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ABSTRACT

Chaos-based image encryption schemes have been extensively employed over the past few years. Many issues such as the dynamical degra-
dation of digital chaotic systems and information security have been explored, and plenty of successful solutions have also been proposed.
However, the impact of finite precision in different hardware and software setups has received little attention. In this work, we have shown
that the finite precision error may produce distinct cipher-images on different devices. In order to overcome this problem, we introduce an
efficient cryptosystem, in which the chaotic logistic map and the Galois field theory are applied. Our approach passes in the ENT test suite
and in several cyberattacks. It also presents an astonishing key space of up to 24096. Benchmark images have been effectively encrypted and
decrypted using dissimilar digital devices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0061639

Great attention has been devoted to chaotic systems on image
encryption schemes since the revolutionary Fridrich’s paper.
Numerous approaches have been proposed to improve chaotic-
based encryption algorithms, such as diffusion and confusion
methods to increase cipher security and perturbation processes
to mitigate chaos degradation. Nevertheless, the impact of finite
precision in different devices has not received the same atten-
tion. In this paper, we have shown that chaos-based encryp-
tion schemes may not work on distinct hardware and software
setups since the finite precision error may generate dissimilar key
streams. Consequently, there is apprehension about the adoption
of chaotic systems in cryptosystems. To overcome this problem,
we present a novel chaotic image encryption algorithm based on
finite fields. We have adapted the logistic map using the Galois
field as a pseudorandom number generator. In such a way, the
generated cipher is the same in different devices, not compro-
mising the key stream. Our approach has been successful in the
ENT test suite, showing sufficient pseudorandom properties for

our scheme. Benchmark image experiments have outperformed
obtained results with well-known methods in many cyberattack
tests. Furthermore, we have shown that our method can be effi-
ciently applied in different digital devices.

I. INTRODUCTION

The considerable amount of information flowing on the Inter-
net has required efficient and reliable encryption algorithms.1 This
explains the great attention of the scientific community to investi-
gate such algorithms and the development of numerous techniques
such as DES (Data Encryption Standard), AES (Advanced Encryp-
tion Standard), RSA (Rivest-Shamir-Adleman), Twofish, Blowfish,2

and chaos-based ones.3

Chaos-based image encryption has attracted significant inter-
est due to its superior performance when compared to traditional
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algorithms.4,5 Indeed, since the pioneer work by Fridrich,6 numer-
ous chaotic image encryption schemes have been suggested. For
instance, Gao and Chen7 have proposed a cryptosystem that employs
the logistic map to shuffle the image and Chen’s hyperchaotic
system to encrypt the respective image. Differently, Haroun and
Gulliver8 exploited the three-dimensional discrete Lorenz system
as the chaotic element in the encryption algorithm. Taking advan-
tage of the FPGA (Field-Programmable Gate Array) fast processing,
Zheng et al.9 have applied an n-dimensional discrete chaotic sys-
tem to encrypt multi-images. In addition to the chaotic system,
Rodríguez-Orozco et al.10 have used voice recognition as an access
key, providing more security to the cryptosystem. Furthermore,
there are papers that use metaheuristic optimization methods, such
as the firefly algorithm,11 to ensure the security of ciphers.12 Sinha
and Sahu investigated an image encryption algorithm with shuffling,
rotation, and swamping processes, where the Chebyshev polynomial
with an adaptive firefly technique is used in order to optimize the
generation of the secret key.13

Özkaynak14 has reviewed chaos-based image encryption tech-
niques and has criticized many approaches, arguing that they are
weak against some cyberattacks. Moreover, Özkaynak has shown
a checklist that chaos-based algorithms must comprise. At the
same time, other approaches have been developed to improve
chaotic-based encryption algorithms, such as diffusion and confu-
sion methods to increase cipher security15 and perturbation pro-
cesses to mitigate chaos degradation.16 Nevertheless, there is little
attention on the effect of finite precision in different digital devices.
In fact, chaotic systems have been reported to present contrasting
behaviors in different software and hardware setups.17–19

