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Abstract
The traveling salesman problem (TSP) is one of the best-known combinatorial optimization problems. Many methods derived
from TSP have been applied to study autonomous vehicle route planning with fuel constraints. Nevertheless, less attention has
been paid to reinforcement learning (RL) as a potential method to solve refueling problems. This paper employs RL to solve
the traveling salesman problem With refueling (TSPWR). The technique proposes a model (actions, states, reinforcements)
and RL-TSPWR algorithm. Focus is given on the analysis of RL parameters and on the refueling influence in route learning
optimization of fuel cost. Two RL algorithms: Q-learning and SARSA are compared. In addition, RL parameter estimation is
performed by Response Surface Methodology, Analysis of Variance and Tukey Test. The proposed method achieves the best
solution in 15 out of 16 case studies.

Keywords Reinforcement learning · Traveling salesman with refueling problem · Tuning of parameters

Introduction

The traveling salesman problem (TSP) is one of the best-
known combinatorial optimization problems and is often
considered in autonomous vehicle route planning [11,19,31,
48,50,65,80]. In a TSP, the sequence of autonomous agent
movements should optimize a route between a set of nodes
[3,16,32,33,55]. Moreover, the agent must visit each node
(city) only once, considering equivalent the initial final posi-
tion (goal) of route. In this aspect, the TSP generalizations
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encompass various aspects ofmobile robotics, such as restric-
tions of the vehicle [48], dynamic environments [65] and
multiple vehicles [38,80].

An important research area for autonomous vehicle route
planning considers fuel constraints [35,78]. In such cases, the
challenge is to define a route to ensure that the vehicle carries
out all thewaywithout finishing the fuel. Following this same
line, refueling problems seek to optimize the expenditure on
the fuel purchase for road routes [27,60,71].

Vehicle refueling problems have been extensively inves-
tigated [25,27,36,42,43,56,57,62,69–71]. One of the lines of
study is the fixed route vehicle refueling problem (FRVRP),
where the goal is to select the refueling points on a fixed
route. [27,43,73]. For example, [43] have presented a linear
time greedy algorithm for the FRVRP. There are also applica-
tions of FRVRP to real problems. [60] have developed other
example, where a fixed route refuelingmodel for a case study
of a Brazilian carrier; [73] have analyzed the influence of fuel
weight, congestion, and acceleration on refueling policy opti-
mization. Other works seek to analyze the refueling policy on
variables routes [27,71]. In this sense, it is worth highlight-
ing the applications based on TSP [67,71,82]. Suzuki [71]
has presented a model that addresses the Traveling Salesman
Problem With Time Windows and refueling. The goal is to
define a route to minimize fuel consumption, respecting the
time window for each customer [71]. Other applications of
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TSP with refueling are unmanned aerial vehicles [67] and
geosynchronous satellites [82]. It is important to point out
that refueling problems are usually classified into four groups
[27]: refuelingwith fixed route, refuelingwith variable route,
TSP with uniform cost at each point and TSP with the fuel
cost varying in the localities. In this sense, the last class can
be applied to treat refueling in road networks in Brazil, where
fuel price variations are found in each city according to data
from the Brazilian National Petroleum Agency (ANP)1.

In the literature, several methods have already been
applied to solve refueling problems [35,56,67,72,77,82].
Levy et al. [35] have adopted heuristics Variable Neighbor-
hood Descent and Variable Neighborhood Search (VNS) to
vehicle routing problem with fuel constraints. The work [77]
also adopts the VNS to optimize a fleet with alternative-fuel
(gasoline or diesel vehicles). Zhang et al. [82] have used the
Ant ColonyOptimization to solve refuelingmultiple geosyn-
chronous problems. The author of [72] discusses Simulated
Annealing and Tabu Search methods for the pollution rout-
ing problem (minimize the fuel consumption or pollutants
emission). Other papers presented news algorithms to opti-
mize refueling problems [56,67]. Although Reinforcement
Learning has shown to be a great tool to combinatorial opti-
mization problems there is less attention to solve refueling
problems.

Reinforcement learning (RL) is an artificial intelligence
technique with relevant applications in robotics [8,15,28–
30,37], path planning [20,39,47,59,75,76] and combinatorial
optimization problems [4,7,13,14,21,44,53,54,64,79], such
as the TSP [1,2,18,22,41,45,52,66,81]. In RL, an agent learns
from rewards and penalties in interacting with an environ-
ment [68]. One of the main topics of investigation in RL is
the estimation of learning parameters, like learning rate (α)
and discount factor (γ ), ε-greedy and reinforcement func-
tion [6,17,23,24,40,54,63]. In fact, parameter definition can
directly influence a good route learning [5,12,52,54]. Bal
and Mahalik [5] have shown how to estimate the parameters
α and γ by trial and error for a simulated navigation envi-
ronment. In Ottoni et al. [52], the authors have presented a
systematic approach for the RL parameter estimation using
Response Surfaces Methodology (RSM). In [54], a complete
factorial experiment and the Scott-Knott have been used to
find the best combination of factors (ε-greedy and reinforce-
ment function) for the Sequential Ordering Problem. The
paper [12], in turn, has proposed a method based on evolu-
tionary computation to seek the best reinforcement function
and Deep Learning network architecture for an autonomous
navigation problem. Yet, no rigorous method for estimating
the parameters for refueling problems has been found.

To overcome the lack of a parameter estimation frame-
work for refueling problems, thiswork introduces a statistical

1 http://anp.gov.br/preco/.

methodology for tuning RL parameters employed on trav-
eling salesman problem With refueling. More specifically,
we have analyzed how the RL parameters and the refuel-
ing problems characteristics influence the learning of routes
to optimize the fuel cost. We have proposed an RL struc-
ture to solve the traveling salesman problem with refueling
(TSPWR), through a model (actions, states, reinforcements)
and RL-TSPWR algorithm. Instances to solve uniform and
non-uniform cost routeswereworked out based onANPdata.
The experiments involve simulations with two traditional RL
algorithms:Q-learning [74] andSARSA[68]. In addition,RL
parameter estimation is performed using statistical methods:
RSM [51], Analysis of Variance (ANOVA) [49] and Tukey
Test [49]. Best solutions have been found in 15 out of 16
analyzed numerical experiments.

The remainder of this paper is organized as follows. The
second and the third sections present basic theoretical con-
cepts of the RL and TSPWR, respectively. Then, the fourth
section describes the proposed technique. The results are
given in the fifth section and concluding remarks are deliv-
ered in the sixth section.

