floating-Point Adder.

It is important to notice that, because of the characteristic rounding on the truncation of the RN representation, no rounding
unit is needed in any of the steps described above, resulting in architecture free of extra rounding steps as normally presented in
other libraries [23,24].

5. FPGA implementation results

The implementation of the RN Floating-Point Adder architecture is presented here using the Xilinx Artix 7 series 𝑋𝐶7𝐴100𝑇 −
1𝐶𝑆𝐺324𝐶. The core was developed in VHDL and synthesized using Xilinx’s Vivado v2017.4. After implementing the designed RN
Floating-Point Adder architecture on FPGA, a series of tests were done to analyze it for two main parameters: precision and resource
consumption.

The error analysis of the RN Floating-Point Adder architecture must be carefully considered showing the differences of this
particular implementation and demonstrating if this basic arithmetic architecture introduces more rounding error than necessary.

Hence, along with the RStudio IDE, the R environment was used as a statistical estimator and as a graphic plotting, against
double floating-point representation values. Also, numerical software results, from R and ModelSim environments, were compared
to establish a relative error to measure the proposed architecture’s rounding error. All selected test cases try to expose the behavior
of the RN representation near boundary quantities. The general flow used for design analysis is presented in Fig. 10, in which one
can observe the use of test benches for both parts of the process, the software analysis, and the hardware implementation.

Also, configuration scripts were implemented to generate all the data values for the RN Floating-Point Adder architecture, as
presented in Fig. 10, as well as to automatically deal with the mantissa conversion process from 2’s complement representation to
RN representation and conversely, as shown in algorithms 1, 2 and in Fig. 11.

Therefore, five different tests were performed addressing different cases, as follows:
10
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Algorithm 1 Conversion process from 2‘s complement to RN representation.
1: procedure
2: 𝑏 ← 𝑓𝑙𝑜𝑎𝑡2𝑏𝑖𝑛(𝑠𝑖𝑛𝑔𝑙𝑒(𝑓 ))
3: 𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑏[1]
4: 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ← 𝑏[2 ∶ 9]
5: 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ← 𝑏[10 ∶ 32]
6: #𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑏𝑖𝑡 𝑎𝑛𝑑
7: #0 𝑠𝑜 𝑡ℎ𝑒 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎
8: #𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑎𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑁 𝑛𝑢𝑚𝑏𝑒𝑟
9: 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ← ‘01‘ + 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

10: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = ‘ ‘
11: for 𝑖 𝑖𝑛 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎) − 1 do
12: if 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎[𝑖] == 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎[𝑖 + 1] then
13: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 + = ‘0‘ #1 − 1 𝑜𝑟 0 − 0
14: else
15: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 + = ‘1‘ #1 − 0 𝑜𝑟 0 − 1
16: end if
17: end for
18: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 + = 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎[𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎)]
19: #𝑅𝑒𝑚𝑜𝑣𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑏𝑖𝑡
20: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎[2 ∶ 24]
21: #𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 𝑎𝑠
22: #𝑡ℎ𝑒 𝑅𝑁 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
23: #𝑎𝑑𝑑 𝑎 𝑏𝑖𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
24: 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑏𝑖𝑛2𝑑𝑒𝑐(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡)
25: 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + = 1
26: 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑑𝑒𝑐2𝑏𝑖𝑛(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 8)
27: #𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡
28: 𝑟𝑛 = 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎
29: end procedure

Fig. 11. Conversion Process from 2’s complement to RN representation.
Source: Adapted from [20].

able 2
elative error linked to the addition process of the proposed RN Floating-point Adder, the FloPoCo FPAdder, and the VFLOAT Adder, showing a competitive
rror of the proposed approach. Values presented in scientific notation. The asterisk (*) means some inputs that have not been correctly added by the VFLOAT

architecture.
RN Floating-Point Adder FloPoCo FPAdder [24] VFLOAT Adder [25]

Average error Maximum error Average error Maximum error Average error Maximum error