The application of finite fields20 in cryptography has been
investigated as a possible way to tackle issues related to finite pre-
cision. Wang et al.21 have proposed an encryption algorithm that
ensures the security of tumor ultrasound images during the trans-
mission based on the Galois field. Shah and Shah22 have recognized
a remarkable impact of the arithmetic properties of a finite field
on the security features of symmetric and asymmetric cryptosys-
tems. Shah et al.23 have applied finite fields to an RGB image
encryption application. The results, according to the authors, have
outperformed previous chaos-based encryption schemes. Moreover,
Broumandnia24 has described an algorithm adopting finite fields
in chaotic maps. In that paper, the focus has been on improving
the security and speed of encryption using Galois fields simulta-
neously in the diffusion and confusion operations. However, to
our knowledge, no study has yet focused on the effects of finite
precision in digital devices, which may result in distinct ciphers.
In other words, chaos-based encryption requires reproducibility in
different digital devices, but the floating-point standard, such as
the IEEE Standard for Floating-Point Arithmetic,25 does not fulfill
this requirement. In this paper, we have shown that finite pre-
cision error may generate incompatible key streams in different
computers. Hence, many encryption schemes may not work prop-
erly. In order to overcome such issues, we have proposed a novel
cryptosystem based on a chaotic system and the Galois field20 to
compose a pseudorandom number generator. The chaotic system
chosen is the logistic map.26 The great advantage of the proposed
technique is that all the arithmetic operations occur in a field. It
means that there is no need for rounding. As a consequence, the

reproducibility of the operations is not influenced by differences in
computer arithmetic standards across different digital devices, and
the cipher to encrypt and decrypt is the same. Three benchmark
images have been employed to show the effectiveness of our pro-
posal. Moreover, we also submitted the algorithm in many statistical
tests and cyberattacks such as the key space, the ENT test suite, infor-
mation entropy, the correlation of adjacent pixels, the histogram
analysis, the key sensitivity analysis, the differential attack analy-
sis, and reproducibility. These benchmark image experiments have
outperformed obtained results with well-known methods. We have
also shown that our method can be efficiently applied in different
devices.

The remainder of this paper is presented as follows: in Sec. II, a
concise presentation about finite fields is described. The encryption
algorithm and its performance analysis are shown in Secs. III and IV,
respectively. Finally, Sec. V reports the conclusion, implications of
this article as well as final remarks on future works.

II. PRELIMINARY CONCEPTS: FINITE FIELDS

Finite field is a well-developed algebraic structure extensively
used in several mathematical applications on communication prob-
lems. There are plenty of textbooks about this branch of algebra.
The definitions and results of this section have been obtained from
Refs. 20 and 27. They were slightly altered in order to fit this context.

From now on, we use the symbols “+” and “·” to represent two
distinct operations that do not necessarily represent the usual ones.

Definition II.1 Let G be a set and “·” a binary operation
defined on G. The (G, ·) is a group if the following three properties
hold:

(i) For each element a, b, and c ∈ G, (a · b) · c = a · (b · c).
(ii) There is an identity element e in G such that for all a ∈ G, e · a

= a · e = a, for all a ∈ G.
(iii) For each a ∈ G, there is an inverse element a−1 ∈ G such that

a · a−1 = a−1 · a = e.

What’s more, if a · b = b · a, for all a, b ∈ G, then G is called an
Abelian group.

Example II.2 (R, +), (Q \ {0}, ·), and (Mn×m(R), +) are
examples of Abelian groups.

Definition II.3 A field (F, +, ·) is a set F with two binary
operations, denoted by “+” and “·,” such that

(i) F is an Abelian group under “+” with identity element 0.
(ii) The nonzero elements form an Abelian group under “·”
(iii) The distributive laws

a · (b + c) = a · b + a · cand(b + c) · a = b · a + c · a

hold to all a, b, and c ∈ F.

Example II.4 Let Z3 be the set of integers modulo 3. With-
out loss of generality, we represent its residue classes/elements as
Z3 = {0, 1, 2}. Hence, we get the following operation charts, as shown
in Table I.

In general, Zp is a finite field for a p prime. From now on, we
denote each finite field with q elements as GF(q) (Galois field), and
q is always a power prime, where q = pn, for p a prime integer and
n ≥ 1.
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TABLE I. Z3—Operation charts: we represent “+” on the left and operation “·.” on

the right, which are taken mod3.