Reinforcement learning

Reinforcement learning (RL) is a machine-learning tech-
nique based on Markov decision processes (MDPs) [26,61,
68,74].MDPs are structured fromfinite sets of actions, states,
reinforcement and a state transition model. The learner agent
interacts with the environment in a sequence of steps in time
(t): (i) the agent receives a representation of the environment
(state); (ii) select and execute an action; (iii) receive the rein-
forcement signal; (iv) update the learningmatrix; (v) observe
the new state of the environment [68].

In RL, the goal is to learn a policy (π ) that maximizes
numerical reinforcement [68]. A policy defines the agent
behavior, mapping states into actions. The ε-greedy method
is an example of the action selection policy adopted in RL
[68]. In this method, the parameter ε (0 < ε < 1) is defined
and the policy π(s) is applied according to the following
equation [68]:

π(s) =
{
a∗, with probability 1 − ε

aa, with probability ε,
(1)

where π(s) is the decision policy for the current state s, a∗
is the best estimated action for the state s at the current time
and aa is a random action selected with probability ε.

SARSA [68] and Q-learning [74] are common RL algo-
rithms. These methods are based on temporal difference
learning (TD), that is, updates do not need to refer to real-
time intervals, but to successive decision-making steps. The
SARSA (see Algorithm 1) is an RL on-policy TD Control
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algorithm, which depends on the next action (at+1) defined
by the policy π(s) to update the learning matrix, according
to the following equation:

Qt+1 = Qt (s, a) + α[r(s, a) + γ Qt (s
′, a′) − Qt (s, a)],

(2)

where s is a state and a is an action at the current instant
(t), respectively; s′ is state and a′ is action at the next
instant (t + 1); Qt (s, a) is the value at time t in the Q
matrix for the pair state × action (s, a). Qt+1 is the updat-
ing of the learning matrix in t + 1 by executing the action
a in state s; r(s, a) is the reinforcement by the execution
of the pair (s, a); α is the learning rate; γ is the discount
factor.

The parameters learning rate (α) and discount factor (γ )
are adopted in several algorithms [68]. These parameters can
be set between 0 and 1. The learning rate controls overlap
speed of new information and the discount factor describes
an agent preference between current and future rewards. If
γ ≈ 1, then the future rewards are highly significant. Oth-
erwise, if γ � 1, the current rewards are more relevant
at the instant t than the subsequent rewards (discounted)
[61,68].

1 Set the parameters: α, γ and ε
2 For each pair s,a to initialise the matrix Q(s,a)=0
3 Observe the state s
4 Select the action a using ε-greedy method
5 repeat
6 Take the action a
7 Receive immediate reward r(s, a)
8 Observe the new state s’
9 Select the new action a’ using ε-greedy method

10 Update Q (s, a) with Eq. (2)
11 s = s’
12 a = a’
13 until the stopping criterion is satisfied ;

Algorithm 1: SARSA.

On the other hand, Q-learning (see Algorithm 2) is an off-
policy TDControl algorithm [61,68,74]. In that sense, it does
not depend on the next action (at+1) to perform the update
at the instant t , according to the following equation:

Qt+1 = Qt (s, a)

+α

[
r(s, a) + γ max

a′ Q(s′, a′) − Qt (s, a)

]
, (3)

wheremaxa′ Q(s′, a′) is the utility of s′, that is, themaximum
value in the line of Q referring to the new state.

1 Set the parameters: α, γ and ε
2 For each pair s,a the matrix Q(s,a)=0 should be

initialised
3 Observe the state s
4 repeat
5 Select the action a using ε-greedy method
6 Take the action a
7 Receive immediate reward r(s, a)
8 Observe the new state s’
9 Update Q (s, a) with Eq. (3)

10 s = s’
11 until the stopping criterion is satisfied ;

Algorithm 2: Q-learning.

Traveling salesman problemwith refueling

The problem considered in this work is the path planning in a
road network for autonomous vehicles. A mobile agent must
travel through a set of cities and decide where to refuel to
minimize thefinal route cost. For this, theTravelingSalesman
Problem With refueling (TSPWR) is adopted in two forms:
uniform and non-uniform cost [27]. In the first case, a vehicle
must visit a set of locations and return to the starting city
at the route end and fuel price does not vary between route
stations. Second, in the problemwith non-uniform cost, there
are different selling cost for the fuel in the cities.

The following restrictions are considered: vehicle fuel
tank capacity, minimum amount of fuel for refueling and
guarantee of completing the entire route [60]. In addition,
this work considers the possibility of using a tow truck in
case fuel runs out between two locations, which requires an
additional cost for that.

Problem formulation

A mathematical formulation for the proposed problem is
based in [10,60,70] and contains two decision variables: ui, j
and zi j . The ui, j assumes 1 if the arc (i, j) makes up the
solution and 0 otherwise. Also, zi j is a decision variable that
gets 1 only if the tow truck is used between the locations i and
j . This formulation is presented in the following equations:

Min
N∑
i=1

N∑
j=1

c j l j ui j + gi j zi j , (4)

subject to:

N∑
i=1

ui j = 1 j = 1, . . . , N , (5)

N∑
j=1

ui j = 1 i = 1, . . . , N , (6)
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f j + l j ≤ Lmaxui j i, j = 1, . . . , N , (7)

l j = (Lmax − f j )wi j i, j = 1, . . . , N , (8)

l j ≥ Lminwi j i, j = 1, . . . , N , (9)

ui j , wi j , zi j ∈ {0, 1} i, j = 1, . . . , N , (10)

{c j , f j , gi j , l j , Lmax, Lmin} ≥ 0 i, j = 1, . . . , N , (11)

U = ui j ∈ V i, j = 1, . . . , N , (12)

where N is a set of nodes. In addition, the refueling cost
in the city j is c j and l j is the amount of fuel replenished
in j . The tow truck cost on an arc (i, j) is represented by
gi j . Thus, Eq. (4) is the objective function, wherein the total
route cost given by the sum of refueling and tow truck costs
should be minimized. Equations (5) and (6) ensure that each
location is visited only once. Furthermore, Eq. (7) ensures
that the amount of fuel in the tank ( f j + l j ) does not exceed
maximum capacity (Lmax), where f j is the reservoir level at
the time of arrival in the city j . Equation (8) ensures that the
vehicle completes the maximum tank level when refueling,
where wi j = 1 if refueling occurs at location j . Besides
that, Eq. (9) restricts the minimum quantity for refueling.
In addition, Eqs. (10) and (11) ensure that the variables ui j ,
w j , zi j are binary and the other variables are non-negative,
respectively. Finally, in Eq. (12), the set V represents any set
of constraints that eliminate the formation of sub-routes.

