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Abstract
Optimal control for infectious diseases has received increasing attention over the past few decades. In general, a combina-
tion of cost state variables and control effort have been applied as cost indices. Many important results have been reported. 
Nevertheless, it seems that the interpretation of the optimal control law for an epidemic system has received less attention. 
In this paper, we have applied Pontryagin’s maximum principle to develop an optimal control law to minimize the number 
of infected individuals and the vaccination rate. We have adopted the compartmental model SIR to test our technique. We 
have shown that the proposed control law can give some insights to develop a control strategy in a model-free scenario. 
Numerical examples show a reduction of 50% in the number of infected individuals when compared with constant vac-
cination. There is not always a prior knowledge of the number of susceptible, infected, and recovered individuals required 
to formulate and solve the optimal control problem. In a model-free scenario, a strategy based on the analytic function is 
proposed, where prior knowledge of the scenario is not necessary. This insight can also be useful after the development 
of a vaccine to COVID-19, since it shows that a fast and general cover of vaccine worldwide can minimize the number of 
infected, and consequently the number of deaths. The considered approach is capable of eradicating the disease faster than 
a constant vaccination control method.

Keywords  Optimal control · SIR model · Vaccination · Epidemiology · Complex systems · COVID-19

Introduction

Mathematical models of infectious diseases have been 
extensively studied over the past decades [1–11]. The out-
break of infectious disease has caused mortality of millions 
of people as well as represents a noteworthy risk to public 
health and may cause heavy economic and social losses [12]. 
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Needless to say, the quick spread of the coronavirus in 2020 
throughout the world is a clear evidence of the importance 
of research on this topic [13, 14]. Among the several mod-
els of infectious diseases, the SIR (susceptible, infected, 
recovered) model, introduced in [15], is probably the most 
studied. In spite of the fact that, it appears to be basic, the 
SIR model has been explored in numerous viewpoints, for 
example, nonlinear examination of wave going of SIR pan-
demic model [16], effects of discretization schemes [17, 18], 
HIV on small scale population [19] variable population [20, 
21], and optimal control [22–27] to cite a few examples.

The SIR model has been important to clarify several key 
issues. One of them is the fact that there is a threshold for 
the strength of disease spread, wherein there is an endemic 
behaviour of an infectious disease. Besides that this thresh-
old can be changed by means of vaccination [28]. More spe-
cifically, by vaccinating a sufficient percentage of the popu-
lation, the disease can be eradicated. In fact, many works 
have addressed with some success this issue using a constant 
vaccination rate [3, 29, 30]. In fact, in several public health 
practices, a constant value of vaccination rate is adopted 
as target during several public campaigns [31]. Recently, 
the author of [32] has applied optimization techniques to 
find suitable vaccination strategies in an age structured SIR 
model.

Due to economic pressure over the government agencies 
all around the world, suitable vaccination campaigns are dif-
ficult to implement [33]. This fact has made several research-
ers turn their attention to the optimal control problem [34]. 
The author of [22] has considered various deterministic opti-
mal control models for SIR-epidemics. The author has used 
vaccination, quarantine, screening or health promotion cam-
paigns as forms of control. In [35] the authors have applied 
an optimal control strategy during flu season, the SIR model 
was also used in that work.

In [36], the goal was to figure ideal vaccination designs 
for a quickly spreading disease in an urbanized profoundly 
mobile population, using different types of structured SIR 
models. In [37] the authors have developed a time-delay 
SIR model to consider that infected individuals can remain 
sick for a period of time defined over an interval with a 
lower bound. An optimal impulse control strategy has been 
employed, the cost function considered was composed by a 
cost associated with the state variables and a cost associated 
with the vaccination (that depends on the control effort and 
also on delayed states). In [12] the stability and the optimal 
control problem for the SIR model has been investigated. 
The objective functional to be minimized depends on the 
number of susceptible and infected individuals in addition 
to the control effort. The authors in [38] have considered 
the optimal control problem for the standard SIR model, the 
main target was the minimization of the infection eradica-
tion time. The authors of [26] present an optimal control 