+ 0 1 2 · 0 1 2

0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

Thereafter, given a positive integer n > 1, we present two dis-
tinct ways to construct the finite field GF

(

qn
)

from GF(q). For the
next definition, GF(q)[x] means the set (actually, ring) of all poly-
nomials whose coefficients are on GF(q). In this set, it is possible
to define addition and product of polynomials, noticing that the
coefficients belong to GF(q).

Definition II.5 A polynomial p ∈ GF(q)[x] is said to be irre-
ducible over GF(q) if p has a positive degree and p = bc, where b and
c ∈ GF(q)[x] imply that either b or c is a constant polynomial.

In order to construct finite fields with more elements from
GF(q), we consider the following result:

Theorem II.6 For a polynomial f ∈ GF(q)[x], the residue class
ring GF(q)[x]/(f) is a field if and only if f is irreducible over GF(q).

On GF(q)[x]/(f), it considers the classical polynomial opera-
tions “+” and “·” modulo f. Given a, b ∈ GF(q)[x]/(f), if the product
a · b has degree greater than or equal to f-degree, then we replace the
polynomial product a · b for its remainder when it is divided by f.
Besides that, the polynomial addition runs as usual.

Example II.7 Let GF(2)[x]/(x2 + x + 1) be the residue class
ring. Hence, the only elements (residue classes) in GF(2)[x]/
(x2 + x + 1) are 0, 1, x, and x + 1. Since f = x2 + x + 1 is irreducible
over GF(2), then GF(2)[x]/(f) is actually a finite field, as shown in
Table II.

Therefore, GF(2)[x]/
(

f
)

= {0, 1, x, x + 1} is a 4-element finite
field.

Additionally, it is possible to employ matrices in order to
represent elements of a finite field GF(q).

Definition II.8 The companion matrix of a polynomial
f = a0 + a1x + · · · + an−1x

n−1 + xn ∈ GF(q)[x] is defined to be

A =















0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2

...
...

...
...

...
...

0 0 0 . . . 1 −an−1















n×n

. (1)

TABLE II. Polynomial addition and product onGF(2)[x]/(f ). The coefficients are taken

mod 2. In particular, the polynomial product is equivalent to its remainder when it is

divided by f.

+ 0 1 x x + 1 · 0 1 x x + 1

0 0 1 x x + 1 0 0 0 0 0
1 1 0 x + 1 x 1 0 1 x x + 1
x x x + 1 0 1 x 0 x x + 1 1
x + 1 x + 1 x 1 0 x + 1 0 x + 1 1 x

It is well-known that

f(A) = a0I + a1A + a2A
2 + . . . + an−1A

n−1 + An = 0n×n, (2)

where I denotes the n × n identity matrix. Thus, given f ∈ GF(q)[x]
irreducible of an n-degree over GF(q) and A its corresponding
n × n companion matrix, the finite field GF

(

qn
)

may also be rep-
resented as

GF(q)[A] =
{

a0I + · · · + at−1A
t−1 : ai ∈ GF(q), 0 ≤ i ≤ t − 1

}

,
(3)

whose usual addition and product matrices are developed regarding
the condition f(A) = 0n×n.

From the two finite field representations above, it is possible to
connect them as

g ∈ GF(q)[x]/(f) ↔ g(A) ∈ GF(q)[A]. (4)

Thus, we are able to identify binary representations of real
numbers as polynomials in GF(2)[x] and, from exposed in (4), as
matrices over GF(2).

III. THE IMAGE ENCRYPTION SCHEME

The proposed scheme and the generation of the key stream
can be summarized in the following steps. It has been elaborated
in accordance with Kerckhoffs’ principle.28 It is worth mention-
ing that we have used standard Matlab algorithms to describe such
steps in all digital devices, though this chaos-based image encryption
algorithm can be managed in any programming language.

Step 1: Read the plain-image (PI) with size H × W, where H and
W are the height and width of the image, respectively. Each
pixel is represented by an 8-bit unsigned integer.

Step 2: Split the plain-image in two blocks (b1 and b2) with size
H × W

2
.

Step 3: For each block, compute a factor (fb1,2 ) defined as

fb1,2 =
1

256
(

H × W
2

)

H
∑

i=1

W/2
∑

j=1

PI(i, j), (5)

where i and j are the coordinates of each pixel in the blocks.
Step 4: Convert the two factors, previously obtained, to binary

numbers as

c1,2 = dec2bin

(

fb1,2

eps

)

, (6)

where eps is the machine epsilon and dec2bin is an
algorithm to convert decimal integers to binary numbers.

