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ABSTRACT
A lower bound error for free-run simulation of the polynomial NARMAX (Nonlinear AutoRegressive
Moving Average model with eXogenous input) is introduced. The ultimate goal of the polynomial
NARMAX is to predict an arbitrary number of steps ahead. Free-run simulation is also used to validate
the model. Although free-run simulation of the polynomial NARMAX is essential, little attention has
been given to the error propagation to round off in digital computers. Our procedure is based on
the comparison of two pseudo-orbits produced from twomathematical equivalent models, but dif-
ferent from the point of view of floating point representation. We apply successfully our technique
for three identifiedmodels of the systems: sinemap, Chua’s circuit and Duffing–Ueda oscillator. This
techniquemay be used to reject a simulation, if a required precision is greater than the lower bound
error, increasing the numerical reliability in free-run simulation of the polynomial NARMAX.

ARTICLE HISTORY
Received 26 October 2015
Accepted 4 March 2016

KEYWORDS
NARMAX; prediction; discrete
time systems; nonlinear
systems; numericalmethods

1. Introduction

The polynomial NARMAX (Nonlinear AutoRegressive
Moving Average model with eXogenous input) is widely
applied to represent all sorts of systems (Billings, 2013;
Chen & Billings, 1989). This mathematical representation
may be seen as a well-structured type of recursive func-
tion, inwhich terms andparameters are carefully selected
(Korenberg, Billings, Liu, & Mcilroy, 1988). Recursive func-
tions are also used to describe and solve many types of
systems and problems (Feigenbaum, 1978) and play an
essential role in solving the majority of nonlinear dynam-
ics systems (Hammel, Yorke, & Grebogi, 1987; Lozi, 2013;
Nepomuceno, 2014).

Numerous researchers are confident in subscribing a
chaotic behaviour to various systems through numeri-
cal solutions (Ott, 2002). These solutions make use of
popular software and computers easily accessible to
most researchers. However, Lozi (2013, p. 63–64) says
that ‘there are many published works whose reliability
numerical results is not carefully evaluated’. For example,
Lozi (2013, p. 64) says that ‘In the simple case of a dynamic
discrete system (of Henon map) there are doubts as to
the nature of the ‘computational results: long unstable
pseudo-orbits or strange attractors?’

Nepomuceno (2014) shows, using double precision
in a popular software, that a simple sequence of itera-
tions may generate wrong results in steady state, that
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is, converged to the wrong answer. In that work, a care-
ful way is presented to calculate error propagation in
the computation of recursive function. Investigation of
propagation error is not a recent issue (Galias, 2013;
Faranda, Mestre, & Turchetti, 2012; Goldberg, 1991; Ham-
mel et al., 1987). In fact, there are many works based on
deterministic or stochastic tools that provide some confi-
dence in simulation of recursive functions. Many of those
techniques are not practical for nonlinear recursive func-
tions with many terms, such as the polynomial NARMAX,
or for non-expert users, who like to measure or at least
estimate the error.

To deal with the numerical questions in nonlinear
dynamic systems, many researchers have used the shad-
owing property (Chow & Palmer, 1992, 1991; Hammel
et al., 1987; Sauer, Grebogi, & Yorke, 1997). This prop-
erty ensures that a pseudo-orbit (a sequence of points
calculated from a recursive function map) is a homeo-
morphism that remains close to the real orbit (Faranda
et al., 2012). What fewer researchers report is the fact that
this property is valid only for uniformly hyperbolic sys-
tems (Lozi, 2013). We present two works that have been
developed to address this situation. First, the work of
Hammel et al. (1987) used computational effort to prove
a theorem which states that a pseudo-orbit of the logis-
tic map (May, 1976) remains at a distance of 10−7 from
the true orbit up to 10 million iterations using double
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precision. The computational effort is still a strong tool to
support results of analysis of nonlinear dynamic systems.
Liao & Wang (2014) used 1200 CPUs and an integration
algorithm based on an expansion order of 3500 Taylor
series, and 4180 digits of precision to perform simulation
of the Lorenz equations. The second example is a variant
of the shadowing property, in which the domain is anal-
ysed by intervals, resulting in property parameter-shifted
shadowing (Lozi, 2013).