Instances

In this paper, four instances are proposed: Bahia30D,
Minas24D,Minas30DandMinas57D.Each instance involves
a set of cities from two Brazilian states (Minas Gerais and
Bahia). The data is composed by the Euclidean distances
between localities, calculated from the coordinates (latitude
and longitude). In addition, also the diesel average cost (D)
in each city was defined from the ANPwebsite data obtained
in December 2018. Then, the cities are described in the
following format “city (diesel average price in Reais (R$)—
Brazilian currency)”:

Bahia30D: Alagoinhas (3.307), Barreiras (3.654), Bru-
mado (3.646), Caetite (3.688), Camaçari (3.358), Eunápolis
(3.526), Feira de Santana (3.346), Guanambi (3.620), Ilhéus
(3.761), Ipirá (3.304), Irecê (3.650), Itabuna (3.599), Itama-
raju (3.520), Jacobina (3.592), Jaguaquara (3.336), Jequié
(3.597), Juazeiro (3.668), Lauro de Freitas (3.270), Livra-
mento de Nossa Senhora (3.721), Paulo Afonso (3.683),
Poções (3.380), Porto Seguro (4.067), Salvador (3.399),
Santo Antônio de Jesus (3.340), Senhor do Bonfim (3.481),
Serrinha (3.443), Simões Filho (3.367), Teixeira de Freitas
(3.545), Valen-ça (3.532) and Vitória da Conquista (3.291).

Minas24D: Araguari (3.321), B. Horizonte (3.471), Betim
(3.408), Campo Belo (3.433), Contagem (3.393), Formiga
(3.418), Governador Valadares (3.366), Guaxupé (3.446),
Itabira (3.476), Ituiutaba (3.437), Juiz de Fora (3.307),Monte

Carmelo (3.428), Montes Claros (3.458), Oliveira (3.361),
Patos deMinas (3.526), Poços de Caldas (3.613), Pouso Ale-
gre (3.453), Sete Lagoas (3.238), Teófilo Otoni (3.443), Três
Corações (3.735), Uberaba (3.51), Uberlândia (3.476), Unaí
(3.486) and Varginha (3.511).

Minas30D: Cities in Minas24D more Araxá (3.399), Bar-
bacena (3.475), Divinópolis (3.507), Ipatinga (3.483), Lavras
(3.774) and Passos (3.657).

Minas57D: Cities in Minas30D more Alfenas (3.624),
BomDespacho (3.249),Caratinga (3.429),Congonhas (3.557),
C. Lafaiete (3.629), Coronel Fabriciano (3.668), Curvelo
(3.288), Frutal (3.583), Itajubá (3.456), Itaúna (3.444),
Janaúba (3.586), Januária (3.726), João Monlevade (3.421),
JoãoPinheiro (3.533),Leopoldina (3.287),Manhuaçu (3.422),
Muriaé (3.458), Nova Lima (3.724), Ouro Preto (3.72),
Pará de Minas (3.526), Paracatu (3.656), Patrocínio (3.608),
Sabará (3.532), São João del-Rei (3.712), São Sebatião do
Paraíso (3.529), Timóteo (3.459) and Ubá (3.545).

Methodology

The methodology proposed in this paper consists of four
steps. First, the RL model is structured in states, actions and
reinforcement functions. After that, the algorithm for solving
the TSPWR with Reinforcement Learning (RL-TSPWR) is
proposed. The following steps present the experiments and
methods for tuningRLparameters.ResponseSurfaceModels
were used to optimize α and γ , wherein the best combina-
tions of the reinforcement function and ε are obtained by
means of ANOVA and Tukey test.

Reinforcement learningmodel

The model aims to enable the agent to learn how to path
planning that minimizes refueling cost and distance. For this,
the RL model defined for the TSPWR resolution consists
of a set of states, actions and reinforcements. The wording
adopted is based on previous studies that applied RL in TSP
solution: [9,41,52]. The proposed structure is as follows:

– States: locations (nodes) that the agent (traveling sales-
man) must visit to perform the route. In this sense, the
number of states varies according to the instance nodes.

– Action: intention tomove to another location (state) of the
problem. In addition, the refueling action is performed
whenever the vehicle arrives at a location with less than
25% of tank level maximum capacity (0.25 × Lmax).

– Reinforcements: functions were defined to associate the
cost with the movement between two localities, the refu-
eling cost in each city and tow truck cost. Five different
types of reinforcements have been proposed, according
to the following equations:
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R1 = −(di j + c j ), (13)

R2 = −c j , (14)

R3 = −di j , (15)

R4 = −(c j + gi j zi j ), (16)

R5 = −(di j + c j + gi j zi j ), (17)

where di j is the distance between cities i and j ; c j is the
refueling cost in the node j ; tow truck cost on an arc (i, j)
is represented by gi j and zi j is a decision variable that gets
1 only if the tow truck is used between the locations i and j .
Thus, the higher the total cost of moving and refueling, the
more negative the penalty for route formation is.

RL-TSPWR algorithm

This section presents the RL-TSPWR algorithm, which
applies RL (Q-learning version) in the TSPWR solution (see
Algorithm 3). The variables of the proposed algorithm are
associated with the mathematical formulation of Eqs. (4)–
(12).

In this paper, the simulated vehicle has small truck features
for all experiments and TSPWR constants are maximum fuel
tank capacity of 150 l (Lmax = 150); average diesel consump-
tion of 7 km/l; the tow truck cost of using was fixed at R$
200.00 (gi j = 200), and the reference level (level-ref) is 25%
of maximum capacity (0.25 × Lmax = 37.5).

The RL-TSPWR starts by initializing RL parameters, the
learning matrix, TSPWR variables/constants and the initial
state (s0) (lines 1–4). Then, the execution loops start (lines
5 and 6). Subsequently, the destination city is selected, and
the action is performed (lines 7 and 8). After that, the new
fuel tank level is calculated from the distance between cities
(i and j) and the average consumption (km/l). In line 10,
the calculation of the truck cost is started. If the tank level is
less than zero, then the vehicle reached the destination city
( j) without fuel. Then, it is necessary to perform the reset
at the tank level, assign the truck cost value (gi j ) and the
decision variable zi j receives 1. Otherwise, the truck cost for
the arc (i , j) is zero (zi j = 0). In line 17, computation of
the refueling cost is initialized. If fuel level at the destination
node (level) is less than the reference level (level-ref) and
city is not the initial, then the vehicle must be refueled. In
this way, the litres amount (l j ) and the cost of refueling (c j l j )
are calculated (lines 21 and 22). In addition, the tank level
is updated with the maximum vehicle level (Lmax). If the
vehicle does not need to refuel, this cost is zero (c j l j = 0).
Then, the total cost on the route is updated, based on the sum
of the truck cost and refueling cost (line 27). The distance
traveled on the route is also updated (line 28). Subsequently,
the reinforcement is calculated, such as Eq. (13). Finally, the
RL operations are carried out: new state notice, update Q
matrix and current state (lines 30 and 31).