approach for the SIR model based on a cost index that 
depends on the state variables, on the control effort that is 
weighted by a nonlinear function and it also depends on 
mixed terms (product between number of infected individu-
als and control effort). Optimal control has also been con-
sidered to deal with the SIR model under the assumption 
of imprecise parameters described as intervals [39]. In that 
case a linear cost function of infected individuals and con-
trol effort has been employed. One may cite also the work 
proposed in [40] that deals with the optimal control problem 
for spatiotemporal SIR models. The system was described 
by a set of partial differential equations and the considered 
control variable was the spatial and temporal distribution 
of the vaccine.

In the aforementioned articles there are important results 
for the research on epidemiology. Nevertheless, the inter-
pretation of an optimal control law for an epidemic system 
has been little investigated. This seems an issue that has not 
received attention in the literature. In this paper, we have 
applied optimal control to eradicate infectious diseases 
described by SIR models. We also exploit the optimal con-
trol law to provide qualitative insights for control policies of 
vaccination. Using Pontryagin’s maximum principle [34] an 
optimal control law that minimizes the number of infected 
individuals and the vaccination rate has been obtained. How-
ever, there is not always a prior knowledge of the number 
of susceptible, infected, and recovered individuals required 
to formulate and solve the optimal control problem. In a 
model-free scenario, a strategy based on the analytic func-
tion is proposed, where prior knowledge of the scenario is 
not necessary. We have noticed that a very high level of 
vaccination rate in the beginning of control policy, with a 
systematic reduction in its level can be a general principle to 
be used. This principle is derived from the optimal control 
law. The considered approach is capable of eradicating the 
disease faster than a constant vaccination control method. 
The control employed in this paper can give some insights 
about how to act to eradicate infectious diseases in real life. 
Nowadays, the unique method to eradicate or mitigate the 
COVID-19 is the physical distancing measurements [11, 41]. 
After a development of a vaccine, there is no guarantee of 
worldwide cover due to economical and cultural restrictions 
[42]. Thus, it is still important to address such a problem 
for the COVID-19 pandemic. The results found here can be 
useful to stress the importance of a global and a general vac-
cination campaign. It also stresses the relevance of national 
and international cooperation to improve our preparedness 
for fighting pandemics such as COVID-19 [43].

The remainder of the paper is organized as follows. 
“Vaccination in the SIR Model ”shows the impact of vac-
cination on the dynamical behaviour of SIR. “Optimal 
Control” focuses on the optimal control problem. After 
that, in “Numerical Results” we solve numerically the 
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system optimization problem. Thereafter, we display some 
results and compare with the solutions and cost obtained 
for a constant vaccination campaign and for the case with-
out vaccination. Finally, in the last Section we conclude by 
discussing the main results of this paper.

Vaccination in the SIR Model

For a constant population, a normalized version of SIR 
model with vaccination can be seen as

where � is the contact rate – also called transmission coef-
ficient, it is the average number of contacts of an individual 
per unit of time, causing the transmission of the disease; � 
is the recovery rate – it represents the rate of infected indi-
viduals per unit of time that passes to the recovered class; 
� is the renewal rate – it is the number of individuals who 
dies per unit of time and, in the same number, are born other 
susceptible individuals; v is vaccination rate; s is the propor-
tion of susceptible individuals; i is the proportion of infected 
people.

When v = 0 , Eq. (1) is equivalent to the SIR model [1]. 
The stability analysis of Eq. (1) has been conducted in 
[42]. Let be �v = �(1 − v) . In order to guarantee the eradi-
cation of disease, we must hold

Therefore, when v > vc the SIR model (1) presents eradica-
tion of infected individuals in steady-state regime. Other 
approaches create a new class, usually denoted as V, stand-
ing for vaccinated individuals [44]. For more details on the 
stability analysis of this model, please refer to [42].

Optimal Control

The optimal control problem consists of minimizing the 
objective functional:

subject to the SIR model with vaccination

(1)

ds

dt
= �(1 − v) − �s − �is

di

dt
= �is − �i − �i,

(2)v > vc = 1 −
𝛾 + 𝜇

(𝛽)
.