Despite advances in numerical computation for non-
hyperbolic cases, the two cases presented still have limi-
tations. In the first case (Hammel et al., 1987), an issue if
the computer test constitutes a sufficient condition can
be raised, and therefore the theorem is proved for all
cases, or whether it is a necessary condition, the result
may not be valid for all cases. This issue of necessary or
sufficient condition on computer simulation has recently
come up in Nepomuceno (2014). In the second exam-
ple, Lozi (2013) states that the parameter-shifted shadow-
ing applied to the map tent (Monteiro, 2002) is valid for
almost all values of the parameter a, but not for all values.

Hammel et al. (1987) present a technique that may be
used to estimate an upper bound error of a simulation. In
that work, the authors show that for a specific parameter
and initial condition for the logistic map, the computed
orbit is within a distance of 10−8 for 107 iterates. This is
an important computational result, as the logistic map
is a non-hyperbolic system. However, this result is pre-
sented for few specific initial conditions and parameters,
as well in a specific hardware, the Cray X-MP computer. It
is easy to show that the logistic map is a particular case of
a polynomial NARMAX. It is indeed interesting to find the
upper bound error for computational simulations, but it
is not always possible. We can now point out two main
facts to justify the relevance of this paper. First, we could
not find any paper that deals with the error propagation
due to finite precision for the polynomial NARMAX. Sec-
ond, we present an approach to evaluate a lower bound
error for recursive functions, as alternative tool to increase
the reliability of computational simulation. The technique
is based on the fact that the interval extensions (Moore
& Moore, 1979) are mathematically equivalent but may
exhibit different computer simulation results. The result
of using multiple extensions brings a new concept of
‘multiple pseudo-orbits’. The technique presents a tool
that may be used to reject a simulation. It means that
when a simulation presents a lower bound error greater
than the expected precision, we have to stop this simula-
tion and undertake other procedures, such as an increase
in the precision of software. We applied our technique in
three identified models of the systems: sine map, Chua’s
circuit and Duffing–Ueda oscillator, focusing on systems
which present nonlinear behaviour. It was possible to

show a moment of the simulation in which there is no
more numerical reliability regarding a required precision.

2. Preliminary concepts

2.1. The polynomial NARMAX

A NARMAX model can be written as Chen & Billings
(1989):

yn+1 = F�[yn, . . . , yn−1−ky , un, . . . , un−1−ku ,

× en, . . . , en−1−ke ], (1)

where yn, un and en are, respectively, the output, input
and noise terms at the discrete time n ∈ N. The param-
eters ky , ku and ke are the maximum lag considered
for output, input and noise. Terms of en are frequently
included in the parameter estimation process, to avoid
bias of an estimator. In this work, F�[·] is assumed to
be a polynomial with non-linearity degree � ∈ Z

+. Non-
linear systems are frequently modelled using particular
cases of the polynomial NARMAX, such as NAR, NARX and
NARMA. In this paper, we name them all as polynomial
NARMAX.

Although structure selection and parameter detec-
tion are decisive steps in system identification, they are
not the main aim of this paper. Billings (2013) presents
a extensive list of these techniques. In general, model
structure is selected using orthogonal techniques as the
error reduction ratio and parameters are estimated using
prediction error minimization-based techniques. Free-
run simulation is often used as a criterion to validate
the polynomial NARMAX (Barbosa, Aguirre, Martinez, &
Braga, 2011; Billings, 2013). In many cases, n step-ahead
freepredictions areperformedandcompared toa specific
validation data set. To the best of our knowledge, little
attention has been given to the error propagation in such
simulations.

2.2. Recursive functions

Let n ∈ N, a metric spaceM ⊂ R, the relation

xn+1 = f (xn), (2)

where f : M → M is a recursive function or a map of a
state space into itself and xn denotes the state at the
discrete time n. The sequence {xn} obtained by iterating
Equation (2) starting from an initial condition x0 is called
the orbit of x0 (Gilmore & Lefranc, 2012).

It is clear that if we take x ∈ R
n,F� of Equation (1) can

be seen as a specific case of f in Equation (2).
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2.3. Interval extension

Let f bea functionof real variable x.Moore&Moore (1979)
present the following definition.