Step 5: For each binary number c1 and c2, use only the first 32 bits.
Thereafter, they concatenate to each other as

fPI
= strcat(c1, c2), (7)

where strcat is an algorithm that concatenates strings hor-
izontally. Thus, the factor fPI

is dependent on the plain-
image to be encrypted.

Step 6: Choose 64-bit binary numbers for the initial condition x0

and the bifurcation parameter r of the logistic map. Both
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numbers are represented using a 2Q62 fixed-point for-
mat. For friendly-user applications, a sequence of 8 ASCII
encoded characters may be required and easily changed
into a 64-bit string. Our method allows an initial condition
of up to 4096 bits. It is important to mention that each bit
of these numbers is allocated separately in an array. Thus,
fPI

, x0, and r are a 1 × 64 vector.
Step 7: Take a 64◦ irreducible polynomial p. In this cryptosystem,

we have chosen the irreducible polynomial p ∈ GF(q)[x] as

p(x) = x
64 + x

63 + x
8 + x

2 + 1 (8)

and make an n × n companion matrix P. In this case, as
the polynomial p(x) has a 64-degree, then P is a 64 × 64
matrix.

Step 8: In order to obtain a finite field representation of fPI
, x0, and

r, iterate 64 times the following equations:

FPI
(k) = (FPI

+ fPI
(65 − k) × Pk−1) mod 2, (9)

X0(k) = (X0 + x0(65 − k) × Pk−1) mod 2, (10)

R(k) = (R + r(65 − k) × Pk−1) mod 2, (11)

where k is the respective iteration and FPI
, X0 and R are

64 × 64 matrices, which are GF(2)[P] representations of
fPI

, x0, and r, respectively.
Step 9: Merge the user initial condition X0 and the factor FPI

as

X′
0 = (FPI

+ X0) mod 2. (12)

In such a manner, the initial condition X0 of the logistic
map and the plain-image factor FPI

are linked, making the
system resistant to differential attacks.

Step 10: From the original logistic map,26 we redefined a recursive
function using representation as matrices over GF(2),

Xm+1 = (RXm(1 − Xm)) mod 2. (13)

Equation (13) should be iterated H×W
n×8

times. As each image
pixel is represented by an 8-bit unsigned integer, the poly-
nomial p(x) has a 64-degree, and we work with 512 × 512
images, the number of iterations is 512×512

64×8
= 512. In such a

situation, Xm+1 is a 3D matrix of size 64 × 64 × 512.
Usually, chaos-based image encryption schemes iterate the
algorithm H × W times. Thus, an important feature of
our cryptosystem is that its computational complexity is
reduced.

Step 11: Format the 3D binary matrix K to a 2D matrix with size
(H × W) × 8, as follows:

K = reshape(X, [(H × W), 8]), (14)

where reshape is an algorithm that reshapes an array.
Step 12: Thenceforth, convert the K matrix to decimal values

by multiplying K with an array 2narray , where narray

=
[

0 1 2 3 4 5 6 7
]

. In such a way, the key
stream K ∈ [0, 255].

Step 13: Reshape matrix K into the one that has the same height and
width of the image to be encrypted as

K = reshape(K, [H, W]). (15)

Step 14: Encrypt the plain-image PI using the key stream K and the
bit-wise XOR operation with all the pixels, as shown in
Eq. (16). The result is the cipher-image CI,

CI(i, j) = PI(i, j) ⊕ K(i, j). (16)

The encryption algorithm is described in a flowchart dia-
gram as seen in Fig. 1. The decryption process, as is well-
known, is the reverse of the encryption. It can be done by
the application of Step 14 again in the cipher-image.

FIG. 1. Flowchart diagram of the algorithm based on the logistic map and the
Galois field. The novelty presented here is the orderly encryption process, which
can be reproducible in distinct machines. This scheme considers Kerckhoffs’
principle,28 which increases its robustness.
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IV. PERFORMANCE ANALYSIS

A series of eight tests was conducted to analyze the security and
efficiency of the proposed encryption scheme, namely, key space,
ENT test suite, correlation of adjacent pixels, information entropy,
histogram analysis, key sensitivity analysis, differential attack anal-
ysis, and reproducibility. Additionally, 512 × 512 Baboon, Elaine,
and Pepper were used to perform such tests. The parameters as well
as the factors, dependent on the plain-images, that were used to
generate the key stream are shown in Table III.