(3)J(I, v, t) = ∫
tf

t0

fc(I(�), v(�))d�,

where fc(⋅) is a cost function; t0 is the initial time and tf  is 
the final time. In this case, we have considered the cost of 
the number of infected individuals I and the vaccination v. 
The description of parameters in Eq. (4) can be seen in [42].

The number of individuals with the disease (I) and the 
vaccination rate (v) to compose the cost function were cho-
sen because they represent, respectively, the most important 
variable and in the majority of cases, most of the involved 
costs. Firstly, a minimal amount of investment required for 
vaccination is desired and also a minimal number of infected 
individuals. Second this allows one to calculate the cost func-
tion, with appropriated weights, �1 and �2 . These weights can 
incorporate specific information concerning cost of vaccina-
tions, vaccine campaigns and cost associated to each infected 
individuals. Thus, the cost function may be expressed as

The basic quadratic form was chosen because, apart from 
its simplicity, it yields important features to the problem. 
Pontryagin’s maximum principle [45], a variational calculus 
method, has been employed in order to solve the optimal 
control problem, and we adopted the final time case. In the 
present case, the Hamiltonian is given by

where p1 , p2 , p3 are the adjoint processes.
The control v has to minimize the Hamiltonian, so that, 

when the problem is unrestricted, it is required that

Rewriting (7) gives

Note that Eq. (8) yields an analytic function for the optimal 
control law, where v∗ depends directly on N and � . The size 
of a population has already been investigated as an important 

(4)

dS

dt
= �N(1 − v) − �S − �IS∕N,

dI

dt
= �IS∕N − �I − �I,

dR

dt
= �I − �R + v�N,

(5)fc(I(�), v(�)) =
(
�1v(�)

2 + �2I(�)
2
)
.

(6)

H(S,I,R,v,t) = �1v
2 + �2I

2 +
[
p1 p2 p3

]
[S I R]T

= �1v
2+

+ �2I
2+

+ p1[�N(1 − v) − �S − �IS∕N]+

+ p2[�IS∕N − �I − �I]

+ p3[�I − �R + v�N],

(7)
�H

�v

|||
|v=v∗

= 0 = 2�1v − p1�N + p3�N.

(8)v∗ =
�N(p1 − p3)

2�1

.
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parameter to indicate the persistence of infectious disease 
[46].

The actual determination of the optimal control, as shown 
in Eq. (8), requires the solution of an ordinary differential 
function, which is obtained by

and with the boundary values

where S0 , I0 and R0 are the state initial conditions. p1f , p2f 
and p3f are the final conditions for the adjoint processes.

Numerical Results

In this section, we show numerical simulations of the opti-
mal control applied to the SIR model. To compute the 
TPBVP (Two Point Boundary Value Problem) solution we 
have used the script bvp5c for Matlab [47]. Corresponding 
numerical performance in Matlab are also undertaken by 
[36].

The parameters related to the SIR model employed in 
this work are presented in Table 1. An arbitrary unit of time 
(u.t.) is adopted. It means, the user can set up the parameter 
according to the disease or scale-time of interest. For typi-
cal human diseases, this unit of time is usually adopted in 
days. We consider a simulation with 2 million individuals, 
with contact rate � = 0.08 , a recovery rate of � = 1∕24 . The 
critical value for vaccination vc , using Eq. (2), is given by

In the simulation of constant control, vc = 0.40 was used to 
guarantee the eradication of the disease. As an example, the 
worldwide measles vaccination coverage was 72% in 1998, 
which is considered insufficient to eradicate measles.

The choice of initial conditions represents a scenario 
where a small proportion, compared to the number of sus-
ceptibles, of infected individuals are present in a city with 
a population of two million. The adjoint processes were 
adjusted to minimize the maximum residual of the bvp5c 
algorithm.