Definition 2.1: An interval extension of f is an interval
valued function F of an interval variableX, with the property

F(x) = f (x) for real arguments, (3)

where by an interval we mean a closed set of real numbers
x ∈ R such that X = [X , X̄] = {x : X ≤ x ≤ X̄}.

Let us give an example.

Example 2.1: Let xn+1 = f (xn) = rxn(1 − xn). We pre-
sent a few examples of interval extension of f :

Xn+1 = F(Xn) = r(Xn(1 − Xn)), (4)

= rXn − rX2n , (5)

= r(Xn − X2n), (6)

= rXn − (rXn)Xn. (7)

In Example 2.2, Equations (4)–(7) are mathematically
equivalent, but they have different sequences of its basic
arithmetic operations (Rudolph-Lilith & Muller, 2014;
Yabuki & Tsuchiya, 2013). As it is well known that on
floating point standard, we do not have commutative
and distributive operations, they may exhibit different
pseudo-orbits (Goldberg, 1991; Institute of Electrical and
Electronics Engineers (IEEE), 2008; Overton, 2001). This
difference is also explained when we deal with an inter-
val representation of a number. In such cases, there are
interval extensions that are equivalent. This leads us to
the following definition.

Definition 2.2: G and H are equivalent interval exten-
sions if

G(X) = H(X) for interval arguments.

Consider the following example of Definition 2.2.

Example 2.2: Let the following extension intervals:

G(X) = rX(1 − X),

H(X) = r(X(1 − X)),

L(X) = rX − rX2.

Considering r=3 and X = [0.3, 0.4], then we have

G([0.3, 0.4]) = 3[0.3, 0.4](1 − [0.3, 0.4]) = [0.54, 0.84],

H([0.3, 0.4]) = 3([0.3, 0.4](1 − [0.3, 0.4]))

= [0.54, 0.84] and

L([0.3, 0.4]) = 3[0.3, 0.4] − 3([0.3, 0.4]2) = [0.42, 0.93].

In this example, only G(X) and H(X) are equivalent inter-
val extensions.

2.4. Orbits and pseudo-orbits

Associated with a map wemay define an orbit as follows.

Definition 2.3: An orbit is a sequence of values of a map,
represented by {xn} = [x0, x1, . . . , xn].

The calculation of this orbit is generally carried out by
a finite-precision computer. There is no unique pseudo-
orbit, as there are different hardware, software and
numerical precision standard, such as IEEE 754-2008,
which may yield different output for each extension
interval.

Definition 2.4: Let i ∈ N represents apseudo-orbit, which
is defined by an initial condition, an interval extension of f,
some specific hardware, software and numerical precision
standard. A pseudo-orbit is an approximation of an orbit
and we represent as

{x̂i,n} = [x̂i,0, x̂i,1, . . . , x̂i,n],

such that

|xn − x̂i,n| ≤ δi,n, (8)

where δi,n ∈ R is the error and δi,n ≥ 0.

A pseudo-orbit define an interval where the true orbit
relies. Hence, we may define an interval associated with
each value of a pseudo-orbit

Ii,n = [x̂i,n − δi.n, x̂i,n + δi.n]. (9)

From Equations (8) and (9), it is clear that

xn ∈ Ii,n for all i ∈ N. (10)

3. Method

3.1. Lower bound error

From what has been presented on the previous section,
we may establish the following lemma.

Lemma 3.1: Ia,n ∩ Ib,n �= ∅ ∀a, b, n ∈ N .

Proof: Let us assume that there is an intersection equals
to empty set for some a,b,n. It means that at least one
pointnbelongs to only a pseudo-orbitaor only a pseudo-
orbit b, such that Ia,n ∩ Ib,n = ∅. Hence, xn ∈ Ia,n and xn /∈
Ib,n or xn ∈ Ib,n and xn /∈ Ia,n. But it implies that either Ia,n
or Ib,n is not an pseudo-orbit according to Equation (10),
which is a contradiction. �
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Now we present the following theorem.

Theorem 3.2: If Ia,n ∩ Ib,n �= ∅ , then |x̂a,n − x̂b,n| ≤ δa,n +
δb,n.