1 Set the parameters: α, γ and ε ;
2 Initialize the matrix Q(s, a) = 0 ;
3 Initialize TSPWR variables and constants ;
4 Observe the state s0: initial city;
5 repeat
6 repeat
7 Select the action a (destination city) using

ε-greedy method ;
8 Take the action a ;
9 Calculation of the fuel level in the tank:

level;
10 % Calculation of the truck cost:;
11 if level < 0 then
12 Reset the tank level: level = 0;
13 Calculation of the truck cost: gij ;
14 zij = 1 ;
15 else
16 The truck cost is zero;
17 zij = 0;
18 end
19 % Calculation of the refueling cost :;
20 if (level < level-ref) and ( a =! s0) then
21 Calculation litres amount for refueling:

lj ;
22 Calculation of the refueling cost: cj lj ;
23 Maximum tank level: level = Lmax ;
24 else
25 The refueling cost is zero: cj lj = 0;
26 end
27 Updates the total cost (route): Eq. (4) ;
28 Updates the distance travelled on the route;
29 Receive immediate reward: Eqs. (13) to (17);
30 Observe the new state s’ (new city);
31 Update Q(s,a): Eq. (3);
32 s = s’ ;
33 until complete the route;
34 until the stopping criterion is satisfied ;

Algorithm 3: RL-TSPWR Algorithm. This is
an application of the Q-learning algorithm for
solving the TSPWR.

Algorithm 3 executes its instructions from two repeat
loops. The first repetition structure is controlled by the num-
ber of episodes (stopping criterion). On the other hand, the
second loop is dependent on the number of locations in the
instance (iterations for the formation of one route). Thus, the
complexity of the RL-TSPWR algorithm can be represented
by the number of learning iterations (nr ) to provide a solution
(Eq. 18):

nr = E × N , (18)

where E is the number of episodes and N is the number
of locations for the instance. Table 1 exemplifies the RL-
TSPWR complexity (using 10,000 episodes):

Table 1 shows the efficiency of the proposed structure. For
example, the Minas57D (N = 57) instance has 7.110×1074

possible solutions. In contrast, the algorithm presents a solu-
tion after a sequence of 570,000 learning iterations and only
10,000 routes explored. It is worth mentioning that the num-
ber of episodes is also a parameter that can be investigated.
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Table 1 RL-TSPWR algorithm complexity. Difference (diff.) between
the number of total possible TSPWR routes ((N − 1)!) and the number
of iterations explored by the RL-TSPWR in 10,000 episodes (10000N )

N (N − 1)! 10000N Di f f .

5 120 50,000 49,880

10 362,880 100,000 – 262,880

24 2.585 × 1022 240,000 −2.585 × 1022

30 8.842 × 1030 300,000 −8.842 × 1030

57 7.110 × 1074 570,000 −7.110 × 1074

100 9.333 × 10157 1,000,000 −9.333 × 10157

In this work, E assumed three values (1000; 10,000; 20,000)
according to the experiment stage.

A version of the RL-TSPWR adopting SARSA algorithm
is also proposed. For this, some small changes were made
to the RL-TSPWR from Algorithm 1, such as in line 31,
which Eq. (2) is used. In the experiments and results, the
RL-TSPWR is discussed according to the version used: Q-
learning or SARSA.

Tuning of RL parameters:˛ and �

The purpose of this section is to present the methodology for
tuning the RL parameters (α and γ ) for the TSPWR. For this,
experiments with different combinations of these parameters
are proposed. In addition, mathematical modeling is adopted
via response surfacemethodology to estimateα and γ . In this
stage, the experimental methodology was based on recent
works: [52,54].

RL parameters experiments:˛ and �

Simulations were performed using the Matlab and were
comprised by 16 groups of experiments (2 algorithms × 4
instances × 2 types of problems):

– Instances:Bahia30D,Minas24D,Minas30DandMinas57D.
– Algorithms: Q-learning and SARSA.
– Types of problems: non-uniform and uniform.

In addition, simulations were carried out for each group of
experiments involving 64 combinations of the learning rate
(α) and discount factor (γ ). The values of these parameters
being defined as:

– α: [0.01; 0.15; 0.30; 0.45; 0.60; 0.75; 0.90; 0.99].
– γ : [0.01; 0.15; 0.30; 0.45; 0.60; 0.75; 0.90; 0.99].

Each combination of parameters was simulated in 3 runs
(repetitions)with 1000 episodes.A run is an independent rep-

etition, that is, the learning is accumulated over the thousand
episodes and always reset when starting a run. The episode
performance measures are the total refueling cost and dis-
tance in the route. In addition, the ε-greedy parameter was
set to ε = 0.01 and the reinforcement function adopted was
R1 (Eq. 13).

RSM

The response surface methodology (RSM) involves a set of
statistical techniques for analyzing optimization problems.
The structure and RSM model of second order is presented
[51] as follows:

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + e, (19)

where y is the response variable, x1 and x2 are the indepen-
dent variables, βn are the coefficients and the effect of the
error (residual) is represented by e.

Ottoni et al. [52] have presented the mathematical model-
ing using RSM for the estimation of α and γ parameters. The
structure proposed by [52] is given in the following equation:

ŷ = β0 + β1α + β2γ + β3α
2 + β4γ

2 + β5αγ. (20)

where α and γ are the independent variables of the model
and ŷ is the predicted response.

In this work, 16 RSM models were adjusted using the
software R [34,58], according to Table 2. These models aim
to estimate α and γ to minimize the total cost on a route.
Data referring to the lowest cost on the route (refueling +
tow truck) have been used with a combination of α and γ .

Tuning of RL parameters: reinforcement function
and�

The second stage of experiments aims to analyze the influ-
ence of the reinforcement functions and ε parameter in
TSPWR learning. For that, simulations with different combi-
nations of these parameters are proposed.ANOVAandTukey
test were adopted to identify the best combinations of fac-
tors for the refueling problem. Besides that, the parameters
(α and γ ) estimated via RSM were used in the experiments
in this section. The experimental and analysis methodology
have been based in [54].

