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Abstract Validation of an estimated model is not a triv-
ial task because it depends on the purpose of the model,
which usually defines the most important features of the
model. Thus, in a validation process, the use of diverse tools
that exploit different domains is recommended. Here, with
this aim, a scale for model validation is proposed that com-
bines the Normalized Root Mean Square Error (NRMSE)
with two new indices: the coherence-based index and the
fourth-order cross-cumulant index. The proposed scale was
used for the validation of three models: the Logistic Map,
the Duffing–Ueda oscillator, and the Buck converter. The
results demonstrated that the proposedmodel validation scale
produces a more complete validation process that takes into
account both time and frequency information and provides
robustness against Gaussian noise.
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1 Introduction

System identification is the part of control engineering that
uses statistical methods to build mathematical models of
dynamic systems from measured data. Despite the approach
being used to solve the identification problem and regardless
the structure of the final model, the last step in any identi-
fication procedure should be the validation of the estimated
model. Themain objective of the validation is to seek answers
to questions such as the following: is the identified model
valid? If so, under what conditions?According to [1], models
are validated to see how they meet certain validation criteria.

Most conventional approaches for model validation are
not effective when the models are chaotic; as a result, alter-
native invariant indices should be used to quantify the quality
and adequacy of the estimated model [2]. In this respect,
bifurcation diagrams and the dynamics of attractors have
been shown to be farmore sensitive to variations in themodel
structure than many other methods used in model validation.
However, the evaluation of bifurcation diagrams and attrac-
tors sometimes become subjective [3], and in some cases,
these tools are not suitable for validating a model regarding
some specific feature.

In several applications, validation is focused on proper-
ties regarding time and frequency domains. For example, for
series prediction, an index that is able to determine accuracy
regarding time prediction is important. A known index fre-
quently used for model validation is the Root Mean Square
Error (RMSE), which takes into account similarities and/or
changes between time series from the system and the model.
However, this index is not able to detect features on frequency
and can present erroneous results for noisy signals.

In the literature, reports can be found involving com-
parisons among different indices. Penaranda and Saavedra-
Montes [4] presented a comparison of eight different indices.
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Willmott and Matsuura [5] argued that the mean absolute
error (MAE) is superior to the RMSE. Although the RMSE
presents some weakness, several applications have been
reported [5,6].

In this paper, a different perspective is proposed. Instead
ofmaking comparisons or claiming that one index is superior
to another, we propose the use of multiple indices. The core
idea is to combine multiple indices to build a scale for model
validation. From this scale, an objective result of validation
is available if desired. In addition, the validation result of
each index used in the scale is also available, and from this,
the user can set the scale to achieve a model with the desired
features.

In this work, we will concentrate our efforts on the indices
that cover both time and frequency domains. To build the pro-
posed scale, we propose two new indices to be combined
with the Normalized Root Mean Square Error (NRMSE)
index: the coherence-based index and the fourth-order cross-
cumulant. The first index is based on the coherence function
[7], which is defined as the parcel of the power spectrum of
a given signal that is accounted for by a second signal. The
index is analogous to the square of the correlation coeffi-
cient, but in the frequency domain [8]. This new index uses
the coherence, in a weighted version, as a measurement of
the similarity between the original system and the model at
the frequency domain. The other proposed index also mea-
sures the similarities between the time series from the model
and system, but it uses the fourth-order cross-cumulant [9],
which is a measure of independence among random vari-
ables. However, the use of the fourth-order cross-cumulant
for independencemeasurement avoids the estimation, given a
finite data set, of marginal probability density functions and
the true high-dimensional entropy of the original process,
which is an extremely difficult task in general [9].

The main motivations for the use of the fourth-order
cross-cumulant as an index for model validation are the fol-
lowing: (i) higher order cumulants are blind to any kind of
Gaussian process, whereas second-order statistics are not;
i.e., fourth-order cumulant-based signal processing methods
handle colored Gaussian measurement noise automatically,
whereas second-order-based methods do not [10]; (ii) the
measure of statistical independency is stronger than corre-
lation; (iii) higher order statistics can characterize nonlinear
processes better than second-order statistics.

In this paper, the NRMSE, the coherence and the fourth-
order cross-cumulant are combined to provide an objective
decision for model validation, mixing aspects of both fre-
quency and timedomainswith robustness against noise.Most
important, one of the aims of this paper is to demonstrate the
importance of combining indices for the validation process.