Proof: Let Ia,n = [x̂a,n − δa,n, x̂a,n + δa,n] and Ib,n = [x̂b,n −
δb,n, x̂b,n + δb,n]. Ia,n ∩ Ib,n �= ∅ if and only if

x̂b,n − δb,n ≤ x̂a,n + δa,n and x̂a,n − δa,n ≤ x̂b,n + δb,n.
(11)

Equation (11) may be rewritten as

x̂b,n − x̂a,n ≤ δb,n + δa,n and x̂a,n − x̂b,n ≤ δa,n + δb,n,

x̂a,n − x̂b,n ≥ −(δb,n + δa,n) and x̂a,n − x̂b,n ≤ δa,n

+ δb,n,−(δa,n + δb,n) ≤ x̂a,n − x̂b,n ≤ δa,n + δb,n,

|x̂a,n − x̂b,n| ≤ δa,n + δb,n.

And that completes the proof. �

Now, we define the lower bound error in the following
theorem.

Theorem 3.3: Let two pseudo-orbits {x̂a,n} and {x̂b,n}
derived from two interval extensions. Let δα,n = |x̂a,n −
x̂b,n|/2 be the lower bound error of a map f (x), then
δa,n ≥ δα,n or δb,n ≥ δα,n.

Proof: Suppose that δa,n < δα,n and δb,n < δα,n. It implies
that

δa,n + δb,n < 2δα,n = |x̂a,n − x̂b,n|,
which is a contradiction to Theorem 3.2. And that com-
pletes the proof. �

Theorem 3.2 establishes that at least one of the two
pseudo-orbits must have an error greater or equal to the
lower bound error. This has a practical meaning. If this
lower bound error is greater than the required precision,
we cannot go on with the simulation without a further
analysis. To guarantee the confidence in the simulation,
we must prove that one of the pseudo-orbits has the
required accuracy. We believe that the lower bound error
is a simple and practical tool to increase the reliability of
computational simulation for dynamical systems.

Besides that, if we take G and H as equivalent inter-
val extension there is no reason to state that δa,n � δb,n
neither δb,n � δa,n. Sowemay expect that there are simu-
lationswhich both pseudo-orbits present an error greater
than lower bound error, and that was what happened in
three studied cases in this paper at a specific time n, as we
can see in Section 4.

3.2. Stop simulation criterion

One of direct consequences of our approach is to yield
information that allows the user to stop the simulation
when a required numerical precision is no longer satis-
fied.Wepresent here anexampleof sucha criterionbased
on the relative error of a sequence of values. This criterion
may be easily adapted for different user needs. Let εα,n be
the relative precision at iteration n defined by

εα,n = δα,n
|x̂a,n+x̂b,n|

2

=
|x̂a,n−x̂b,n|

2
|x̂a,n+x̂b,n|

2

,

= |x̂a,n − x̂b,n|
|x̂a,n + x̂b,n|

, (12)

where n ∈ N. A user must define the minimum precision,
ε, required by simulation. It implies that the simulation
must be interrupted at anymomentwhen εα,n > ε. In this
work, we adopt ε = 0.001.

3.3. Routines

All routines are performed in Scilab 5.5.2 in a double pre-
cision and the results, up to discrete time n = 10, are
verified by means symbolic computation performed in
wxMaxima 13.04.2 with 1000 digits of accuracy. We used
a computer with a processor Intel i5-4440@ 3.1GHz and a
Windows 8 operating system. Scilab and wxMaxima are
free and may be downloaded from the internet. In the
supplemental material, we present all routines used to
produce the results of this paper.

4. Results

In this section, we present the lower bound error applied
for three case studies, which exhibit nonlinear dynam-
ics, such as chaos. The idea is to produce two pseudo-
orbits from two different interval extensions of models
obtained from the literature.We select two interval exten-
sions that are equivalent, according to Definition 2.2.
The three chosen models are for the systems sine
map (Nepomuceno, Takahashi, Amaral, & Aguirre, 2003),
Chua’s circuit (Aguirre, 1997) and Duffing–Ueda (Aguirre
& Billings, 1994).