A. Key space

An encryption scheme with a key space larger than 2100 is con-
sidered secure against brute-force attacks.15,29 In our approach, the
seed is represented in a 64 × 64 matrix, implying in an impressive
key space of up to 24096. In our case, this was achieved by using
the initial condition (Step 6) and an irreducible polynomial (Step
7). Alternatively, the irreducible polynomial can be fixed and pub-
lic, and an initial condition of 4096-bits may be required. This can
be done by a string of 256 characters using the UTF-16 encoding
(MATLAB standard).

B. ENT test suite

The generated keystream K was analyzed with the help of the
ENT test suite,30 a tool that has been extensively used.31,32 By running
six different statistical tests, this series of tests presents a satisfactory
indicator of quality for encryption methods, as it can identify pseu-
dorandom features in a sequence. Starting with an input sequence
with a bitstream length of 600 000 bits, Table IV shows the result
for each test. Since the input sequence passed all tests, the generated
ciphers in our scheme deliver acceptable pseudorandom properties.

C. Correlation of adjacent pixels, entropy, and

histogram analysis

The correlation of adjacent pixels, information entropy, and
histogram analysis are important measures to ensure the quality of
a cryptosystem. Correlation among adjacent pixels is high, close to
one in a plain-image. Its histogram is non-uniform, and as the plain-
image shows information, its entropy is low, indicating low disorder.
Otherwise, noise-like images have a low correlation coefficient, close
to zero, its histogram is uniform and the entropy is approximately 8,
implying high disorder.1,15,29

TABLE IV. The results of the ENT test suite30 for our cryptosystem. This suite is useful

for evaluating pseudorandom number generators for encryption and statistical sam-

pling applications. Since the input sequence passed all tests, the generated ciphers

in our cryptosystem deliver acceptable pseudorandom properties.

Statistical test Test output Result

Entropy 0.999 99 bits per bit Passed
Optimum compression (OC) OC would reduce the

size of this 600 000 Passed
bit file by 0%.

Chi-square For 600 000 samples, it is
0.52 and randomly Passed

would exceed this value
47.13% times

Arithmetic mean 0.5005 (0.5 = random) Passed
Monte Carlo value for Pi 3.169 92 (error 0.90%) Passed
Serial correlation coefficient 0.000 52 (totally Passed

uncorrelated =0.0)

The correlation coefficients are given by33

ρ(X, Y) =
E[(X − µX)(Y − µY)]

σXσY

, (17)

where µ is mean, E is expectation, and σ is the standard deviation
for Y and X.

Information entropy is calculated by1

J(X) =

28−1
∑

i=0

Pilog2
1

Pi

, (18)

where J(X) is the entropy in bits, X is an input, and Pi is the
likelihood estimation of X.

Figure 2 exhibits the plain-images and the cipher-images, fol-
lowed by their respective histograms. The proposed cryptosystem
is capable of encrypting images efficiently. Furthermore, the his-
tograms display a decrease of pixel variance between the plain and
the noise-like images. Table V shows the entropy and correlation
coefficients for each tested plain and cipher-image. The obtained
results are, as expected, with a correlation coefficient roughly zero
and information entropy close to eight bits for cipher-images.

TABLE III. Parameters and the plain-image factors fPI that were used to perform the encryption algorithm. Binary representations are changed into a matrix overGF(2) according

to Definition II.8 before being used in the adapted logistic map. The binary representation uses 2 bits for integer and 30 bits for fraction.

Parameter Decimal representation Binary representation

r 3.99 11.11111101011100001010001111010111000010100011110101110000101001
x0 0.10 00.00011001100110011001100110011001100110011001100110011001100110
fBaboon 2.041 025 400 639 708 10.00001010100000001010010000000010000011011000011100001100000000
fElaine 2.283 803 106 275 167 10.01001000101001110101001000000011111101000111111010000000000000
fPepper 3.733 667 851 371 541 11.10111011110100011010100000000011110001000111000110100000000000
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FIG. 2. Respective histograms for plain and encrypted images. The image encryption scheme is able to encrypt meaningful images to noise-like ones. The histograms are,
respectively, shown in second and fourth columns for the plain (column I) and encrypted images (column III). The respective histograms show that the cipher-images have a
uniform distribution of pixels (column IV), while the plain-image does not (column II), implying a decrease of pixel variance between them.