Nonlinear models are known to simulate a broader range
of systems more precisely than linear models, and for this
reason, they are widely studied. Techniques of control and

system analysis, as well as of signal processing and system
identification, have been developed specifically for nonlinear
models [11–19].

In this paper, the proposed method is tested for three sys-
tems, which take into account nonlinear data from a real
system and nonlinear data with chaotic behaviors: the Logis-
tic Map [20], the Duffing–Ueda oscillator [21,22], and the
Buck converter [23].

2 Theoretical background

2.1 Coherence

The coherence function is a measurement of the correlation
between two signals in a specific frequency band. The coher-
ence function differs from the cross-spectrum in that it is
normalized to yield values with magnitudes between zero
(uncorrelated signals) and unity (correlated signals). The
magnitude-squared coherence function is often called just
coherence, and its estimation for two random, finite-length
record, discrete-time signals, y1[k] and y2[k], can be obtained
according to [7] as:

γ̂ 2
y1y2 [ f ] = |Ŝy1y2 [ f ]|2

Ŝy1y1[ f ]Ŝy2 y2 [ f ]
(1)

where the “∧” superscript denotes an estimation, f is a dis-
crete version of the frequency, Ŝy1y2 [ f ] is the cross-spectrum
between y1[k] and y2[k], and Ŝy1y2 [ f ] ( j = 1; 2) is the power
spectrumof y j [k]. Such spectral estimationsmay be obtained
using the well-known approach of dividing the signals into
M segments as:

Ŝyq yp [ f ] =
M∑

i=1

Y ∗
qi [ f ]Yqi [ f ] (2)

where Yqi [ f ] (Ypi [ f ]) is the i th window Discrete Fourier
Transform of yqi [k] (ypi [k]), the “∗” superscript denotes
complex conjugate, and M denotes the number of segments
used for the estimation. This expression does not need to have
the averaging factor (usually 1/MT, with T denoting the win-
dow duration) because it would clearly cancel in coherence
estimation according to (1).

2.2 Fourth-order cumulant

A fourth-order cumulant measurement for the independence
of random variables x1, . . . , xn can be obtained as indicated
by [9]:
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μ4
cum(x) =

n∑

i, j=1

n∑

k,l=1

cum{xi , x j , xk, xl}2, (3)

where i < j , x is a random vector whose components
x1, . . . , xn have zero means and cum{xi , x j , xk , xl} denotes
the fourth-order cross-cumulant of the random variables xi ,
x j , xk and xl :

cum{xi , x j , xk, xl} = E(xi x j xk xl) − E(xi x j )E(xkxl)

−E(xi xk)E(x j xl) − E(xi xl)E(xkx j )

(4)

where E is the expectation operator.
To calculate μ4

cum(x) in an efficient way, as proposed
by [9], a fourth-order cumulant matrix Cum2,2

x (A) of x is
defined as follows [24]:

Cum2,2
x (A) = E{xxTxTAx} − E{xxT}E{xTAx}

−E{xxT}AE{xxT} − E{xxT}ATE{xxT} (5)

where A ∈ �n2 is a matrix, and the (i, j)th element of
Cum2,2

x (A) is

Cum2,2
x (A)i, j =

n∑

k,l=1

cum{xi , x j , xk, xl}Ak,l (6)

Considering Ik,l as an n×n matrix that has a value of one
at (k, l) position and the rest of its elements are zero, we then
obtain

Cum2,2
x (Ik,l)i, j = cum{xi , x j , xk, xl}. (7)

Therefore,

Cum2,2
x (Cum2,2

x (Iu,v))i, j

=
n∑

k,l=1

cum{xi , x j , xk, xl}cum{xi , x j , xu, xv}. (8)

In the particular case when (i, j) = (u, v), using the sym-
metry of the cumulants, we obtain

Cum2,2
x (Cum2,2

x (Iu,v))i, j =
n∑

k,l=1

cum{xi , x j , xk, xl}2 (9)

Hence,

μ4
cum(x) =

n∑

i, j=1i< j

Cum2,2
x (Cum2,2

x (Ii, j ))i, j (10)

which is an efficient way for calculating μ4
cum(x).