4.1. Sinemap

A unidimensional sine map is defined as

xn+1 = α sin(xn), (13)

whereα = 1.2π . A polynomial NARMAX identified for this
system is given by (Nepomuceno et al., 2003)

yn+1 = 2.6868yn − 0.2462y3n . (14)
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Table 1. Numerical computation in Scilab of the first 10 values of G(Xn) and H(Xn) as presented in Equations (15) and (16).

G(Xn) H(Xn) δα,n

2.684338000000000D−01 2.684338000000000D−01 0.000000000000000D+00
7.164658213860300D−01 7.164658213860300D−01 0.000000000000000D+00
1.834453282361167D+00 1.834453282361167D+00 0.000000000000000D+00
3.408933569627769D+00 3.408933569627769D+00 0.000000000000000D+00

−5.939994265069455D−01 −5.939994265069437D−01 8.881784197001252D−16
−1.544358084012885D+00 −1.544358084012880D+00 2.220446049250313D−15
−3.242538381762892D+00 −3.242538381762889D+00 1.776356839400250D−15
−3.185457394195996D−01 −3.185457394196174D−01 8.881784197001252D−15
−8.479107015420703D−01 −8.479107015421167D−01 2.320366121466577D−14
−2.128081089747603D+00 −2.128081089747703D+00 4.973799150320701D−14

Note: The third column is the lower bound error of these two pseudo-orbits according to Theorem 3.3.

Let us consider two equivalent interval extensions of
the model (14):

G(Xn) = 2.6868Xn − 0.2462X3n , (15)

H(Xn) = 2.6868Xn − (0.2462Xn)X2n , (16)

in which the underline was used only to stress the differ-
ence between G(Xn) and H(Xn). The difference between
the two natural extensions was also underlined in the
examples of Chua’s circuit and Duffing–Ueda oscillator.
As already mentioned in Definition 2.3 and Example 2.4,
Equations (15) and (16) are mathematically equivalent,
but they represent a different sequence of arithmeti-
cal operations, which may produce different outcome.
These extensions were simulated using X0 = 0.1 as an
initial condition. By iterating Equations (15) and (16),
we produce two pseudo-orbits {ŷG,n} and {ŷH,n} of the
model (14), respectively.

Table 1 shows the first 10 values of a simulation per-
formed in Scilab and the lower bound error, whereas
Figure 1(a) shows the results for n up to 60. The relative
error is presented in Figure 1(b), in which values are in a
logarithm scale. The precision required is no longer satis-
fied when n=42. The lower bound error is checked up
to the 10th iteration by means the method suggested
in Section 3.3. We found δG,10 ≥ δα,10 and δH,10 ≥ δα,10,
which agrees with Theorem 3.3 and additionally points
out for the possibility of cases in which the lower bound
error occurs for both pseudo-orbits.

4.2. Chua’s circuit

Chua’s circuit (Chua, Wu, Huang, & Zhong, 1993) is an
electrical circuit able to reproduce different regimes, such
as periodic and chaotic oscillations. The circuit is com-
posed of a nonlinear Chua’s diode, which plays the non-
linear role. Equations (17) and (18) present the white-box
model of Chua’s circuit

C1
dvC1

dt
= vC2 − vC1

R
− id(v1),

(a)

(b)

Figure 1. Sine map: (a) free-run simulation and (b) evolution of
relative error. (a) Simulationof Equations (15) and (16),with results
for G(Xn) (−×−) and H(Xn) (−o−) and the same initial con-
dition, that is, X0 = 0.1. n stands for the number of iterations.
(b) Evolution of relative error εα,n of Equation (15) compared to
required precision ε = 0.001. The values are plotted using the
log10. When n ≥ 44 the εα,n > ε = log10(0.001) = −3, and the
simulation no longer satisfies the adopted precision.

C2
dvC2

dt
= vC1 − vC2

R
− iL, (17)

L
dviL

dt
= −vC2 ,

id(v1) =

⎧⎪⎪⎨
⎪⎪⎩

m0v1 + Bp(m0 − m1), v1 < −Bp,

m1v1, |v1| ≤ Bp,

m0v1 + Bp(m1 − m0), v1 > −Bp.

