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Abstract 

Multiple myeloma (MM)  is the second most commonly diagnosed lymphoid cancer 

worldwide, after non-Hodgkin’s lymphoma, and is characterised by the uninhibited 

proliferation of terminally differentiated B-lymphocytes. The proliferation of these 

mutated plasma cells leads to the secretion of monoclonal proteins, resulting in 

mutated heavy/light chain immunoglobulin formation. Characterised by serum 

albumin levels, serum beta-2-microglobulin levels and hypercalcemia, renal 

impairment, anaemia, bone lesions (CRAB criteria), MM is diagnosed as stage Ⅰ, Ⅱ 

or Ⅲ. Even with a multitude of new, novel treatments developed for MM, although 

OS has increased significantly, MM is considered an incurable disease as the vast 

majority of patients go into relapse. With the use of label-free liquid chromatography 

mass spectrometry, proteomic analysis was carried out on MM patient samples with 

varying drug resistance. Vinculin, talin-1, filamin A and integrin β3 were identified as 

having an increased abundance in drug resistance in 4 of the 6 drugs tested. 

Activated RNA polymerase II transcriptional coactivator p15 118 phosphoserine and 

heat shock protein 27 phosphoserine 78 were identified as having a changed 

abundance between sensitive and resistant patients. Fatty acid binding protein 5 was 

detected in saliva as having a significant increase in abundance throughout disease 

progression of MM. Macrophage inflammatory protein 1α is predicted to play a 

significant role in the development of adverse side effects, after Rsq-VD treatment, 

with an observed increased abundance in all patients who developed toxicity 

throughout the clinical trial. CD44 is also predicted to have potential as a biomarker 

for poor outcome after Rsq-VD treatment. Multiple proteins were identified as 

differentially abundant in Group 1 (favourable) to Group 3 (Adverse) in acute myeloid 

leukaemia (AML), stromal derived growth factor 1 being of particular interest in this 

study. Overall this work shows proteomic techniques can be used to identify potential 

biomarkers for haematological malignancies. 
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1.1  Overview of Multiple Myeloma 

 

1.1.1 Introduction 

With an estimated rate of diagnosis of 159,985 cases globally in 2018 (Bray et al., 

2018), Multiple Myeloma (MM) is thought to be the second most highly diagnosed 

lymphoid cancer, after non-Hodgkin Lymphoma (Becker, 2011). It has been observed 

that approximately 5 in every 100,000 cancer cases diagnosed in Ireland are MM 

cases, with approximately 240 cases diagnosed annually. MM is included in a 

spectrum of disease ranging from monoclonal gammopathy of undetermined 

significance (MGUS) to plasma cell leukaemia. The rate of diagnosis accounts for 

roughly 1% of all newly diagnosed cancer cases annually and has a 5 year survival 

rate of 45% (Rajkumar, 2016). Characterised by anaemia, renal failure, infection and 

commonly bone disease, MM most commonly affects patients over the age of 60, 

with only 2% of reported cases affecting those under the age of 40. MM is known as 

a cancer of unrestrained proliferation of terminally differentiated B-lymphocytes 

(plasma cells), accumulating in the bone marrow. The cancer cells have been known 

to crowd healthy blood cells and instead of producing normal antibodies, monoclonal 

proteins (M proteins) are produced. The production of these leads to the inability to 

fight infection and kidney damage. These M proteins are secreted by the mutated 

plasma cells, resulting in mutated heavy and/or light chain immunoglobulin formation. 

This formation causes differing isotopes of MM. These isotypes are IgG kappa 

myeloma, IgA kappa myeloma, IgA lambda myeloma, light chain myeloma or IgD 

myeloma. Light chain MM is diagnosed by the presence of free light chain kappa or 

lambda detection in serum or urine.  
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1.1.2 Monoclonal Gammopathy of Unknown Significance 

 

MGUS, the early indolent form of monoclonal plasma cell proliferation which leads to 

the development of MM, is characterised by the detection of a monoclonal protein in 

the blood of a patient without any other signs and symptoms of MM. MGUS is 

considered the premalignant form of MM, with approximately 1% of MGUS patients 

progressing to MM annually (Kyle et al., 2006), and 93% of MM patients exhibiting M 

protein production associated with MGUS within 7 years before MM diagnosis (Kyle 

et al., 2004). It has been observed that approximately 6% of “well” people between 

the ages of 60 to 80 years account for the incidence of MGUS (Crawford et al., 1987). 

In 1984 it was predicted that approximately 3.2% of the white general population, 

over 50 years of age, in western countries have MGUS (Kyle, 1984). MGUS is 

distinguished from MM on the percentage of monoclonal plasma cells in the bone 

marrow (BM) of patients, with <10% diagnosed as MGUS and ≥10% diagnosed as 

MM. A serum concentration of M protein of <3g/dL and no anaemia, lytic bone 

lesions, hypercalcemia and renal failure are also associated with MGUS (Group, 

2003) (Table 1.1).  

 

1.1.3 Smouldering (Asymptomatic) Multiple Myeloma 

Smouldering MM (SMM) is considered the intermediate form of MM, being 

characterised by a high level (3g/dL or more) of M protein in serum or urine and a 

≥10% monoclonal plasma cells in the bone marrow (BM) (Kyle et al., 2004) (Table 

1.1). SMM patients exhibit no additional MM defining characteristics. The risk of SMM 

progressing to MM is significantly higher than that of MGUS, with approximately 10% 

of SMM disease progression per year (Lisch et al., 2016). 80% to 90% of SMM 

patients progress to active MM within two years, and therefore require treatment. 

There has, however, been a subset of SMM patients identified as a higher risk group 



 4 

with a median time to disease progression less than 2 years (Cherry et al., 2013). 

The three subtypes of SMM are IgA, IgG and light chain SMM, with median time to 

progression as 27, 75 and 159 months respectively. Treatment strategy for SMM is 

currently a strategy of “watch and wait”, with initial blood tests taken every 2-3 months 

for the first year after SMM diagnosis, every 4-6 months for the following year and 6-

12 if clinical stability is established (Kyle et al., 2010). Solitary Plasmacytoma (SP) is 

a malignant monoclonal plasma cell spectrum with a low concentration of M protein 

in serum and urine, an absence of MM related characteristics (CRAB features) and 

no evidence of monoclonal plasma cells in the BM but with a bone lesion with 

monoclonal plasma cell proliferation.  

 

1.1.4 CRAB Criteria, MM Biomarkers and Clinical Presentation 

MGUS and SMM are both diagnosed according to the level of M protein in serum by 

serum protein electrophoresis, along with the percentage of monoclonal plasma cells 

in the BM. However, calcium, creatine, haemoglobin, Bence-Jones proteins and 

serum free light chain levels are also taken into account during diagnosis. Through 

disease progression, a change in the levels of the aforementioned, along with 

exhibiting CRAB criteria are used to restage disease. In 2005, serum β2-microglobulin 

(β2M) and serum albumin were used to develop the International Staging System 

(ISS), allowing the prediction of disease stage and long-term prognosis of patients by 

clinicians (Greipp et al., 2005). Patients with a serum albumin measurement greater 

than or equal to 3.5g/dL and a serum β2M lower than 3.5mg/L are by definition stage 

1 disease. Stage 3 disease is defined as having a serum β2M level greater than 

5.5mg/L. Stage 2 disease is defined as a serum albumin or β2M level not fulfilling 

either stage 1 or stage 3 disease. In 2014 the criteria for diagnosis of MM changed 

from CRAB features (hypercalcemia, renal failure, anaemia and osteolytic bone 
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lesions) to include specific biomarkers defining the disease (Rajkumar et al., 2014). 

The three biomarkers used for diagnosis of MM are “clonal bone marrow plasma cells 

greater than or equal to 60%, serum free light chain (FLC) ratio greater than or equal 

to 100 provided involved FLC level is 100 mg/L or higher, or more than one focal 

lesion on MRI”, according to Rajkumar et al (Table 1.1). These features manifest as 

fatigue due to anaemia, bone pain, fractures and weakening due to bone lesions, 

anuria (failure of the kidneys to produce urine) or oliguria (significant decrease in the 

volume of urine produced) due to renal impairment occasionally leading to a dialysis 

requirement, perioral paraesthesia due to hypercalcaemia, altered immunity causing 

frequent infection and autonomic neuropathy causing numbness, loss of strength and 

tingling. 

Although the identification of CRAB criteria, along with previously mentioned 

biomarkers in serum, have vastly improved the speed of diagnosis of MM and is 

considered the most useful predictor of disease progression, these identifiers are not 

reliable in 100% of cases. Some patients have been noted as presenting active MM 

symptoms without previous diagnosis of MGUS/SMM. Patients have been recorded 

as presenting to clinic with the presence of M protein levels in serum or urine, >10% 

monoclonal plasma cells in the BM, along with the presence of end organ damage 

i.e. CRAB criteria. Patients have also been diagnosed with MM due to 

hypercalcaemia or loss of renal function which are unexplained. Liver profile testing 

has also aided in the diagnosis, leading to the identification of increased serum 

protein, with a  significant globulin-to-total protein ratio.  
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Table 1.1: Diagnosis Criteria for MGUS, SMM and MM as outlined by the 

International Myeloma Working Group (IMWG). 

 *Table was adapted from (Kumar et al., 2017) 

Disorder Disease Definition 

Non-IgM MGUS 

• Serum monoclonal protein <3g/dL (non-IgM) 

• Clonal BM plasma cells <10% 

• Absence of end-organ damage e.g. CRAB criteria 

IgM MGUS 

• Serum IgM monoclonal protein <3g/dL 

• BM lymphoplasmacytic infiltration <10% 

• No anaemia, constitutional symptoms, hyperviscosity, 

lymphadebopathy or hepatosplenomegaly caused by 

underlying lymphoproliferative disorder. 

Light-chain 

MGUS 

• Abnormal free light chain ratio (<0.26 or >1.65) 

• Increases level of light chain (increased kappa free light 

chain with ratios >1.65 and lambda free light chain with 

ratio <0.26) 

• No immunoglobulin heavy chain or immunofixation 

• No end-organ  damage e.g. CRAB criteria 

• Clonal BM plasma cells <10% 

• Urinary M protein <500 mg/24h 

SMM 

• Serum M protein >3g/dL or urinary M protein 

>500mg/24h and/or clonal BM plasma cells 10%-60% 

• No myeloma defining symptoms e.g. CRAB criteria 

MM 
• Clonal BM plasma cells >10% or biopsy proven bony 

or extramedullary plasmacytoma 
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One or more: 

• End organ damage due to plasma cell proliferation  

• Hypercalcemia 

• Renal impairment 

• Anaemia 

• Bone lesions  

• Clonal BM plasma cells>60% 

• Involved : uninvolved serum free light chain ratio 

>100 (involved free light chain levels must be 

>100mg/L) 

• More than one focal lesion greater than 5mm 

 

 

1.1.5 Management/Treatment of MM 

In 2014, the European Myeloma Network (EMN) established guidelines for the 

maintenance of newly diagnosed MM. Initial staging should be carried out as the 

International Staging System and the cytogenetic profile of the patient should be 

identified using fluorescent in situ hybridisation (FISH), to distinguish between high 

risk (HR) and standard risk (SR) patients. After patient staging, induction therapy is 

recommended using a triple regime, including a proteasome inhibitor (PI) such as 

bortezomib, a glucocorticoid such as dexamethasone and one of adriamycin 

/thalidomide/cyclophosphamide. Autologous stem cell transplant (ASCT), a process 

in which healthy blood stem cells are taken from the patient and used to replace 

diseased bone marrow, is recommended directly after induction therapy with the 

prerequisite that the patient must be deemed fit to undergo the procedure. 

Subsequent thalidomide or lenalidomide based therapy must be administered as a 
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form of maintenance therapy, provided that a satisfactory response is achieved. 

Following a less than excellent response after ASCT, bortezomib is recommended. 

Patients who are deemed unfit or ineligible for ASCT are generally treated with 

bortezomib/thalidomide, along with melphalan and prednisolone. When ineligible 

patients achieve satisfactory response to treatment, lenalidomide alone or in 

combination with low dosage dexamethasone is recommended for maintenance of 

MM.  

 

1.1.6 MM Staging 

 

The Durie-Salmon Staging System (DSSS) and the International Staging System 

(ISS) have both been established to aid in consistency of staging MM worldwide. The 

DSSS was established in 1975 and was commonly used to stage MM (Durie and 

Salmon, 1975) until, with developing technologies and knowledge of the disease, the 

ISS was established in 2005 with much more in-depth, updated criteria for staging 

(Figure 1.1). The DSSS is used to predict overall survival, tumour mass and therefore 

disease stage, by measuring the levels of immunoglobulin and haemoglobin from 

serum. This information is combined with calcium concentration and the prevalence 

and amount of bone lesions (Hari et al., 2009). The ISS identified serum β2-

microglobulin and serum albumin were identified by this study as potential prognostic 

factors due to the reproducibility, the inexpensive testing and the statistical 

significance of both in various models. Stage Ⅰ, Ⅱ, Ⅲ are distinguishable by the 

levels of these markers, stage Ⅰ exhibiting levels of serum β2-microglobulin <3.5 mg/l 

and serum albumin ≥ 3.5 g/dL, stage Ⅱ exhibiting levels of serum β2-microglobulin 

<3.5mg/L but serum albumin <3.5g/dL or serum β2-microglobulin levels of 3.5 to 

<5.5mg/L  and stage Ⅲ exhibiting serum β2-microglobulin ≥5.5 mg/L. These staging 



 9 

groups exhibit a median overall survival of 62 months, 44 months and 29 months 

respectively (Greipp et al., 2005). The ISS has been widely adapted due to the 

validation in subsequent studies, ease to compute and the even distribution of 

patients in the three established staging (Hungria et al., 2008). 

In 2016 an updated version of the ISS (RISS) was established to combine the criteria 

established by the ISS (serum β2-microglobulin and serum albumin levels along with 

other elements of tumour burden) with MM biology, including the cytogenetic factors 

and abnormalities associated with HR disease and elevated lactate dehydrogenase 

level. This combination of factors have shown a 5-year survival rate of 82%, 62% and 

40% for stage Ⅰ, Ⅱ and Ⅲ respectively using the RISS (Rajkumar, 2016). 
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Figure 1.1: Comparison of both ISS and DSSS comparing OS of patients 

in with varying stage diagnosis.  

A is the overall survival by ISS staging system and B is overall survival by DSSS 

staging system. ISS staging provides a more equal distribution across the three 

staging groups, making this method of staging more desirable. 

*Figure 1.1 was taken from (Greipp et al., 2005)  
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1.1.7 Relapse and Refractory MM 

 

Along with CRAB criteria for newly diagnosed MM and in-depth guidelines for the 

diagnosis of MGUS and SMM, specific criteria have been established for the 

diagnosis of relapse and refractory MM (RRMM). Although vast improvements in the 

treatment of MM have been observed since the introduction of these novel drugs, 

vastly high rates of relapse and refractory disease have been recorded and linked to 

resistance to these novel drugs. It has been recorded that, although large numbers 

of patients experience long periods of remission, RRMM is imminent for high-risk MM.  

To establish patient response, MM is staged by clinicians after treatment, ranging 

from complete response (CR), very good partial response (VGPR), partial response 

(PR), stable disease (SD), minimal response (MR) and progressive disease (PD). 

Staging is carried out after in-depth analysis of reduction of BM clonal plasma cells 

numbers, reduction of M-protein levels in serum or urine, free light chain assay 

reduction and lack of soft tissue plasmacytomas. These response guidelines were 

established by the IMWG to ensure consistency worldwide.   

Relapsed MM is diagnosed due to increased disease burden and/or new or 

worsening CRAB criteria. This is generally diagnosed after remission or lessening 

symptoms of MM response to treatment. This is quantified as one or more of ≥25% 

difference between involved and uninvolved serum-free light chain,  ≥25% M protein 

increase in serum, evidence of newly developed hypercalcaemia/ extramedullary 

plasmacytoma or >10% absolute percentage increase of BM plasma cells 

(Sonneveld, 2017). Relapse can be divided into three separate categories, 

symptomatic relapse, biochemical relapse and aggressive relapse, defined by the 

IMWG. Biochemical relapse is diagnosed in the case that there are no symptoms 

defining criteria present other than an increased concentration of M proteins. 

Symptomatic relapse is diagnosed due to disease progression along with significant 
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organ compromise and slow progression of MM criteria, along with a slowly 

increasing concentration of M proteins. Both biochemical and symptomatic relapse 

are considered non-aggressive relapse. Aggressive relapse is diagnosed by high 

lactate dehydrogenase, high serum β2-microglobulin or low serum albumin, presence 

of extramedullary disease and circulating plasma cells. Along with this isoform 

transformation, adverse cytogenetic abnormalities, ISS staging of Ⅱ or Ⅲ at relapse 

and showing signs of rapid onset of symptoms are considered aggressive relapse 

symptoms. Finally, extensive MM related finding by radiography, laboratory or 

pathology examination and organ impairment related to MM are determining factors 

or aggressive relapse (Laubach et al., 2016). 

RRMM is defined as the case where MM patients become unresponsive to therapy 

or, in patients who achieve MR or better to prior treatment, show signs of disease 

progression while receiving therapy or within 60 days of last treatment (Anderson et 

al., 2008). Chemotherapy can be used to salvage patients response to previous 

treatment, however, in RRMM, response is negligible or MM symptoms progress 

during the 60 days prior to treatment.  

RRMM is a common problem in MM patients, bringing its own set of further 

complications in the disease. Although massive advances have been made in recent 

years in the treatment of MM, with the introduction of new novel agents for treatment, 

the vast majority of MM patients will eventually reach a stage of RRMM. It was 

observed, in a study totalling 286 patients, that the average event free survival for 

patients with RRMM who were refractory to bortezomib and/or resistant to 

immunomodulatory drugs (IMiD) or with intolerance/ineligibility to IMiD drugs was 5 

months. These patients were observed to have an average overall survival of 9 

months, with survival from diagnosis averaging at 4.7 years. 9 months was the overall 

survival for both refractory to bortezomib patients and refractory/intolerant to IMiD 

drugs (Kumar et al., 2012) (Figure 1.2). 
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Figure 1.2: Overall survival outcomes of patients with refractory disease 

to bortezomib and immunomodulatory drugs.  

The mean overall survival was observed to be 9 months for refractory disease for 

each treatment regime. Time zero is defined as the patient was i) refractory to 

bortezomib and/or ii) resistant to an IMiD or iii) intolerant or ineligible to treatment 

using an IMiD. 

*Figure 1.2 was taken from (Kumar et al., 2012) 
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1.1.8 Overview of Cytogenetic Factors Associated with MM 

 

With varying OS time for patients ranging from 6 months to greater than 15 years, it 

has been observed that this variability has arisen from the heterogeneity in 

monoclonal plasma cell biology along with varying genetic factors of subcategories 

of patients. In-depth analysis of CD138+ monoclonal plasma cells from MM samples 

has been carried out to establish genetic abnormalities to aid in the evaluation of 

patient response to treatment and, also, to predict disease susceptibility using 

standard cytogenetic or FISH. Two distinct genetic groups were established: 

hyperdiploid or hypodiploid. Translocations such as t(4:14) and t(14;16) are 

considered hypodiploid translocations and are both associated with an overall worse 

prognosis, whereas t(11;14) translocations are known as hyperdiploid translocations 

(Sawyer, 2011). MM has also been associated with secondary aberrations, generally 

involving deletions such as del13q and del1p or the amplification of 1q. Del17p has 

been strongly associated with very poor prognosis, therefore, require an aggressive 

clinical treatment course it has been suggested that this deletion is a prerequisite for 

clonal expansion of MM tumours (Fonseca et al., 2009).  

Whole genome sequencing was carried out on 38 MM patients to evaluate the genetic 

aberrations related to the pathogenesis of MM. 11 distinct mutations implicated the 

activation of NF-κB in the pathogenicity of MM, along with the demonstrated 

mutations of BRAF kinase in 4% of patients (Chapman et al., 2011). This mutation 

had not, previously, been implicated in the pathogenicity of MM and predicts that 

BRAF kinase targeting using BRAF inhibitors has high potential as a possible MM 

target, a treatment which is a currently used for metastatic malignant melanoma 

(Bollag et al., 2012).  
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1.2 The Bone Marrow Microenvironment in MM Pathogenesis 

 

The bone marrow (BM) microenvironment and its role in MM proliferation has been 

studied extensively due to the nature of the disease. The BM has been observed to 

have a protective effect on clonal plasma cells in MM, specifically the protection 

stromal cells and osteoclasts provide, aiding in the survival of these MM cells. Stromal 

cells directly interact with clonal plasma cells via adhesion molecules on the cell 

surface, subsequently inducing the activation of NF-κB and upregulation of 

interleukin-6. Both of these have previously been implicated in malignant plasma cell 

clone survival (Zhou et al., 2005).  

Osteoclasts have been observed to be one of the leading causes of lytic lesions in 

MM. In normal bone, osteoclasts breakdown or remodel damaged bone, leading to 

the activation of osteoblasts and allowing the repair of bone damage. Osteoblast 

activity is suppressed in MM,  leading to the breakdown of bony tissue by osteoclasts 

and the inability to remodel and repair by osteoblasts and the formation of the MM 

characteristic of lytic lesions (Hideshima et al., 2007). MM cells attach to osteoclasts 

by adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), 

resulting in osteoclastogenesis (Michigami et al., 2000). A subsequent reduction in 

osteoprotegerin results in the increased survival of myeloma cells and the increased 

production of osteoclasts. As osteoprotegerin promotes the remodelling of bone 

tissue via osteoblasts, the reduced production of this molecule results in the inhibition 

of bone repair after osteoclast bone degradation (Pearse et al., 2001). It has also 

been observed that co-culturing MM cells with osteoclasts in-vitro reduces MM cell 

apoptosis and increases MM cell viability, in comparison to cultured MM cells in 

isolation (Yaccoby et al., 2004). 
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1.3 Proteomics 

 

OMICs based approaches for analysis of unknowns is a vastly expansive field with 

unlimited potential. Proteomics, a wide scale study of proteins, has become a key 

technology in the analysis of biofluid, cells, tissue or organisms. Proteomic analysis 

identifies protein abundance, localisation, structure, protein-protein interactions and 

post-translational modifications. The study of proteins is a direct result of wide scale 

nucleotide sequencing of genomic DNA and expressed sequence tags. The 

identification of the 20,700 approx. protein coding genes present in the human 

genome led to the identification of over 100,000 protein isoform translations (Lander, 

2011). After establishing this, it became apparent that proteomics allows a deeper 

insight to organism, cellular and tissue response to changing environments, stimuli, 

stress and disease, therefore proving just as important as genomics.  

Proteomic workflows generally rely on the separation of proteins from an original 

source, either by the means of gel or gel free separation, leading to either targeted 

or discovery mass spectrometry (MS) of the protein or peptide fragments. 

Identification of these isolated proteins/peptide fragments is then carried out by 

searching against a Uniprot database of protein sequences, allowing protein 

identification (Figure 1.3). A plethora of analytical software programs have been 

established to identify protein abundance, post-translational modifications (PTMs) 

and protein interactions. Two possible MS approaches can be used for protein 

identification, top-down identification and bottom-up identification. Top-down 

identification analyses intact proteins, leading to a superior sequence coverage as 

biochemical properties and PMTs are preserved (Catherman et al., 2014). Allowing 

full characterisation of proteoforms and 100% sequence coverage, top-down 

proteomics has been considered a viable approach to protein identification. However, 

top-down proteomic through put, proteome coverage and sensitivity has fallen behind 
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bottom-up approaches. Generally, a bottom-up, mass spectrometry based method is 

employed for proteomic analysis.  Bottom-up proteomics depends on the enzymatic 

cleavage of protein samples to simplified peptides, which are then analysed by liquid 

chromatography mass spectrometry (LC-MS/MS). The resulting output relies heavily 

on the LC-MS/MS instrument and the database search engine, which evaluates the 

mass spectra and converts to peptide sequences. This evaluation allows the 

identification of proteins from which the peptide has been cleaved (Lane, 2005). 

Although the most commonly used approach, a number of disadvantages are 

apparent from the use of bottom-up proteomics. As large sections of proteins may 

not be identified by MS, this may omit valuable information such as PMTs or 

sequence variants.  
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Figure 1.3: Overview of gel-free versus gel mass spectrometric analysis. 