System

Model

u

ym

ys

Fig. 1 Schematic representation, where ys is the output of the system
and ym is the output of the simulated model for the same input u

It is important to mention that the presence of outliers in
the data can lead to erroneous results, since the fourth-order
cumulant is sensible to them as showed in [25].

3 Model validation indices

Consider the scheme of Fig. 1, where ys is the output of
the original system and ym is the output of the simulated
model for the same input u. The NRMSE, the coherence and
the cross-cumulant between the signal ys, generated by the
real system, and ym, obtained from the simulated model, are
calculated. The results from these indices are combined to
provide a criterion for evaluating models (model validation).

3.1 NRMSE

The NRMSE index assesses the quality of the estimator in
terms of its variation and unbiasedness. In situations involv-
ing the presence of noise, NRMSE less than unity is a sign
of quality. The NRMSE can be written as

NRMSE =
√∑N

k=1 (y[k] − ŷ[k])2
√∑N

k=1 (ŷ[k] − ȳ)2
, (11)

where ŷ[k] is the free simulation of the signal, ȳ is the average
of the signal y[k], and N is the number of samples. A model
is worse than an average when it presents an NRMSE greater
than 1.

3.2 Coherence weighted index (CWI)

In this paper, we propose a new index to be used as a quan-
titative measurement for model validation. The coherence
estimate gives important information about the linear rela-
tion between signals for a specific frequency range, but it is
also useful to have a value that represents an overall value of
the coherence. The coherence weighted index is calculated
as:

CWI =
∑P

j=1 w j γ̂
2
ysym [ f j ]

∑P
j=1 w j

, (12)

123



328 Electr Eng (2017) 99:325–334

where P is the length of the windows (segments) used to
compute the coherence, γ̂ 2

ysym [ f j ] is the coherence between
the signal ys, generated by the real system, and ym, obtained
from the simulatedmodel, at the discrete frequency f j , which
is calculated according to Eq. (1). The weights w j , j =
1, 2, . . ., P , are obtained from the power spectrum of the
real system signal ys by Eq. (13).

w j =
(

L̄ j

min(Q)

)
(13)

where L̄ j is the mean of the vector L j = [Y j1Y j2 . . . Y jM ],
which contains the power of the frequency components
j of ys for all windows (segments) used to compute the
coherence, and Q = [L̄1 L̄2 . . . L̄ P ] is the vector con-
taining the mean values L̄ j of all frequency components
( j = 1, 2, . . ., P).

The weights obtained with Eq. (13) take into account the
power spectrum of the signal generated by the real system,
being 1 for the minimum power and greater than 1 for the
frequencies where the power is above the minimum one.
Therefore, the multiplication of w j by γ̂ 2

ysym [ f j ] in Eq. (12)
weighs the values of coherence in accordance with the spec-
trum content of the real system output signal. Observe that
the CWI index is normalized with respect to the weights
w j and, therefore, the CWI values will fall between 0
and 1.

According to [26], the number of windows M used to
properly estimate the coherence must be large because the
maximum bias, the maximum standard deviation, and the
maximum RMS error only decay as M (−1/2). On the other
hand, a large number of windows imply a large computation
time for processing. For the examples in this paper, M = 12
was used due to its compromise between performance and
computational cost.

3.3 Forth-order cumulant for model validation

The fourth-order cumulant measurement μ4
cum(x) can be

applied directly to the output signals from themodel and from
the system (as depicted in Fig. 1). Values near 0 indicate that
the signals are statistically independent, while greater val-
ues indicate a level of dependency. Therefore, values near 0
indicate that the model cannot be validated, whereas larger
values indicate that the model can be validated.

The μ4
cum(x), as used in this paper, normalizes each ran-

dom variable such that the normalized inputs x̃i satisfy
μ4
cum(x̃i , x̃i , x̃i , x̃i ) = 1 for i = 1, . . . , 4. Note that for dif-

ferent random variables, μ4
cum(x) can reach values greater

than 1, indicating a certain level of dependence between the
random variables.