(18)
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A polynomial NARMAX identified for Chua’s circuit is
given by (Aguirre, 1997)

yn+1 = 3.523yn − 4.2897yn−1 − 0.2588yn−3 − 1.7784y3n

+ 2.0652yn−2 + 6.1761y2nyn−1

+ 0.1623ynyn−1yn−3 − 2.7381y2nyn−2

− 5.5369yny2n−1 + 0.1031y3n−1 + 0.4623y3n−3

− 0.5247y2n−1yn−3 − 1.8965yny2n−2

+ 5.4255ynyn−1yn−2 + 0.7258yn−1y
2
n−3

− 1.7684yn−2y
2
n−3 + 1.1800y2n−2yn−3, (19)

where the time interval between n and n+1 is 12µ s.
Considering two equivalent interval extensions of

model (19), we have

G(Xn) = 3.523Xn − 4.2897Xn−1 − 0.2588Xn−3

− 1.7784X3n + 2.0652Xn−2 + 6.1761X2nXn−1

+ 0.1623XnXn−1Xn−3 − 2.7381X2nXn−2

− 5.5369XnX2n−1 + 0.1031X3n−1 + 0.4623X3n−3

− 0.5247X2n−1Xn−3 − 1.8965XnX2n−2

+ 5.4255XnXn−1Xn−2 + 0.7258Xn−1X
2
n−3

− 1.7684Xn−2X
2
n−3 + 1.1800X2n−2Xn−3, (20)

H(Xn) = 3.523Xn − 4.2897Xn−1 − 0.2588Xn−3

− 1.7784X3n + 2.0652Xn−2 + 6.1761XnXnXn−1

+ 0.1623XnXn−1Xn−3 − 2.7381X2nXn−2

− 5.5369XnX2n−1 + 0.1031X3n−1 + 0.4623X3n−3

− 0.5247X2n−1Xn−3 − 1.8965XnX2n−2

+ 5.4255XnXn−1Xn−2 + 0.7258Xn−1X
2
n−3

− 1.7684Xn−2X
2
n−3 + 1.1800X2n−2Xn−3. (21)

These interval extensions were simulated using the
initial condition Xp = 1 for p = 0 . . . 3. By iterating Equa-
tions (20) and (21), we produce two pseudo-orbits {ŷG,n}
and {ŷH,n} of the model (14), respectively.

Table 2 presents 10 first values and the lower bound
error of a simulation performed using Scilab. The results
up to n=10 were verified using 1000 digits precision
and are presented as a supplemental material. Figure 2(a)
shows a specific window for the performed simulation,

(a)

(b)

Figure 2. Chua’s circuit: (a) free-run simulation and (b) evolution
of relative error. (a) Simulation of Equations (20) and (21), with
results for G(Xn) (−×−) and H(Xn) (−o−) and the same initial
condition, that is, Xp = 1, for p = 0 . . . 3. n stands for the num-
ber of iterations. The interval of each iteration is 12 × 10−6 s. We
present in this figure the interval of simulation between 7.2 and
12ms. (b) Evolution of relative error εα,n of Equation (15) com-
pared to required precision ε = 0.001. The values are plotted
using the log10. When n ≥ 464 the εα,n > ε, and the simulation
no longer satisfies this requirement. This means that after around
5.6ms the simulation does not satisfy the required.

Table 2. Numerical computation in Scilab of the first 10 values of G(Xn) and H(Xn) as presented in Equations (20) and (21).

G(Xn) H(Xn) δα,n

1.031800000000000D+00 1.031800000000000D+00 0.000000000000000D+00
1.132163046694930D+00 1.132163046694931D+00 4.440892098500626D−16
1.330695186038330D+00 1.330695186038333D+00 1.332267629550188D−15
1.632133203065402D+00 1.632133203065409D+00 3.108624468950438D−15
2.000018513977929D+00 2.000018513977946D+00 8.215650382226158D−15
2.374908880012700D+00 2.374908880012723D+00 1.176836406102666D−14
2.708412651735185D+00 2.708412651735223D+00 1.909583602355269D−14
2.960871265482912D+00 2.960871265482957D+00 2.220446049250313D−14
3.100523935792458D+00 3.100523935792515D+00 2.842170943040401D−14
3.106916026153829D+00 3.106916026153840D+00 5.329070518200751D−15

Note: The third column is the lower bound error of these two pseudo-orbits according to Theorem 3.3.
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using the criterion presented in Section 3.2, when n=464
the relative error is greater than the minimum precision
(see Figure 2(b)). In other words, using double precision
and a relative error of ε = 0.001 we may simulate the
polynomial NARMAX equation (20) up to around 5.6ms
in order to guarantee the precision adopted. In this case,
we also found that δG,10 ≥ δα,10 and δH,10 ≥ δα,10.