The flow chart above depicts the main steps involved in the proteomic analysis of 

samples. Samples can be processed using either gel based or gel-free method. Gel-

free approaches require either label or label-free methods. Figure was created with 

Biorender. 
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1.3.1 Gel Electrophoresis 

 

Gel electrophoresis was the origin of the first form of proteomic analysis carried out. 

The proteomic profiles of E. coli (O'Farrell, 1975), mouse (Klose, 1975) and guinea 

pig (Scheele, 1975) were identified in 1975, using two dimensional gel 

electrophoresis (2D-GE), allowing the visualisation and separation but the 

identification of each individual protein was not possible. 2D-GE combines isoelectric 

focusing with gel electrophoresis, separating proteins firstly by isoelectric point (pI) 

and, secondly, by molecular mass. By loading samples onto a thin strip of 

polyacrylamide gel, with a fixed pH, and subjecting the gel to isoelectric focusing, 

proteins will migrate through the gel to their pI value (Rabilloud and Lelong, 2011). A 

pI value is the pH at which the net charge of the protein is 0. The strips are then 

reduced, alkylated and loaded onto a polyacrylamide slab for molecular mass 

separation, the second dimension. The gel is subjected to an electrical current 

(polyacrylamide gel electrophoresis or PAGE), allowing proteins with a smaller 

molecular mass to migrate further through the gel and proteins with a larger molecular 

mass to migrate less (Ohlendieck, 2011). To visualise this protein migration the gel 

must be stained, pre- or post-electrophoresis, which is dependent on i) the sensitivity 

of detection required, ii|) the concertation of protein initially loaded onto the gel and 

iii) the downstream application. These stained, migrated proteins can be excised from 

this gel, digested into peptides and mass spectrometry identification can be carried 

out. One dimensional gel electrophoresis (1D-GE) separates proteins purely based 

on their molecular mass, in a similar process to the second dimension mentioned 

above in 2D-GE. The initial samples are loaded onto a polyacrylamide gel and the 

gel is subjected to an electrical current, allowing the proteins to migrate through the 

gel based on their molecular mass. Larger proteins will not migrate as far through the 
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gel as smaller proteins. Again, these proteins can be excised, digested and further 

identified by mass spectrometry analysis.  

Standard 2D-GE approaches to protein separation has been observed to under 

represent particular protein classes, such as highly hydrophobic membrane proteins, 

proteins with a high molecular mass and low copy number of proteins, along with 

noted variations from gel-to-gel, making reproducibility increasing difficult. 

Fluorescence difference in-gel electrophoresis (DIGE) was developed in 1997 to 

combat the variation that arises in gel-to-gel when using 2D-GE (Unlü et al., 1997). 

Fluorescent tags are added to the samples prior to isoelectric focusing, using two 

different cyanine CyDye DIGE fluor dyes, allowing the quick identification of proteins 

(Lewis et al., 2012). As the dyes are different colours, samples can be run on the 

same gels, therefore reducing variability and increasing reproducibility. The addition 

of a pooled internal standard, labelled with a third CyDye, allows the accurate 

quantification of protein expression changes as well as assessment of experimental 

and biological variation (Tannu and Hemby, 2006).  

 

1.3.2 Label-free Liquid Chromatography Mass Spectrometry (LC-MS/MS) 

 

One of the most important events in the field of proteomics was the development of 

mass spectrometry. MS technological advances, along with growing bioinformatic 

platforms, have increased sensitivity and protein detection, reliability, efficiency and 

reproducibility. As opposed to gel based protein detection, LC-MS/MS utilises in-

solution protein digestions to identify an extensively vast array of proteins. Proteins 

with high molecular mass, low copy number proteins, proteins with an extreme pI, 

integral membrane proteins and PTMs are all easily detectable and identified using 

LC-MS/MS, leading to the subsequent replacement of gel-based approaches in many 
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areas of proteomics (Dowling et al., 2014b). LC-MS/MS separates digested peptides 

by liquid chromatography and analyses this by tandem mass spectrometry.  

Two possible quantitative LC-MS/MS methods can be used: labelled and label-free. 

Labelled methods, such as ICAT (Isotope-Coded Affinity Tag), SILAC (Stable Isotope 

Labelling with Amino acids in Cell culture) and iTRAQ (isobaric Tags for Relative and 

Absolute Quantitation), incorporate metabolic and chemical labelling of 

proteins/peptides in advance of MS analysis. The quantity of these peptides/proteins 

is analysed by the mass increase of relative signal intensities and labels between the 

labelled and unlabelled proteins. Label-free methods quantify protein abundance 

based on the difference between MS peptide ion intensities or spectral counts from 

varying samples (Ramasamy et al., 2014). Label-free methods give bias free 

proteomic analysis as there is an absence of labelled peptides, the reduction of 

sample contamination and handling, therefore increasing through put. To quantify 

peptides, identify peptides to proteins and carry out statistical testing on the differently 

abundant proteins, a plethora of different bioinformatic software packages are 

available. All the above technologies are combined to form a comprehensive platform 

for proteomic analysis, used for biomarker discovery for diagnosis and prognosis of 

disease and understanding disease systems (Dowling et al., 2014a).  

 

1.4  Biomarkers 

 

According to the National Institute of Health Biomarkers Definition Working Group, 

biomarkers, or biological markers, are defined as characteristic molecules or genes 

that can be objectively quantified as a marker of standard biological processes, 

response to therapeutics for disease or pathological processes. These are 

reproducible and can be accurately quantified (Group., 2001). Biomarkers have 

potential to be used for situations such as diagnosis and prognosis of disease, 
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monitoring of response and disease progression, giving greater insight into potential 

personalised medicine and a measurement of clinical endpoint. Clinical endpoints are 

considered endpoints to any clinical research and are variables that encompass a 

patients overall wellbeing and health at the end of clinical research e.g. overall 

survival, as opposed to biomarkers which quantify a characteristic of disease but do 

not account for subject wellbeing (Group, 2016). A broader definition was coined by 

the World Health Organisation (WHO), the United Nations and International Labour 

Organization, which stated that biomarkers are defined as “any substance, structure, 

or process that can be measured in the body or its products and influence or predict 

the incidence of outcome or disease” (Strimbu and Tavel, 2010).  This extended 

definition not only focuses on disease related outcomes but includes interventions, 

effects from treatment and environmental factors and is considered to encompass all 

measurable interactions involving a biological system and potential hazard. This 

measurable interaction includes cellular level biochemical interactions, functional and 

physiological integrations or molecular interactions (Strimbu and Tavel, 2010).  

Biomarkers have been considered as surrogates endpoints, especially in the case of 

use in clinical trials. Biomarkers focus solely on the physiological and molecular 

changes of disease without accounting for patient wellbeing changes. For 

consideration as a biomarker, the specific characteristic of disease must accurately 

and consistently predict change and clinical outcome in the vast majority of the 

population, therefore allowing a biomarker to act as an alternative to clinical endpoints 

(Califf, 2018). As an alternative to clinical endpoints, biomarkers can predict more 

information about disease progression and treatment strategies, therefore reducing 

long term harm to the subjects. Biomarkers as surrogate biomarkers must prove 

relevance, referring to the ability to provide clinical applicability to disease,  and 

validity, referring to the effectiveness of the potential biomarker, before consideration 

as an endpoint alternative. Biomarkers should be, ideally, highly sensitive, non-

invasive, diagnostically conclusive, characteristic of specific disorders, disease 
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progression specific and be cost sensitive, enabling worldwide testing for the specific 

disease (Ohlendieck, 2013).  

Biomarkers can be classified into four types: diagnostic, prognostic, predictive, and 

therapeutic.  

· A diagnostic biomarker allows the early detection of the cancer in a non-invasive 

way and thus the secondary prevention of the cancer.  

· A predictive biomarker allows predicting the response of the patient to treatment 

(targeted) and identify cohorts of patients that are likely going to benefit from a 

specific therapeutic intervention.  

· A prognostic biomarker is a clinical or biological characteristic that provides 

information on the likely course of the disease and will provide information about the 

outcome of the patient (may be associated with cancer grade, low-high).  

· A therapeutic biomarker is generally a protein that could be used as target for a 

therapy. 

 

1.4.1 Biomarker Discovery via Proteomics 

 

Proteomics has become an established and reliable tool for high through put 

discovery of protein changes in disease and health, due to its unbiased nature. The 

establishment of the Human Proteome Organisation (HUPO) in 2001 has greatly 

advanced the field of proteomics for human health, with particular emphasis on the 

human proteome project. The human proteome project was formed to map the entire 

human proteome, aiding in the understanding of disease and increasing the ability to 

fight disease. Urine and serum were a primary focus of the human proteome project 
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as non-invasive biofluids as a source of potential biomarkers (Farrah et al., 2014). As 

proteomics is considered an unbiased, high throughput, large scale method of the 

detection of proteins, the identification of particular protein targets or biomarkers in 

the fight against disease has become a topic of great interest. Serum, plasma, urine 

and saliva are the ideal source of protein biomarkers, due to the less-invasive sample 

collection methods, although tissue samples (biopsies) and proximal fluid may also 

be a source of biological markers. Due to the invasive nature of sample collection of 

both tissue samples and proximal fluid, both are deemed less suitable than the 

aforementioned biofluids.  

Protein biomarker discovery involves four stages before a predicted biomarker is 

considered for clinical use. Stage 1 is known as the discovery stage. This is the stage 

at which potential protein biomarkers are identified, generally through the use of mass 

spectrometry. Stage 2 is considered the qualification stage, where differentially 

abundant proteins of interest are identified from all of the quantified proteins from 

mass spectrometry using specific targeted methods. Stage 3 is known as the 

verification stage. At this stage the identified potential protein biomarkers are 

examined in a population derived cohort of human samples. Stage 4 is the validation 

stage. This stage is where the potential protein biomarkers are examined with 

emphasis on disease specificity and sensitivity. If these criteria are fulfilled then the 

development of a clinical assay can be optimised for clinical use (Paulovich et al., 

2008) (Figure 1.4). Protein biomarker discovery has been recorded as being largely 

successful until stage 3, verification, where a large variation in protein abundance is 

evident due to a general human population of samples (Rifai et al., 2006). The 

“bottleneck” effect that occurs at stage 3 of biomarker discovery may be overcome 

by the use of multiple reaction monitoring, which enables the quantitative analysis of 

hundreds of proteins at once (Whiteaker et al., 2007a). 

Although proteomic biomarker discovery seems very promising for early detection of 

disease, prediction of prognosis and drug response, a number of challenges must be 



 25 

overcome. Biofluids are vastly complex and dynamic, with an abundance of 

information to be discovered in minimum amounts of sample. As mentioned above, 

variation in the human population causes great disparity between samples, making 

the discovery of one single protein/group of proteins characteristic for a specific 

disease in the majority of the population almost impossible, especially as it is 

considered that there is a low abundance of disease specific protein biomarkers. 

Biomarker discovery is also faced with limited resources, with minimal high-quality 

antibody assays available. ELISA assay are generally used in evaluating potential 

biomarkers, limiting the selection of potential biomarkers to assays available. ELISA 

can be relatively high-throughput and sensitive in targeting analytes but 

developmental costs and long assay development times can provide another limiting 

factor in the validation of potential biomarkers (Whiteaker et al., 2007b). Generally an 

emphasis is put on a biomarker that is known to relate to the disease in question, 

however, this biological information may be limited for a vast number of conditions. 

However, with considering these limiting factors, proteomic based biomarker 

discovery is still a relatively new field of discovery. As proteomic based research 

progresses, technology and resource availability will increase, leaving infinite room 

from improvement in diagnosis, prognosis and therapeutic evaluation. 
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Figure 1.4: Overview of Protein Biomarker Discovery Stages.  

Depicted above is a guide to the workflow involved in protein biomarker discovery, 

stage 1-4, and the process carried out for each step. The majority of protein 

biomarkers do not make it through the verification as they fail to show significance in 

a population derived human study. Figure was created using Biorender. 
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1.5 Aims of the Project 

To: 

 

• Compare and contrast the proteomic signatures of the 10 most and 10 least 

sensitive MM patients to a panel of 6 therapeutic regimes. These include 

novel, conventional and investigative therapies.  

 

• Identify potential targets to predict positive/negative outcomes during 

treatment, allowing a strategy of a more personalised treatment regime to be 

prescribed. 

 

• Determine the influence of phosphorylation involved in drug sensitivity and 

drug resistance for MM patients.  

 

• Examine the difference between quantitative and qualitative proteomic 

approaches in potential marker discovery. 

 

• Examine and evaluate the potential use of saliva as a source of biomarkers 

for the transformation from pre-malignant MGUS to newly diagnosed MM. 

 

• Determine the potential of saliva as a source of protein biomarkers for MM 

disease progression, monitor disease burden and minimal residual disease 

statues.  

 

• Determine the potential use of proteomics to monitor disease progression and 

clinical response to CAR-T cell therapy. 
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• Identify the changes in proteomic signatures between Group Ⅰ, Ⅱ and Ⅲ of 

Acute Myeloid Leukaemia (AML) patients. 

 

• Compare and contrast different proteomic approaches, discovery and 

targeted, in potential marker discovery. 
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2.1 Materials 

2.1.1 General chemicals and reagents 

Distilled H2O, (dH2O), was purified using a Millipore Milli-Q apparatus to obtain Milli-

Q water 18MΩ. Complete mini tablets containing protease inhibitors were supplied 

by Roche Diagnostics (Mannheim, Germany). Bradford reagent for protein 

quantification was obtained from Biorad Laboratories (Hemel-Hempstead, 

Hertfordshire, UK). All other general chemicals used were of 

analytical/electrophoretic/proteomic grade and were purchased from Sigma 

Chemical Company (Dorset, UK), unless stated otherwise. 

 

2.1.2 1D Gel Electrophoresis  

4-12% Bis-Tris Plus precast gels were obtained from Invitrogen by Thermo Fisher 

Scientific (UK). 20X MOPS SDS Running Buffer was obtained from Novex by Life 

Technologies (Carlsbad, CA, USA). Protein molecular mass markers and Laemmli-

type buffer were obtained from Biorad Laboratories (Hemel-Hempstead, 

Hertfordshire, UK).  

 

2.1.3 Mass Spectrometry 

Filter Aided Sample Preparation (FASP) vivacon 500 spin filters were obtained from 

Sartorius (Gottingen, Germany) and C18 spin filters were obtained from Thermo 

Fisher Scientific (UK). Mass Spectrometry grade modified trypsin was obtained from 

Thermo Scientific (IL, USA). Formic acid and acetonitrile were obtained from Fluka 

(Dorset, UK). LC-MS/MS vials and vial caps were purchased from VWR (PA, USA). 

The remaining analytical grade chemicals for mass spectrometry were obtained from 

Sigma Chemical Company (Dorset, UK), Thermo Fisher Scientific (UK) and Biorad 

Laboratories (Hemel-Hempstead, Hertfordshire, UK). 
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2.1.4 Immunoblotting 

Whatman nitrocellulose transfer membrane was obtained from Invitrogen (Carlsbad, 

CA, USA). Chemiluminescence substrate was obtained from Thermo Scientific (IL, 

USA). Ponceau S-Red staining solution was obtained from Sigma Chemical 

Company (Dorset, UK). Commercially available antibodies used for this research 

were obtained from different sources, listed below in Table 2.1. peroxidase-

conjugated secondary antibodies were supplied by Merck (Kenilworth, NJ, USA). 

 

Table 2.1: Antibodies used for Immunoblotting  

List of all commercially available antibodies used for this project with antibody 

specificity, host species, company and catalogue number. 

 

 

2.1.5 ELISA  

ELISA kit (FABP5) was obtained from AssayPro (USA). 

 

2.1.6 Phosphopeptide Enrichment Kit 

A Pierce® Magnetic Titanium Dioxide Phosphopeptide Enrichment Kit was obtained 

from Thermo Fisher Scientific (UK). 

 

2.1.7 Human Phospho-Kinase Array 

The Human Phospho-Kinase Array was obtained from R&D Systems (MN, USA). 

 

 

Antibody Species Specificity Company Catalogue 
Number 

Dilution 

Fatty acid 
binding protein 
5 

Gt pAb R&D Systems AF3077 1:1000 
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2.1.8 Luminex Technology 

MILLIPLEX MAP Human Circulating Cancer Biomarker Panel 4 cancer multiplex 

assay, Cytokine/Chemokine Magnetic Bead Panel, premixed 29 plex and 

Cytokine/Chemokine Magnetic Bead Panel II, premixed 23 plex were purchased from 

Merck (Kenilworth, NJ, USA).  

 

2.1.9 Immunohistochemistry  

Formalin-fixed paraffin-embedded bone marrow trephine biopsies were provided by 

the pathology team at the Mater Misericordiae University hospital pathology 

laboratory. Paraffin blocks were cut using a Microtome in combination with MX35 

Premier+ microtome blades and Superfrost Ultra Plus slides were obtained from 

Thermo Fischer Scientific (UK). DAKO Wash buffer 10x, DAKO Citrate Target 

Retrieval Solution pH6.1, DAKO REAL Peroxidase-Blocking Solution, DAKO REAL 

EnVision Detection System Peroxidase/DAB+, Rabbit/Mouse, DAKO Hematoxylin 

and DAKO antibody diluent were obtained from Agilent (Santa Clara, CA, USA). DPX 

Mountant for histology was obtained from Sigma Chemical Company (Dorset, UK).  
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Table 2.2: Antibodies used for IHC  

List of all commercially available antibodies used for this project with antibody 

specificity, host species, company and catalogue number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibody Species Specificity Company Catalogue 
Number 

Dilution 
Used 

CD44 Rb mAb Cell Signalling 
Technology 37259 1:220 

CD48 Rb mAb Cell Signalling 
Technology 29499 1:150 

CD68 Rb mAb Cell Signalling 
Technology 76437 1:600 

Fatty 
Acid 

Binding 
Protein 

5 

Rb mAb Cell Signalling 
Technology 39926 1:250 

Talin-1 Rb mAb Cell Signalling 
Technology 4021 1:50 

Vinculin Rb mAb Cell Signalling 
Technology 13901 1:300 

Integrin 
β3 Rb mAb Cell Signalling 

Technology 13166 1:300 
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2.2 Methods 

2.2.1 Patient Samples 

A total of 35 bone marrow (BM) aspirates were collected from 10 diagnostic and 25 

relapse patients. No exclusion criteria were applied to the patients and the samples 

were collected prospectively. Data collection was continued at successive relapses 

to follow disease progression. The ethics committees of the participating hospitals 

approved the study in compliance with the Declaration of Helsinki. These samples 

were obtained from the Institute of Molecular Medicine, Helsinki, Finland (FIMM). 

A total of 91 saliva samples from patients at varying diagnosis stage were obtained 

from the Mater Misericordiae University Hospital, Dublin 7, Ireland. Ethical approval 

was obtained sitewide by both the Mater Misericordiae University Hospital and 

Maynooth University in compliance with the declaration of Helsinki. The GBO Saliva 

Collection System was used for saliva sample collection (Greiner Bio-One 

International GmbH, Kremsmünster, Upper Austria).  

Both plasma cell and serum AML samples were collected from 49 patients with 

varying grade of disease, ranging from grade 1 to grade 3. This grading was carried 

out by the participating hospitals and the study was approved in compliance with the 

Declaration of Helsinki. These samples were obtained from the Finnish Haematology 

Registry and Clinical Biobank (FHRB).   

A total of 69 patient samples were received from The Dana Farber Cancer Institute, 

Boston, Massachusetts.  

42 pre-paraffin embedded histology blocks containing bone marrow trephines were 

obtained from the Histology Department, Mater Misericordiae University Hospital, 

Dublin 7, Ireland. These samples corresponded to patients involved in the saliva 

study (Chapter 5), with varying diagnosis throughout disease progression. 
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2.2.2 Cell lysis 

Harvested CD138+ plasma cells were resuspended in 8M urea PTMscan lysis buffer 

(Cell Signalling Technologies, Massachusetts, USA), sonicated using a Sonoplus HD 

2200, Bandelin (Berlin, Germany), for three cycles for 30 seconds at a power setting 

of 50%. Samples were centrifuged at 20,800 x g for 20 mins at 4ºC. 

 

2.2.3 Acetone Precipitation  

Prior to mass spectrometric analysis, samples were purified by acetone precipitation. 

5 times the sample volume of cold 100% acetone was added to each sample and 

stored overnight at -20℃. Samples were centrifuged at 15,000 x g for 15 min at 4℃. 

The supernatant was decanted, and samples centrifuged again at 15,000 x g for 5 

min. The supernatant was discarded, excess supernatant was removed using a 

Gilson P20 pipette and the resulting pellet was allowed to air-dry for 10 min. The 

pellets were re-suspended in appropriate volume of label-free solubilisation buffer (6 

M urea, 2 M thiourea, 10 mM Tris, pH 8.0 in LCMS grade water) and vortexed and 

sonicated, using a Sonoplus HD 2200, Bandelin (Berlin, Germany), to ensure full re-

suspension. 

 

2.2.4 2D CleanUp (BioRad)  

The commercially available Ready Prep 2D clean up kit from Bio-Rad Laboratories 

(Hemel-Hempstead, Hertfordshire, UK) was used as an alternative to acetone 

precipitation. The kit removes contaminants from protein extracts which may 

otherwise interfere with downstream mass spectrometric analysis. The purification 

was carried out as per the manufacturer’s guidelines. 
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2.2.5 Protein quantification using the Bradford assay system  

Protein quantification was carried out using the method of Bradford (Bradford, 1976). 

A standard curve was generated using a 1:1 serial dilution of a stock solution of 2 

mg/ml BSA to give the following standards: 2 mg/ml, 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 

0.125 mg/ml and 0 mg/ml. Protein samples were appropriately diluted prior to 

quantification. Both standards and samples were constituted in the protein buffer. 5 

µl of sample and standards were added to a 96-well plate. 250 µl of diluted Bradford 

reagent (diluted 1:4) was added to each well. The plate was left to incubate for 10 

min at room temperature in the dark to allow for complete binding and the associated 

colour development. Absorbance of standards and samples was read at λ=595 nm 

using a Synergy HT BIO-TEK unit and KC4 software from Mason Technology Ltd. 

(Dublin, Ireland).  Protein concentrations were determined using the standard curve, 

whilst multiplying by the dilution factor. Standards were analysed in duplicate while 

protein samples were analysed in triplicate. 

 

2.2.6 Sample preparation for label-free liquid chromatography mass 

spectrometry  

Following the determination of protein concentration using the Bradford assay 

system, sample volumes were equalised with label-free solubilisation buffer. Protein 

samples were reduced with 10 mM dithiothreitol (DTT) for 30 min at room 

temperature with gentle shaking and alkylated with 25 mM Iodoacetamide (IAA) in 50 

mM ammonium bicarbonate for 20 min at room temperature in the dark (Dowling et 

al., 2014a). To quench any unreacted IAA and thus prevent the alkylation of trypsin, 

a further 10 mM DTT was added to each sample and samples were incubated for 15 

min at room temperature in the dark. Proteolytic digestion was achieved using a 

combination of the enzymes Lys-C and trypsin. Samples were initially digested with 

sequencing grade Lys-C at a ratio of 1:100 (protease: protein) and incubated at 37℃ 
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for 4 h. Samples were then diluted with four times the initial sample volume using 50 

mM ammonium bicarbonate to dilute the urea molarity to a range at which trypsin is 

active (Proc et al., 2010). Samples were then incubated with sequencing grade 

modified trypsin at a ratio of 1:25 (protease: protein) overnight at 37℃. The proteolytic 

digestion was halted by the addition of 2% trifluoroacetic acid (TFA) in 20% 

acetonitrile (ACN) (3:1 (v/v) dilution). The peptides were purified using Pierce C18 

spin columns from Thermo Fisher Scientific (Dublin, Ireland), dried through vacuum 

centrifugation and re-suspended in loading buffer (2% ACN, 0.05% TFA in LC-MS 

grade water) (Murphy et al., 2015a). Peptide suspensions were vortexed and 

sonicated to aid full re-suspension. Samples were centrifuged briefly at 14,000 x g 

and the supernatant transferred to mass spectrometry vials. Any remaining peptide 

suspension was stored at -80℃. 