Table 1 Values achieved for the proposed indices in validating the
models ym1, ym2 and ym3

Case CWI Cumulant (μ4
cum(x))

ym1 0.8141 0.0557

ym2 0.9791 1.0000

ym3 0.0213 0.0000

3.4 Example of the use of CWI and fourth-order
cumulant for model validation

To illustrate the application of the proposed indices CWI
and μ4

cum(x) for model validation, consider a toy simulation
where the output of the original system is:

ys(t) = sin(2π60t) + n1(t) (14)

and the outputs of three different models for the original
system are:

ym1(t) = cos(2π60t) + n2(t), (15)

ym2(t) = sin(2π60t) + n3(t), (16)

ym3(t) = cos(2π120t) + n4(t), (17)

where n1(t), n2(t), n3(t) and n4(t) are uncorrelated white
Gaussian noise with zeromean and variance of 0.01. The sig-
nals in (14)–(17) were simulated with a sampling frequency
of 15.36 kHz (256 samples by cycle) and length of six cycles.

The achieved values of the proposed indices are shown
in Table 1. As the outputs ym1 and ym2 have power spectra
similar to the output of the original system ys, the CWI indi-
cates suitable models for both, despite the fact that the output
signal ym1 has a phase shift of π/2 radians with respect to the
original system ys, indicating that CWI is blind to phase shift.
On the other hand, the cumulant index indicates no statistical
dependence between signals ym1 and ys.

For the output signal ym2, the cumulant indicates high
statistical dependence with the original system as expected,
since bothweremodeled as sinewaveswith 60Hz frequency.

The third model has the output signal different from the
original system on both time and frequency domains and,
therefore, both proposed indices indicate a not suitablemodel
for the system.

3.5 Proposed scale for model validation

It is known that the usage of more than one validation index
can be a good approach, depending on the system to be
modeled and on the use purposes. On the one hand, models
for chaotic and nonlinear systems often present a complex
behavior that is difficult to reproduce with a model. On the
other hand, the system data can be corrupted by noise or
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Table 2 Proposed conditions of
the validation indices

Case Condition

C1 NRMSE <1

C2 CWI >0.5

C3 Cumulant >0.5

other unwanted external influences, which can lead to errors
concerning the model validation. To address these issues, we
proposed a scale to make the model validation process more
objective, i.e., providing a quantitative measurement based
on multiple indices that allows one to make a decision on
the validation of the model. For this, the conditions summa-
rized in Table 2 are defined. From this table, a logical vector
including such conditions is constructed:

� = [C1 C2 C2], (18)

which a scale is defined from the sum of the vector ele-
ments (

∑
i �i ). The element of the vector is assigned 1 in

(18) if the corresponding condition presented in Table 2 is
true. This scale, varying from 0 to 3, gives a simple mea-
surement of the validation of the model based on the time
and frequency domains. Larger scales indicate better mod-
els, whereas smaller scales indicate worse models. A user,
according to a specific purpose, may specify a value from
0 to 3 to accept or decline the validation of a model. More-
over, this idea may be extended to more than three indices,
according to the user needs. Thus, the proposed scale com-
bines three different indices to provide an objective model
validation decision such that each index validates the model
under different points of view.

The imposed condition for each index (Table 2) follows a
usual process of validation in many works, such as [4]. The
values adopted reflect in some sense the meaning of each
index, for instance, NRMSE = 1 means the model presents
an equivalent performance of a prediction made by a simple
average of data, whereas an NRMSE <1 indicates a perfor-
mance better than the average [27]. This idea is adapted to
indices CWI and cumulant in a similar way. The difference
here is that we present a simple framework to address multi-
ple indices simultaneously. Moreover, other indices may be
added in this strategy to increase the generality of validation
procedure.

4 Application and analysis

In this section, the proposed validation method is used for
the validation of three nonlinear systems: the Logistic Map,
the Duffing–Ueda oscillator and the Buck converter.

4.1 Logistic map

The logisticmap [20] is one of the simplest forms of a chaotic
process and has been used as a model for population dynam-
ics. Basically, this map, similar to any one-dimensional map,
is considered as something even simpler, i.e., an “iterative
map”, given by equation:

ys[k + 1] = r ys[k](1 − ys[k]), (19)

where r is a parameter, and k = 1, . . . , N is the sampling
index.

Here, we have considered Eq. (19) as the system, and for
the model, we have considered 27 different models in which
each one undergoes a different interference (see Table 3).
The system and the models were simulated with a sampling
frequency ( fs) of 100 Hz, N = 256 samples, r = 3.7 and
initial condition ys[0] = ym[0] = 0.75. An additional model
with the initial condition different from that of the system
(ym[0] = 0.5) was also tested (Case 27). The goal is to test
the sensitivity of the validation indices to the interferences
included, which are changes due to phase and frequency
noise, offset, Gaussian noise, exponential noise, multiplica-
tive factor, power of second and third order, saturation, delay,
exponential decay, polynomial relation, only a noise signal,
and different initial conditions.