TABLE V. Correlation coefficients and information entropy for each test image. As

expected, the correlation coefficient in horizontal, vertical, and diagonal directions is

near to zero for encrypted images. On the other hand, meaningful images present

no null values, as their adjacent pixels are strongly correlated. In addition, encrypted

images present an entropy J(X )≈ 8, implying high disorder. Such results are expected

for robust encryption schemes. Image (P) stands for plain and (C) for cipher-image.

Correlation coefficient

Image Horizontal Vertical Diagonal Entropy

Baboon (P) 0.8700 0.8292 0.8002 7.3050
Baboon (C) 0.0075 −0.0005 −0.0038 7.9992
Elaine (P) 0.9726 0.9696 0.9667 7.5130
Elaine (C) −0.0037 0.0150 −0.0056 7.9991
Pepper (P) 0.9812 0.9837 0.9663 7.5952
Pepper (C) 0.0114 0.0272 −0.0038 7.9992

D. Key sensitivity and differential analysis

Key sensitivity and differential analysis measure the effect on
the key stream based on a minor change in the initial conditions
and the image that will be encrypted, respectively. Meanwhile, key
sensitive analysis indicates that cryptosystems can have numerous

TABLE VI. Results of the key sensitivity analysis for the Baboon image. With a slight

disturbance in the initial conditions, the outcome is absolutely dissimilar compared

to the result obtained with an initial condition without disturbance. These values are

compatible with other works in the literature.3

Secret key Diff1(%) Diff2(%)

0.1 + 10−14 99.54 99.54
fPI

+ 10−14 99.60 99.60
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TABLE VII. NPCR and UACI results. The encryption scheme is secure against differ-

ential attack in accordance with the criteria established in Ref. 36. Thus, the proposed

technique is secure against differential attack.

Image NPCR (%) UACI (%) Decision

Baboon 99.68 33.36 Passed
Elaine 99.59 33.51 Passed
Pepper 99.57 33.47 Passed

TABLE VIII. Description of each device used to simulate our proposed encryption

scheme and the other two algorithms (Refs. 3 and 39). The same version of MATLAB

has been used in Devices 1 and 2.

Device Description

1—Encryption Intel® Core™i5-8265U CPU @1.60 GHz
2—Decryption Intel® Xeon® CPU E5-2620 v4 @2.10 GHz

FIG. 3. Reproducibility of chaos-based encryption algorithms on different devices. Line (a) presents an encryption scheme based on finite precision error, as reported in
Ref. 3. It was not possible to recover the plain-image on Device 2 after encrypting it on Device 1. Line (b) shows the encryption and decryption results using the algorithm
proposed in Ref. 39. Likewise line (a), it was still unable to recover the plain-image. Line (c) exhibits the results applying our technique. Unlike the previous results, after
encrypting the image on Device 1 and decrypting it on Device 2, the original image is fully recovered, without data loss. This occurs since our proposed technique performs
all the arithmetic operations in a field. It means that there is no need for rounding; consequently, our approach does not have roundoff error.
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possible key streams, indicating robustness to this scheme, and the
differential attack analysis indicates that whether the encryption
algorithm is safe against this type of attack.34

First of all, the key sensitivity analysis is accomplished by dis-
turbing either the initial condition x0 by 10−14 or fPI

by 10−14.
The encryption process is performed after a disturbance to produce
the cipher-image C2. The difference between the cipher-images is
quantified by35

Diff1(%) =
100

H × W

H
∑

i=1

W
∑

j=1

|sign(C1(i, j) − C2(i, j))|, (19)

where H and W are the height and width of the cipher-images C1

(with no perturbed values) and C2 (with perturbed values).
From the key stream obtained via disturbance, the decryp-

tion process is performed using the cipher-image C1, obtaining P2.
Equation (20) computes the difference between the plain-images P1

and P2,35

Diff2(%) =
100

H × W

H
∑

i=1

W
∑

j=1

|sign(P1(i, j) − P2(i, j))|. (20)

Table VI shows the differences obtained from distinct key
streams encrypting the Baboon image. Results show that the dif-
ference is nearly 100%, indicating that the outcome is absolutely
dissimilar.