 

2.2.7 Filter Aided Sample Preparation for Label-Free Liquid 

Chromatography Mass Spectrometry 

Protein concentrations were equalised with label-free solubilisation buffer and 30 µg 

of protein was processed by the filter aided sample preparation (FASP) method 

(Wiśniewski et al., 2009) using a trypsin to protein ratio of 1:25 (protease: protein). 

Following overnight digestion and elution of peptides from the spin filter, 2% TFA in 

20% ACN was added to the filtrates (3:1 (v/v) dilution). The peptides were then 

purified using Pierce C18 spin columns from Thermo Fisher Scientific (Dublin, 

Ireland), dried through vacuum centrifugation and re-suspended in mass 

spectrometry loading buffer (2% ACN, 0.05% TFA in LC-MS grade water). Peptides 

were vortexed, sonicated and briefly centrifuged at 14,000 x g and the supernatant 

transferred to mass spectrometry vials for label-free LC-MS/MS. 
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2.2.8 Label-free liquid chromatography mass spectrometry  

An Ultimate 3000 NanoLC system (Dionex Corporation, Sunnyvale, CA, USA) 

coupled to a Q-Exactive mass spectrometer (Thermo Fisher Scientific) in the 

Proteomics Suite at Maynooth University was used for all mass spectrometry-based 

analysis carried out. Re-suspended peptide mixtures (a maximum load of the 

equivalent 1 µg pre-digested protein) were loaded by an autosampler onto a C18 trap 

column (C18 PepMap, 300 µm id × 5 mm, 5 µm particle size, 100 Å pore size; Thermo 

Fisher Scientific). The trap column was switched on-line with an analytical Biobasic 

C18 Picofrit column (C18 PepMap, 75 µm id × 500 mm, 2 µm particle size, 100 Å 

pore size; Dionex). The peptides generated were eluted over either 65 min or 180 

min using the following binary gradients: solvent A [2% (v/v) ACN and 0.1% (v/v) 

formic acid in LC-MS grade water] and 0-90% solvent B [80% (v/v) ACN and 0.1% 

(v/v) formic acid in LCMS grade water]. The column flow rate was set to between 0.25 

– 0.3 µL/min (Murphy et al., 2015a, Murphy et al., 2016b). The Q-Exactive was 

operated in positive, data dependent mode and was externally calibrated. Survey MS 

scans were conducted in the 300-1700 m/z range with a resolution of 140,000 (m/z 

200) and lock mass set to 445.12003. CID (collision-induced dissociation) 

fragmentation was carried out with the fifteen most intense ions per scan and at a 

resolution of 17,500. A dynamic exclusion window was applied within 30 s. An 

isolation window of 2 m/z and one micro-scan were used to collect suitable tandem 

mass spectra.   

 

2.2.9 Quantitative proteomic profiling of mass spectrometric data using 

MaxQuant and Perseus Software  

For quantitative analysis mass spectrometry, files were analysed in MaxQuant 

(version 1.6.1.0), with the Andromeda search engine used to search the detected 
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features against the UniProtKB-SwissProt database for Homo sapiens. The following 

search parameters were used: i) first search peptide tolerance of 20 ppm, ii) main 

search peptide tolerance of 4.5 ppm, iii) cysteine carbamidomethylation set as a fixed 

modification, iv) methionine oxidation set as a variable modification, v) a maximum of 

two missed cleavage sites and vi) a minimum peptide length of seven amino acids. 

The FDR was set to 1% for both peptides and proteins using a target-decoy approach 

(Grassl et al., 2016). Relative quantification was performed using the MaxLFQ 

algorithm (Cox et al., 2014). The “proteinGroups.txt” file produced by MaxQuant was 

further analysed in Perseus (version 1.5.1.6). Proteins that matched to the reverse 

database or a contaminants database or that were only identified by site were 

removed. The label-free quantification (LFQ) intensities were log2 transformed, and 

only proteins found in all replicates in at least one group were used for further 

analysis. Data imputation was performed to replace missing values with values that 

simulate signals from peptides with low abundance chosen from a normal distribution 

specified by a downshift of 1.8 times the mean standard deviation of all measured 

values and a width of 0.3 times this standard deviation (Deslyper et al., 2016). A two 

sample t-test was performed using p≤0.05 on the post imputated data to identify 

statistically significant differentially abundant proteins.   

 

2.2.10 Qualitative proteomic profiling of mass spectrometric data  

Qualitative data analysis was used for protein identification. Mass spectrometry raw 

files were processed using the Proteome Discoverer 1.4 (Thermo Fisher Scientific) 

software with Sequest HT as the search engine and the UniProt sequence database. 

The following search parameters were used for protein identification: (i) peptide mass 

tolerance set to 10 ppm, (ii) MS/MS mass tolerance set to 0.02 Da, (iii) up to two 

missed cleavages, (iv) carbamidomethylation set as a fixed modification and (v) 

methionine oxidation set as a variable modification. Mass spectrometry raw files were 
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searched against the UniProtKB-SwissProt Homo sapiens database. Peptides were 

filtered using a minimum XCorr score of 1.5 for +1, 2.0 for +2, 2.25 for +3 and 2.5 for 

+4 charge states, with peptide probability set to high confidence. 

 

2.2.11 Generation of heat maps using Perseus  

Heat maps illustrating protein abundances for statistically significant differentially 

abundant proteins were designed using Perseus software. The normalised 

abundances of differentially abundant proteins determined were loaded as a .txt file 

into Perseus and the data was log2 transformed. Hierarchical clustering was then 

performed on Z-score normalised intensity values by clustering both samples and 

proteins using Euclidean distance and average linkage. 

 

2.2.12 Bioinformatics analysis of proteomic data  

A number of bioinformatics software packages were used to give comprehensive 

analyses of identified proteins with differential abundance. Such bioinformatics tools 

were used to i) classify the types of proteins identified, ii) give meaningful insights 

into the potential roles of identified proteins in disease pathophysiology and iii) identify 

potential associations between identified proteins. The PANTHER database of 

protein families (http://pantherdb.org; version 10.0) was used to group proteins based 

on their protein class (Mi et al., 2013). Differentially abundant proteins were also 

analysed by version 10.5 of the STRING database (http://string-db.org/) for medium 

(0.4) or high confidence (>0.7) interactions using the evidence view. STRING 

analysis clusters proteins based on known and predicted protein interactions that 

include direct physical and indirect functional protein associations (Szklarczyk et al., 

2017). The DAVID bioinformatics resource (https://david.ncifcrf.gov/) was used to 

identify enriched functionally related protein groups and KEGG pathway 

(http://www.genome.jp/ kegg/pathway.html) was employed to map proteomic data 
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onto pathway maps to enable biological interpretation of large proteomic datasets. 

The web-based gene set analysis toolkit (http://www.webgestalt.org/) was also used 

to interrogate proteomic datasets. Over-representation enrichment analysis was 

performed, with genome_protein-coding as the reference list, non-redundant gene 

ontology terms, a minimum of 2 genes for a category, an FDR ≤ 0.05 and with the 

Benjamini & Hochberg method used for multiple test adjustment. The ClueGO app in 

the Cytoscape bioinformatics package was used to identify enriched GO categories, 

using a two-sided hypergeometric test and a Benjamini-Hochberg p value correction.   

  

2.2.13 Comparative immunoblot analysis  

Comparative immunoblot analysis was carried out for the independent verification of 

a number of important protein hits identified by LC-MS/MS. Immunoblotting was 

performed under routine conditions (Holland et al., 2013), typically using 25 µg protein 

per lane. Proteins were first separated on hand-cast 10% polyacrylamide gels by 

SDS-PAGE and were subsequently transferred by the method of Towbin (Towbin et 

al., 1979) to Whatman nitrocellulose membranes in a Trans-Blot cell from Bio-Rad 

laboratories by wet transfer (transfer buffer: 25 mM tris, 192 mM glycine, 20% 

methanol) at 100 V for 70 min at 4℃. Transfer efficiency was assessed using 

Ponceau reversible stain (0.1% PonceauS, 5% acetic acid). To prevent non-specific 

binding, membranes were blocked for 1 h at room temperature using a milk protein 

solution (2.5% (w/v) fat-free milk powder in 10% PBS), and then incubated with 

appropriately diluted primary antibodies overnight at 4℃ with gentle agitation. The 

following day, membranes were washed twice in the milk protein solution for 10 min, 

and then incubated with appropriately diluted peroxidase-conjugated secondary 

antibodies for 1.5 h at room temperature with gentle agitation (Murphy et al., 2015a). 

Membranes were washed with the milk protein solution for 10 min twice and with 10% 

PBS for 10 min twice, and enhanced chemiluminescence was used for the 
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visualisation of immuno-decorated protein bands (O'Connell and Ohlendieck, 2009). 

Densitometric scanning and statistical analysis of immunoblots was performed using 

a HP PSC-2355 scanner and ImageJ software (NIH, Bethesda, MD, USA) along with 

Graph-Pad Prism software (San Diego, CA, USA), in which a p value ≤ 0.05 was 

deemed to be statistically significant.  

 

2.2.14 Phosphopeptide Enrichment 

CD138+ lysed plasma cells were enriched for phosphopeptides using a Pierce 

Magnetic Titanium Dioxide Phosphopeptide Enrichment Kit to identify potential 

phosphopeptide biomarkers for treatment resistance using label-free LC-MS/MS. 

Peptides were initially purified using Pierce C18 spin columns from Thermo Fisher 

Scientific (Dublin, Ireland), dried through vacuum centrifugation and re-suspended in 

80% acetonitrile/2% formic acid. 10µl of magnet capture beads were resuspended in 

190µl binding buffer per sample, which was vortexed to uniform suspension for 30 

secs. 200µl magnetic bead solution was placed in a clean, labelled eppendorf and 

100µl per sample was added, pipetting up and down to ensure mixing.  Beads were 

separated from solution using a magnetic separator rack, allowing beads to separate 

from solution for a minimum of 1 minute. The magnetic rack was tilted 90º and the 

supernatant was removed, ensuring no beads were removed. 200µl of binding buffer 

was added per sample and supernatant was removed after allowing the beads to 

settle in the magnetic separator rack for 1 min, repeating three times. 200µl wash 

buffer was added quickly after removing samples from the magnetic separator and 

supernatant was removed using the magnetic separator after allowing to incubate for 

1 minute. All wash buffer was ensured to be removed before elution step. 30µl Elution 

buffer was added to each sample, ensuring that samples were well mixed by pipetting 

multiple times and samples were allowed to incubate for 10 mins at room 

temperature. Samples were placed on the magnetic separator for 1 minute, ensuring 
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all beads had separated from solution and eluted phosphopeptides were removed 

from the eppendorfs and placed in clean, labelled eppendorfs. Samples were dried 

through vacuum centrifugation at high heat and re-suspended in loading buffer (2% 

ACN, 0.05% TFA in LC-MS grade water) (Murphy et al., 2015a). Peptide suspensions 

were vortexed and sonicated to aid full re-suspension. Samples were centrifuged 

briefly at 14,000 x g and the supernatant transferred to mass spectrometry vials. Any 

remaining peptide suspension was stored at -80℃.  

 

2.2.15 Human Phospho-Kinase Array 

A Human Phospho-Kinase Array was used to validate potential target 

phosphopeptide biomarkers as identified by label-free LC-MS/MS after 

phosphopeptide enrichment. 100µg of protein was used for analysis. The array was 

carried out as per the manufacturer’s guidelines using two highly sensitive and two 

highly resistant lysed CD138+ plasma cell samples to treatment (Chapter three).  

 

2.2.16 Enzyme linked immunosorbent assay 

ELISA assays were employed to verify some potential circulatory protein markers as 

identified by label-free LC-MS/MS. 50μl of crude saliva and serum samples were 

added to antibody-coated microtiter wells and incubated at room temperature as 

directed by the manufacturers’ recommendations (2 h for FABP5). After the 

incubation period wells were washed and a HRP labelled secondary detector 

antibody was added. After incubation at room temperature for 2 hours in the dark, 

TMB chromogen substrate was added. The reaction was stopped after exactly 15 

mins and absorbance was measured at 450 nm on a microplate reader (Cynthia 

Martin et al., 2014). The quantity of protein in the test samples was interpolated from 

a generated standard curve and was corrected for sample dilution. All test samples 
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were assayed in triplicate. The intra-plate % coefficient of variation (CV) was 

calculated and was found to be less than 10% for all assays (Murphy et al., 2017b). 

 

2.2.17 Luminex Technologies 

Luminex was employed to carry out a targeted investigation into both circulating 

cancer biomarkers and cytokine and chemokine biomarkers in AML and RsqVD 

samples. 96 well plate was washed with 200µl wash buffer and was mixed for 10 

mins at 25°C. Standard curve was set up according to manufacturer’s guidelines. 

Wash buffer was removed and 25µl of standard or control was loaded according to 

manufacturer’s protocol, followed by 25µl of assay buffer. 25µl of crude sample was 

added to each well, according to experimental design. 15µl of vortexed beads were 

added to each well, ensuring to mix bead matrix regularly to ensure beads didn’t 

settle, and plates were sealed and mixed for 18hrs at 4°C. Plate was placed in plate 

magnet and content of the wells was emptied. 200µl wash buffer was added to each 

well, removed and 14µl detection antibody with 14µl assay buffer was added to each 

well, with incubation for 1hr. 14µl Streptavidin-Phycoerythrin combined with 14µl 

assay buffer was added to each well, with incubation for 30mins while wrapped in 

tinfoil on plate shaker. Plate content was removed, ensuring plate was secure in plate 

magnet, and 150µl of sheath fluid was added to each well to resuspend beads using 

the plate shaker for 5 mins. Plates were read and analysed using a Guava EasyCyte 

Plus platform (Millipore, Merck KGaA, Darmstat, Germany). 

 

2.2.18 Immunohistochemistry 

Immunohistochemistry was employed as a method of validation for potential 

biomarkers for both drug sensitivity (Chapter 3) and potential salivary biomarkers 

(Chapter 4) as identified by label-free LC-MS/MS.  
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2.2.18.1 Histology 

Blocks with paraffin embedded bone marrow trephines were stored overnight at -

20°C, to ensure more efficient sectioning. Temperature of these blocks was 

maintained by storing them on the cold plate of the embedding station. The water 

bath was maintained at 52.6°C to float sections, allowing easy mounting on slide. 

Each block was cut in initially using a fresh microtome blade until tissue was at full 

face, ensuring a full representation of all the tissue embedded in the block. After a full 

face was obtained, block was returned to the cold plate to allow further cooling. 

Further cooling also eliminates tissue wasting when taking a section. A fresh blade 

was used to cut a maximum of 3 blocks. Each section of tissue was taken with a 

thickness of 5 microns.   

 

2.2.18.2 Section Staining 

Slides were initially heated for antigen retrieval at 95°C in pH 6.1 citrate buffer for 20 

minutes using a PT Link Pre-Treatment Module (DAKO, Agilent, Santa Clara, CA, 

USA). DAKO REAL EnVision Detection System (DAKO) was used for 

immunohistochemical analysis of the bone marrow trephines according to 

manufacturer’s instructions. Briefly slides were blocked for endogenous peroxidase 

activity and subsequently washed with DAKO wash buffer. Next slides were treated 

with primary antibodies listed in Table 2.2, diluted in DAKO antibody diluent, or 

negative controls treated with DAKO antibody diluent alone. Slides were again 

washed with DAKO wash buffer. Slides were then stained with DAKO Real Envision 

Detection system and stained with DAB chromogen. Finally slides were counter-

stained using haematoxylin. This staining was carried out using a DAKO 

AutostainerPlus (Agilent, Santa Clara, CA, USA).  Slides were dehydrated by 

treatment using 70% Ethanol for 3 mins twice, 90% Ethanol for 3 mins twice, 100% 
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ethanol for 3 mins twice and 100% xylene for 5 mins twice. Slides were then cover 

slipped using a glass coverslip, ensuring tissue did not dry out after xylene and that 

tissue was completely covered by the coverslip. 

All slides were analysed by light microscopy, and images acquired at 10x and 40x 

magnification. Slides were scored semi-quantitatively according to the intensity of the 

staining: negative (-), weakly positive (+1), positive (+2) or strongly positive(+3).  
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Chapter 3  

 
 

Proteomic Profiling of Most Sensitive/ Least 
Sensitive Patients After Treatment Using a 
Panel of Six Drugs Used for the Treatment of 
Multiple Myeloma.  
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3.1 Introduction  

Over the last number of years multiple novel drugs have been developed and 

approved for the treatment of MM, leading to an increase in OS in patients with MM 

from approximately 5 years to an expected median of 15 years (Guang et al., 2018). 

These novel drugs are now considered the first point of call for treatment of newly 

diagnosed MM including proteasome inhibitors (PI), monoclonal antibodies and 

immunomodulatory drugs (IMiDs). Although vast improvements in the treatment of 

MM have been observed since the introduction of these novel drugs, vastly high rates 

of relapse and refractory disease have been recorded and linked to resistance to 

these novel drugs. It has been recorded that, although large numbers of patients 

experience long periods of remission, relapse/refractory disease (RRMM) is imminent 

for high-risk MM. RRMM is “defined as progression of therapy in patients who achieve 

minor response or better, or who progress within 60 days of their last therapy” (Nooka 

et al., 2015). 

Bortezomib, a first class, reversible boronic acid dipeptide PI with high selectivity for 

inhibition of the 26S proteasome, has been associated with the induction of 

mitochondrial depolarization and apoptosis. Bortezomib binds to the catalytic site of 

the 26S proteasome, resulting in an increased abundance of p53 and p27 and an 

inhibition of NF-κB transcriptional activity (Adams et al., 1998), leading to increased 

cell stress and apoptosis (Obeng et al., 2006). A direct result of this inhibition is the 

activation of c-Jun N-terminal kinase, the accumulation of misfolded proteins (Obeng 

et al., 2006) and the stabilization of cell cycle inhibitors. Bortezomib is broadly used 

as the primary treatment for MM as renal insufficiency (Leal et al., 2011) and hepatic 

function impairment doesn’t affect it’s efficacy (LoRusso et al., 2012) but has been 

linked with a significant increased risk of varicella zoster virus infection. 

Carfilzomib, a second generation PI, is used primarily after patients have received at 

least two prior therapies, generally including an IMiD and bortezomib (Nooka et al., 
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2015). Carfilzomib binds to the N-terminal threonines irreversibly, which prolongs 

proteasome inhibition (Manasanch and Orlowski, 2017). Inhibition of the 

chymotrypsin-like subunit in the constitutive proteasome and the immunoproteasome 

by carfilzomib causes cytotoxic effects in MM cells, leading to MM cell apoptosis 

(Parlati et al., 2009). Good full body penetration is recorded during treatment with 

carfilzomib and, as opposed to treatment using bortezomib, it is metabolized extra-

hepatically and is therefore not dependent on liver function (Yang et al., 2011). 

Lenalidomide, an IMiD, is used to inhibit angiogenesis and induce apoptosis of 

established neovasculature (Nooka et al., 2015) and is a less toxic and more potent 

analog of Thalidomide (Zou et al., 2013). The use of this IMiD has been observed as 

having a significantly better effect in combination with another form of treatment, such 

as a PI (Wang et al., 2013), cytotoxic agent (Reece et al., 2015) or antibodies (Plesner 

et al., 2016), increasing overall response rate from 65% to 95%. Lenalidomide has 

been noted to increase T cell proliferation (Corral et al., 1999) and by inhibiting TNFα-

induced endothelial cell migration, bFGF and VEGF (Dredge et al., 2005) exhibits 

anti-angiogenic properties. These properties are a partial result of Akt 

phosphorylation inhibition caused by the inhibition of bFGF (D'Amato et al., 1994).  

Navitoclax is a high affinity small molecule BH3 mimetic known to inhibit BCL-2 and 

BCL-XL which leads to the inhibition and apoptosis in MM (Tse et al., 2008). BCL-2 

members control the outer mitochondrial membrane integrity and lead to cell 

apoptosis susceptibility (Vogler et al., 2009), showing either antiapoptotic and 

proapoptotic properties. BCL-2 binding to Ca2+ endoplasmic reticulum channels, 

inositol 1,4,5-triphosphate receptors (IP3Rs), prevent the triggering of cell death by 

docking Ca2+-activated phosphatase calcineurin and calcineurin-regulated inhibitor of 

protein phosphatase 1 (DARPP-32) to IP3Rs. Forming a negative feedback loop, an 

excess of Ca2+ is sensed by the complex and decreases IP3Rs phosphorylation. 

This, in turn, decreases Ca2+ mediated by IP3R and thus, inhibiting apoptosis (Chang 

et al., 2014) Antiapoptotic BCL-2 members are inhibited by BH3 mimetic Navitoclax, 
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which induces apoptosis by binding in hydrophobic pockets formed by BH domains 

1-3 and dislocating pro-apoptotic proteins (Chipuk et al., 2010). 

Quizinostat is a histone deacetylase inhibitor (HDACi) that specifically targets 

HDAC6. HDAC6 is an enzyme that aids in the transport of misfolded proteins to 

protein storage sites, known as aggresomes (Rodriguez-Gonzalez et al., 2008) and 

has been hypothesised as a factor in maintaining MM cell growth (Imai et al., 2016). 

The administration of Quizinostat has been linked to blocked transport of misfolded 

proteins to the aggresome leading to the apoptosis of MM cells. It has also been 

suggested that advanced MM cells exhibit a high abundance of PPP3CA, aiding in 

cell growth and proliferation of MM cells. Treatment with Quizinostat reduces the 

abundance of PPP3CA, leading to a reduction in HSP90, a known protein that 

deacetylates HDAC6, maintaining its chaperone function (Kovacs et al., 2005).  

PF-04691502 is an experimental drug that is known to be a PI3K/mTOR inhibitor that 

has been observed to result in antiproliferative activity in cultured cells (Yuan et al., 

2011) and antitumor activity in xenograft models (Mallon et al., 2011). The 

PI3K/mTOR signalling pathway has been implicated in cancer cell proliferation, 

motility, growth and survival (Courtney et al., 2010).  

Although there have been vast improvements in the treatment of MM and RRMM, 

using both singular drug treatment and combinational therapy, a vast number of 

experimental drugs are still in early phase clinical trials or early development to find 

a comprehensive cure for MM and RRMM. 

Personalised medicine is predicted to be the future of treatment of MM patients. 

Myeloma cell phenotyping and genotyping, along with a proteomic signature for 

individual patients to form a personal course of treatment to combat the proliferation 

of MM plasma cells, will increase the overall survival (OS) of patients and in the long 

term lead to the cure of MM. To date, clinicians must combine a number of the 

multiple available treatment regimens to determine the best line of treatment for MM 

patients including proteasome inhibitors (PI), monoclonal antibodies and 
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immunomodulatory drugs (IMiDs). The idea that each patient is different and a 

personalised course of treatment for maintenance of the disease, along with a more 

aggressive search for an overall cure, is becoming more apparent over time (Russell 

and Rajkumar, 2011). 

A hallmark of MM is the sequel development of drug resistant phenotypes, which may 

be present initially or emerge during the course of treatment. These drug resistant 

phenotypes reflect the intra-tumor and inter-patient heterogeneity of this cancer. Most 

MM cells are sensitive to PIs, which have become the standard of care in the 

treatment of newly diagnosed and relapsed MM. However, resistance develops 

(intrinsic/acquired) (Nooka et al., 2015). Although several novel drugs have recently 

been approved or are in development for MM, there are few molecular indicators to 

guide treatment selection. To address this limitation, we have combined mass 

spectrometry-based proteomics analysis together with ex vivo drug response profiles 

and clinical outcome to elucidate a best possible accurate phenotype of the resistant 

sub-clones, thus yielding a theranostic profile that will inform therapeutic and drug 

development strategies. 

  

3.1.1 Experimental Design 

3.1.1.1 Patients and Samples 

The ethics committees of the participating hospitals approved the study in compliance 

with the Declaration of Helsinki. A total of 35 bone marrow (BM) aspirates were 

collected from 10 diagnostic and 25 relapse patients. Patient characteristics and 

associated treatments are detailed in Tables 3.1 and 3.2. Patients cytogenetics are 

shown in Figure 3.1. No exclusion criteria were applied to the patients and the 

samples were collected prospectively. Data collection was continued at successive 

relapses to follow disease progression.  
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Figure 3.1: Cytogenetics of the patient cohort.  
Heatmap showing the cytogenetics status of the patient cohort. Blue indicates the 

presence of genetic abnormality. 
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Table 3.1: MM patient cohort characteristics.   