Figures 1,2, 3 show the comparison of results for the 
number of infected individuals, vaccination and cost, 

−
�H

�S
=

dp1

dt
= p1� + p1�I∕N − p2�I∕N

−
�H

�I
=

dp2

dt
= �S∕N(p1 − p2) + p2(� + �) − p3� − 2I�1

−
�H

�R
=

dp3

dt
= p3�

(9)[S(t0) I(t0) R(t0)] = [S0 I0 R0]

(10)[p1(tf ) p2(tf ) p3(tf )] = [p1f p2f p3f],

vc = 1 −
1∕24 + 1∕70

0.08
= 0.3006.

respectively. In each figure, there are three situations: vacci-
nation designed by optimal control, constant vaccination and 
without vaccination. The total cost in each situation was put 
in a per unit system. Figure 4 shows the adjoint process p1.

Another important feature of the application of the 
optimal control can be concluded from Fig.  5. Using 

Table 1   Parameters used in simulation

The first column indicates the symbol, while in the second column we 
present typical values found in the literature. The third column indi-
cates the unit, wherever it is possible

Parameter Value Unit

� 1/70 Time−1

� 0.08 (S× Time)−1

� 1/24 Time−1

N 2,000,000 Individuals
S0 0.949N Individuals
I0 0.001 × N Individuals
R0 0.05 × N Individuals
�1 1 × 1011 –
�2 5 –
t0 0 Time
tf 1500 Time
p1f 100 –
p2f 20,000 –
p3f 0.01 –
vc 0.40 –

0 500 1000 1500

0

2000

4000
(a)

(b)

(c)
0 500 1000 1500

0

2000

4000

0 500 1000 1500
0

1

2
105

Fig. 1   Number of infected individuals. The parameters of model and 
optimal control are presented in the Table 1. a Vaccination designed 
by optimal control (8). b Constant vaccination vc = 0.40 . c Without 
vaccination. Notice that the same initial condition is adopted for all 
three cases. It is clear that the simulation performed with the optimal 
control presents the lowest peak of infected and the shortest time to 
eradicate the disease
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the parameters of Table 1 and the stability analysis for 
the fixed point P1 , an endemic state should occur when 
𝛽 > 𝛾 + 𝜇 = 0.056 . In this state, P1 is not stable and 
I > 0 . We chose � varying from 0.056 to 0.1. The initial 

condition of the optimal control v∗(0) and the correspond-
ing vc for each value of � are shown in Fig. 5. The initial 
value of the optimal control is higher than the critical 
value of vaccination when � increases. As the value of � 
is slightly greater than the minimum for many infectious 
diseases (see [3]), this fact can reveal an important practi-
cal orientation. The cost of vaccination campaigns can 
be optimized if the initial value is taken higher than the 
critical value for vaccination vc.

0 500 1000 1500

0

0.2

0.4

0.6

0.8

1

Fig. 2   Comparison between vaccination in three situations. Optimal 
Control (black dashed line). Constant vaccination (dashed dotted 
red line). Without vaccination (dotted blue line). The constant vac-
cination rate is obtained by Eq. (2) and optimal control is obtained 
by Eq. (8). The y-axis is the vaccination rate and x-axis is time in an 
arbitrary unit. From this graph it is possible to notice an interesting 
behaviour of the optimal control. It starts with a very high vaccina-
tion rate, which allows a sharp reduction afterwards

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Fig. 3   Comparison between cost obtained by (3) in three situations. 
Optimal control (black dashed line). Constant vaccination (dashed 
dotted red line). Without vaccination (dotted blue line). The total cost 
in each situation was put in a per unit system. The y-axis is the cost 
and x-axis is time in an arbitrary unit. In the beginning the cost of 
optimal control is higher, which is clearly related to an adoption of 
a much higher vaccination rate. However, after some time, this cost 
becomes lower than the cost provided by constant vaccination

0 500 1000 1500
-1

0

1

2

3

4

5

6

7
106

Fig. 4   Adjoint process p
1
 . This behaviour is close related to the opti-

mal control seen in Fig. 2
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0
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0.8