SOM 5.16−08 2.04−07 2.73−08 9.93−08 3.41−08 1.38−07

SDOM 6.53−08 2.76−07 2.90−08 1.08−07 4.68−08 1.59−07

GDOM 5.27−08 1.72−07 2.11−08 5.81−08 3.69−06∗ 3.71−03∗

SN 8.88−08 5.06−07 3.65−08 2.13−07 3.97−08 2.13−07

BN 8.66−08 6.94−07 3.69−08 2.58−07 4.21−08 2.58−07

1. Sum of numbers of the same order of magnitude (SOM), ranging from 1.99−01 to 8.97−01;
2. Sum of numbers with a small difference in the order of magnitude (SDOM), ranging from 5.02−05 to 4.00−01;
3. Sum of numbers with a great difference in the order of magnitude (GDOM), ranging from 2.00−08 to 9.9907;
11
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Algorithm 2 Conversion process from RN representation to 2’s complement.
1: procedure //
2: 𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑟𝑛[1]
3: 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ← 𝑟𝑛[2 ∶ 9]
4: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ← 𝑟𝑛[10 ∶ 32]
5: #𝐶𝑎𝑠𝑡 𝑡𝑜 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
6: 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑖𝑛𝑡(𝑠𝑖𝑔𝑛𝑎𝑙)
7: #𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑡ℎ𝑒ℎ𝑖𝑑𝑑𝑒𝑛 𝑏𝑖𝑡
8: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = ‘1‘ + 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎
9: 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 0

10: 𝑠 = 1
11: for 𝑖 𝑖𝑛 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎) do
12: if 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎[𝑖] == ‘1‘ then
13: 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 + = 𝑠 ∗ 2(1 − 𝑖)
14: 𝑠 ∗= −1
15: end if
16: end for
17: #𝑅𝑒𝑚𝑜𝑣𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑏𝑖𝑡
18: 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 𝑟𝑛𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎[2 ∶ 24]
19: #𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑡𝑜 𝐷𝑒𝑐𝑖𝑚𝑎𝑙 𝑎𝑛𝑑
20: #𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑖𝑎𝑠
21: 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑏𝑖𝑛2𝑑𝑒𝑐(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡)
22: 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 − = 127
23: 𝑓 = 𝑠𝑖𝑛𝑔𝑙𝑒(𝑠𝑖𝑔𝑛𝑎𝑙 ∗ 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡)
24: end procedure

4. Sum of small numbers, close to the lower limit of the representation (SN), ranging from 2.00−27 to 9.99−27;
5. Sum of big numbers, close to the upper limit of the representation (BN), ranging from 2.0030 to 9.98+30.

In the overall context of this work, values larger than 𝛽 × 𝛽𝑒𝑚𝑎𝑥 or smaller than 1.0× 𝛽𝑒𝑚𝑖𝑛 are not considered in the analysis. As a
atter of example for what is considered the relative error, when approximating 5.17165 by 5.17 × 100 the relative error involved

s 0.00165∕5.17165 ≅ 0.0003.
In this context, for each of these tests, 10000 single-precision samples following the IEEE Std. 754 format were used as input to

he RN Floating-Point Adder, to the FloPoCo FPAdder [24] and to the VFLOAT Adder [25]. Results from these architectures were
ompared to the standard double-precision IEEE Std. 754 floating-point addition result, performed in software, to estimate and
ompare the relative error linked to the addition process of each design.

Special attention was taken so that any real number used in the tests is inside the range of representation, in order to avoid
verflow and underflow errors. However, the same attention was not taken for real numbers that might not be exactly representable
s a floating-point number. For instance, when the result of a decimal number converted to a binary has an infinite repeating
epresentation, in which these cases were included in the results.

In the GDOM tests, some inputs have not been correctly added in the VFLOAT Adder architecture, whose results negatively
nfluenced the error estimates for this architecture, as shown in the values marked with an asterisk (*) in Table 2.