Table illustrating the gender, age at diagnosis, gender, paraprotein and light 

chain of the MM patient cohort. Patient identifiers beginning with R indicates 

remission samples and D indicates diagnosis samples. Paraprotein indicates 

the specific monoclonal heavy chain, light chain or intact immunoglobulins 

present in serum/urine of patients. 

 

Patient ID Gender Age at 
Diagnosis Paraprotein Light Chain 

R_MM_2383 Male 58 Unknown Lambda 
R_MM_3966 Female 65 IgA Lambda 
R_MM_2757 Male 59 IgA Lambda 
R_MM_2097 Female 59 Unknown Kappa 
R_MM_938 Male 50 IgG Kappa 
R_MM_2979 Female 69 IgA Kappa 
R_MM_882 Female 57 Unknown Lambda 
R_MM_3001 Male 56 Unknown Kappa 
R_MM_4774 Male 78 IgA Kappa 
R_MM_982 Male 56 IgG Kappa 
D_MM_3514 Female 68 IgG Kappa 
R_MM_4011 Male 66 Unknown Unknown 
R_MM_1380 Male 68 IgA Lambda 
R_MM_3434 Male 49 IgG Kappa 
R_MM_899 Male 62 IgA Lambda 
R_MM_156 Female 62 IgA Kappa 
R_MM_810 Male 74 Unknown Unknown 
D_MM_3586 Male 61 Unknown Kappa 
D_MM_3595 Male 67 IgG Lambda 
R_MM_4692 Male 41 IgG Lambda 
D_MM_3901 Male 71 IgA Kappa 
R_MM_921 Female 56 Unknown Lambda 
R_MM_3129 Male 60 IgG Kappa 
D_MM_1354 Male 66 Unknown Unknown 
D_MM_3886 Female 59 IgG Lambda 
D_MM_4035 Female 61 IgG Kappa 
R_MM_3717 Male 51 Unknown Kappa 
R_MM_1193 Male 68 IgA Lambda 
R_MM_584 Male 71 IgA Kappa 
D_MM_4865 Male 66 Unknown Kappa 
D_MM_3767 Female 55 IgA Lambda 
R_MM_840 Female 64 IgA Kappa 
R_MM_1994 Female 68 IgG Lambda 
R_MM_2235 Female 56 IgG Kappa 
D_MM_3647 Male 63 IgG Kappa 
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Table 3.2: Patient cohort treatment course.   

Table illustrating the 1st next line treatment, all subsequent line treatments and 

the deepest response in next line treatments. 

Patient ID Name of 1st next line 
treatment 

Names of all next line 
treatments 

Deepest 
response 

in next 
line 

treatment 
R_MM_2383 VAD VAD Exitus 
R_MM_3966 DR-PACE 

(Cis/Cpm/Dxm/Dox/Eto/L) 
DR-PACE 
(Cis/Cpm/Dxm/Dox/Eto/Len) 

PR 

R_MM_2757 Bor/Dxm/Len Bor/Dxm/Len PR 
R_MM_2097 Len/Dxm 1. Len/Dxm 

2. Bor/Dxm/Len 
PR 

R_MM_938    
R_MM_2979 Bor/Dxm 1. Bor/Dxm 

2. Bor/Mel/Pred (VMP) 
VGPR 

R_MM_882 Benda/Bor/Pred Benda/Bor/Pred  
R_MM_3001 Bor/Dxm/Len Bor/Dxm/Len PR 
R_MM_4774    
R_MM_982 Bor/Dxm Bor/Dxm PR 
D_MM_3514 Dxm Dxm VGPR 
R_MM_4011 Radiotherapy  VGPR 
R_MM_1380 Bor/Dxm/Len Bor/Dxm/Len SD 
R_MM_3434 Bor/Dxm Bor/Dxm PR 
R_MM_899 Pomal/Dxm Pomal/Dxm SD 
R_MM_156 Radiotherapy 1. Radiotherapy 

2. Bor/Dxm/Len 
3. Len/Dxm 

VGPR 

R_MM_810 Bor/Dxm 1. Bor/Dxm 
2. Bor/Dxm/Len 

Clinical 
Relapse 

D_MM_3586 Dxm Dxm PR 
D_MM_3595 Bor/Dxm/Len 1. Bor/Dxm/Len 

2. Mobilisation (Cpm/G-CSF) 
3. AutoHSCT (HD Mel) 
4. Len 

Scr 

R_MM_4692 Carfilzomib   
D_MM_3901 Bor/Mel/Pred (VMP) 1. Bor/Mel/Pred (VMP) 

2. Bor/Dxm/ 
3. Bor/Cpm/Dxm 

PR 

R_MM_921 Len/Dxm 1. Len/Dxm 
2. Dxm 
3. DLI 

PR 

R_MM_3129 Pomal/Dxm Pomal/Dxm SD 
D_MM_1354    
D_MM_3886 Bor/Dxm 1. Bor/Dxm 

2. Bor/Cpm/Dxm 
3. Bor/Dxm/Len 
4. Mobilisation (Cpm) 
5. Bor/Dxm/Len 

VGPR 
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6. AutoHSCT (HD Mel) 
D_MM_4035 Radiotherapy 1. Bor/Dxm 

2. Bor/Cpm/Dxm 
3. Bor/Dxm/Len 
4. Mobilisation (Cpm) 
5. Bor/Dxm/Len 
6. AutoHSCT (HD Mel) 

VGPR 

R_MM_3717 Bor/Dxm Bor/Dxm VGPR 
R_MM_1193 Bor/Dxm/Len Bor/Dxm/Len VGPR 
R_MM_584 No treatment No treatment Exitus 
D_MM_4865    
D_MM_3767 Bor/Dxm/Len 1. Bor/Dxm/Len 

2. Mobilisation (G-CSF) 
PR 

R_MM_840 Len/Dxm Len/Dxm VGPR 
R_MM_1994 Bor/Cpm/Dxm/Len Bor/Cpm/Dxm/Len PD 
R_MM_2235    
D_MM_3647 Benda/ Bor/Pred Benda/Bor/Pred PR 

 

 

3.1.1.2 Label-free LC-MS/MS Analysis of CD138+ Plasma Cells of Most 

and Least Sensitive Patients to Treatment. 

CD138 enriched plasma cells were initially lysed in RIPA buffer (25mM Tris, pH 7 – 

8; 150 mM NaCl; 0.1% SDS; 0.5% sodium deoxycholate and 1% NP-40). The lysates 

were buffer exchanged using the 'filter aided sample preparation' (FASP) method in 

a buffer containing 8M urea/50 mM NH4HCO3/0.1% ProteaseMax. The protein 

amount was estimated using an RC/DC protein assay from Bio-Rad. BSA was used 

as a standard. After dithiothreitol reduction and iodoacetic acid-mediated alkylation, 

a double digestion was performed using Lys-C (for 4 hours at 37°C) and Trypsin 

(overnight at 37°C) on 5µg of protein. Digested samples were desalted prior to 

analysis using C18 spin columns (Thermo Scientific, UK). 500 ng of each digested 

sample was loaded onto a Q-Exactive (ThermoFisher Scientific, Hemel Hempstead, 

UK) high-resolution accurate mass spectrometer connected to a Dionex Ultimate 

3000 (RSLCnano) chromatography system (ThermoFisher Scientific, Hemel 

Hempstead, UK). Peptides were separated using a 2% to 40% gradient of acetonitrile 

on a Biobasic C18 Picofrit column (ThermoFisher Scientific, Hemel Hempstead, UK) 

(100mm length, 75mm ID) over 65 min at a flow rate of 250nl/min. Data was acquired 
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with the mass spectrometer operating in automatic data dependent switching mode. 

A full MS scan at 140,000 resolution and a range of 300–1700 m/z was followed by 

an MS/MS scan, resolution 17,500 and a range of 200–2000 m/z, selecting the 10 

most intense ions prior to MS/MS. 

 

3.1.1.3 Data Analysis of all statistically significantly proteins with altered 

abundance for each treatment. 

Protein identification and label-free quantification (LFQ) normalisation of MS/MS data 

was performed using MaxQuant v1.5.2.8 (http://www.maxquant.org). The 

Andromeda search algorithm incorporated in the MaxQuant software was used to 

correlate MS/MS data against the Homo sapiens Uniprot reference proteome 

database and a contaminant sequence set provided by MaxQuant. Perseus v.1.5.6.0 

(www.maxquant.org/) was used for data analysis, processing and visualisation. 

Normalised LFQ intensity values were used as the quantitative measurement of 

protein abundance for subsequent analysis. The data matrix was first filtered for the 

removal of contaminants and peptides identified by site. LFQ intensity values were 

log2 transformed and each sample was assigned to its corresponding group. 

ANOVA-based multisample t-test were performed using a cut-off of p<0.05 on the 

post imputated dataset to identify statistically significant differentially abundant 

proteins. Receiver-operating characteristic (ROC) curve analysis was performed as 

it is a useful tool in assessment of biomarker accuracy. The ROC plots were obtained 

by plotting all sensitivity values (true positive fraction) on the y-axis against their 

equivalent (100-specificity) values (false positive fraction) for all available thresholds 

on the x-axis (MedCalc for Windows 8.1.1.0, Medcalc Software, Mariakerke, 

Belgium). The area under the curve (AUC) was calculated to provide a summary of 

overall classifier effectiveness. In our study, we consider AUC values ranging from 

0.5→0.7 as poor, 0.7→0.8 as average, 0.8→0.9 as good and >0.9 as outstanding. 
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3.1.1.4 Bioinformatic Analysis of all statistically significantly proteins 

with altered abundance for each treatment. 

In order to group identified proteins based on their protein class and to identify 

potential protein targets with increased abundance in both most and least sensitive 

patients, publicly available bioinformatics software programmes were employed. The 

programs used were the PANTHER database of protein families 

(http://pantherdb.org/) and the STRING database of known and putative protein 

interactions that include both direct physical and indirect functional protein 

associations (http://string-db.org/). KEGG colour pathway analysis was carried out 

with a focus on proteins increased in abundance in both patient groupings using the 

Kyoto Encyclopaedia of Genes and Genomes databank 

(https://www.genome.jp/kegg). 

 

3.1.1.5 Verification of Proteomic Findings by Immunohistochemistry 

As a method of validation for a number of potential biomarkers identified by LS-

MS/MS, immunohistochemistry was carried out on formalin-fixed paraffin embedded 

bone marrow trephines with varying diagnosis.  
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3.2 Results 

 

3.2.1 MM Patients are Stratified into Different Chemoresistance Groups  

To determine and examine drug response of the 35 CD138+ plasma cell samples, 

drug sensitivity scoring (DSS) was used as outlined previously by Pemovska et al. 

2013; Majumder et al. 2017. Four distinct chemoresistance groups were formed, 

ranging from sensitive (Group 1) to resistant (Group 4) to the panel of drugs used 

(Fig. 3.2). Twelve patients fell in Group 1, nine in Group 2, eight in Group 3 and six 

in Group 4. Correlating the DSS with the available clinical data we found that although 

Group 1 is the most sensitive to treatment, the OS of this group is the shortest (Fig. 

3.3). In contrast, Group 4, although resistant to treatment, exhibit an OS which is 

similar to that of Group 3 (diminished response to most drugs) and is slightly 

decreased in comparison to the OS of Group 2 (moderate sensitivities) (Fig. 3.3).  
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Figure 3.2: Chemoresistance and overall survival of the patient cohort. 

A) Four distinct chemoresistance groups were formed, ranging from sensitive (G1) to 

resistant (G4) to the panel of drugs used. B) G1 is the most sensitive to treatment 

with the shortest OS. G4, although resistant to treatment, exhibit an OS which is 

similar to that of G3 (diminished response to most drugs) and is slightly decreased in 

comparison to the OS of G2 (moderate drug sensitivities). 
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3.2.2 MM Patients Show Differential Response to Six Different Classes 

of Drugs  

We next investigated the response of the 35 CD138+ plasma cell samples, to six anti-

myeloma therapies: Bortezomib and Carfilzomib, Lenalidomide, Navitoclax, 

Quizinostat and the investigational drug PF-04691502. Patients were stratified into 

groups of “most sensitive” to “least sensitive” to the six chemotherapeutics used as, 

although some patients The most sensitive group comprises the ten patients with the 

highest DSS for each particular drug and the least sensitive group is compiled of the 

ten patients with the lowest DSS for each drug. The comparison between the most 

and least sensitive patients to individual drugs is significant across all treatments (Fig. 

3.3). Interestingly, when compiling groups of most sensitive and least sensitive 

patients to the selected six drugs, the least sensitive group was compiled of Group 4 

patients whereas the most sensitive group was compiled of patients ranging from 

Group 1 to Group 3 (Fig.3.3). 
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Figure 3.3: Patients Show Differential Response to Five Different Classes of Drugs.  
A) Most and Least Sensitive patients have a significantly different DSS (p < 0.001) across all six drug treatments. B) DSS group of 

most sensitive and least sensitive patients to the selected six drugs. The least sensitive group was compiled of G4 patients whereas 

the most sensitive group was compiled of patients ranging from G1 to G3.
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3.2.3 Proteomic Analysis of Patients Most/Least Sensitive to Bortezomib, 

Carfilzomib, Quizinostat and PF-04691502 Exhibit Similar Protein 

Signatures  

In-depth proteomic analysis of samples identified statistically significant (p<0.05) 

proteins with changes in abundance. This data was used to compile a heatmap for 

each individual drug (Figs. 3.4, 3.5, 3.6 and 3.7). Patients exhibited similar protein 

signatures to Bortezomib, Carfilzomib, Quizinostat and PF-04691502.  

Bortezomib and Carfilzomib (Figs. 3.4 and 3.5) show a clear distinction in protein 

abundance from the ten most sensitive patients and the ten least sensitive patients. 

Quizinostat (Fig. 3.6) exhibits distinct difference in protein abundance between the 

two different patient groups, especially in the first seven patients in the least sensitive 

group in comparison with the most sensitive group. The difference seen in three of 

the least sensitive patients may be due to the partial positive response seen by the 

specific three patients in the least sensitive group. With a less apparent distinction 

between both groups compiled after treatment with PF-04691502 (Fig. 3.7), the slight 

overlap from four of the least sensitive patients into the most sensitive group is most 

likely due to a partially positive response recorded from these four patient samples, 

similar to that seen in Quizinostat.  
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Figure 3.4: Heatmap Depicting the Change in Abundance of Proteins 

Identified by LC-MS/MS Between Most and Least Sensitive Patients to 

Treatment using Bortezomib.  

Heatmap showing protein abundance changes of the ten most sensitive and 

the ten least sensitive patients to Bortezomib, individually identified by 

corresponding patient number above heatmap. Most sensitive and least 

sensitive patients were determined by drug sensitivity and resistances testing. 

Red indicates an increased abundance of individual proteins, while green a 

decrease in protein abundance. Increased and decreased abundance are 

determined by LFQ intensities from LC-MS/MS analysis.  

 

 

 

 

 



 64 

 
 

Figure 3.5: Heatmap Depicting the Change in Abundance of Proteins 

Identified by LC-MS/MS Between Most and Least Sensitive Patients to 

Treatment using Carfilzomib.  

Heatmap showing protein abundance changes of the ten most sensitive and 

the ten least sensitive patients to Carfilzomib, individually identified by 

corresponding patient number above heatmap. Most sensitive and least 

sensitive patients were determined by drug sensitivity and resistances testing. 

Red indicates an increased abundance of individual proteins, while green a 

decrease in protein abundance. Increased and decreased abundance are 

determined by LFQ intensities from LC-MS/MS analysis.  
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Figure 3.6: Heatmap Depicting the Change in Abundance of Proteins 

Identified by LC-MS/MS Between Most and Least Sensitive Patients to 

Treatment using Quizinostat.  

Heatmap showing protein abundance changes of the ten most sensitive and 

the ten least sensitive patients to Quizinostat, individually identified by 

corresponding patient number above heatmap. Most sensitive and least 

sensitive patients were determined by drug sensitivity and resistances testing. 

Red indicates an increased abundance of individual proteins, while green a 

decrease in protein abundance. Increased and decreased abundance are 

determined by LFQ intensities from LC-MS/MS analysis.  
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Figure 3.7: Heatmap Depicting the Change in Abundance of Proteins 

Identified by LC-MS/MS Between Most and Least Sensitive Patients to 

Treatment using PF-04691502.  

Heatmap showing protein abundance changes of the ten most sensitive and 

the ten least sensitive patients to PF-04691502, individually identified by 

corresponding patient number above heatmap. Most sensitive and least 

sensitive patients were determined by drug sensitivity and resistances testing. 

Red indicates an increased abundance of individual proteins, while green a 

decrease in protein abundance. Increased and decreased abundance are 

determined by LFQ intensities from LC-MS/MS analysis.  
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3.2.4 Proteomic Analysis of Patients Most/Least Sensitive to 

Lenalidomide and Navitoclax Exhibit Different Protein Signatures  

A distinction between least sensitive and most sensitive patients is less apparent in 

response to Lenalidomide (Fig. 3.8). Navitoclax on the other hand, revealed a stark 

contrast between most and lease sensitive patients’ protein abundance (Fig. 3.9).  

 

3.2.5 Metabolic Pathways are Associated with Most Sensitive Patients 

while Biological Adhesion is Associated with Least Sensitive Patients 

The proteomic dataset was further analysed using PANTHER to identify the biological 

processes which are associated with these altered proteins for the six selected 

chemotherapeutics. For both Bortezomib (Fig. 3.10) and Carfilzomib (Fig. 3.11), a 

significant increase in the abundance of proteins related to metabolic processes in 

the most sensitive group of patients was identified, whereas an increased abundance 

of proteins associated with biological adhesion was found in the least sensitive group. 

For Quizinostat (Fig. 3.12), an increase in metabolic process-related proteins and 

cellular component organization or biogenesis proteins is recorded in the most 

sensitive group. Similar results were obtained for PF-04691502 (Fig. 3.13). Biological 

adhesion associated proteins are increased in abundance in Quizinostat and PF-

04691502 in the least sensitive patients.  

Metabolic process- related proteins exhibit a higher abundance in the most sensitive 

patients after treatment using Quizinostat (Fig. 3.12), mirroring the findings observed 

for Bortezomib, Carfilzomib and PF-04691502. Interestingly, an increased 

abundance in cellular component organization or biogenesis associated proteins 

were more abundant in the most sensitive patients than least sensitive patients 

following Quizinostat treatment, showing a similar increase as for Navitoclax (Fig. 

3.15). Again, biological adhesion associated proteins are clearly associated with the 

least sensitive patients for Quizinostat. A significant increase in metabolic process, 
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cellular process, biological regulation proteins and cellular component organization 

or biogenesis proteins can be observed for Lenalidomide in the most sensitive 

patients (Fig. 3.15); however the larger volume of proteins exhibited in the most 

sensitive patients may lead to this increased abundance. Furthermore, a significant 

increase in the abundance of metabolic process proteins was observed in the least 

sensitive patients for Navitoclax (Fig. 3.14). 
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Figure 3.8: Heatmap Depicting the Change in Abundance of Proteins 

Identified by LC-MS/MS Between Most and Least Sensitive Patients to 

Treatment using Lenalidomide.  

Heatmap showing protein abundance changes of the ten most sensitive and 

the ten least sensitive patients to Lenalidomide, individually identified by 

corresponding patient number above heatmap. Most sensitive and least 

sensitive patients were determined by drug sensitivity and resistances testing. 

Red indicates an increased abundance of individual proteins, while green a 

decrease in protein abundance. Increased and decreased abundance are 

determined by LFQ intensities from LC-MS/MS analysis.  
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Figure 3.9: Heatmap Depicting the Change in Abundance of Proteins 

Identified by LC-MS/MS Between Most and Least Sensitive Patients to 

Treatment using Navitoclax.  

Heatmap showing protein abundance changes of the ten most sensitive and 

the ten least sensitive patients to Navitoclax, individually identified by 

corresponding patient number above heatmap. Most sensitive and least 

sensitive patients were determined by drug sensitivity and resistances testing. 

Red indicates an increased abundance of individual proteins, while green a 

decrease in protein abundance. Increased and decreased abundance are 

determined by LFQ intensities from LC-MS/MS analysis.  
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Figure 3.10: PANTHER analysis of Biological Processes Associated with 

Proteins Identified by LC-MS/MS After Treatment with Bortezomib.  

Graphical comparison showing the biological processes associated the most 

sensitive (blue) and least sensitive (green) patients to treatment using 

Bortezomib.  

 
Figure 3.11: PANTHER analysis of Biological Processes Associated with 

Proteins Identified by LC-MS/MS After Treatment with Carfilzomib.  

Graphical comparison showing the biological processes associated the most 

sensitive (blue) and least sensitive (green) patients to treatment using 

Bortezomib.  

 



 72 

 
Figure 3.12: PANTHER analysis of Biological Processes Associated with 

Proteins Identified by LC-MS/MS After Treatment with Quizinostat.  

Graphical comparison showing the biological processes associated the most 

sensitive (blue) and least sensitive (green) patients to treatment using 

Bortezomib.  

 
Figure 3.13: PANTHER analysis of Biological Processes Associated with 

Proteins Identified by LC-MS/MS After Treatment with PF-04691502.  

Graphical comparison showing the biological processes associated the most 

sensitive (blue) and least sensitive (green) patients to treatment using 

Bortezomib.  
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Figure 3.14: PANTHER analysis of Biological Processes Associated with 

Proteins Identified by LC-MS/MS After Treatment with Lenalidomide.  

Graphical comparison showing the biological processes associated the most 

sensitive (blue) and least sensitive (green) patients to treatment using 

Bortezomib.  

 
Figure 3.15: PANTHER analysis of Biological Processes Associated with 

Proteins Identified by LC-MS/MS After Treatment with Navitoclax.  

Graphical comparison showing the biological processes associated the most 

sensitive (blue) and least sensitive (green) patients to treatment using 

Bortezomib.  
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3.2.6 Similar Individual Protein Signatures are Exhibited for Patients 

Treated with Bortezomib, Carfilzomib, Quizinostat and PF-04691502  

We then investigated the individual proteins that showed an increased abundance in 

the most and least sensitive groups across the panel of six drugs. Altered proteins 

associated with Bortezomib treatment led to the observation of fold changes as high 

as 12.57 for Phosphoenolpyruvate carboxykinase [GTP] and high statistically 

significant abundance of Glycine-tRNA ligase and 40S ribosomal protein S24. Vastly 

more extreme fold changes, as observed for Integrin β3, and high statistically 

significant abundance of Talin-1, were recorded in the least sensitive group (Table 

3.4 ). Five of the ten most statistically significant proteins in the most sensitive patients 

were strongly associated with cellular component organization or biogenesis, 

specifically Glycine-tRNA Ligase, 40S Ribosomal Protein S24, NSFL1 Cofactor p47, 

60S Ribosomal Protein L38 and Tryptophan-tRNA Ligase (cytoplasmic) (Table 3.3).  

As both Carfilzomib and Bortezomib are PIs, there is an unsurprising similarity in both 

ten most significant protein lists. The fold changes recorded showed a significant 

change after treatment with Carfilzomib in abundance of biological adhesion and 

metabolic process proteins in the least sensitive group with fold changes as high as 

756 times for Coagulation factor XIII A chain abundance and high statistically 

significant abundance for Vinculin (Table 3.6). Interestingly, seven of the ten proteins 

with the highest significance in Bortezomib are similarly recorded in Carfilzomib, 

however, the fold change of these proteins is recorded as being significantly higher. 

Five of the seven identical proteins are linked closely with the focal adhesion pathway 

and, more specifically, with actin polymerization. This is also observed in the proteins 

with altered abundance in the most sensitive group, with the increased abundance of 

Glycine-tRNA Ligase, Tryptophan- tRNA Ligase (cytoplasmic), Phosphoenolpyruvate 

carboxykinase [GTP], Phosphoserine aminotransferase seen with treatment using 



 75 

both PIs, two of which are cellular component organization or biogenesis associated 

proteins (Table 3.5).  