1
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Fig. 5   Initial value of vaccination rate using the optimal control (–) 
and constant vaccination (-o-) for different values of � . Notice that for 
𝛽 > 0.06 , the vaccination rate designed by optimal control is higher 
than the critical value Eq. (2). It is also important to stress that in the 
majority of the cases the initial value is much higher. Moreover, val-
ues above 1 should be obviously saturated in 1 (maximum population 
cover of 100%)
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Vaccination Policy Based on Optimal Control Law

As presented, optimal control is able to provide satisfactory 
results. However, there is not always a prior knowledge of 
the number of susceptible, infected, and recovered individu-
als required to formulate and solve the optimal control prob-
lem. Therefore, constant vaccination has been used as a way 
to mitigate the effects of lack of knowledge of system states, 
but this approach produces a very high cost when compared 
to the cost of applying the optimal control.

To overcome the highlighted difficulties, a vaccination 
policy is proposed in which prior knowledge of the states 
is not necessary. The proposed approach starts with a high 
percentage of vaccination, to emulate the optimal control 
action. This percentage is then reduced to half of the initial 
value. From this moment on pulses of vaccination with con-
stant interval and decreasing intensity are applied until the 
percentage of vaccination is zero. It is important to state that 
if the number of infected individuals does not reach zero, a 
small rate of vaccination can be continued applied.

Figures 6 and 7 show the comparison of results for vac-
cination and cost, respectively. In each figure, there are the 
situations: vaccination designed by optimal control, constant 
vaccination, without vaccination and proposed vaccination. 
The total cost in each situation was put in a per-unit system.

The weight for the number of infected individuals was 
varied and the results are summarized in Table 2. Opti-
mal vaccination represents the minimum cost, except for 
�2 = 0.1 , when the system without vaccination represents 

the minimum value. As can be seen, the final cost obtained 
by the proposed methodology is higher than the cost 
obtained by the optimal control and lower than the cost 
obtained by constant vaccination. It is noteworthy that the 
states were not used to formulate the control policy, which 
makes the scenario more realistic in view of the lack of accu-
rate information about the system.

An important aspect that deserves our attention is related 
to the possibility of a second infection. It has been reported 
that it is likely that people can be reinfected with COVID-
19. However, the degree of protective immunity conferred 
by infection by COVID-19 is currently unknown [48]. It 
means that at this stage of scientific development it would 
be very hard to incorporate such variables in the dynamics 
of the system. Nevertheless, one of the great advantages of 
compartmental models is the ability to easily incorporate 

0 500 1000 1500

0

0.2

0.4

0.6

0.8

1

Fig. 6   Comparison between vaccinations. Proposed control policy 
(full green line). Optimal Control (black dashed line). Constant vac-
cination (dashed dotted red line). Without vaccination (dotted blue 
line). The constant vaccination rate is obtained by Eq. (2) and opti-
mal control is obtained by Eq. (8). The proposed control policy (full 
green line) is particularly interesting for situations where the model is 
unknown or there is a substantial amount of uncertainty in the data to 
produce a blax-box model

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Fig. 7   Comparison between cost obtained by (3). Proposed control 
policy (full green line). Optimal control (black dashed line). Constant 
vaccination (dashed dotted red line). Without vaccination (dotted blue 
line). The total cost in each situation was put in a per unit system. 
The y-axis is the cost and x-axis is time in an arbitrary unit. The per-
formance of the Optimal Control is the best. However, it requires a 
precise model. Thus, the proposed policy can be an useful alternative 
in a model-free scenario

Table 2   Cost for different values of �
2
 in four different situations for 

vaccination: optimal, proposed in this work, constant, and without 
vaccination at all

The total cost in each situation was put in a per-unit system. In all 
situations, the proposed technique presents a value between the opti-
mal and constant approaches

�
2

Optimal Proposed Constant Without

100 3.2631 ×10−3 6.7790 × 10−3 7.5249 ×10−3 1.0000
10 3.2381 ×10−3 6.0584 × 10−3 7.4546 × 10−3 1.0000 × 10−1

1 3.2356 × 10−3 5.9864 × 10−3 7.4476 × 10−3 1.0000 × 10−2

0.1 3.2353 × 10−3 5.9792 × 10−3 7.4469 × 10−3 1.0000 × 10−3
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new state variables. As soon as it would be possible to rec-
ognise the dynamics of the system, the loss of immunity can 
be included. This can be done, for instance, by adapting the 
SIR epidemic model with partial temporary immunity, as 
presented in [49].