4.3. Duffing–Ueda oscillator

Let us consider a damped, periodically forced nonlinear
Duffing–Ueda oscillator (Billings, 2013):

d2y
dt2

+ k
dy
dt

+ μy3 = A cos(t). (22)

A polynomial NARMAX for the Duffing–Ueda oscillator
was identified by (Aguirre and Billings, 1994)

yn+1 = 2.1579yn − 1.3203yn−1 + 0.16239yn−2

+ 0.0003416un + 0.0019463un−1 − 0.0048196y3n

+ 0.003523y2nyn−1 − 0.0012162ynyn−1yn−2

+ 0.0002248y3n−2, (23)

where u = A cos(kTs) , n ∈ N and Ts = π/60. Let us con-
sider two equivalent extensions of the model (23), which
were simulated using Xp = 2 for p = 0 . . . 2 as initial con-
ditions given by Equations (24) and (25). By iterating
Equations (24) and (25), we produce two pseudo-orbits
{ŷG,n} and {ŷH,n} of the model (14), respectively.

Table 3 presents the first 10 values of a simulation of
these interval extensions, performed in Scilab andverified
using 1000 digits precision in wxMaxima. The codes are
provided as a supplemental material. Figure 3(a) presents
a specific window from n=5000 to n=5500. Figure 3(b)
presents the evolution of relative error, which reaches the
adopted precision when n=3345. Thus, after 175.1 s the
simulation of Duffing–Ueda by means of Equation (24)
presents a relative error superior than the minimum pre-
cision adopted of 0.001. Again, δG,10 ≥ δα,10 and δH,10 ≥

(a)

(b)

Figure 3. Duffing–Ueda oscillator: (a) Free-run simulation and
(b) Evolution of relative error. (a) Simulation of Equations (24)
and (25), with results for G(Xn) (−×−) and H(Xn) (−o−) and the
same initial condition, that is, Xp = 2, for p = 0 . . . 2. n stands for
the number of iterations. The interval of each iteration is π/60 s.
We present in this figure the interval of simulation between
approximately 262.8 and288.0 s. (b) Evolutionof relative error εα,n
of Equation (15) compared to required precision ε = 0.001. The
values are plotted using the log10. When n ≥ 3345, the εα,n >

ε, and the simulation no longer satisfies this requirement. This
means that after around 175.1 s the simulation does not satisfy
the required precision.

δα,10 are noticed for this example.

G(Xn) = 2.1579Xn − 1.3203Xn−1 + 0.16239Xn−2

+0.0003416Un + 0.0019463Un−1

− 0.0048196X3n + 0.003523X2nXn−1

Table 3. Numerical computation in Scilab of the first 10 values of G(Xn) and H(Xn) as presented in Equations (24) and (25).

G(Xn) H(Xn) δα,n

2.004509613429507D+00 2.004509613429507D+00 2.220446049250313D−16
2.013981518787148D+00 2.013981518787149D+00 6.661338147750939D−16
2.028012881721737D+00 2.028012881721740D+00 1.332267629550188D−15
2.045874049002760D+00 2.045874049002764D+00 1.776356839400250D−15
2.066612504060602D+00 2.066612504060607D+00 2.442490654175344D−15
2.089094700680393D+00 2.089094700680398D+00 2.664535259100376D−15
2.112044628115711D+00 2.112044628115717D+00 3.108624468950438D−15
2.134088617826492D+00 2.134088617826500D+00 3.774758283725532D−15
2.153807268094331D+00 2.153807268094339D+00 3.996802888650564D−15
2.169793078733805D+00 2.169793078733812D+00 3.552713678800501D−15