A list of the ten most significant proteins for each group was compiled for treatment 

using PF-04691502. Fold changes as high as 13.25 and high statistically significant 

abundance for D-3-phosphoglycerate dehydrogenase were observed in the most 

sensitive group of patients (Table 3.9) with fold changes as high as 96.02 for Integrin 

β3 and high statistically significant abundance for Apolipoprotein A-I in the least 

sensitive grouping (Table 3.10). Five of the ten proteins observed in the least 

sensitive patients were also recorded in the least sensitive patients in Bortezomib 

(Table 3.4), Carfilzomib (Table 3.6) and Quizinostat (Table 3.8). Four of the ten 

proteins with altered abundance in the most sensitive group of patients were 

observed in either Bortezomib (Table 3.3) or Carfilzomib (Table 3.5) also, all of which 

are cellular component organization or biogenesis associated proteins.  

From the two lists compiled after Quizinostat treatment, fold increases as high as 

5.32 for Cold-inducible RNA-binding protein and high statistically significant 

abundance for Ubiquitin carboxyl-terminal hydrolase 7 was recorded in the most 

sensitive group of patients (Table 3.7). Fold changes as high as 481.27 for Integrin 

alpha-IIb with high statistically significant abundance for Vinculin were recorded in 

the least sensitive group (Table 3.8). Remarkably, five of the ten proteins with 

increased abundance in the least sensitive group were recorded as being highly 

abundant in either of the PIs used in this study (Tables 3.3, 3.5), two of which are 

also recorded after treatment with PF-04691502.  

In four of the six drugs tested there is a very clear increase in the abundance of 

proteins related to the focal adhesion pathway, specifically actin production leading 

to cell motility, in the least sensitive groups. Bortezomib (Table 3.4), Carfilzomib 

(Table 3.6), Quizinostat (Table 3.8) and PF-04691502 (Table 3.10) all showed this 

statistically significant increased p-values for the abundance of these associated 

proteins. This indicated that there is a significant change in the production of actin 
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and, consequently, cell mobility related to poor sensitivity to these varying drug 

treatments. Vinculin and Integrin β-3 have a significant increase in abundance in all 

four of the previously mentioned drugs. A very significant fold increase is recorded in 

the abundance of Vinculin in treatment with Carfilzomib, with the lowest of the fold 

increase abundances seen in treatment with Bortezomib. Integrin β-3 has a similar 

fold increase abundance across all four treatments, the highest of which is observed 

in treatment using Quizinostat and the lowest in treatment with Bortezomib.  

Talin-1, Gelsolin, Filamin A are all increased in abundance in the least sensitive 

patients in three of the six drugs tested, specifically in Bortezomib (Table 3.4), 

Carfilzomib (Table 3.6), Quizinostat (Table 3.8) and PF-04691502 (Table 3.10). Talin-

1 is seen to have an increased abundance in Bortezomib, Carfilzomib and Quizinostat 

with a fold change increase with highest significance recorded in Carfilzomib, the 

lowest of the fold change increases is observed in Bortezomib. Interestingly, an 

increased abundance of Talin-1 is noted in treatment with Navitoclax, which is in 

contrast to findings for other drugs tested. Gelsolin is observed to be upregulated in 

treatment with Bortezomib, Carfilzomib and PF-04691502, with the most significant 

fold increase shown in Carfilzomib and the lowest fold change observed in 

Bortezomib. Filamin A shows a similar trend in increased abundance to that of 

previously discussed proteins, with an increased abundance observed in Bortezomib, 

Carfilzomib and Quizinostat. The largest fold change recorded in Quizinostat with the 

lowest of the fold changes recorded in treatment with Bortezomib. 
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Table 3.3: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Most Sensitive Patients to Treatment Using Bortezomib. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Most 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Glycine--tRNA ligase 

Cellular 

component 

organization or 

biogenesis 

2.14 0.000104 

40S ribosomal protein S24 

Cellular 

component 

organization or 

biogenesis 

5.68 0.000119 

NSFL1 cofactor p47 

Cellular 

component 

organization or 

biogenesis 

1.95 0.000351 

Phosphoenolpyruvate 
carboxykinase [GTP], 

mitochondrial 

Developmental 

Process 12.57 0.000449 

Phosphoserine 
aminotransferase 

Metabolic 

process 8.56 0.000456 

60S ribosomal protein L38 

Cellular 

component 

organization or 

biogenesis 

2.19 0.000483 

Cytosolic non-specific 
dipeptidase 

Metabolic 

process 1.87 0.000492 

Tryptophan--tRNA ligase, 
cytoplasmic 

Cellular 

component 

organization or 

biogenesis 

5.57 0.000516 

Oxysterol-binding protein 1 Localization 2.32 0.000606 

Interferon-inducible double-
stranded RNA-dependent 
protein kinase activator A 

Multicellular 

organismal 

process 
2.07 0.000638 
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Table 3.4: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Least Sensitive Patients to Treatment Using Bortezomib. 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Least 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Talin-1 
Biological 

regulation 10.93 6.48E-06 

Vinculin 
Biological 

adhesion 19.04 7.65E-06 

Coronin-1C 

Cellular 

component 

organization or 

biogenesis 

6.37 1.03E-05 

Integrin beta-3 
Biological 

adhesion 42.03 1.35E-05 

Transgelin-2 

Multicellular 

organismal 

process 
7.65 2.48E-05 

Gelsolin 
Developmental 

process 19.01 3.44E-05 

Vasodilator-stimulated 
phosphoprotein 

Biological 

regulation 13.70 4.56E-05 

Myotrophin 
Biological 

adhesion 2.87 7.73E-05 

Tropomyosin alpha-4 chain 

Cellular 

component 

organization or 

biogenesis 

6.68 8.17E-05 

Filamin-A Locomotion 15.15 8.84E-05 
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Table 3.5: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Most Sensitive Patients to Treatment Using Carfilzomib. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Most 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Tryptophan--tRNA ligase, 
cytoplasmic 

Cellular 

component 

organization or 

biogenesis 

7.27 5.44E-06 

Bifunctional purine 
biosynthesis protein PURH 

Metabolic 

process 2.02 0.000269 

Phosphoenolpyruvate 
carboxykinase [GTP], 

mitochondrial 

Biological 

regulation 9.79 0.000274 

Phosphoserine 
aminotransferase 

Metabolic 

process 9.69 0.000371 

Elongation factor Tu, 
mitochondrial 

Cellular 

component 

organization or 

biogenesis 

1.74 0.000546 

Rootletin 
Biological 

regulation 2.91 0.000568 

Proteasome-associated 
protein ECM29 homolog 

Biological 

regulation 3.71 0.000614 

Glycine--tRNA ligase 

Cellular 

component 

organization or 

biogenesis 

2.18 0.00064 

Bifunctional 3-
phosphoadenosine 5-

phosphosulfate synthase 1 

Metabolic 

process 5.33 0.000651 

Interferon regulatory factor 4 
Biological 

regulation 3.68 0.000737 
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Table 3.6: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Least Sensitive Patients to Treatment Using Carfilzomib. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Least 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Vinculin 
Biological 

adhesion 264.90 1.02E-08 

Talin-1 
Developmental 

process 19.04 2.33E-07 

Integrin beta-3 
Biological 

adhesion 202.88 3.22E-07 

Transgelin-2 

Multicellular 

organismal 

process 
14.68 1.11E-06 

Gelsolin 
Developmental 

process 68.14 1.18E-06 

Coagulation factor XIII A 
chain 

Metabolic 

process 756.41 1.44E-06 

Vasodilator-stimulated 
phosphoprotein 

Biological 

regulation 39.27 2.73E-06 

Filamin-A Locomotion 42.32 4.12E-06 

Integrin alpha-IIb 
Biological 

adhesion 209.46 7.99E-06 

Voltage-dependent anion-
selective channel protein 3 

Localisation 1.86 8.99E-06 
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Table 3.7: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Most Sensitive Patients to Treatment Using Quizinostat. 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Most 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Ubiquitin carboxyl-terminal 
hydrolase 7 

Biological 

regulation 3.39 2.40E-05 

KH domain-containing, RNA-
binding, signal transduction-

associated protein 1 

Metabolic 

process 3.90 4.94E-05 

Nuclear migration protein 
nudC 

Cellular 

process 2.33 8.86E-05 

Cold-inducible RNA-binding 
protein 

Biological 

regulation 5.33 0.000118 

Non-POU domain-containing 
octamer-binding protein 

Biological 

regulation 4.04 0.000161 

60S ribosomal protein L10 

Cellular 

component 

organization or 

biogenesis 

2.96 0.000168 

Phosphoenolpyruvate 
carboxykinase [GTP], 

mitochondrial 

Biological 

regulation 5.73 0.000183 

Thymocyte nuclear protein 1 
Cellular 

process 2.60 0.000188 

Exportin-2 Localisation 3.28 0.000203 

BolA-like protein 2 
Biological 

regulation 3.99 0.000248 
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Table 3.8: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Least Sensitive Patients to Treatment Using Quizinostat. 

 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Least 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Vinculin 
Biological 

adhesion 120.65 1.18E-06 

Platelet basic protein Locomotion 145.90 2.47E-06 

Filamin-A Locomotion 53.53 3.45E-06 

Talin-1 
Developmental 

process 17.65 8.70E-06 

Fermitin family homolog 3 
Biological 

adhesion 18.00 1.25E-05 

Erythrocyte band 7 integral 
membrane protein 

Biological 

regulation 69.83 1.34E-05 

Integrin alpha-IIb 
Biological 

adhesion 481.28 1.86E-05 

Integrin beta-3 
Biological 

adhesion 349.10 2.38E-05 

Profilin-1 
Biological 

regulation 3.66 2.44E-05 

Ras suppressor protein 1 
Biological 

regulation 84.47 2.54E-05 
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Table 3.9: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Most Sensitive Patients to Treatment Using PF-04691502. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Most 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

D-3-phosphoglycerate 
dehydrogenase 

Metabolic 

process 13.25 2.73E-05 

ATP-binding cassette sub-
family E member 1 

Cellular 

compartment 

organization or 

biogenesis 

2.08 6.68E-05 

Dedicator of cytokinesis 
protein 2 

Biological 

regulation 2.53 9.15E-05 

26S protease regulatory 
subunit 10B 

Biological 

regulation 2.31 0.000132 

Elongation factor Tu, 
mitochondrial 

Cellular 

compartment 

organization or 

biogenesis 

2.14 0.000208 

40S ribosomal protein S6 

Cellular 

compartment 

organization or 

biogenesis 

2.07 0.000269 

Glycine--tRNA ligase 

Cellular 

compartment 

organization or 

biogenesis 

2.19 0.000319 

Phosphoenolpyruvate 
carboxykinase [GTP], 

mitochondrial 

Biological 

regulation 7.83 0.000387 

Heterogeneous nuclear 
ribonucleoprotein M 

Biological 

regulation 2.48 0.000387 

26S protease regulatory 
subunit 8 

Biological 

regulation 1.85 0.000389 
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Table 3.10: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Least Sensitive Patients to Treatment Using PF-04691502. 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Least 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Apolipoprotein A-I 
Biological 

regulation 5.72 1.98E-05 

Platelet endothelial cell 
adhesion molecule 

Biological 

adhesion 12.01 3.96E-05 

Integrin beta-3 
Biological 

adhesion 96.02 7.00E-05 

Alpha-1-antitrypsin 
Metabolic 

process 4.77 7.22E-05 

Coagulation factor XIII A 
chain 

Metabolic 

process 49.63 9.31E-05 

Vinculin 
Biological 

adhesion 57.81 0.000152 

Bridging integrator 2 

Cellular 

compartment 

organization or 

biogenesis 

13.91 0.000184 

Voltage-dependent anion-
selective channel protein 3 

Localization 1.64 0.000501 

Gelsolin 
Developmental 

process 37.73 0.000532 

Ras-related protein Rap-1b 
Biological 

adhesion 9.35 0.000766 
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3.2.7 Different Individual Protein Signatures are Exhibited for Patients 

Treated with Lenalidomide and Navitoclax  

The lack of distinction observed in the heat map from treatment using Lenalidomide 

(Figure 3.8) is also apparent in the ten most statistically significant proteins in both 

the most sensitive (Table 3.11) and least sensitive group of patients (Table 3.12) , 

where the fold changes and p-values of the abundantly changed proteins in both 

groups is significantly less drastic to that of the fold changes and p-values recorded 

for Bortezomib (Table 3.3-3.4) and Carfilzomib (Table 3.5-3.6). Both fold changes 

and p-values are vastly different to that of the generated lists for different drugs within 

this study, with high statistically significant abundance for Serine/threonine-protein 

kinase PAK 2 and fold changes as high as 4.74 for DNA replication licensing factor 

MCM2 in the most sensitive group. High statistically significant abundance for Very 

long-chain specific acylCoA dehydrogenase, mitochondrial and fold changes as high 

as 3.96 for Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial 

in the least sensitive group. The proteins with altered abundance associated with this 

particular drug show no obvious overlap with the altered proteins from previously 

discussed treatments.  

Fold increases as high as 41.97 for Pleckstrin and high statistically significant 

abundance for Alpha-actinin-1 were recorded in the most sensitive group for 

Navitoclax (Table 3.13) whereas fold changes as high as 3.45 for Nucleoside 

diphosphate kinase 3 and high statistically significant abundance for 

Phosphatidylethanolamine binding protein 1 were recorded in the least sensitive 

group (Table 3.14), following Navitoclax treatment. Seven out of ten of the most 

significant proteins changed in abundance in the least sensitive patients are observed 

to be metabolic process associated proteins whereas the most sensitive group has a 

less defined involvement in biological processes. Interestingly, trends exhibited after 

treatment with Navitoclax in altered protein abundance are opposite to those shown 
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after treatment with Bortezomib, Carfilzomib, Quizinostat and PF-04691502, with 

proteins exhibited in the most sensitive patients in table 3.13 observed in the least 

sensitive patients for these treatments and vice versa. 
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Table 3.11: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Most Sensitive Patients to Treatment Using Lenalidomide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Most 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Serine/threonine-protein 
kinase PAK 2 

Biological 

regulation 2.01 0.00016 

DNA replication licensing 
factor MCM7 

Cellular process 3.55 0.000507 

Ataxin-10 
Developmental 

process 1.63 0.001734 

Host cell factor 1 Reproduction 2.42 0.001849 
FACT complex subunit 

SSRP1 
Cellular process 1.50 0.00202 

Lamina-associated 
polypeptide 2, isoforms 

beta/gamma 

Biological 

regulation 2.27 0.002061 

Splicing factor 3B subunit 2 
Metabolic 

process 1.78 0.002243 

ATP-binding cassette sub-
family F member 1 

Metabolic 

process 1.51 0.002361 

Heat shock protein HSP 90-
alpha 

Biological 

regulation 1.71 0.00237 

DNA replication licensing 
factor MCM2 

Cellular process 4.74 0.00304 
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Table 3.12: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Least Sensitive Patients to Treatment Using Lenalidomide. 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Least 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Very long-chain specific acyl-
CoA dehydrogenase, 

mitochondrial 

Metabolic 

process 2.04 0.001889 

Nucleobindin-2 
Biological 

regulation 2.50 0.00373 

Methylmalonate-semialdehyde 
dehydrogenase [acylating], 

mitochondrial 

Metabolic 

process 3.96 0.004655 

Protein disulfide-isomerase A3 
Response to 

stimuli 2.13 0.005016 

Phosphoacetylglucosamine 
mutase 

Metabolic 

process 2.04 0.006313 

Methylthioribulose-1-
phosphate dehydratase 

Metabolic 

process 2.05 0.006362 

Protein transport protein 
Sec23A 

Biological 

regulation 1.62 0.007053 

Putative ATP-dependent RNA 
helicase DHX30 

Biological 

regulation 1.27 0.007567 

D-tyrosyl-tRNA(Tyr) deacylase 
1 

Biological 

regulation 1.48 0.007882 

Annexin A7 
Cellular 

process 1.45 0.011916 
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Table 3.13: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Most Sensitive Patients to Treatment Using Navitoclax. 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Most 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Alpha-actinin-1 Locomotion 20.45 1.11E-05 

Talin-1 
Developmental 

process 19.73 1.40E-05 

Transgelin-2 

Multicellular 

organismal 

process 
10.50 2.85E-05 

Myosin regulatory light chain 
12A 

Development 

process 7.20 6.25E-05 

Vasodilator-stimulated 
phosphoprotein 

Biological 

regulation 28.96 7.19E-05 

Fermitin family homolog 3 
Biological 

adhesion 14.81 8.02E-05 

Bridging integrator 2 

Cellular 

component 

organization or 

biogenesis 

12.59 8.81E-05 

Pleckstrin 
Cellular 

process 41.98 8.96E-05 

14-3-3 protein eta 
Biological 

regulation 6.22 0.00013 

Tubulin beta-1 chain 

Cellular 

component 

organization or 

biogenesis 

11.45 0.000158 
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Table 3.14: Top 10 Most Significant Proteins with Increased Abundance 

in the 10 Least Sensitive Patients to Treatment Using Navitoclax. 

 

 

 

 

 

 

 

 

Top 10 Most Significant 
Proteins with Increased 

Abundance in Least 
Sensitive Patients 

Biological 
Function 

Fold Change p-value 

Phosphatidylethanolamine-
binding protein 1 

Biological 

regulation 2.59 0.000154 

NADH dehydrogenase 
[ubiquinone] 1 alpha 

subcomplex subunit 5 

Metabolic 

process 1.94 0.000329 

Inorganic pyrophosphatase 
Metabolic 

process 2.68 0.000824 

NSFL1 cofactor p47 

Cellular 

component 

organization or 

biogenesis 

1.82 0.000967 

Endophilin-B2 
Biological  

adhesion 2.16 0.001021 

Nucleoside diphosphate 
kinase 3 

Metabolic 

process 3.45 0.001304 

3-hydroxyisobutyryl-CoA 
hydrolase, mitochondrial 

Metabolic 

process 3.08 0.001418 

ATP synthase subunit delta, 
mitochondrial 

Metabolic 

process 2.39 0.001434 

ATP synthase F(0) complex 
subunit B1, mitochondrial 

Metabolic 

process 1.69 0.001951 

ATP synthase subunit O, 
mitochondrial 

Metabolic 

process 1.90 0.00203 
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3.2.8 AUC ROC Exhibited by Most and Least Sensitive Patients Using 

Treatments Showing Similar Proteomic Signatures.  

The area under the receiver-operator characteristic curve (AUC ROC) value for the 

top five most significant candidate biomarkers was calculated for each drug used in 

this study. The AUC was found to have good discriminatory power for all potential 

biomarkers for sensitive patients using Bz, ranging from 0.9 for RS24 and 0.95 for 

SYG (Fig. 3.16), according to guidelines published by Hosmer and Lemeshow. In the 

least sensitive patients, grouping AUC values ranged from 0.96 for VINC and TAGL2 

to 0.98 for TLN1, exhibiting remarkable discriminatory power for all potential 

biomarkers (Fig. 3.17). PF-04691502 showed similar notable AUC values ranging 

from 0.95 for LC7L2 to 0.96 for the remaining four potential biomarkers for the most 

sensitive patients (Fig. 3.20) and a range of 0.98 for four potential biomarkers to 1 for 

A1AT (Fig. 3.21) with respect to the least sensitive patients. Quizinostat was found 

to have a range of AUC values of 0.835 for CIRBP to 1.000 for UBP7 for the most 

sensitive group of patients (Fig. 3.22) and a range from 0.970 for FLNA and TLN1 to 

0.99 for CXCL7 in the least sensitive patient grouping (Fig. 3.23). These values 

represent excellent discriminatory power.  
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Figure 3.16: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Most Sensitive Patients After Treatment 

Using Bortezomib. 

ROC analysis for the top five statistically significant proteins for the most 

sensitive patients to bortezomib, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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Figure 3.17: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Least Sensitive Patients After Treatment 

Using Bortezomib. 

ROC analysis for the top five statistically significant proteins for the least 

sensitive patients to bortezomib, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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Figure 3.18: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Most Sensitive Patients After Treatment 

Using Carfilzomib. 

ROC analysis for the top five statistically significant proteins for the most 

sensitive patients to Carfilzomib, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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Figure 3.19: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Least Sensitive Patients After Treatment 

Using Carfilzomib. 

ROC analysis for the top five statistically significant proteins for the least 

sensitive patients to Carfilzomib, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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Figure 3.20: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Most Sensitive Patients After Treatment 

Using PF-04691502. 

ROC analysis for the top five statistically significant proteins for the most 

sensitive patients to PF-04691502, including the calculated AUC, standard 

error (SE) and 95% confidence interval (CI). 
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Figure 3.21: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Least Sensitive Patients After Treatment 

Using PF-04691502. 

ROC analysis for the top five statistically significant proteins for the least 

sensitive patients to PF-04691502, including the calculated AUC, standard 

error (SE) and 95% confidence interval (CI). 
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Figure 3.22: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Most Sensitive Patients After Treatment 

Using Quizinostat. 

ROC analysis for the top five statistically significant proteins for the most 

sensitive patients to Quizinostat, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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Figure 3.23: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Least Sensitive Patients After Treatment 

Using Quizinostat. 

ROC analysis for the top five statistically significant proteins for the least 

sensitive patients to Quizinostat, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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3.2.9 AUC ROC Using Treatments Showing Different Individual Protein 

Signatures.  

A broader range of AUC values are observed after treatment using Lenalidomide, 

with values ranging from 0.66 for ATX10 to 0.96 for PAK2 with regards to the most 

sensitive grouping (Fig. 3.24) and 0.64 for AGM1 to 0.92 for MMSA in the least 

sensitive group (Fig. 3.25). These values are low and are not considered to be 

significant. Navitoclax reveals more obvious discriminatory power as a range from 

0.9 for MYL9 and 0.96 for DREB in the most sensitive patients (Fig. 3.26) and 0.81 

for ECI2 and 0.93 for HEBP2 in the least sensitive patients (Fig. 3.27)  
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Figure 3.24: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Most Sensitive Patients After Treatment 

Using Lenalidomide. 

ROC analysis for the top five statistically significant proteins for the most 

sensitive patients to Lenalidomide, including the calculated AUC, standard 

error (SE) and 95% confidence interval (CI). 
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Figure 3.25: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Least Sensitive Patients After Treatment 

Using Lenalidomide. 

ROC analysis for the top five statistically significant proteins for the least 

sensitive patients to Lenalidomide, including the calculated AUC, standard 

error (SE) and 95% confidence interval (CI). 
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Figure 3.26: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Most Sensitive Patients After Treatment 

Using Navitoclax. 

ROC analysis for the top five statistically significant proteins for the most 

sensitive patients to Navitoclax, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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Figure 3.27: AUC ROC Analysis of the Five Most Significant Proteins with 

an Increased Abundance in the Least Sensitive Patients After Treatment 

Using Navitoclax. 

ROC analysis for the top five statistically significant proteins for the least 

sensitive patients to Navitoclax, including the calculated AUC, standard error 

(SE) and 95% confidence interval (CI). 
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3.2.10 Immunohistochemistry of Bone Marrow Trephines from patients 

with varying disease diagnosis. 

 

Comparative IHC was carried out with the use of multiple potential biomarkers for 

drug resistance in MM identified from detailed analysis of LC-MS/MS spectra. 