RL parameters experiments: reinforcement function and�

In this step, the objective was to conduct experiments with
two learning specifications: reinforcement function and ε

parameter (ε-greedy policy) as follows:
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Table 2 Adjusted RSM models

Model Instance Algorithm Problem

1 Q-learning Non-uniform

2 Bahia30D Q-learning Uniform

3 SARSA Non-uniform

4 SARSA Uniform

5 Q-learning Non-uniform

6 Minas24D Q-learning Uniform

7 SARSA Non-uniform

8 SARSA Uniform

9 Q-learning Non-uniform

10 Minas30D Q-learning Uniform

11 SARSA Non-uniform

12 SARSA Uniform

13 Q-learning Non-uniform

14 Minas57D Q-learning Uniform

15 SARSA Non-uniform

16 SARSA Uniform

– Reinforcement functions: R1 [Eq. (13)], R2 [Eq. (14)],
R3 [Eq. (15)], R4 [Eq. (16)], and R5 [Eq. (17)].

– Parameter ε: [0.01; 0.05; 0.10].

Simulations were comprised by 240 groups of experi-
ments: 2 (algorithms) × 4 (instances) × 2 (problem types)
× 5 (reinforcement functions)× 3 (ε values). In this respect,
a total of 15 parameters combinations (R and ε) have been
conducted for each model (Table 2). Each experiment was
simulated in 10 runs (repetitions) with 10,000 episodes. The
episode performance measures are the total refueling cost in
the route.

The results of these experiments were used as data for the
modeling presented in the next section.

Factorial design

In this step, a factorial design was developed to estimate the
factor effects (R×ε) in the TSPWR simulations. The factors
analyzed are the reinforcement function (five levels) and the
parameter ε (three levels) [49,54]:

y jkl = μ + η j + θk + (ηθ) jk + ξ jkl , (21)

where μ is the overall mean effect, η j is the effect of the jth
level of the reinforcement functions ( j = 1, 2, 3, 4, 5), θk is
the effect of the kth of ε-greedy politics (k = 1, 2, 3), (ηθ) jk
is the effect of interaction between η j and θk , and ξ jkl is a
random error component (l = 1 to 10).

Analysis of variance test was conducted to check if there
is a difference between the treatment means. The level of

significance adopted was 5%. When ANOVA indicates that
there is a difference between the levels of the model, Tukey
test of multiple comparisons [49] has been applied.

Comparison with other literature parameters

After developing the parameter tuning for the TSPWR, a
new stage of experiments was performed with the estimated
values. In addition, simulations were also carried out with
parameters (α and γ ) defined in other works that addressed
of combinatorial optimization problems with RL resolution:
α = 0.1 and γ = 0.3 [9,18], α = 0.8 and γ = 0.9 [66],
α = 0.1 and γ = 0.9 [45] and α = 0.9 and γ = 1 [41].

The objective was to evaluate the performance of param-
eter adjustment for the TSPWR, in comparison with the use
of values adopted in the literature in RL simulations for the
classic TSP (or similar). These combinations of parameters
were simulated in three repetitions with 20,000 episodes for
each group of experiments.

Results

Tuning of RL parameters results:˛ and �

The results adjusted for setting theRSMmodels are described
below. The analysis is based on the work of [52].

Adjusted models

Measures of the adjustedmodels analysis should present nor-
mality of the residues, coefficient of multiple determination
(R2), adjusted coefficient of multiple determination (R2

a) and
significance of the coefficients.

The first test determines if the model residues follow
a normal distribution. Adopting the Kolmogorov–Smirnov
(KS) [46] test, it was observed that for the 16 models, the
hypothesis of residual normality (pK S > 0.05)was accepted,
according to Table 3. Then, the values of R2 and R2

a were
analyzed. The more these coefficients are approaching 1, it
evidenced a good fit of the model to the sample. Table 3 also
shows the calculated values for R2 and R2

a .
Table 4 shows the adjusted coefficients for each model.

In this sense, the test of significance of the individual coeffi-
cients, it points out that the coefficients are highly significant
in all models (p < 0.001).

Stationary points

The analysis of stationary points allows us to verify the values
that optimize the predicted response in the adjusted RSM
models. In this respect, the estimation of the parameters α

and γ refers to a second optimization problem to minimize
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Table 3 Adjustment measures: p values of the KS test (pK S), R2 and
R2
a

Model pKS R2 R2
a

1 0.7992 0.7636 0.7573

2 0.7966 0.7806 0.7747

3 0.6472 0.7929 0.7873

4 0.8622 0.7867 0.7809

5 0.3864 0.7817 0.7817

6 0.7555 0.8145 0.8095

7 0.8889 0.8373 0.8329

8 0.7294 0.8062 0.8010

9 0.5763 0.8321 0.8276

10 0.3175 0.8506 0.8466

11 0.5569 0.8584 0.8546

12 0.2780 0.8352 0.8308

13 0.9460 0.8553 0.8515

14 0.3722 0.8618 0.8581

15 0.8394 0.8557 0.8518

16 0.7492 0.8738 0.8704

the predicted response ŷ (route cost) in each model adjusted.
The formulation of this problem is given by Eq. (22) [52]:

min
α,γ

ŷ

subject to 0 ≤ α ≤ 1, 0 ≤ γ ≤ 1.
(22)

Table 5 shows the stationary points obtained using the R
software [34,58].

Table 5 Stationary points Model α γ

1 0.6980 0.0429

2 0.7131 0.0244

3 0.7321 0.0000

4 0.7069 0.0000

5 0.6361 0.2396

6 0.6361 0.2425

7 0.6265 0.2409

8 0.6197 0.2296

9 0.6627 0.1415

10 0.6574 0.1613

11 0.6474 0.1545

12 0.6605 0.1242

13 0.6951 0.1160

14 0.6870 0.1552

15 0.6973 0.1141

16 0.6967 0.1210

Tuning of RL parameters results: reinforcement
function and�

In this section, we present the experiments results for tun-
ing the reinforcement function and the parameter ε. Initially,
some graphics are shown for interaction between the fac-
tors. The interaction plots demonstrate the influence of these
parameters (R and ε) on the TSPWR optimization process.
After that, the results of ANOVA and Tukey test for full fac-
torial experiment are presented.