Conclusions

This paper has presented an optimal control law to minimize 
the number of infected individuals and the vaccination rate. 
Furthermore, the strategy considered is based on an analytic 
function. Some aspects have been investigated. First, the 
number of infected individuals is analysed. The optimal vac-
cination campaigns present significant differences (Fig. 1). 
Both methodologies guarantee eradication of the disease, 
but with different peaks and eradication time. Optimal con-
trol takes one third of time to eradicate the disease when 
compared to constant vaccination. The maximum number of 
infected in the case of optimal control is around 50% lower 
than in the case of constant vaccination. The system without 
vaccination stabilizes around 1.5 × 105 infected individuals.

Secondly, the vaccination for the three situations are quite 
different, as shown in Fig. 2. The optimal vaccination starts 
at a higher level than the constant vaccination and decreases 
smoothly until it reaches zero at t = 300 . We believe this 
can indicate an important principle to design vaccination 
campaigns. The campaign should start with a high value and 
then it might be reduced throughout the time (see Figs. 2 and 
5). Some similar results have been reached in [50], where 
the authors show the importance of a great investment in the 
start of a campaign. Thus, a great investment in vaccination 
campaigns reduces the cumulative cost in the long term. 
From this and the fact that there is not always a prior knowl-
edge of the number of susceptible, infected and recovered 
individuals required to formulate and solve the problem of 
optimal control, a vaccination policy was proposed in which 
the prior knowledge of the states is not necessary. The pro-
posed approach starts with a high percentage of vaccination, 
to emulate the optimal control action. This percentage is 
then reduced to half of the initial value. From this moment 
on pulses of vaccination with constant interval and decreas-
ing intensity are applied until the percentage of vaccination 
is zero (see Fig. 6). Figure 7 presents the cumulative cost for 
the four studied cases. The results indicate that the absence 
of vaccination has the highest cost in the long term. In the 
short-term, the total cost of the optimal control is higher 
than the other cases. Besides that, the final cost obtained by 
the proposed methodology is higher than the cost obtained 
by the optimal control and lower than the cost obtained by 
constant vaccination, noting that neither prior knowledge of 
the number of susceptible, infected and recovered individu-
als was used in this approach.

Finally, another point is that the use of Pontryagin’s 
maximum principle yields an analytic function for the opti-
mal control law. Thus, this conclusion can be expanded 
for a more realistic scenario the persistence of an infec-
tious disease can also be described because of this relation. 
Although, in general there is no optimal design for vaccina-
tion campaigns, it is clear that economic pressures can be 
seen as a cost function, which make governmental agencies 
optimize their resources, and therefore, the vaccination cam-
paign. Another interesting possibility to investigate is related 
to incorporating uncertainty from data and from computer 
simulation using interval arithmetic approaches for nonlin-
ear dynamical systems as in [51–53].

Finally, it is important to stress that under the enormous 
pressure that global society has been facing to fight the 
COVID-19 pandemic, the results pointed here are based 
on the optimistic perspective for the development of a vac-
cine [54]. There is one lesson that, unfortunately, almost all 
countries have not learned: be prepared for a pandemic, as 
has been warned by many scientists and global leaders [55]. 
Therefore, it is really important to start to investigate how 
to deal with a massive and global vaccine campaign. The 
results here pointed out the importance of a robust response 
of vaccination to a quick eradication of the COVID-19. 
Future works should address other compartmental models, 
such as SEIR [41], and specific parameters for each coun-
try or region of the globe. It would be of great interest to 
incorporate other techniques to forecast COVID-19 as seen 
in [56].
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