Vinculin, Integrin β3, CD44, CD68 and Talin-1 were all identified as potential targets, 

with an increased abundance in each of the potential targets stated being linked to 

disease progression in MM. Independent, blind scoring of stained slides was carried 

out, to ensure an unbiased evaluation of the staining intensity. Vinculin staining was 

observed to be weak positive (+1) for both MGUS bone marrow and active MM, with 

positive staining (+2) observed in disease maintenance and strong positive staining 

(+3) observed for newly diagnosed MM and remission. In summary, vinculin 

abundance was observed as Remission/Newly diagnosed>disease 

maintenance>Active MM/ MGUS (Figure 3.28). For Integrin β3, staining was 

determined to be weak positive (+1) in MGUS, newly diagnosed MM, active MM and 

response to treatment. The strongest amount of staining of Integrin β3 was observed 

in the remission bone marrow trephine (+3). In summary, the observed staining was 

greatest in remission, then MGUS and weakest in active MM, although staining in 

Active MM was similar to that of MGUS (Figure 3.29). Talin-1 exhibited no staining, 

section wide, with MGUS and Newly diagnosed MM (1). Weak staining (+1) was 

observed on newly diagnosed MM (2) (Figure 3.30). Very strong staining was 

generally observed with CD68, the highest of the staining recorded in MGUS and 

Active MM (+3). Staining was observed to be positive in newly diagnosed MM, 

maintenance and remission sections (+2) (Figure 3.31). Interestingly, the lowest 

staining, with negative staining recorded (+1), for CD68 was observed in bone 

marrow trephines from a patient with progressive disease. This image, however, is 

not included. CD44 abundance was also evaluated with the use of IHC in bone 

marrow trephines. Similar to CD68, high levels of staining were recorded section wide 
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for all samples examined. MGUS, newly diagnosed, post ASCT transplant and 

remission all exhibited staining with positive intensity (+2), the highest of the staining 

being recorded in active MM (+3) (Figure 3.32).  
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Figure 3.28: Comparative Immunohistochemistry (IHC) Staining of Vinculin in BM trephines for varying stages of disease. 

The figure depicts the comparative IHC staining of BMTs using an antibody specific for Vinculin. The increased abundance of Vinculin 

is noted in staining of the sectioned tissue, the scoring of which is depicted in the corresponding graph. 
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Figure 3.29: Comparative IHC Staining of Integrin β3 in BM trephines for varying stages of disease. 
The figure depicts the comparative IHC staining of BMTs using an antibody specific for Integrin β3. The increased abundance of 

Integrin β3 is noted in staining of the sectioned tissue, the scoring of which is depicted in the corresponding graph. 
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Figure 3.30: Comparative IHC Staining of Talin-1 in BM trephines for varying stages of disease. 
The figure depicts the comparative IHC staining of BMTs using an antibody specific for Talin-1. The increase in abundance of staining 

(weak positive) of the sectioned tissue is noted in one of the two newly diagnosed BMTs, the scoring of which is depicted in the 

corresponding graph. 
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Figure 3.31: Comparative IHC Staining of CD68 in BM trephines for varying stages of disease. 
The figure depicts the comparative IHC staining of BMTs using an antibody specific for CD68. The increased abundance of CD68 is 

noted in staining of the sectioned tissue, the scoring of which is depicted in the corresponding graph. 
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Figure 3.32: Comparative IHC Staining of CD44 in BM trephines for varying stages of disease. 
The figure depicts the comparative IHC staining of BMTs using an antibody specific for CD44. The increased abundance of CD44 is 

noted in staining of the sectioned tissue, the scoring of which is depicted in the corresponding graph.
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3.3 Discussion  

 

The changes in protein abundance of 35 CD138+ patients to six MM drug treatments 

was studied to give a unique insight into drug resistance to these particular treatments 

from patients at varying stages of disease progression, with the long-term goal of 

developing individual treatment courses catering to individual patient needs. Four 

(Bortezomib, Carfilzomib, Quizinostat and PF-04691502) of the six drugs selected 

exhibited a similar protein signature while the remaining two drugs (Lenalidomide and 

Navitoclax) exhibited differing signatures. Bortezomib, Carfilzomib, Quizinostat and 

PF-04691502 lead to an increased abundance of Vinculin and Integrin β-3, with 

Bortezomib, Carfilzomib, Quizinostat showing an increased abundance of Talin-1, 

Gelsolin and Filamin A, in the least sensitive patients.  

Vinculin is an actin binding, ubiquitously expressed protein noted for its role in focal 

adhesion formation (Humphries et al., 2007), regulation of actin cytoskeleton (Wen 

et al., 2009) and cell proliferation (Subauste et al., 2004). An increased abundance 

has been observed in varying different types of cancer such as breast cancer (Park, 

2018). The increased abundance of Vinculin has previously been observed in MM 

cell lines, stimulating RhoA signalling and therefore leading to cell adhesion-mediated 

drug resistance (Kobune et al., 2007). These findings further support the claim that 

increased Vinculin abundance is implicated in drug resistance to four of the six drugs 

tested in MM.  

Integrin β3 is one of two most notable integrins involved in tumour proliferation and 

has been implicated in multiple types of cancer including ovarian cancer (Cruet-

Hennequart et al., 2003), papillary thyroid carcinoma (Trusolino et al., 1998) and lung 

carcinoma (Peláez et al., 2017). This implication has been associated with 

proliferation via Integrin Linked Kinase, regulation of epidermal growth factor receptor 

(EGFR) promoter leading to co-clustering of this receptor on cell surface in ovarian 
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cancer (Lössner et al., 2008). Cell adhesion mediated drug resistance has been 

strongly linked with the increased abundance of Integrin β3. Intrinsic and acquired 

resistance to erlotinib (a treatment commonly used to treat non-small cell lung cancer 

and pancreatic cancer) and lapatinib (commonly used to treat advanced hormone-

related breast cancer) due to increased abundance of integrin β3 after acquired 

resistance to EGFR inhibitors, driving the NFκB signalling pathway, has been noted 

in multiple different cancer types, leading to predicted controlled behaviour of cancer 

stem cells (Seguin et al., 2014). Interestingly, it has been observed in multiple studies 

that targeting the NFκB signalling pathway when treating MM reduces drug resistance 

to PIs (Anderson and Carrasco, 2011), suggesting that the significantly increased 

abundance of Integrin β3 shown in this study may be leading to increased levels of 

NFκB signalling, causing cell adhesion-mediated drug resistance to four of the six 

drugs. Previously, clusterin has been implicated in bortezomib resistance in MM (Ting 

et al., 2017), which is a cancer cell survival protein acting through Akt and NFκB 

activation (Zoubeidi et al., 2010).  

Talin-1, a central component of integrin adhesion and a prerequisite for assembly 

and maintenance of integrin based cell-extracellular matrix binding (Klapholz and 

Brown, 2017), has been seen to exhibit binding sites for Actin and Vinculin 

(Chinthalapudi et al., 2018). Talin-1 has been previously implicated in tumour cell 

invasion in both mammary tumours and lung metastasis (Gligorijevic et al., 2012). 

The close association between Talin-1 and the other focal adhesion proteins 

mentioned in the least sensitive patients in Bortezomib, Carflilzomib, Quizinostat and 

PF-04691502 further confirms the role of focal adhesions, actin production and 

subsequently cell motility and has previously been implicated in cell adhesion in MM 

cells. It has been recorded that Talin-silenced MM cells are notably more susceptible 

to Bortezomib-mediated cell apoptosis (Martínez-Moreno et al., 2016). Vinculin has 

previously been observed to require Talin-1 as a binding partner to comprehensively 
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unmask binding sites for the continuation of Vinculin localisation to focal adhesions 

(Bakolitsa et al., 2004).  

Similar to Talin-1, Gelsolin and Filamin A are associated with actin assembly and 

actin binding respectively. Gelsolin severs, caps and nucleates actin filaments and 

sequesters monomers (Nag et al., 2013) and exhibits both inhibitory (Koya et al., 

2000) and supportive traits for apoptosis (Geng et al., 1998) depending on 

surrounding conditions and cells. Overexpression of Gelsolin has been linked to 

metastasis in breast cancer (Marino et al., 2013) and hepatocellular carcinoma (HCC) 

(Deng et al., 2015). Interestingly, an increased abundance of Gelsolin has shown a 

strong correlation to chemoresistance in gynaecological cancers and a decreased 

OS (Abedini et al., 2014).  

Filamin A, a scaffold serving protein in multiple signalling networks (Feng and Walsh, 

2004), binds and cross-links actin filaments into three dimensional structures. A close 

link between increased Filamin A abundance and increased metastasis has been 

observed in numerous cancer types such as HCC (Ai et al., 2011), prostate cancer 

(Bedolla et al., 2009), melanoma and breast cancer (Jiang et al., 2013). Filamin A 

has been previously linked to cancer cell migration and it has been observed that 

knockdown of Filamin A affects the migration and spreading of MM endothelial cells, 

as well as inhibiting angiogenic activity in these cells (Berardi et al., 2012).  

The increased abundance of Vinculin, Integrin β3 and along with Talin-1, Gelsolin 

and Filamin A indicates that there is a significant increase in proteins related to focal 

adhesion, actin assembly and cell motility. All these proteins have a distinct function 

within the focal adhesion pathway. Firstly, multiple different studies predicted that cell 

“stiffness”, due to actin production, leads to cancer proliferation and invasion. The 

significant increased abundance of Vinculin, along with Myosin II and Rho, has been 

observed to cause increased cell stiffness in chemoresistant cells via mechanical 

cytoskeleton alterations (Nyongesa and Park, 2018). Cell adhesion-mediated drug 

resistance has commonly been linked to MM and it has been reported that Wnt3 plays 
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a crucial role in cell adhesion-mediated drug resistance, which is caused by increased 

Vinculin abundance and a rearrangement of the actin filament (Kobune et al., 2007).  

Secondly, the increased activation of NFκB, a transcription factor regularly seen to 

play a role in tumour progression, growth and chemoresistance (Almeida et al., 2014), 

from increased levels of Integrin β3 has been reported in multiple studies as a cause 

for drug resistance in cancer cells. Interestingly, it has been observed that treatment 

using a PI such as Bortezomib and Carfilzomib has led to decreased NFκB 

expression in xenograft models of MM (Wilczynski et al., 2011). This, in turn, leads 

to the hypothesis that NFκB expression is upregulated following Bortezomib, 

Carfilzomib, Quizinostat and PF-04691502 treatment. The implication that NFκB 

plays a significant role in drug resistance in MM has been explored in further chapters 

within this body of work (Chapter 4). 

The immunohistochemistry carried out is purely for validation purposes and, due to 

the small sample size of bone marrow trephines, no strong conclusions can be made 

from the data provided. The identification of individual plasma cells proved extremely 

difficult as CD138 staining was not carried out along with the potential target staining. 

To further validate the findings of IHC, the BMT sections would require CD138 

staining to allow the identification of the individual plasma cells, allowing the 

identification of the precise location of the potential markers (Vinculin, Integrin β3, 

Talin-1, CD68 and CD44). The increased abundance of Vinculin and Integrin  β3 in 

remission patients may be eluding to the fact that, although the patient is in remission, 

this must be monitored as RRMM will occur with drug resistance to previously used 

treatment regimes. As vastly high rates of RRMM occur, the vast majority of patients 

diagnosed with MM do eventually progress from remission to RRMM. The increased 

abundance evident from the BMT staining for Vinculin (Figure 3.28) and Integrin β3 

(Figure 3.29) indicates less sensitivity to Bortezomib, Carfilzomib, Quizinostat and 
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PF-04691502, as forms of treatment in RRMM. A decrease in abundance in CD68 

(Figure 3.31) and CD44 (Figure 3.32) from active MM to remission indicates that 

CD44 and CD68 are most active in proliferating MM, and therefore play a role in 

disease progression. CD44 is a family of single-span transmembrane glycoproteins, 

with family members differing in the extracellular domain. These proteins act as 

receptors for hyaluronan, which is a co-receptor for receptor tyrosine kinases (RTKs), 

which is explored more in Chapter 4. CD44 also acts as a receptor for G-protein-

coupled receptors, as well as providing a platform for metalloproteinases (Yan et al., 

2015). CD44 has previously been implicated in drug resistance in gastric cancer (Lee 

et al., 2019), ovarian cancer (Yang et al., 2015), colorectal cancer (Zaytseva et al., 

2012) and breast cancer (Wang et al., 2018), to name but a few. An infinite fold 

increase in sensitive patients in comparison to resistant patients was recorded by LC-

MS/MS in this particular study (infinite meaning an absence of CD44 in the resistant 

cohort of patients). CD68, a heavily glycosylated glycoprotein, is known to be a 

tumour associated macrophage (TAM) and is highly expressed in macrophages and 

other mononuclear phagocytes. It has been associated with being a good predictive 

marker for cancer prognosis (Chistiakov et al., 2017). CD68 has been observed as 

being highly abundant in hepatocellular carcinoma tissue and is especially associated 

with stage Ⅳ (Minami et al., 2018), has shown direct links with poor prognosis of 

head and neck squamous cell carcinoma (Seminerio et al., 2018) and has shown a 

direct correlation between abundance and poor prognosis in colorectal cancer (Yang 

et al., 2019). A 5-fold increase in the abundance of CD68 was recorded the least 

sensitive patients, in comparison to the most sensitive patients. This eludes to the 

connection between CD68 and disease invasiveness along with drug resistance in 

MM. 
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4.1 Introduction  
 
Protein phosphorylation is a reversible post translational modification (PTM) that 

occurs through protein kinases. PTMs are considered to play a vital role in processes 

such as subcellular localisation, stability and protein activity control (Olsen et al., 

2006). This PTM involves the addition of a phosphate group (PO4) to the polar R 

group of amino acids, modifying the protein from hydrophobic apolar to hydrophilic 

polar (Sacco et al., 2012). The change in hydrophobicity of the protein allows 

alterations in confirmation during interactions with other molecules. Phosphorylated 

amino acids have the ability to bind molecules with protein interaction abilities, 

allowing the assembly and detachment of protein complexes (Ardito et al., 2017). 

Protein phosphatases have the opposite function to that of kinases, they remove a 

phosphate group from a phosphoprotein, restoring the protein to its previous state 

(Barford, 1996). This phosphorylation/dephosphorylation acts similar to a molecular 

switch (Figure 4.1). 

Kinases are enzymes that transfer a phosphate group from high energy nucleoside 

triphosphate to specific proteins, carbohydrates, lipids and substrates. This process 

leads to stability, activity and localization of proteins, playing a crucial role in cell 

biology. Kinases are activated by cis-/autophosphorylation and, in turn, activate a 

cascade of phosphorylation events (Roskoski, 2012). As the second largest enzyme 

family, kinases are noted to encompass 518 family members, with 106 pseudogenes 

(Lind et al., 2019). Phosphorylation activity is stimulated by cytogenetic alterations, 

epigenetic modification, genetic alterations or by tumour microenvironment 

activation. ATP  hydrolysis supplies the phosphate group, leading to a PTM formation 

(Fukami and Lipmann, 1983). This PTM formation can cause carcinogenic effects, 

leading to oncogenic pathway activation. This activation is generally caused by a 

phospho-binding protein binding to a phosphate group of an already modified 

phosphoprotein (Ardito et al., 2017) (Figure 4.1).  
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Phosphorylation occurs predominantly on the serine (Ser) residues, threonine (Thr) 

residues and tyrosine (Tyr) residues of proteins, although Ser residues are the most 

common. Tyr phosphorylation is rare in comparison, with this being typical of the 

epidermal growth factor receptor family (Schwartz and Murray, 2011). The less stable 

phosphorylation of histidine (His) and aspartate (Asp) does occur but is much less 

common than the aforementioned (Nishi et al., 2014). Although most phospho-

complexes contain a small amount of phosphorylation sites, it has been observed 

approximately half of their threonine, serine and tyrosine sites are phosphorylated 

(Nishi et al., 2011). Approximately 2% of human coding genes are encoding for 

protein kinases, eluding to the importance of phosphorylation in humans (Manning et 

al., 2002). The number of phosphatase encoding genes has been recorded as being 

significantly less, almost ten time less than kinase encoding genes.  
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Figure 4.1: Phosphorylation signalling pathway. 

The figure above depicts the means in which phosphorylation is regulated.  

*Figure was adapted from Ardito et al., 2017 and was created with Biorender. 

 

Phosphorylation has been identified as an extremely important mechanistic event 

which is known to have an involvement in cell growth, cell division, protein synthesis, 

signal transduction, development and aging. P53 is known to be activated by 

phosphorylation, leading to the transcription of cell cycle inhibitory genes, apoptosis 

and DNA repair activation (Heinrich et al., 2002). Importantly, phosphorylation plays 

a crucial role in biological processes such as the aforementioned, along with 

proliferation and differentiation.  

In cancer, it has been observed that phosphorylation plays an important role, allowing 

cancer cells to exploit the “on-off” switch mechanism in which phosphorylation 
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operates. More than 1,000 protein kinase expression variations have been observed 

in human tumours, leading to the establishment of the clinical relevance of these 

variations as biomarkers. Such variations include Her2 for breast cancer (Stephens 

et al., 2005) and EGFR for colon cancer (Barber et al., 2004). mTOR, a protein kinase 

is activated by phosphorylation and induces activation of cyclin D and HIF1α, both of 

which are cell cycle proteins. This activation further activates vascular endothelial 

growth factor, a signal protein known to promote angiogenesis (Dancey, 2006). The 

phosphorylation driven activation of mTOR, and the subsequent downstream 

activation effects leading to promotion of angiogenesis, have been noted as being 

particularly active in renal cancer (Thomas et al., 2006). Chronic myeloid leukaemia 

(CML), a disease of haemopoietic stem cells, is known to arise from the translocation 

t(9;22)(q34;q11) which leads to the generation of a novel kinase, retinoblastoma.  

This kinase is constantly active, which has been established as one of the leading 

causes of tumour cell  proliferation in CML (Murphree and Benedict, 1984).  Acute 

myeloid leukaemia (AML), discussed in detail in Chapter 7, show that group Ⅰ 

mutations result in the activation of pro-proliferation pathways due to the mutation of 

tyrosine kinase domain mutations (TKD). The increased tyrosine phosphorylation of 

signal transducer and activator of transcription 3 (STAT3), either due to the TKD 

mutations or increased production of cytokines eludes to a worse prognosis 

(Schuringa et al., 2000). This increase in phosphorylation is observed in up to 50% 

of AML cases (De Kouchkovsky and Abdul-Hay, 2016). 

Phosphorylation has, importantly, been previously implicated in MM cell survival. 

Bruton tyrosin kinase (BTK), a non-receptor tyrosine kinase is expressed through the 

entire process of B-cell differentiation. This expression plays an important role in B-

cell function and development (de Weers et al., 1994). PLC-γ phosphorylation allows 

BTK signalling, which, in turn, leads to the downstream activation of IκB and the 

subsequent activation of the NF-κB signalling pathway. The activation of this 
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signalling pathway further induces MAPK and AKT signalling. All three of the 

aforementioned are vital for signalling pathways involved in MM cell survival (Gilmore, 

2007). Tyrosine phosphorylation of STAT3, a transcription factor which plays a vital 

role in cell proliferation and growth, has also been implicated in disease progression 

in MM and unfavourable prognosis.  

The identification of the significant role that phosphorylation plays in cancer cell 

proliferation and survival has led to the development of kinase targeting cancer 

therapeutics. As it becomes clearer that phosphorylation events are a prevalent 

cause of cancer proliferation, targeted therapeutics have been developed to 

manipulate kinase signalling pathways related to cancer proliferation. As of 2013, 17 

tyrosine kinase inhibitors were in use as a treatment method for differing cancer 

types, with approximately 390 potential therapeutics being tested (Gonzalez de 

Castro et al., 2013). Trastuzumab, a monoclonal antibody, has been developed to 

target  HER2 in breast cancer patients (Carvajal-Hausdorf et al., 2015). Sunitinib has 

been developed to target VEGF receptors and platelet-derived growth factor 

receptors, reducing tumour vascularization and stimulating cancer cell apoptosis in 

renal cell carcinoma (Czarnecka et al., 2016) and gastrointestinal stromal tumour 

(Demetri et al., 2006). As previously stated in Chapter 3, PF-04691502 is a MM 

experimental drug that is known to be a PI3K/mTOR inhibitor, targeting 

PI3K/Akt/mTOR phosphorylation and signalling pathway. PF-04691502 has shown 

promising results in xenograft models and cultured cells, resulting in antitumor and 

antiproliferative activity (Mallon et al., 2011). Along with this experimental drug, 

multiple phosphorylation targeting therapeutics are currently being investigated for 

the treatment of MM, the most promising of these being small molecules targeting 

receptor tyrosine kinases (RTKs), BTKS, Ras/Raf/MEK/MAPK pathway, cyclin-

dependent kinases (CDKs) and the previously mentioned PI3K/Akt/mTOR pathway 

(Lind et al., 2019). 
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4.1.1 Experimental Design 
 
4.1.1.1 Patients and Samples 
A total of 32 bone marrow (BM) aspirates were collected from patients with varying 

sensitivities to treatment (Table 4.1). No exclusion criteria were applied to the patients 

and the samples were collected prospectively. Data collection was continued at 

successive relapses to follow disease progression. The ethics committees of the 

participating hospitals approved the study in compliance with the Declaration of 

Helsinki. These samples were obtained from the Institute of Molecular Medicine, 

Helsinki, Finland (FIMM). In-depth patient details are outlined in Chapter 3. 

 

Table 4.1: Sample Number and Drug Sensitivity Screening Group of 

Phosphopeptide Enriched Samples.  

Sample Number 
Patient Identifier (As 

per Chapter 3) 
DSS Grouping 

MM002 R_MM_3966 Group 1 

MM003 R_MM_2757 Group 1 

MM004 R_MM_2097 Group 1 

MM005 D_MM_3514 Group 1 

MM006 R_MM_938 Group 1 

MM022 R_MM_2757 Group 1 

MM023 R_MM_882 Group 1 

MM024 R_MM_3001 Group 1 

MM025 R_MM_4774 Group 1 

MM027 R_MM_4011 Group 1 

MM007 R_MM_1380 Group 2 
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MM008 R_MM_3434 Group 2 

MM009 D_MM_3647 Group 2 

MM010 R_MM_899 Group 2 

MM011 R_MM_156 Group 2 

MM012 R_MM_2979 Group 2 

MM028 R_MM_810 Group 2 

MM029 R_MM_4011 Group 2 

MM030 R_MM_4692 Group 2 

MM031 D_MM_3595 Group 2 

MM013 R_MM_2235 Group 3 

MM014 R_MM_921 Group 3 

MM016 D_MM_3901 Group 3 

MM017 D_MM_3586 Group 3 

MM032 D_MM_4865 Group 3 

MM035 D_MM_3886 Group 3 

MM018 R_MM_3717 Group 4 

MM019 D_MM_3767 Group 4 

MM020 R_MM_1193 Group 4 

MM021 R_MM_584 Group 4 

MM038 R_MM_840 Group 4 

MM039 R_MM_1994 Group 4 
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4.1.1.2 Drug Sensitivity Screening of Patient Samples at Varying Stages 

of Diagnosis. 

CD138+ cells were enriched using the EasySep™ Human CD138 Positive Selection 

kit (StemCell Technologies, Grenoble, France) from the mononuclear cell fraction of 

BM aspirates following gradient separation (Ficoll-Paque PREMIUM; GE Healthcare, 

Little Chalfont, Buckinghamshire, UK). Drug sensitivity and resistance testing (DSRT) 

was performed based on methods described previously (Pemovska et al., 2013). 

CD138+ cells derived from myeloma patients were tested against 308 compounds at 

5 concentrations overin 10-fold dilutions covering a 10,000-fold concentration range 

(1–10,000 nM). The drug panel included approved oncology drugs (n = 141) and 

investigational compounds (n = 167) targeting multiple signalling networks and 

molecular targets. In brief, 5μl of cell culture medium comprised of RPMI 1640 

medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, penicillin 

(100 U/ml), streptomycin (100 μg/ml) and 25% conditioned medium from the HS-5 

human BM stromal cell line was added to 384 well drug plates and shaken for 5 min 

to dissolve the compounds. CD138+ cells were diluted in the culture medium and 

20μl of the cell suspension containing 5000 cells was transferred to each well using 

a MultiDrop Combi peristaltic dispenser (Thermo Scientific, Waltham, MA, USA). The 

plates were incubated in a humidified environment at 37°C and 5% CO2. Cell viability 

was measured after 72 h using the CellTiter-Glo assay (Promega, Madison, WI, USA) 

with a PHERAstar® microplate reader (BMG-Labtech, Offenburg, Germany) to 

measure luminescence. The mean viability of untreated cells at day three was 124 ± 

10.40%.  The data was normalized to negative (DMSO only) and positive control wells 

(containing 100 μM benzethonium chloride). This analysis was carried out by the 

Institute of Molecular Medicine, Helsinki, Finland (Majumder et al., 2017).  
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4.1.1.3 Phosphopeptide Enrichment 
 
CD138+ lysed plasma cells were enriched for phosphopeptides using a Pierce 

Magnetic Titanium Dioxide Phosphopeptide Enrichment Kit to identify potential 

phosphopeptide biomarkers for treatment resistance using label-free LC-MS/MS. 