Analyzing the results in Table 2, it can be noted that, even though the three architectures present consistent errors (except the
DOM test case for the VFLOAT Adder) in the addition of single-precision numbers, the FloPoCo library has a slight advantage over
FLOAT. Besides, both of them have, in most cases, half of the average relative error of the RN Floating-point Adder architecture.
his is justified mainly by the loss of one bit of precision during the conversion of the mantissa between two’s complement and the
N-coding using the Booth recoding.

Together with the resulting error estimates, the probability density of the relative error for the RN Floating-Point Adder
rchitecture was calculated for the general cases. The results, presented in Fig. 12, demonstrate that the vast majority of cases
ontemplated in this analysis provide an associated error with values around 1E-09 to 5E-07, averaging to 6.90E-08.

Concerning the FPGA Artix, the synthesis result, presented in Table 3, has shown that the proposed architecture used about
97 (0.94%) with 6-input LUT and 439 (0.35%) FF. No internal memory, no internal LUTRAM, and no internal DSP were used in
he synthesis design. Comparing with the FloPoCo FPAdder, it used about 376 (0.59%) LUT, 411 (0.32%) FF, as well as 10 (0.05%)
UTRAM. The RN Floating-Point Adder architecture requires more LUTs with a ratio of 1.58 against the Flopoco Adder, but Flopoco
dder uses LUTRAM and only implements the sum operation information as an output. While the RN Floating-Point Adder architecture
elivers, apart from the sum, signs of underflow and overflow. Also, the total power ratio is 0.948, showing that the proposed
rchitecture consumes less power than the Flopoco Adder. The VFLOAT adder used fewer resources than both architectures discussed
bove (see Table 3), although VFLOAT showed several errors in their precision tests. Furthermore, the system was configured to
ollow the strategies Flow_PerfOptimized_high with retiming and Performance_Explore, in the constraints file (see Fig. 10), for synthesis
12
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Fig. 12. Probability density of the relative error for the RN Floating-Point Adder architecture.

Table 3
Resource usage after synthesis of the floating-point architectures configured for single-precision
representation. Three Adders architectures are compared: RN FP Adder, FloPoCo FPAdder, and
VFLOAT Adder. The comparisons are in terms of LUT, LUTRAM, FF, and Power Consumption,
showing the potential of the proposed architecture for hardware implementations.

RN FP Adder FloPoCo FPAdder [24] VFLOAT Adder [25]

LUT 597 376 377
LUTRAM – 10 2
FF 439 411 367
Total power (mW) 185 195 160

and implementation, respectively. Thereby, the RN Floating-Point Adder with 6 pipeline stages can achieve up to 225.2 MHz, and
the FloPoCo FPAdder achieves a frequency of up to 243.9 MHz with 9 pipeline stages, and the VFLOAT Adder a frequency of up to
225.2 MHz with 5 pipeline stages.

6. Conclusion

The proposed floating-point adder architecture explored the round-to-the-nearest process by simple truncation of the values in
the RN coding of numbers. This was taken as an advantage for its hardware designs and for avoiding extra round-off steps after the
normalization process. It is worth noting that our architecture sets its parametrization to a mantissa in multiples of 3, configured to
educe the number of logical levels. In this way, a robust unit was created to select the best relationship of parameters (performance,
rea, or precision) according to each application’s needs.

Although the results show a disadvantage related to the precision of the calculations, when compared with FloPoCo FPAdder,
he RN representation provides one digit to load the rounding information. This implies the loss of 1∕2 ulp of resolution. It is also
orth mentioning that FloPoCo internally uses a 34-bit representation. However, we can highlight that RN representation avoids
ouble rounding propagation, which potentially allows implementations with less hardware and joint arithmetic operations without
ntermediate denormalization/normalization steps.

Nonetheless, we must point out that even with the relative cost, the convenience of using the proposed adder lies in establishing
native RN architecture. This possibility guarantees the RN number system’s properties when dealing with applications where

voiding the double rounding error can significantly increase precision. This fact opens perspectives in cases in which exact
omputation is required, in contrast to other approaches found in existing literature.
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