Note: The third column is the lower bound error of these two pseudo-orbits according to Theorem 3.3.
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− 0.0012162XnXn−1Xn−2 + 0.0002248X3n−2;
(24)

H(Xn) = 0.0003416Un + 0.0019463Un−1 + 2.1579Xn

−1.3203Xn−1 + 0.16239Xn−2

− 0.0048196X3n + 0.003523X2nXn−1

− 0.0012162XnXn−1Xn−2 + 0.0002248X3n−2;
(25)

5. Final remarks

We presented a method to calculate a lower bound
error for free-run simulation of the polynomial NARMAX.
Although there are other methods to estimate the error
propagation, based on the Taylor expansion or shadow-
ingproperties, thesemethods are complex from thepoint
of view of computation and mathematical approach. In
general, these methods try to calculate a value of errors
instead of a lower bound. In our case, a lower bound is
useful as it consists in a way to interrupt simulation when
a minimum precision is no longer satisfied.

Our method is based on the comparison of two
pseudo-orbits of the same models, but derived from two
extension intervals. This brings a new idea to be further
explored, the very fact that a polynomial NARMAX has
multiple pseudo-orbits. It is clear that it also happenswith
other mathematical representation, whatever it makes
use of recursive functions, which increases the relevance
of this observation.Whenwe compare two pseudo-orbits
that are equivalent from the point of viewof interval anal-
ysis, we proved a theorem that the sum of absolute error
of each pseudo-orbit is at least equal to the distance of
these two pseudo-orbits. This theorem works for each
iteration n. We also presented a theorem that states that
at least one of the two pseudo-orbits presents an error
greater than a value, called as lower bound error, which
can be easily calculated as a half of the distance of the
two pseudo-orbits in each iteration n. This strategy may
also be explored for more than two pseudo-orbits, which
belongs to the set of future works of our research group.

We applied the methodology in three cases, which
are examples of identified systems obtained from liter-
ature, by means of the polynomial NARMAX. The sine
map, Chua’s circuit and Duffing–Ueda oscillator are well
known chaotic systems and have been identified using
the polynomial NARMAX. These models have been val-
idated using free-run simulation, but little attention has
been given to the error propagation of such models due
to round off and truncation operations, which are intrin-
sic at floating point software that uses IEEE 754-2008
standard. Although, one can think that we can simulate
these models for an arbitrary n steps ahead, our results

show that it is not the case. For the sine map, we see
that when n=42 iterations the relative error reaches the
minimum precision adopted, that is, ε = 0.001. Also, for
Chua’s circuit, after 464 iterations, which means a time of
t ≈ 5.6ms, the relative error is superior than ε. Finally, it
is not different from the Duffing–Ueda system, in which
n=3345, or approximately t = 175.1 s, takes the simula-
tion to a relative error greater than ε. It is interesting to
notice that for all these three cases, as thenumberof itera-
tions increases the relative error reaches the samemagni-
tude of the pseudo-orbit, which means that we have lost
the significance of all digits. Moreover, the relative error
increases exponentially, as can be seen in Figures 1(b),
2(b) and 3(b). This fact also deserves further investigation.

We have found, for the three studied cases, that
both pseudo-orbits present an error greater than the
lower bound error at n=10. We have used wxMaxima
to check it. This is a stronger result than that established
in Theorem 3.3. We believe that it is related to the fact
that we have chosen two interval extensions that are
equivalent according to Definition 2.3. We aim at inves-
tigating if it would be possible to generalize the results
of Theorem 3.3. Finally, we also intend to analyse if the
concepts present in this paper may be used to develop a
strategy to calculate an upper bound for the simulation
error of polynomial NARMAX.

It is important to emphasize that in a great number of
published works, the double precision is used to perform
the simulation, without taking into account the limits of
the precision of these recursive simulations. Therefore to
guarantee the reliability of the use of these models, it is
recommended that a required precision should be fixed,
which may imply in a maximum number of iterations for
a specific software using double precision or any other
finite precision system. Another important aspect, which
explains the fact that in the Supplemental Material we
present all of software codes, is that without the access
of the software and algorithm it may be impossible to
reproduce the results.
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