25μl of sample was used for phosphopeptide enrichment. Manufacturers guidelines 

were followed exactly, as detailed in Chapter 2.  

 
4.1.1.4 Label-free LC-MS/MS Analysis of Phosphopeptide Enriched 
Patient Samples. 

After phosphopeptide enrichment and vacuum centrifugation, samples were re-

suspended in loading buffer (2% ACN, 0.05% TFA in LC-MS grade water) (Murphy 

et al., 2015a). Peptide suspensions were vortexed and sonicated to aid full re-

suspension. Samples were centrifuged briefly at 14,000 x g and the supernatant 

transferred to mass spectrometry vials. Peptides were eluted using the following 

binary gradient: solvent A [2% (v/v) ACN and 0.1% (v/v) formic acid in LC-MS grade 

water] and 0-90% solvent B [80% (v/v) ACN and 0.1% (v/v) formic acid in LC-MS 

grade water]: 2% solvent B for 10.5 min, 2-40% solvent B for 110 min, 40-90% solvent 

B for 2.5 min, 90% solvent B for 9 min and 2% solvent B for 43 min.  

 
4.1.1.5 Qualitative Data Analysis of Enriched Phosphopeptides 

Qualitative data analysis was used for protein identification. Mass spectrometry raw 

files were processed using the Proteome Discoverer 1.4 (Thermo Fisher Scientific) 

software with Sequest HT as the search engine and the UniProt sequence database. 

The following search parameters were used for protein identification: (i) peptide mass 

tolerance set to 10 ppm, (ii) MS/MS mass tolerance set to 0.02 Da, (iii) up to two 

missed cleavages, (iv) carbamidomethylation set as a fixed modification and (v) 
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methionine oxidation set as a variable modification. Mass spectrometry raw files were 

searched against Homo Sapiens database. Peptides were filtered using a minimum 

XCorr score of 1.5 for +1, 2.0 for +2, 2.25 for +3 and 2.5 for +4 charge states, with 

peptide probability set to high confidence.  

 

4.1.1.6 Validation of Enriched Phosphopeptide Samples using Human 
Phospho-Kinase Array 
 
A Human Phospho-Kinase Array was used to validate potential target 

phosphopeptide biomarkers as identified by label-free LC-MS/MS after 

phosphopeptide enrichment. 50µg of protein was used for analysis. The array 

was carried out as per the manufacturer’s guidelines using two highly sensitive 

and two highly resistant lysed CD138+ plasma cell samples to treatment 

(Table 4.2), with zero alterations.  

 

Table 4.2: Sample details for samples used in Human Phospho-Kinase 

Array. 

Sample 
Number 

Patient Identifier (As 
per Chapter 3) 

DSS Grouping 

MM024 R_MM_3001 Group 1 

MM023 R_MM_882 Group 1 

MM021 R_MM_584 Group 4 

MM039 R_MM_1994 Group 4 
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4.2 Results 
 
4.2.1 Qualitative Proteomic Analysis of Phosphopeptide Enriched 

CD138+ Cell Lysates.   

 

The enrichment for phosphopeptides in sample preparation led to sufficient reduced 

sample complexity for in-depth proteomic analysis with LC-MS/MS. Of the  32 

CD138+ lysed samples, 417 phosphorylation sites with an XCorr value greater than 

2. 135 of these phosphorylation sites were found to have a XCorr value greater than 

3.5 (Table 4.3). Percentage coverage ranged from 42.37% to 0.95% in the group with 

XCorr value greater than 3.5, the highest of these being for 26S proteasome non-

ATPase regulatory subunit 2 with an S8 phosphorylation residue (42.37%), 

Lymphocyte-specific protein 1 with an S3 phosphorylation residue (33.33%), 

Galectin-related protein with a S11 phosphorylation residue (28.57%) and Small 

acidic protein with a  S3 phosphorylation site (27.91%). 

 

 

 

 

 

 

 

 

 

 

 



 129 

Table 4.3:  List of Identified Proteins with >3.5 XCorr score determined 

by LC-MS/MS and Proteome Discoverer. 

 

Accession Description Coverage Modifications XCorr 
F8VZJ2 Nascent polypeptide-associated 

complex subunit alpha, muscle-
specific form  

25.74 S22(Phospho) 9.25 

H0YE72 Elongation factor 1-delta (Fragment)  20.51 S19(Phospho) 9.15 
H0YDD8 60S acidic ribosomal protein P2 

(Fragment)  
18.48 S4(Phospho); 

M11(Oxidation) 
7.86 

Q9H3N1 Thioredoxin-related transmembrane 
protein 1  

7.5 S13(Phospho) 7.76 

E9PK09 Bcl-2-associated transcription factor 1 
(Fragment)  

6.21 S15(Phospho) 7.53 

O15173 Membrane-associated progesterone 
receptor component 2  

19.28 T12(Phospho) 6.67 

E5RJU9 Protein LYRIC  5.51 S12(Phospho) 6.46 
Q5JSH3 WD repeat-containing protein 44  8.11 S10(Phospho) 6.22 
Q5STZ8 ATP-binding cassette sub-family F 

member 1 (Fragment)  
12.09 S6(Phospho) 6.22 

Q86U12 Full-length cDNA clone 
CS0CAP007YF18 of Thymus of Homo 
sapiens (human)  

5.81 S13(Phospho) 6.15 

E9PS34 Nucleosome assembly protein 1-like 4 
(Fragment) 

18.8 S18(Phospho) 6.08 

Q8IYB3 Serine/arginine repetitive matrix 
protein 1  

1.77 S5(Phospho) 6.06 

Q9H3N1 Thioredoxin-related transmembrane 
protein 1 

7.5 S14(Phospho) 5.92 

F8W7S5 Ribosome-binding protein 1 3.86 S14(Phospho) 5.81 
H0YDD8 60S acidic ribosomal protein P2 

(Fragment) 
18.48 S4(Phospho) 5.76 

E9PQA1 Small acidic protein 27.91 S3(Phospho) 5.57 
B5MCB4 Methyl-CpG-binding protein 2 12.21 S19(Phospho) 5.52 
P08238 Heat shock protein HSP 90-beta 4.42 S6(Phospho) 5.52 
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Accession Description Coverage Modifications XCorr 
H7C2Y0 Septin-2 (Fragment)  10.64 S9(Phospho) 5.43 
Q86U12 Full-length cDNA clone 

CS0CAP007YF18 of Thymus of Homo 
sapiens (human)  

5.81 S13(Phospho) 5.36 

O95218 Zinc finger Ran-binding domain-
containing protein 2 

16.36 S7(Phospho) 5.27 

Q9Y2W1 Thyroid hormone receptor-associated 
protein 3  

7.64 S13(Phospho) 5.08 

A8K8G0 Hepatoma-derived growth factor 16.35 S8(Phospho) 5.02 
J3KSH8 Hematological and neurological-

expressed 1 protein (Fragment) 
16.13 S3(Phospho) 5.02 

O43719 HIV Tat-specific factor 1  13.11 S6(Phospho) 5.01 
B3KXW9 Dedicator of cytokinesis protein 2  1.91 S8(Phospho) 4.96 
P53999 Activated RNA polymerase II 

transcriptional coactivator p15  
25.2 S12(Phospho) 4.96 

O15173 Membrane-associated progesterone 
receptor component 2  

19.28 T12(Phospho) 4.96 

H7C1J8 Heterogeneous nuclear 
ribonucleoprotein A3 (Fragment)  

19.13 S4(Phospho) 4.95 

J3KQ96 Treacle protein (Fragment)  2.19 S12(Phospho) 4.95 
P14625 Endoplasmin  4.11 S6(Phospho) 4.91 
C9JID5 Transmembrane protein 40  10.19 S3(Phospho) 4.90 
F5GZU3 Scaffold attachment factor B1  3.48 S21(Phospho) 4.76 
P52756 RNA-binding protein 5  2.33 S10(Phospho) 4.76 
O43719 HIV Tat-specific factor 1 13.11 S7(Phospho) 4.76 
Q9HCN4 GPN-loop GTPase 1 5.35 S12(Phospho) 4.73 
B1ALG5 Probable global transcription activator 

SNF2L2  
14.29 S10(Phospho) 4.72 

B4E2T8 Calnexin  7.02 S11(Phospho) 4.71 
Q7Z6P5 DNA replication licensing factor 

MCM3 (Fragment)  
7.32 T13(Phospho); 

M17(Oxidation) 
4.71 
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Accession Description Coverage Modifications XCorr 
Q9NTI5 Sister chromatid cohesion protein 

PDS5 homolog B 
1.24 S3(Phospho) 4.70 

O00264 Membrane-associated progesterone 
receptor component 1 

10.26 S9(Phospho) 4.69 

H0YL55 SAFB-like transcription modulator 
(Fragment) 

6.55 S9(Phospho) 4.66 

O95400 CD2 antigen cytoplasmic tail-binding 
protein 2 

5.28 S5(Phospho) 4.61 

O94804 Serine/threonine-protein kinase 10 1.55 S10(Phospho) 4.56 
Q9BUH6 Uncharacterized protein C9orf142 5.88 S10(Phospho) 4.54 
B4E2T8 Calnexin 7.02 S13(Phospho) 4.53 
Q9UIG0 Tyrosine-protein kinase BAZ1B 1.15 S8(Phospho) 4.51 
F8WBS8 26S proteasome non-ATPase 

regulatory subunit 2 
42.37 S8(Phospho) 4.49 

H7C446 Suppressor of SWI4 1 homolog 
(Fragment) 

6.73 S4(Phospho) 4.46 

Q9Y2W1 Thyroid hormone receptor-
associated protein 3 

7.64 S13(Phospho) 4.46 

O60841 Eukaryotic translation initiation 
factor 5B 

3.03 S9(Phospho) 4.42 

Q9UEY8 Gamma-adducin 2.41 S16(Phospho) 4.42 
P08238 Heat shock protein HSP 90-beta 4.42 S6(Phospho) 4.41 
P08559 Pyruvate dehydrogenase E1 

component subunit alpha, somatic 
form, mitochondrial 

5.9 M6(Oxidation); 
S7(Phospho); 
S12(Phospho) 

4.35 

O43719 HIV Tat-specific factor 1 13.11 S6(Phospho) 4.35 
P08238 Heat shock protein HSP 90-beta 4.42 S5(Phospho) 4.30 
D6R9L5 Protein DEK (Fragment) 13.91 S3(Phospho) 4.30 
Q9Y385 Ubiquitin-conjugating enzyme E2 J1 4.72 S3(Phospho) 4.29 
E5RIS7 Transcription elongation factor A 

protein 1 
13.51 S11(Phospho) 4.28 
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Accession Description Coverage Modifications XCorr 
O60841 Eukaryotic translation initiation 

factor 5B 
3.03 S8(Phospho) 4.25 

G3V1K1 Coiled-coil-helix-coiled-coil-
helix domain containing 3, 
isoform CRA_b  

10.87 Y1(Phospho) 4.23 

Q00839 Heterogeneous nuclear 
ribonucleoprotein U 

3.88 S22(Phospho) 4.20 

Q5JSH3 WD repeat-containing protein 
44 

8.11 S5(Phospho) 4.20 

G3V529 ATP-dependent RNA helicase 
DDX24 

1.72 S5(Phospho) 4.16 

A2ABK4 Negative elongation factor E 
(Fragment) 

19.5 S3(Phospho) 4.15 

F8W646 Heterogeneous nuclear 
ribonucleoprotein A1 
(Fragment) 

17.31 S3(Phospho) 4.15 

E5RJU9 Protein LYRIC 5.51 X1(L); S6(Phospho) 4.15 
E9PIJ1 AMP deaminase 2 (Fragment) 12.64 S3(Phospho) 4.12 
Q9Y2W1 Thyroid hormone receptor-

associated protein 3 
7.64 S7(Phospho) 4.09 

B3KM87 Matrin-3 4.72 S10(Phospho) 4.09 
Q9H6F5 Coiled-coil domain-containing 

protein 86 
17.5 S17(Phospho) 4.08 

H3BQZ7 HCG2044799 2.95 S9(Phospho) 4.07 
H0Y579 UV excision repair protein 

RAD23 homolog B (Fragment) 
25.44 S16(Phospho) 4.07 

Q5VSL9 Striatin-interacting protein 1 4.54 S3(Phospho) 4.07 
S4R359 Heterogeneous nuclear 

ribonucleoprotein K 
(Fragment) 

19 S2(Phospho) 4.06 

G3V5V7 Heterogeneous nuclear 
ribonucleoproteins C1/C2 
(Fragment) 

21.11 S10(Phospho) 4.05 

Q9BUB1 PRKAR2A protein 10.21 S3(Phospho); 
C5(Carbamidomethyl
) 

4.05 

Q86U12 Full-length cDNA clone 
CS0CAP007YF18 of Thymus of 
Homo sapiens (human) 

5.81 S13(Phospho) 4.05 
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Accession Description Coverage Modifications XCorr 
B4E2T8 Calnexin  7.02 S10(Phospho) 4.02 
B7ZKW8 CapZ-interacting protein 10.62 S18(Phospho) 4.00 
Q5T757 Serine/arginine-rich-splicing factor 11 3.54 S11(Phospho) 3.97 
A8K8G0 Hepatoma-derived growth factor 16.35 S7(Phospho) 3.96 
Q6UN15 Pre-mRNA 3'-end-processing factor 

FIP1 
2.53 S3(Phospho) 3.96 

B4E2T8 Calnexin 7.02 S3(Phospho); 
S13(Phospho) 

3.95 

A2AB27 Guanine nucleotide-binding protein-
like 1 (Fragment) 

6.44 S7(Phospho) 3.95 

H3BUH7 Fructose-bisphosphate aldolase A 
(Fragment)  

20.65 S11(Phospho) 3.94 

E9PC28 Receptor-type tyrosine-protein 
phosphatase C 

1.04 S4(Phospho) 3.94 

E9PNJ4 Stromal interaction molecule 1  5.86 S3(Phospho) 3.91 
Q9H6F5 Coiled-coil domain-containing 

protein 86 
17.5 S20(Phospho) 3.91 

J3KP29 Nuclear pore complex protein 
Nup98-Nup96  

1.77 S6(Phospho) 3.88 

B4E2T8 Calnexin  7.02 S11(Phospho) 3.85 
F8VRE4 Processed lymphoid-restricted 

membrane protein (Fragment)  
22.03 S3(Phospho) 3.82 

Q96KC8 DnaJ homolog subfamily C member 1 8.48 S16(Phospho) 3.82 
C9J7Y7 DNA mismatch repair protein Msh6 

(Fragment) 
10.6 S9(Phospho) 3.81 

O95218 Zinc finger Ran-binding domain-
containing protein 2 

16.36 S6(Phospho) 3.80 

Q09666 Neuroblast differentiation-associated 
protein AHNAK  

0.95 S6(Phospho) 3.80 

H0YFY6 Nuclear mitotic apparatus protein 1 
(Fragment)  

1.97 S14(Phospho) 3.79 
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Accession Description Coverage Modifications XCorr 
E9PK09 Bcl-2-associated transcription 

factor 1 (Fragment) 
6.21 S2(Phospho); 

S4(Phospho) 
3.78 

F5H8D7 DNA repair protein XRCC1 3.65 T4(Phospho); 
T17(Phospho) 

3.78 

O43649 Lymphocyte-specific protein 1 
(Fragment) 

33.33 S3(Phospho); 
M9(Oxidation) 

3.78 

F8WF17 Galectin-related protein 28.57 S11(Phospho) 3.78 
Q9Y6X9 MORC family CW-type zinc finger 

protein 2 
1.55 S5(Phospho) 3.77 

H3BMF6 Ubiquitin carboxyl-terminal 
hydrolase 7 

26.37 S7(Phospho); 
M12(Oxidation); 
M14(Oxidation) 

3.76 

H7C2Y0 Septin-2 (Fragment) 10.64 S9(Phospho) 3.74 
K7EMU2 cAMP-dependent protein kinase 

type I-alpha regulatory subunit 
(Fragment) 

15.93 S5(Phospho) 3.73 

C9JBL0 Nuclear autoantigen Sp-100 
(Fragment) 

8.85 S6(Phospho) 3.70 

F8WF45 TATA element modulatory factor  1.81 S7(Phospho) 3.70 
M0R300 Unconventional myosin-IXb 

(Fragment) 
1.83 S7(Phospho) 3.68 

P49756 RNA-binding protein 25 1.66 S6(Phospho) 3.68 
F5GYV5 ADP-ribosylation factor-like 

protein 6-interacting protein 4 
(Fragment) 

7.58 S1(Phospho) 3.68 

G3V5V7 Heterogeneous nuclear 
ribonucleoproteins C1/C2 
(Fragment) 

21.11 M1(Oxidation); 
S10(Phospho) 

3.67 

Q08945 FACT complex subunit SSRP1 3.39 S13(Phospho) 3.67 
Q96KC8 DnaJ homolog subfamily C 

member 1 
8.48 S11(Phospho) 3.66 

P08238 Heat shock protein HSP 90-beta 4.42 S3(Phospho) 3.66 
P28715 DNA repair protein 

complementing XP-G cells  
1.18 S12(Phospho) 3.66 

Q09666 Neuroblast differentiation-
associated protein AHNAK 

0.95 S3(Phospho) 3.66 
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Accession Description Coverage Modifications XCorr 
E7EQF0 Nexilin 8.81 M2(Oxidation); 

S5(Phospho) 
3.65 

P08559 Pyruvate dehydrogenase E1 
component subunit alpha, somatic 
form, mitochondrial 

5.9 Y1(Phospho); 
S12(Phospho) 

3.64 

E5RIS7 Transcription elongation factor A 
protein 1 

13.51 S9(Phospho) 3.63 

Q9Y2W1 Thyroid hormone receptor-
associated protein 3 

7.64 S7(Phospho); 
S18(Phospho) 

3.62 

H0YA82 La-related protein 7 (Fragment) 8.68 S8(Phospho) 3.60 
J3KQ96 Treacle protein (Fragment) 2.19 S14(Phospho) 3.60 
O75396 Vesicle-trafficking protein SEC22b 6.51 S4(Phospho) 3.59 
O95218 Zinc finger Ran-binding domain-

containing protein 2 
16.36 S11(Phospho) 3.57 

P29966 Myristoylated alanine-rich C-kinase 
substrate 

5.42 S14(Phospho) 3.57 

P06748 Nucleophosmin 6.46 M11(Oxidation); 
S16(Phospho) 

3.56 

P40222 Alpha-taxilin 2.56 S11(Phospho) 3.55 
O00264 Membrane-associated 

progesterone receptor component 
1 

10.26 S9(Phospho) 3.55 

H0YNE5 Regulator of microtubule dynamics 
protein 3 (Fragment) 

7.17 S3(Phospho) 3.54 

H0YJ03 Proteasome subunit alpha type-3 
(Fragment) 

16.87 S9(Phospho); 
M14(Oxidation) 

3.54 

Q9H1E3 Nuclear ubiquitous casein and 
cyclin-dependent kinase substrate 1 

14.81 M2(Oxidation); 
M4(Oxidation); 
S9(Phospho) 

3.53 

J3QTP8 E3 ubiquitin-protein ligase RNF213 1.16 S10(Phospho) 3.52 
Q8TAQ2 SWI/SNF complex subunit SMARCC2 1.15 S8(Phospho) 3.51 
Q9UQ35 Serine/arginine repetitive matrix 

protein 2 
2.58 T13(Phospho) 3.51 

Q29RF7 Sister chromatid cohesion protein 
PDS5 homolog A 

1.27 S7(Phospho) 3.50 
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4.2.2 Distribution of Proteins and Phosphorylation Sites Identified by 

Qualitative analysis. 

Standard bioinformatic analysis was used to visualise the biological processes 

associated with the phosphorylated proteins in the BM aspirates of the 32 patients, 

identified by LC-MS/MS. PANTHER analysis was carried out to identify these 

biological functions. Cellular processes had the highest related proteins (29.4%), 

followed by metabolic processes (26.5%) and biological regulation (20.6%).  

 

Figure 4.2: Biological processes of all qualitatively identified 

phosphopeptides analysed by PANTHER analysis. 

The 135 proteins, identified using Proteome Discoverer, were grouped into 

retrospective biological processes using freely available PANTHER software 

(Thomas et al., 2003). Cellular processes were identified as the process with the most 

related proteins identified in phosphopeptide enriched BM aspirates. 
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4.2.3 Quantitative Proteomic Analysis of Phosphopeptide Enriched 

CD138+ Cell Lysates and Bioinformatic Analysis of individual DSS 

Groups. 

The removal of non-phosphorylated proteins sufficiently reduced the abundance of 

proteins, allowing for the identification of distinct phosphoproteomic signatures in 

each group of drug sensitivity scored patients. 18 phosphorylated proteins were 

identified for group 1 (Table 4.4), 61 phosphorylated proteins were identified for group 

2 (Table 4.5),  11 phosphorylated proteins identified for group 3 (Table 4.6) and 81 

phosphorylated proteins were identified for group 4 (Table 4.7) by quantitative 

analysis after LC-MS/MS. PANTHER analysis was carried out on each individual 

group of proteins, identifying the most abundant biological processes within the 

identified phosphorylated proteins. The majority of group one is comprised of 37.5% 

metabolic process proteins, 25% biological regulation proteins and 18.8% cellular 

process related proteins (Figure 4.3). Group 2 exhibits a vast array of phosphorylated 

proteins, the majority of which are related to metabolic processes (28.6%), cellular 

processes (28.6%) and biological regulation (17.9%) (Figure 4.4). Group 3 has the 

most limited abundance of phosphorylated proteins, with only 11 identified 

phosphorylated proteins. 33.3% of phosphoproteins identified are metabolic related 

proteins, 22.2% are biological regulation proteins and 22.2% are cellular process 

proteins (Figure 4.5). Group 4 shows the most diverse range of abundant proteins, 

with 81 identified phosphoproteins. 34.5% of these identified proteins are cellular 

process proteins, 20.7% biological regulation proteins and 20.7% metabolic process 

proteins (Figure 4.6). A comparative study of the abundant proteins revealed that 

48% of the identified proteins are, expectedly, identified within group 4. Interesting, 

the second most diverse group of abundant proteins are identified in the samples 

related to group 2 (35%), with group 1 and group 3 associated with 11% and 8% of 

the total abundant proteins respectively (Figure 4.7). 
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Table 4.4: Phosphoproteins identified in Group 1 patients by Perseus 

analysis. 

Accession Protein ID 
H7C2Y0 Septin-2 (Fragment)  
A8K8G0 Hepatoma-derived growth factor  
B4DDC6 Prostaglandin E synthase 3  
P08238 Heat shock protein HSP 90-beta  
M0R088 Serine/arginine repetitive matrix protein 1 (Fragment)  
Q9Y2W1 Thyroid hormone receptor-associated protein 3  
Q92922 SWI/SNF complex subunit SMARCC1  
E9PQA1 Small acidic protein  
P29692 Elongation factor 1-delta  
Q9H3N1 Thioredoxin-related transmembrane protein 1  
P27824 Calnexin  
Q9H1E3 Nuclear ubiquitous casein and cyclin-dependent kinase 

substrate 1  
B3KV94 Jumonji, AT rich interactive domain 1B (RBP2-like), isoform 

CRA_a (Fragment)  

P05387 60S acidic ribosomal protein P2 
B4DDC6 Prostaglandin E synthase 3  
Q9Y2W1 Thyroid hormone receptor-associated protein 3  
P62995 Transformer-2 protein homolog beta  
E9PQA1 Small acidic protein 
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Figure 4.3: Biological processes represented in Group 1 

The 18 proteins, identified using Perseus software, were grouped into retrospective 

biological processes using freely available PANTHER software (Thomas et al., 2003). 

Metabolic processes were identified as the process with the most related proteins 

identified in phosphopeptide enriched BM aspirates. 
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Table 4.5: Phosphoproteins identified in Group 2 patients by Perseus 

analysis.  