Table 4 RSM adjusted
coefficients

Model β0 β1 β2 β3 β4 β5

1 2710.10 – 2319.30 – 438.10 1646.70 1195.20 480.70

2 2798.20 – 2726.90 – 516.90 1901.00 1173.70 644.40

3 2821.98 – 2839.97 – 483.02 1997.31 1058.81 924.06

4 2709.63 – 2701.70 – 264.93 1951.85 1024.47 637.31

5 2189.96 – 1785.36 – 978.54 1321.80 1466.82 433.15

6 2143.82 – 1596.51 – 937.44 1193.88 1512.57 320.33

7 2229.19 – 1918.10 – 1123.14 1430.11 1650.32 523.74

8 2175.42 – 1796.58 – 896.94 1377.56 1428.38 389.12

9 2545.87 – 2795.74 – 1011.82 2029.03 1812.24 752.80

10 2559.03 – 2834.34 – 1100.92 2068.00 1955.39 715.21

11 2555.97 -2912.14 – 1093.35 2157.97 1939.76 762.75

12 2516.03 – 2674.95 – 963.81 1950.91 1790.69 785.88

13 4869.70 – 6280.20 – 2276.40 4355.80 3995.60 1941.60

14 4903.00 – 6148.30 – 2756.00 4251.90 4501.30 1978.10

15 4900.40 – 6262.40 – 2208.90 4336.20 3916.80 1886.30

16 4888.40 – 6231.90 – 2455.10 4293.60 4219.60 2058.50
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Fig. 1 Interaction plots between factors (reinforcement function ×ε-
greedy) for model 1 (Bahia30D/Non-Uniform/Q-learning)

Interaction plots analysis

Interaction plots are important tools for analyzing the factors
influence on the response variable. In this work, these graphs
were approached in a preliminary analysis of the factorial
design results to visualize effects of the ε-greedy policy and
the reinforcement function in the TSPWR solution.

To illustrate the graphical analysis, Figs. 1 and 2 present
interaction plots for models 1 and 13, respectively. It is pos-
sible to observe that the combinations of R1 × 0.01 and
R5 × 0.01 tend to minimize the response to the situation of
Bahia30D/Non-Uniform/Q-learning (Model 1). On the other
hand, in Fig. 2, referring to Minas57D/Non-Uniform/Q-
learning, the best results are to adopt the reward function
R3 × 0.01 or R3 × ε = 0.01. In this respect, the simple
change of instances (Bahia30D to Minas57D) directly influ-
enced the combination performance (R×ε) for the TSPWR.
Thus, the present analysis reinforces the need to adjust the
ε-greedy policy and reinforcement function according to the
simulated data.

Factorial design results

Analysis of adjustedmodels of full factorial experiments was
carried out in three phases: (i) residue normality analysis,
(ii) analysis of variance and (iii) multiple comparison test.
Adopting the KS test [46], the assumption of residue nor-
mality was confirmed for all models (pKS > 0.05). ANOVA
test was applied to check if there is a difference between
the configuration performance (R × ε) in the TSPWR opti-
mization. The results of analysis of variance showed that for
the 16 models, the factors interaction is highly significant
(p < 0.001). That is, there is a statistical difference in RL
performance for TSPWR resolution, according to the rein-
forcement function and the parameter ε selected.

Fig. 2 Interaction plots between factors (reinforcement function ×ε-
greedy) for model 13 (Minas57D/Non-Uniform/Q-learning)

In this sense, Tukey multiple comparison test was then
performed to identify the best combinations (R × ε) by fac-
torial design model. Table 6 presents the results of the Tukey
test and the residues normality tests (pK S).

In Table 6, one can identify settings for each model
(R × ε). which achieved the best results (“Tukey Test” col-
umn).Moreover, as in all situationsTukey test indicatedmore
than one combination, a tiebreaker criterion was used: the
lowest mean solution (cost) by combination. Thus, Table 6
also presents the best configuration for each column (“Best”
column) and the respective mean solution.

For example, take the model 1 (Bahia30D, Q-learning,
and Non-Uniform). In this case, the Tukey test showed that
there are four combinations that showed good performances:
R1 × 0.01, R1 × 0.05, R5 × 0.01 and R5 × 0.05. Further-
more, the configuration R5 × 0.01 times showed the lowest
mean of the solution between those indicated by the multi-
ple comparison test. On the other hand, observing the Model
16 (Minas57D, SARSA and Uniform), another 3 combina-
tions (R3 × 0.01; R3 × 0.05; R3 × 0.10) were indicated by
Tukey test. Thus, Table 6 reveals that for a simulated situ-
ation, it may be interesting to adopt different combinations
of the reinforcement function and parameter ε to TSPWR
optimization.

Further exploring the “Tukey Test” column in Table 6, it
is important to highlight that R5 × 0.01 is the combination
that most appeared among the settings indicated (on 15 of
the 16 models). In this sense, it shows the relevance of the
reinforcement functions that have the distance between the
nodes (di j ) as a term of the Equation: R1 [Eq. (13)], R3 [Eq.
(15)], and R5 [Eq. (17)].

Table 6 presents R5 × 0.01 as the most suitable combina-
tion (4 times). In this case, the second configurations were:
R3 × 0.01, R3 × 0.05 and R5 × 0.05 (with three indications
for each). That is, for none of the models, the reinforcement

123



2010 Complex & Intelligent Systems (2022) 8:2001–2015

Table 6 Tuning RL parameters results (reinforcement function and ε parameter): KS test (normality of residues), Tukey test (multiple comparison),
the best configuration (R × ε) and solution for model

Instance Alg Pr pks Tukey test Best Solution

Q N 0.05 R1ε1; R1ε2; R5ε1; R5ε2 R5 × 0.01 1712.50

Bahia30D Q U 0.63 R1ε1; R1ε2; R5ε1; R5ε2 R1 × 0.01 1713.17

S N 0.47 R1ε1; R1ε2; R3ε2; R3ε3; R5ε1; R5ε2 R5 × 0.01 1670.43

S U 0.11 R1ε1; R1ε2; R3ε1; R3ε2; R3ε3; R5ε1; R5ε2 R1 × 0.01 1694.78

Q N 0.18 R1ε1; R1ε2; R1ε3; R3ε2; R5ε1; R5ε2; R5ε3 R5 × 0.05 1596.99

Minas24D Q U 0.06 R1ε1; R1ε2; R1ε3; R3ε1; R3ε2; R3ε3; R4ε1; R5ε1; R5ε3 R5 × 0.05 1612.21

S N 0.08 R1ε1; R1ε2; R1ε3; R3ε1; R3ε2; R3ε3; R4ε1; R5ε1; R5ε2 R5 × 0.01 1604.43

S U 0.08 R1ε1; R1ε2; R1ε3; R2ε1; R3ε1; R3ε2; R3ε3; R4ε1; R5ε1; R5ε2; R5ε3 R5 × 0.05 1608.35