The results of the validation with the proposed indices
and the achieved scale for each model are shown in Table 3.
Note the following: (i) the NRMSE index focuses on detect-
ing only time series similarities and changes, while the CWI
focuses on detecting only frequency similarities and changes,
discarding any similarity in time; (ii) the CWI index is not
sensitive to phase shift and noisewith spectral content similar
to the original system, offset, multiplication factor, saturation
and delay; (iii) the cumulant index is immune to Gaussian
noise and it is also not sensitive to offset and multiplication
factor; (iv) all indices are shown to be sensitive to different
initial conditions. Thus, our aim in this case study was to
provide the reader with a set of typical interferences, from
nonlinearities to noise interference, to clarify the differences
among these investigated indices.

The coherence was revealed to be an important tool for
system validation because it indicates the linear relationship
between the model and the original system in the frequency
domain. Thus, the model studied can be evaluated within
specific frequency bands. However, non-expected (or unde-
sired) similarities in frequency domain may lead to errors, as
indicated in Case 22 (Table 3), which stresses the need for
multiple indices.

The fourth-order cross-cumulant was shown to have an
important advantage, which is its immunity to Gaussian
noise, indicating that it is a good approach for system valida-
tion with noisy signals. Examples of this feature are shown
in Case 23 (Table 3).
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Table 3 Model validation based on (18)

Case Model Type � Scale

(1) ym[k] = ys[k] + exp(N (0, 0.05)) Exponential noise [1 1 1] 3

(2) ym[k] = ys[k] + N (0, 0.05) Normalnoise [1 1 1] 3

(3) ym[k] = ys[k] + N (0, 0.2) Normal noise [1 1 1] 3

(4) ym[k] = (ys[k])2 Square [1 1 1] 3

(5) ym[k] = 1.2ys[k] Amplification [1 1 1] 3

(6) ym[k] = ys[k] (saturated at 0.7) Saturation [1 1 1] 3

(7) ym[k] = 0.1ys[k] + 0.1(ys[k])2 Polynomial order 2 [1 1 1] 3

(8) ym[k] = 0.1ys[k] + 0.1(ys[k])2 + 0.1(ys[k])3 Polynomial order 3 [1 1 1] 3

(9) ym[k] = ys[k + 2] Delay [1 1 1] 3

(10) ym[k] = ys[k] + exp(N (0, 0.2)) Exponential noise [1 1 1] 3

(11) ym[k] = ys[k] + 0.5 Offset [0 1 1] 2

(12) ym[k] = 1.5ys[k] Amplification [0 1 1] 2

(13) ym[k] = 10ys[k] Amplification [0 1 1] 2

(14) ym[k] = (ys[k])3 Cube [0 1 1] 2

(15) ym[k] = −0.1(ys[k])2 Minus and square [0 1 1] 2

(16) ym[k] = ys[k] + 0.3sin(20πk) Additional frequency [0 1 0] 1

(17) ym[k] = ys[k] + 0.3sin(20πk + π/2) Additional frequency [0 1 0] 1

(18) ym[k] = ys[k] (saturated at 0.4) Saturation [0 1 0] 1

(19) ym[k] = ys[k + 8] Delay [0 1 0] 1

(20) ym[k] = ys[k + 15] Delay [0 1 0] 1

(21) ym[k] = ys[k]exp(−2k/0.6) Exponential decay [0 1 0] 1

ym[k] = 0.6 + 0.01[sin(2πk15) + 2

(22) sin(2πk40) + sin(2πk45) + 5sin(2πk47) + sin(2πk50)] Similar band frequency [0 1 0] 1

(23) ym[k] = ys[k] + N (0, 0.5) Normal noise [0 0 1] 1

(24) ym[k] = ys[k] + exp(N (0, 0.5)) Exponential noise [0 0 0] 0

(25) ym[k] = ys[k] + exp(−5k/0.6) Exponential decay [0 0 0] 0

(26) ym[k] = N (0, 1) Normal noise [0 0 0] 0

(27) ym[1] �= ys[1] Different initial conditions [0 0 0] 0

From this case study, one canobserve andunderstand,with
a set of typical interferences, the different contributions that
each proposed index can provide to the validation process.
Note that the goal of the proposed scale is mainly to sum-
marize these contributions and provide an objective answer
about the validation of a model.