The Number of Changing Pixel Rate (NPCR) and the Uni-
fied Average Changed Intensity (UACI) are the two equations to
quantify the system vulnerability about differential attack. These
equations are described by Eqs. (21) and (22), respectively. In order
to execute such an analysis, two plain-images are encrypted. A ran-
dom chosen pixel of one of the two images is slightly modified by
one,34

NPCR(%) =
100

H × W

H
∑

i=1

W
∑

j=1

|sign(C1(i, j) − C2(i, j))|, (21)

UACI(%) =
100

H × W

H
∑

i=1

W
∑

j=1

|C1(i, j) − C2(i, j)|

255
, (22)

where H and W are the height and width of the cipher-image Ci.
As it has been expected, our proposed encryption algorithm is

secure against differential attack. Table VII presents the NPCR and
UACI the indices from Baboon, Elaine, and Pepper images.

E. Reliability on different devices

The main contribution of this work is solving a recurrent prob-
lem when dealing with chaos-based encryption algorithms, where
the user may be unable to decrypt the data if the device used has
a different hardware and software setup than the one used for
the encryption process.37 Common chaos-based methods apply the
normalized raw output of a chaotic system to perform the encryp-
tion. Such methods fail in real cases, where users need to exchange
encrypted images and be able to decode them in contrasting devices.
This is due to finite precision errors, present on computers.25,38 Thus,
distinct processors and software may have slightly diverse ways to

TABLE IX. We have compared the performance of our method using the Baboon

image (512× 512). The suggested scheme holds similar or superior performance

than other algorithms outlined in Refs. 40–43.

Criteria Ours Ref. 40 Ref. 41 Ref. 42 Ref. 43

Key space 24096 2283 21024 5.46 × 1080 2256

Entropy 7.9992 7.9993 7.9993 7.9993 NA
CC—H 0.0075 −0.0018 −0.0036 −0.0108 0.0220
CC—V −0.0005 0.0007 0.0001 0.0087 −0.0083
CC—D −0.0038 −0.0013 0.0023 0.0058 −0.0013
NPCR (%) 99.68 99.61 99.70 99.61 NA
UACI (%) 33.36 33.48 32.28 33.43 NA

calculate the same expression, which is a problem when modeling
such sensitive systems.

We were capable of developing a method that is robust against
hardware and software discrepancy. Representing binary numbers
as elements of a finite field when iterated with the logistic map, we
are able to obtain the plain-image without data loss when encrypting
the image on Device 1 and decrypting it on Device 2.

Besides our proposed approach, we tested two other meth-
ods (Refs. 3 and 39) to demonstrate the problem regarding
data exchange when dealing with chaos-based encryption algo-
rithms. Table VIII shows the device configuration used to encrypt
and decrypt the plain-image, respectively. Furthermore, Figs. 3(a)
and 3(b) demonstrate that the methods cannot decipher the infor-
mation, while our approach (c) is able to fully recover the image.

F. Performance comparison

In order to validate the performance of our encryption scheme,
we have compared the results for the Baboon image with other
results found in the literature. Table IX shows such performance
comparison. Note that our encryption algorithm has a similar or
superior performance in all criteria.

V. CONCLUSION

In this paper, we have proposed a novel image encryption
algorithm based on chaos and Galois field theory. Through the
adoption of a straightforward and easy-to-implement 1D logistic
map, a 64-degree irreducible polynomial on GF(2)[x] and a condi-
tion based on the plain-image, the designed chaos-based scheme has
proved to be secure against cyberattacks, mainly brute-force attacks,
since the algorithm has an astonishing key space of up to 24096.
Moreover, our approach has passed in the ENT test suite, which
guarantees acceptable pseudorandom properties. Most notably, our
image encryption algorithm has shown reproducibility in distinct
digital devices. Additionally, a comparative study with other encryp-
tion schemes shows that our approach is just as efficient as others
and reliable across distinct software and hardware setups.
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