Q N 0.05 R1ε1; R1ε2; R3ε1; R3ε2; R3ε3; R5ε1; R5ε2 R5 × 0.01 1607.59

Minas30D Q U 0.05 R1ε1; R1ε2; R1ε3; R3ε2; R3ε3; R5ε1 ; R5ε2; R5ε3 R1 × 0.01 1624.80

S N 0.06 R1ε1; R1ε2; R3ε1; R3ε2; R3ε3; R5ε1; R5ε2 R3 × 0.05 1596.60

S U 0.06 R1ε1; R1ε2; R3ε1; R3ε2; R3ε3; R5ε1; R5ε2 R3 × 0.05 1614.01

Q N 0.05 R1ε1; R3ε1; R3ε2; R3ε3; R5ε1 R3 × 0.01 2481.11

Minas57D Q U 0.05 R1ε1; R3ε1; R3ε2; R3ε3; R5ε1 R3 × 0.05 2553.16

S N 0.12 R3ε1; R3ε2; R3ε3; R5ε1 R3 × 0.01 2407.53

S U 0.05 R3ε1; R3ε2; R3ε3 R3 × 0.01 2427.77

Alg algorithm, Pr problem, Q Q-learning, S SARSA, U uniform, N non-uniform, ε1 = 0.01, ε2 = 0.05, ε3 = 0.10

functions R2 or R4 or the parameter ε = 0.10 are presented
as parameters as shown best for the experiments.

It is also important to highlight the differences in rein-
forcement functions performance according to the instance
adopted. For example, for the Minas24D instance, in all
models the best configuration (“Best” column in the Table
6) contains the term R5. However, this is not repeated for
the Minas57D instance, where the indicated reinforcement
function was R3. Thus, one hypothesis is that the difference
between the number of instance nodes directly influenced the
reinforcement function performance.

RL-TSPWR parameters

In this section, the final estimated parameters for the TSPWR
instances are presented. Table 7 shows the best parameters
(lowest cost in Reais—Brazilian currency) per each of the 16
situations (4 instances × 2 problems × 2 algorithms).

From Table 7, when analyzing the reinforcement func-
tions, it is noticed that R5 was indicated 7 times. Moreover,
it appears that: (i) for all instances, the reinforcement func-
tion (R1—Eq. (13), R3—Eq. (15) or R5— Eq. (17)) has the
distance between the nodes term (di j ); (ii) for 10 cases in
three instances (Bahia30D, Minas24D and Minas30D), the
reinforcement function (R1—Eq. (13) or R5—Eq. (17)) has
the refueling cost term (c j ).

When observing the ε-greedy policy, the value of ε =
0.01 achieved the best results inmost cases (10 times). On the
other hand, for the learning rate and discount factor param-

eters, it is possible to define tuning ranges in Table 7: α =
[0.6197, 0.7321] and γ = [0.000, 0.2425].

Comparison with other works

Comparison with literature parameters

In this section, results of the parameters adjusted by this paper
(see Table 7) for the TSPWR are presented in comparison
with the adoption of fixed parameters (α and γ ) in the litera-
ture [18,41,45,66], which are referred to studies that applied
the RL in simulations of the classic TSP (or similar). Table
8 shows the best solutions found (cost in Reais—Brazilian
currency) in this phase.

The proposed technique achieved best results in 15 out of
16 groups of experiments according to Table 8. This shows
the capacity of the proposedmethodology to tuning of param-
eters suitable for the TSPWR. In addition, it reveals the
importance of performing parameter adjustment according
to the conditions of the simulation (instance, algorithm and
problem).

Comparison with literature approaches

In this section, five features of the proposed technique were
compared with other works in the literature: problem, refu-
eling problem characteristics, optimization approach, tuning
RL parameters and methods. Table 8 presents this compara-
tive study with the following works in the literature: I [27],
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Table 7 Reinforcement
Learning parameters estimated
for TSPWR instances

Instance Algorithm Problem R ε α γ

Q-learning Non-uniform R5 0.01 0.6980 0.0429

Bahia30D Q-learning Uniform R1 0.01 0.7131 0.0244

SARSA Non-uniform R5 0.01 0.7321 0.0000

SARSA Uniform R1 0.01 0.7069 0.0000

Q-learning Non-uniform R5 0.05 0.6361 0.2396

Minas24D Q-learning Uniform R5 0.05 0.6361 0.2425

SARSA Non-uniform R5 0.01 0.6265 0.2409

SARSA Uniform R5 0.05 0.6197 0.2296

Q-learning Non-uniform R5 0.01 0.6627 0.1415

Minas30D Q-learning Uniform R1 0.01 0.6574 0.1613

SARSA Non-uniform R3 0.05 0.6474 0.1545

SARSA Uniform R3 0.05 0.6605 0.1242

Q-learning Non-uniform R3 0.01 0.6951 0.1160

Minas57D Q-learning Uniform R3 0.05 0.6870 0.1552

SARSA Non-uniform R3 0.01 0.6973 0.1141

SARSA Uniform R3 0.01 0.6967 0.1210

Table 8 Best solutions found
(cost in Reais—Brazilian
currency) adopting the values of
the estimated values and
parameters defined (α and γ ) in
other works by groups of
experiments

Instance Algorithm Problem Proposed D95 S01 Z09 L10

Q-learning Non-uniform 1667.00 1834.28 2169.86 1911.74 3400.01

Bahia30D Q-learning Uniform 1678.78 1771.72 2218.13 1804.92 3224.46

SARSA Non-uniform 1652.22 1808.75 2510.49 1798.65 3352.84

SARSA Uniform 1635.27 1796.43 2433.02 1783.59 3355.97

Q-learning Non-uniform 1380.63 1601.03 1753.01 1592.60 2508.32

Minas24D Q-learning Uniform 1616.62 1402.84 1729.79 1643.03 2144.97

SARSA Non-uniform 1571.65 1597.52 1820.28 1594.55 2427.38

SARSA Uniform 1544.64 1613.09 2088.56 1624.59 2619.41

Q-learning Non-uniform 1583.77 1631.55 2109.50 1786.26 2973.52

Minas30D Q-learning Uniform 1614.10 1615.19 2163.29 1779.96 3182.78

SARSA Non-uniform 1603.50 1603.50 2567.22 1816.16 3137.02

SARSA Uniform 1605.54 1701.47 2496.14 1828.68 3123.13

Q-learning Non-uniform 2444.22 2892.93 3938.13 2911.35 5402.81

Minas57D Q-learning Uniform 2458.35 2836.67 4168.51 2963.26 5495.39

SARSA Non-uniform 2382.55 2851.24 4271.34 2918.99 5778.20

SARSA Uniform 2396.86 2732.95 4178.62 2991.03 5967.12

Solutions with parameters (α and γ ) described in D95: [18], S01: [66], Z09: [45], L10: [41]. Proposed:
Solutions with parameters defined in the Table 7. Values in boldface indicate the best result found for each
experiment

II [43], III [71], IV [60], V [18], VI [2], VII [52] and VIII
[54] Table 9.