4.2 Duffing–Ueda system

The classical model for the Duffing–Ueda oscillator is given
by the following equation [21]:

A cos(ωt) = A cos(ωt)|t= k
f s

= ÿs + α ẏs + y3s , (20)

where k = 0, 1, . . . , N − 1, for N = 1910, fs = 60/π is
the sampling frequency, α = 1, A cos(ωk) is related to the
system input, and ω = 1 rad/s in this case. Such an equation

is called the Duffing–Ueda equation, which was originally
proposed as amodel for nonlinear oscillators and has become
a test-bench for the study of nonlinear dynamics because this
model can produce a variety of dynamic regimes, in spite of
its simple form. This variety can be seen in the bifurcation
diagram shown in Fig. 2.

The described model in Eq. (20) has been identified by
[22] using the NARX polynomial, as written in Eq. (21).

ym[k] = 2.15790ym[k − 1] − 1.32030ym[k − 2]
+0.16239ym[k − 3] + 0.22480 × 10−3ym[k − 3]3
−0.48196 × 10−2ym[k − 1]3
+0.19463 × 10−2u[k − 2]
+0.34160 × 10−3u[k − 1]
+0.35230 × 10−2ym[k − 1]2ym[k − 2]
−0.12162 × 10−2ym[k − 1]ym[k − 2]ym[k − 3]

(21)
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Fig. 2 Bifurcation diagram of the Duffing–Ueda system described in
(20)

Fig. 3 Bifurcation diagram of the Duffing–Ueda system of the NARX
model described in (21)

The bifurcation diagram of Eq. (21) is shown in Fig. 3. The
similarities with the original diagram can be noted.

The coherence between the output signal (ys[k]) of the
Duffing–Ueda system (Eq. (20)) and that (ym[k]) of the
NARXmodel (Eq. (21)), for the same input (u[k] = 9cos[k]),
was estimated according to Eq. (1), as shown in Fig. 4.
The coherence values indicate the similarities in frequency
between the output signals of the Duffing–Ueda system and
its model. Coherence values near 1 indicate strongly linear
related signals in frequency, while values near 0 indicate
no linear related signals. One can see that for frequencies
smaller than 2 Hz, there are several points with low values of
coherence, indicating that the NARXmodel could not repro-
ducewell the system in this low-frequency range. In contrast,
coherence values of approximately 0.7300 were achieved for
frequencies higher than approximately 2 Hz. The CWI was
found to be 0.6167 for this model.

The cross-cumulant (μ4
cumx) between the output signals

of the Duffing–Ueda system and its model was found to be
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Fig. 4 Coherence between the output signal of the Duffing–Ueda sys-
tem (ys) and that (ym) of the simulated NARX model of this system

Table 4 Values of the validation for the Duffing–Ueda system

Indices Values of the indices

(NRMSE) 0.6353

(CWI) 0.6167

(Cumulant) 0.4019

� [1 1 0]

Scale
∑

i �i = 2

0.4019, which shows a certain level of statistical dependency
between these randomvariables. TheNRMSE indexwas also
calculated and found to be 0.6353.

According to the proposed decision test, based on a scale
(Eq. (18)), the logical vector � = [110] was achieved for
the model described in (21), obtaining a scale of

∑
i �i = 2.

Table 4 summarizes these results.
Although the obtained scale has not reached the maxi-

mumvalue, themodel in (21) could be considered a validated
model because two of the three indices have assigned it as a
goodmodel and the cross-cumulant index achieved a slightly
lower value than the threshold defined by condition C3 in
Table 2.

4.3 Buck converter

The Buck converter consists of a voltage regulation system
controlled by a MOSFET IRF840. The experimental data
were obtained from an independent test described in [23],
with a sampling time Ts = 120 s. The used Buck converter
circuit is shown in Fig. 5.

The Buck converter model used in this paper was the
NARX model, as described in [23], where only the first half
of the data was used for the identification. The NARX poly-
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Fig. 5 Buck converter circuit
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Fig. 6 Coherence between the real output signal of the Buck converter
and its model

nomial for the Buck converter is described by Eq. (22).

ym[k] = 1.4628ym[k − 1] − 6.8343 × 10−1ym[k − 2]
+6.6153 − 1.8636u[k − 1]
+2.5723 × 10−5ym[k − 3]
+2.9910 × 10−1u[k − 3] (22)

where u[k] is the input signal.
For the validation process, the second half of the time

series was used. Thus, the coherence between the output sig-
nal of the system and the output signal of themodel described
in Eq. (22) was estimated and is displayed in Fig. 6. One can
see that high coherence values were achieved, showing that
the model in (22) describes well the Buck converter behavior
in all frequency ranges. TheCWI obtained for thismodel was
0.8885, indicating its good performance for representing the
system.

The cross-cumulant index between the output signal of the
system and the output signal of the model described in Eq.
(22)was found to be 0.9173, in agreementwith the coherence
analysis. Table 5 presents the proposed indices. An NRMSE
of 0.3684 was achieved for this model. One can see that for

Table 5 Values of the validation for the Buck converter

Indices Values of the indices

(NRMSE) 0.3684

(CWI) 0.8885

(Cumulant) 0.9173

� [1 1 1]

Scale
∑

i �i = 3
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Fig. 7 The Buck converter output signal (continuous line), and its
model output (dashed line)

this model, � = [111], and hence, the model was assessed
as having the maximum scale of 3.

The validation can also be obtained through the compar-
ison between the system output signal (continuous line) and
that from the model (dotted line), as shown in Fig. 7. Again,
there is an agreement between the different methods applied
to the system validation, but using the proposed indices,
quantitative information is available, taking into account
two important informative details: linear dependency on the
frequency (information available from the coherence esti-
mation) and statistical dependency between the system and
model (measured by the cross-cumulant).
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Fig. 8 Coherence between the real output signal of the Buck converter
and its model. The solid line is the coherence for the system output
without noise, and the dotted line is the coherence for the noisy output

Table 6 Values of the validation for the Buck converter (noisy simula-
tion)

Indices Values of the indices

(NRMSE) 0.3772

(CWI) 0.4751

(Cumulant) 0.9173

� [1 0 1]

Scale
∑

i �i = 2

To evaluate the performance of the proposed indices for
signals corrupted by noise, a simulation (noisy simulation)
was performed by adding zero mean Gaussian white noise
to the Buck converter output with a 10 dB signal-to-noise
ratio (SNR). For this scenario, the coherence between the
system output (noisy) and the model output was estimated,
as shown in Fig. 8. It is possible to verify that the coherence
was seriously affected by the noise (CWI = 0.4751). For the
same simulation, the cross-cumulant was also obtained, and
the resulting value was the same for the case without noise
(0.9173), as expected. Table 6 presents the CWI, NRMSE
and cumulant values for the noisy simulation.

Now, themodelwith interference fromnoise is assessed as
having a scale of 2 (� = [101]). The coherence is found to be
more sensitive than the other validation methods, while the
fourth-order cross-cumulant is immune to Gaussian noise.
Therefore, for Gaussian noise scenarios, it can be concluded
that the fourth-order cumulantmeasurement of independence
is a suitable method for model validation and the proposed
scale decision method could still be used. Moreover, the con-
dition statements presented in Table 2 could be adjusted to
increase its robustness to noise, if desired.

5 Conclusions

In this paper, the use of multiple indices for model val-
idation was exploited, in which a scale combining three
validation indices was proposed. For this, two new indices
were introduced: the coherence function and the fourth-
order cross-cumulant. These indices were combined with the
NRMSE, aiming at providing more complete and objective
information concerning model validation.

Finally, a scale combining information from the NRMSE,
the coherence, and the fourth-order cross-cumulant retains
the properties of the three indices, being sensitive to both
frequency and time domains and also robust to noise, lead-
ing to a quantitative method for model validation. Note that
other validation indices can be added to the proposed scale
to increase its generalization capability.

The proposed scale is a simple framework that may indi-
cate the quality of a model for multiple indices, which
although does not find the best model, can be very useful
to provide the end-user a set of suitable models.

In future works, we intend to increase the number of
indices and consider the possibility of selecting a set with
a minimum number of indices. In addition, we plan to apply
this method to investigate structure selection, evaluating the
impact of terms on time and frequency domains.
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