The first important aspect of this work is the TSP approach
in conjunction with the refueling problem. Generally, the
TSP is applied to minimize the distance on the route, as in
[2,18,52]. However, there is less attention in the literature for
TSP with refueling [27,71].

Another relevant point of this proposal is application in
variable routes. In the literature, when specifically observed
the refueling problems, in many works only a fixed route is

adopted, as in [43,60]. In fact, applying the refueling prob-
lem on variable routes is much more complex than on fixed
routes [27]. It is also worth noting that, only the work of
[60] also considered data from Brazilian road networks in
the simulations. In this regard, it is worth mentioning that
the developed instances (Bahia30D, Minas24D, Minas30D
and Minas57) will be made available in the public database
format: TSPWR-Library. In addition, the TSPWR proposed
modeling (Sect. 3) innovates when considering the possibil-
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Table 9 Comparison of this proposal with different works in the literature: I [27], II [43], III [71], IV [60], V [18], VI [2], VII [52] and VIII [54]

Proposed I II III IV V VI VII VIII
[27] [43] [71] [60] [18] [2] [52] [54]

Problem TSP or variations � � – � – � � � �
refueling � � � � � – – – –

Refueling problem Fixed route – � � – � – – – –

Variable route � � – � – – – – –

Brazilian data � – – – � – – – –

TSPWR-library � – – – – – – – –

Truck cost � – – – – – – – –

Optimization approach Reinforcement learning � – – – – � � � �
Other methods – � � � � – – – –

Tuning RL parameters Reinforcement function � – – – – � � – �
ε � – – – – – � – �
α � – – – – – � � –

γ � – – – – � – � –

Tuning methods RSM � – – – – – – � –

ANOVA � – – – – � – – �
Scott-Knott – – – – – – – – �
Tukey � – – – – – – – –

ity of using a tow truck if the fuel runs out between two
locations.

The proposed application of the RL for TSPWR is another
important aspect of this paper. For this, the RL model was
structured in states, actions and reward functions, consider-
ing the TSPWR characteristics. In addition, the algorithm
(RL-TSPWR) for the application of RL in TSPWR was pro-
posed. In the literature, studies that addressed the refueling
problem used other methods, such as: VNS [77], Ant Colony
Optimization [82] and Tabu Search [72].

We have avoided to compare RL techniques with other
meta-heuristics in TSPWR resolution sinceRLmethods have
been carefully adjusted for application in the proposed refuel-
ing instances. Other meta-heuristics from literature have not
been so far made the same adjustments. For example, to sim-
ulate a local search algorithm, such as VNS [77], it would be
necessary to carry out a best initial solution study and which
neighborhood structures would be adequate to generate good
results for the problem in question. Also, implementation
of Genetic Algorithms would require definition of the evo-
lutionary parameters (selection, reproduction and mutation)
suitable for application in the proposed TSPWR instances.

To exemplify, simulations were carried out using the
VNS meta-heuristic to solve TSPWR instances. The ini-
tial solution was defined as an ordered sequence of cities.
Already the neighborhood structure was based on random
changes in the visit order of the nodes. In this regard,
the VNS meta-heuristic achieved worse performances in
the four instances: Bahia30D (4424.2), Minas24D (2972.4),

Minas30D (3388.8) and Minas57D (8470.0). However, it is
emphasized that the VNS is a local search algorithm that
would probably perform better with tuning of initial solu-
tion. In this respect, this is an important advantage of RL
methods, as it is not necessary to provide an initial solution.

Finally, we highlight the use of statistical methods (RSM,
ANOVA and Tukey Test) in the tuning RL parameters pro-
cess. In comparison with other works [2,18,52,54], only this
proposal made the 4 parameters adjustment: reinforcement
function, ε, α and γ .

Contributions of this paper

Based on the comparison with other literature works, the
main contributions of this paper are highlighted:

1. Reinforcement LearningApproach to refueling problems
solution.

2. Proposal of the RL-TSPWR Algorithm.
3. Statistical methodology for tuning of four RL parameters

(reinforcement function, ε, α and γ ) uniting concepts
presented in [52] and [54].

4. New mathematical formulation for refueling problems
using tow truck cost, variable routes and non-uniform
cost.

5. Development of instances (TSPWR-Library) with fuel
cost data for Brazilian cities.

123



Complex & Intelligent Systems (2022) 8:2001–2015 2013

Conclusion

This paper has applied Reinforcement Learning to the Trav-
eling Salesman Problem with refueling. The outline of the
contributions of this paper relative to the recent literature in
the field can be summarized as: (i) proposal for TSPWR for-
mulation problem; (ii) algorithm for applying the RL to the
TSPWR resolution; (iii) development of instances based on
real data from the ANP; (iv) experiments realization under
uniform and non-uniform cost conditions; (v) tuning of RL
parameters applied to TSPWR using the statistical methods.

Estimated parameters with statistical methods achieved
the best solution in 15 out of 16 experimental groups. These
results are valid for the two algorithms (Q-learning and
SARSA) and for simulations with uniform and non-uniform
fuel prices in each location. In addition, using ANOVA
and Tukey test it was possible to find the best combina-
tion of reinforcement function and ε-greedy policy for each
instance. It is worth mentioning that the reinforcement func-
tions obtained different performance according to the data
analyzed. Nevertheless, in all cases adjusted reinforcement
function has the distance between nodes (di j ) term. By ana-
lyzing the ε − greedy policy, it is clear that the value of
ε = 0.01 reached the best solutions in most cases.

In future works, experiments with more instances and
vehicle types are expected. New instances based on the
TSPLIB library should be investigated. In addition, it is
expected to analyze other factors, such as fuel type and vehi-
cle model. Moreover, simulations with other meta-heuristics
in the TSPWR instances should be investigated. In this
aspect, computational complexity of the methods should be
analyzed, and the convergence issue should also bediscussed.
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