Accession  Protein ID 
D3DNX8 Membrane-associated progesterone receptor component 2  

P14625 Endoplasmin 
D3DNX8 Membrane-associated progesterone receptor component 2  
O00264 Membrane-associated progesterone receptor component 1  
H7C2Y0 Septin-2 (Fragment)  
K7EMU2 cAMP-dependent protein kinase type I-alpha regulatory subunit 

(Fragment)  

Q8ND56 Protein LSM14 homolog A  
Q8TCJ2 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit STT3B  

A8K8G0 Hepatoma-derived growth factor  
P08238 Heat shock protein HSP 90-beta  
H3BRV0 Eukaryotic translation initiation factor 3 subunit C  
P49736 DNA replication licensing factor MCM2  
B4DDC6 Prostaglandin E synthase 3  
P46821 Microtubule-associated protein 1B  
P14625 Endoplasmin  
H3BPZ1 Very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] 

dehydratase 3  

Q969E4 Transcription elongation factor A protein-like 3  
Q8IYB3 Serine/arginine repetitive matrix protein 1  
B8ZZB6 Protein IWS1 homolog (Fragment)  
B7ZKW8 CapZ-interacting protein  
O75396 Vesicle-trafficking protein SEC22b  
J3KQ45 Trans-Golgi network integral membrane protein 2  
E9PK09 Bcl-2-associated transcription factor 1 (Fragment)  
Q9Y2W1 Thyroid hormone receptor-associated protein 3  
P34910 Protein EVI2B  
H7BXF3 Transformer-2 protein homolog beta (Fragment)  
B4E2T8 Calnexin  
F8VTQ5 Heterogeneous nuclear ribonucleoprotein A1 (Fragment)  
D6REM6 Matrin-3  
P05455 Lupus La protein  
P14625 Endoplasmin  
B7ZKW8 CapZ-interacting protein  
H0Y4X3 RNA-binding protein 39 (Fragment)  
P16403 Histone H1.2  
O95218 Zinc finger Ran-binding domain-containing protein 2  
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Q9Y385 Ubiquitin-conjugating enzyme E2 J1  
P48681 Nestin  
E9PK09 Bcl-2-associated transcription factor 1 (Fragment)  
H3BPD0 Zinc finger CCCH domain-containing protein 18 (Fragment)  
P16403 Histone H1.2 
H0YE72 Elongation factor 1-delta (Fragment)  
B7ZKW8 CapZ-interacting protein] 
Q9H3N1 Thioredoxin-related transmembrane protein 1  
P54725 UV excision repair protein RAD23 homolog A  
F8W7S5 Ribosome-binding protein 1  
E5RJU9 Protein LYRIC  
Q9H1E3 Nuclear ubiquitous casein and cyclin-dependent kinase substrate 

1  
B4E2T8 Calnexin  
O95218 Zinc finger Ran-binding domain-containing protein 2  
C9JZW3 Elongation factor 1-beta (Fragment)  
F5GXU9 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial 

(Fragment)  

E9PQA1 Small acidic protein  
C9JKF7 Lymphocyte-specific protein 1 (Fragment)  
P48681 Nestin  
D3DNX8 Membrane-associated progesterone receptor component 2  
P35579 Myosin-9  

Q58FF8 Putative heat shock protein HSP 90-beta 2  
H0YDD8 60S acidic ribosomal protein P2 (Fragment)  
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Figure 4.4: Biological processes represented in Group 2. 

The 61 proteins, identified using Perseus, were grouped into retrospective biological 

processes using freely available PANTHER software (Thomas et al., 2003). Cellular 

processes and metabolic processes were identified as the process with the most 

related proteins identified in phosphopeptide enriched BM aspirates. 
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Table 4.6: Phosphoproteins identified in Group 3 patients by Perseus 

analysis. 

Accession  Protein ID 
O95218 Zinc finger Ran-binding domain-containing protein 2  
Q9H1E3 Nuclear ubiquitous casein and cyclin-dependent kinase substrate 

1  
H7C2Y0 Septin-2 (Fragment)  
A8K8G0 Hepatoma-derived growth factor  
B4DDC6 Prostaglandin E synthase 3  
H7BXF3 Transformer-2 protein homolog beta (Fragment)  
F8WE04 Heat shock protein beta-1  
F8VTQ5 Heterogeneous nuclear ribonucleoprotein A1 (Fragment)  
F5GXU9 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial 

(Fragment)] 

E9PHF0 Filamin-A  
H7C1X9 CCR4-NOT transcription complex subunit 10 (Fragment)  
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Figure 4.5: Biological processes represented in Group 3 

The 11 proteins, identified using Perseus, were grouped into retrospective biological 

processes using freely available PANTHER software (Thomas et al., 2003). 

Metabolic processes were identified as the process with the most related proteins 

identified in phosphopeptide enriched BM aspirates. 
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Table 4.7: Phosphoproteins identified in Group 4 patients by Perseus 

analysis. 

Accession Protein ID 
A6PVS8 Leucine-rich repeat and IQ domain-containing protein 3  
D3DNX8 Membrane-associated progesterone receptor component 2  
Q6IPX3 Transcription elongation factor A protein-like 6  
H0Y579 UV excision repair protein RAD23 homolog B (Fragment)  
B4E2T8 Calnexin  
O00264 Membrane-associated progesterone receptor component 1  
H7C2Y0 Septin-2 (Fragment)  
Q8TCJ2 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit STT3B  

A8K8G0 Hepatoma-derived growth factor  
Q05209 Tyrosine-protein phosphatase non-receptor type 12  
P05387 60S acidic ribosomal protein P2  
Q99523 Sortilin  
O43852 Calumenin  
B4DF77 Phosphofurin acidic cluster sorting protein 1  
B4DDC6 Prostaglandin E synthase 3  
P08238 Heat shock protein HSP 90-beta  
P49736 DNA replication licensing factor MCM2  
Q5W011 Splicing factor 45 (Fragment)  
M0R2H7 Cdc42-interacting protein 4  
Q9UDY2 Tight junction protein ZO-2  
Q14761 Protein tyrosine phosphatase receptor type C-associated protein  
E7EQF0 Nexilin  
C9JEN3 Protein lifeguard 3 (Fragment)  
M0R088 Serine/arginine repetitive matrix protein 1 (Fragment)  
Q5HY54 Filamin-A  
P53999 Activated RNA polymerase II transcriptional coactivator p15  
H3BS66 Small integral membrane protein 1  
E9PEM5 Lipopolysaccharide-responsive and beige-like anchor protein  
Q9H2G2 STE20-like serine/threonine-protein kinase  
Q9Y2W1 Thyroid hormone receptor-associated protein 3  
E5RJ61 Dematin (Fragment)  
P34910 Protein EVI2B  
F8VTQ5 Heterogeneous nuclear ribonucleoprotein A1 (Fragment)  
C9JID5 Transmembrane protein 40  
P37802 Transgelin-2  
Q8ND76 Cyclin-Y  
C9JSU1 Leucine-rich repeat flightless-interacting protein 2 (Fragment)  
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D6RAM3 Docking protein 3  
E9PQA1 Small acidic protein OS=Homo sapiens GN=C11orf58 PE=2 

SV=1 - [E9PQA1_HUMAN] 
H7BXT7 BET1-like protein  
P05455 Lupus La protein 
Q13283 Ras GTPase-activating protein-binding protein 1  
Q5QP22 RNA-binding protein 39 (Fragment)  
P16403 Histone H1.2  
A2ABK4 Negative elongation factor E (Fragment)  
H0YF00 Bcl-2-associated transcription factor 1 (Fragment)  
E9PNR6 Rho GTPase-activating protein 1 (Fragment)  
C9JID5 Transmembrane protein 40  
F5GYK6 ATP-binding cassette sub-family F member 1 (Fragment)  
P13224 Platelet glycoprotein Ib beta chain  
P16403 Histone H1.2  
E9PS34 Nucleosome assembly protein 1-like 4 (Fragment)  
F8W7S5 Ribosome-binding protein 1  
P53999 Activated RNA polymerase II transcriptional coactivator p15  
Q9H3N1 Thioredoxin-related transmembrane protein 1  
Q5RHP9 Glutamate-rich protein 3  
H0YBJ8 Protein LYRIC (Fragment)  
B4E2T8 Calnexin  
O00264 Membrane-associated progesterone receptor component 1  
C9JZW3 Elongation factor 1-beta (Fragment)  
B1ALG5 Probable global transcription activator SNF2L2  
H0YDB2 Stromal interaction molecule 1 (Fragment)  
Q9Y3C5 RING finger protein 11  
C9JKF7 Lymphocyte-specific protein 1 (Fragment)  
P12931 Proto-oncogene tyrosine-protein kinase Src  
H0YJ73 Tandem C2 domains nuclear protein (Fragment)  
F5GXU9 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial 

(Fragment) 

D3DNX8 Membrane-associated progesterone receptor component 2  
Q5VUB5 Protein FAM171A1  
J3KQ98 Protein phosphatase 1 regulatory subunit 37  
Q86YF9 Zinc finger protein DZIP1  
H7C2Y0 Septin-2 (Fragment)  
H0YDD8 60S acidic ribosomal protein P2 (Fragment)  
P08238 Heat shock protein HSP 90-beta  
E9PHF0 Filamin-A  
H0YI14 Neuron navigator 3 (Fragment)  
P05455 Lupus La protein] 
Q5QP22 RNA-binding protein 39 (Fragment)  
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F8W7S5 Ribosome-binding protein 1  
D6RC37 Activated RNA polymerase II transcriptional coactivator p15 

(Fragment)  
B4E2T8 Calnexin  

 

 

 

 

 

Figure 4.6: Biological processes represented in Group 4. 

The 81 proteins, identified using Perseus, were grouped into retrospective biological 

processes using freely available PANTHER software (Thomas et al., 2003). Cellular 

processes were identified as the process with the most related proteins identified in 

phosphopeptide enriched BM aspirates. 
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Figure 4.7: Percentage of phosphopeptides observed per DSS group 

The pie chart depicts the percentage of differentially abundant phosphorylated 

proteins exhibited in each group established by the FIMM drug sensitivity scoring 

method, ranging from group 1 being sensitive to treatment and group 4 being drug 

resistant. 

 

4.2.4 Comparative analysis of Biological Processes Related to Protein 

Signatures Abundant in Each DSS Group and Bioinformatic Analysis 

using Perseus. 

After bioinformatic analysis, using PANTHER software, a comparison was carried out 

on the biological processes related to all of the identified phosphorylated proteins in 

each DSS groupings. Cellular process related proteins were the most abundant 

biological process with respect to group 4, closely followed by metabolic processes. 

The abundance of cellular process proteins present in group 4, which is a 5-fold 

increase from the number of cellular process proteins in group 3 and a 3.3-fold 

increase from that of group 1. Interestingly, group 2 exhibit the most metabolic 

proteins related proteins in comparison to the other DSS groups. Group 2 exhibits 
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equal amounts of proteins related to cellular processes as metabolic processes 

(Figure 4.8). Perseus software was used to compile a heatmap, comprised of the 

proteins with altered abundance from group 1 to group 4 (Figure 4.9). All proteins 

were found to be statistically significant (p<0.05) using a Student’s t-test.  

 

 

 

 

Figure 4.8: Comparison between biological processes. 
This figure depicts a comparison of  the number of phosphorylated proteins 

associated with specific biological processes, identified by Perseus analysis. Each 

group was established by the FIMM drug sensitivity scoring method, ranging from 

group 1 being sensitive to treatment and group 4 being drug resistant. 
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Figure 4.9: Heatmap of proteins with changed abundance from Group 1 

to Group 4 patients.  

A) Depicted is all proteins found to be significant from Group 1 to Group 4. The 

intensity of red indicates increased abundance of individual proteins and green 

indicating a decreased abundance of individual proteins. B) a heatmap compiled from 

all statistically significant proteins with altered abundance from Group 1 to Group 4 

through Student’s t-test. C) Focus on the TCP4 and the particular phosphorylation 

site identified by LC-MS/MS. 
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4.2.5 Comparative Human Phospho-Kinase Array using Enriched 

Phosphopeptide Samples.  

For the further identification of potential phosphorylated sites related to drug 

resistance in the DSS patients, a Human Phospho-Kinase Array was carried out. The 

nitrocellulose membrane contained 43 different capture antibodies, in duplicate, 

allowing for the identification of changed abundance in each of these phosphorylated 

proteins (Figure 4.10A). This analysis was carried out solely on four patient samples, 

two samples from the groups with the largest disparity in drug sensitivity, Group 1 

and Group 4. Sample 23 and 24 were from patients considered as group 1, with a 

strong sensitivity towards treatment, and sample 21 and 39 were obtained from 

patients with strong resistance to treatment (Group 4). Individual patient details are 

available in Table 4.1.  The 2.3 fold increase in pHSP27 was identified in the 

comparative study, with the increase being noted with relation to drug resistant i.e. 

there was a 2.3 fold increase of pHSP27 noted in Group 4 in comparison to Group 1 

(Figure 4.10B). The increased abundance was graphed to indicate the change 

between group 1 and group 4 (Figure 4.11). 
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Figure 4.10: Comparative Immunoblotting of group 1 and group 4 
samples with varying phosphorylated targets using a phosphor-kinase 
array.  
A representative immunoblot array with immune-decorated bands representing 

multiple phosphorylation targets, with focus of HSP27 (marked in red). B is the 

graphical analysis of the immune-decoration for each individual target, again, with 

focus on HSP27 (marked in black). 
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Figure 4.11: A focused comparison in the abundance of HSP27 in 
samples from group 1 and group 4 from Figure 4.9.  
This figure depicts the change in abundance of HSP27 (s78) in Group 4 resistant 

patients in comparison to Group 1 sensitive patients. Sample 24 (blue) and sample 

23 (orange) are Group 1 patients and sample 21 (grey) and sample 39 (yellow) are 

Group 4 patients.  
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4.3 Discussion 
 

Phosphorylation, a reversible PTM, has proven to play a significant role in molecular 

mechanisms especially those governing tumour proliferation, growth and survival. In 

understanding phosphopeptides, their mechanisms and the manner in which they 

interact with a tumour microenvironment, the potential identification of effective 

therapeutic targets is endless. As phosphorylation has been identified as playing a 

significant role in the onset and progression of almost all cancer types, the potential 

of targeting specific kinase signalling pathways is a logical advance in therapeutic 

development.  With promising kinase inhibitors in use for treatment of multiple cancer 

types and kinase inhibitor experimental treatments for MM, including PF-04691502, 

targeting kinase to inhibit phosphorylation can lead to cancer cell apoptosis, inhibition 

of cancer cell proliferation and antitumour effects. 

To carry out in-depth analysis of phosphorylation and phosphopeptide involvement 

in cancer cell proliferation, with the intention of developing therapeutics to target 

phosphorylation manipulation, advanced proteomic approaches must be utilised. As 

there is an abundance of information to be extrapolated from peptides in normal 

human biofluids, saliva, urine, serum, plasma etc., the study of phosphoproteomics 

must involve enriching samples for phosphorylated proteins. Utilising techniques 

such as magnetic titanium dioxide beads, as used in this study, on-plate enrichment 

or monolithic columns (Vyse et al., 2017) allows to isolate phosphorylated proteins, 

while still maintaining the integrity of the original sample for analysis of non-

phosphorylated proteins. This allows the identification of two distinct proteomic 

profiles from one set of samples. 

The analysis of LC-MS/MS results can be analysed by two methods, quantitative and 

qualitative proteomic analysis. Quantitative proteomics is based on the relative or 

absolute quantities of target molecules present in samples, i.e. the quantity of the 

molecule. This form of proteomic analysis allows for the identification of the variability 
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of proteins within a sample cohort, as well as identifying the relevance of these 

changes in abundance using bioinformatic software (Välikangas et al., 2018). 

However, the quantification of proteins by mass spectrometry can be effected by 

factors such as sample and instrument related sensitivities. Qualitative proteomics 

allows the analysis of the mass spectra by different means, such as the percentage 

of protein sequence coverage from the identified peptides (%coverage), the quality 

of fit of the identified peptide fragments to the theoretical spectra created by the 

sequence b and y ions (Xcorr value) and minimal false discovery rate at which the 

identification is taken as correct (q-value). The change of proteomic profile generally, 

as opposed to the change in abundance of particular proteins, can lead to the 

identification of changes in PTMs, pathways and processes that may be overlooked 

when focusing on individual proteins (Mayya and Han, 2009). This method can, 

therefore, identify predicted drug resistance and the response to treatment by a 

patient without focusing on one or two particular biomarkers, allowing a more decisive 

decision to be made about the correct course of treatment for a patient.  

The comparison between the phosphorylated protein abundance in Group 1 to Group 

4 is vastly different. 81 phosphorylated proteins were identified in group 4, in 

comparison to 18 phosphorylated proteins in group 1. Group 1 is responsible for 11% 

of the overall identified phosphorylated proteins and Group 4 is responsible for 48% 

of the overall identified phosphorylated proteins (Figure 4.7). As group 4 are classed 

as the patients with prominent resistance to drug treatments, both established and 

investigational drugs, and group 1 are grouped due to their significant sensitivity to 

established and investigational drug treatments for MM. This leads to the conclusion 

that the phosphorylation of proteins drives drug resistance in MM. Phosphorylation 

has previously been implicated in drug resistance in MM. As in the analysis of the  

biological processes associated with the identified phosphorylated proteins, the most 

prevalent processes associated with Group 4 are cellular process (34.5%), metabolic 

process (20.7%) and biological regulation (20.7%) (Figure 4.6). Biological processes 
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associated with Group 1 are metabolic process (37.5%) and biological regulation 

(25%). The increase in metabolic process-related proteins in Group 1 directly 

correlates with the increase in abundance of metabolic process related proteins 

observed in the most sensitive patients in Chapter 3, leading to the conclusion that 

metabolism is upregulated in drug sensitive patients.  

From the comparative study carried out on the statistically significant phosphorylated 

proteins with altered abundance from Group 1 to Group 4, 20 proteins were identified 

using a Student’s t-test. Of these 20 identified phosphopeptides, two phosphorylation 

sites were identified. Activated RNA polymerase II transcriptional coactivator p15 

(TCP4) 118 Phosphoserine, was identified as having a significantly increased 

abundance in Group 1 in comparison to Group 4 (Figure 4.9A). TCP4 is a general 

coactivator that functions cooperatively with TAFs and mediates functional 

interactions between upstream activators and the general transcriptional machinery. 

Activity is controlled by protein kinases that target the regulatory region. 

Phosphorylation inactivates both ds DNA-binding and cofactor function (Olsen et al., 

2010). Recent studies have identified the decreased abundance of this particular 

phosphorylation residue having an implication in cancer progression (Zhou et al., 

2013). As a decreased abundance has been identified in Group 4 in comparison to 

Group 1, there is less phosphorylation of this particular residue in Group 4 than 

observed in Group 1. The decreased phosphorylation means that there is more 

activity from the transcription factor associated with this particular phosphorylation 

residue, and therefore there is more activity in the drug resistant cohort. This leads 

to the hypothesis that the decreased amount of phosphorylation is leading to the 

increased activation of these transcription factors, switching on genes aiding in drug 

resistance in Group 4 patients. The identification of this particular phosphorylation 

residue, coupled with evidence in the literature, strengthens the importance in 

phosphoproteomics.  
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pHSP27 was noted to have a 2.3 fold increase in group 4 patients, in comparison to 

group 1, which was identified using a human phosphor-kinase array. Although the 

array identified other potential targets (Figure 4.10A), phosphorylated heat shock 

protein 27 showed the most consistent increased abundance from treatment sensitive 

group 1 patients to resistant group 4 patients. Heat shock proteins are observed in 

response to stresses, such as chemical, physical and environmental stress and are 

expressed in multiple parts of a cell (Kregel, 2002). Their primary function is 

protection, allowing cell survival when subjected to extreme stress, which has led to 

HSPs being implicated in drug resistance and poor prognosis in cancer patients. The 

abnormal phosphorylation of HSP27 has been strongly linked to cancer progression 

(Katsogiannou et al., 2014).  In breast cancer it has been observed that an increased 

abundance directly correlates with reduced anti-cancer drug activity and, 

furthermore, increases Her-2 stability (Kang et al., 2008). It was noted that the 

increased abundance of pHSP27 is expressed in advanced stage lung cancer 

patients and is an indication of shorter OS (Liu et al., 2016). This correlation between 

increased abundance of HSP27 was also observed in pancreatic cancer cells with 

known resistance to treatment in comparison to treatment sensitive cells (Mori-

Iwamoto et al., 2007).  

To sum up, phosphorylation events can be used to predict drug resistance in MM, as 

has been shown previously in various types of cancer treatment. Although the 

identification of individual biomarkers has been proven to be an invaluable tool in 

cancer treatment, proliferation, diagnosis and prognosis, a general look at protein 

characterisation and pathways can be just as beneficial to cancer patients.  

Examining the consequences of PTMs such as phosphorylation, ubiquitination, 

acetylation etc. can give in-depth insight into cancer proliferative methods, processes 

and pathways and can, therefore, provide more informed strategies in fighting cancer. 
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5.1 Introduction  

Biomarkers have proven themselves as an invaluable tool in the areas of early 

detection, diagnostics and predicting disease progression of multiple cancer types, 

including MM. With multiple verified biomarkers for MM, very little research has been 

conducted in the area of salivary biomarkers for the disease. It has been observed 

that approximately 40% of cancer, stroke and cardiovascular disease biomarkers are 

present in whole saliva (Loo et al., 2010). Due to the invasiveness of serum collection, 

saliva biomarkers seem to be the logical progression in disease detection and 

diagnosis. Salivary biomarkers have revealed significant promise in the area of 

cancer detection over recent years. In a study carried out by Agha-Hosseini and 

colleagues it was noted that CA15-3 levels, in both serum and saliva, was significantly 

increased in stage 2 breast cancer patients. This was evidence to establish CA15-3 

as a salivary biomarker for breast cancer, along with the 65% detection in saliva of 

CA15-3 in breast cancer seen by (Streckfus et al., 2000) and a 62% sensitivity noted 

by (Bigler et al., 2002) CA 15-3 is hypothesised to play a role in cell adhesion, is a 

significant transmembrane glycoprotein and has been observed to often 

overexpressed in cancer (Duffy et al., 2000).  

Epidermal growth factor (EGF) has been noted as being significantly higher in the 

saliva of women with primary or recurrent breast cancer in comparison with healthy 

controls. The most significant increased expression was noted in the saliva of women 

with local recurrence (Navarro et al., 1997). As this protein has been seen to play an 

important role in tumorigenesis, invasiveness and is known to be responsible for a 

variety of tissue growth and repair associated with poor prognosis, EGF is seen to be 

a potential salivary biomarker for breast cancer, especially since therapeutic target 

pharmaceuticals have already been approved by the FDA in the treatment of multiple 

cancer types (Kabbinavar et al., 2003). This increased expression of EGF, along with 

increased vascular endothelial growth factor (VEGF) and carcinoembryonic antigen 



 160 

(CEA), was more recently observed by Brooks et al., 2008. Increased EGF has 

shown close links to cancer progression, due to its pro-migratory properties, and it’s 

overexpression has been recorded in multiple cancer types such as gastric (Zhen et 

al., 2014), oral (Xu et al., 2017), lung (Kuo et al., 2012) and head and neck cancer 

(Chang et al., 2015).   

Saliva has proven itself useful in the detection and diagnosis of oral cancer (OC), a 

malignancy referring to the oral cavity, lip and pharynx. The majority of oral cancers 

are referred to as oral squamous cell carcinoma (OSCC). Interleukins such as IL-6, 

IL-8 and IL-1β have shown a significant increase in the saliva of OC patients in 

comparison with healthy controls. IL-8, specifically, has shown great promise in the 

search for early detection biomarkers in saliva for OC, with a mean copy for IL-8 

mRNA being 1.1x108 in OSCC in comparison to 2.6x106 in the control patients and a 

difference of statistical significance of P<0.001 (St John et al., 2004). 

Metalloproteinases (MMP-1, MMP-3, MMP-10, MMP-12) have been commonly 

associated with multiple cancer types, including OSCC, in recent years and are 

thought to play a role in metastases and tumour invasion (Kurahara et al., 1999). The 

over expression of MMP-1 and MMP-3 have been noted as over expressed in OSCC 

patients in comparison to cancer free control patients, with an observed trend towards 

higher expression with increasing disease severity (Stott-Miller et al., 2011). A 75% 

increase in the expression of MMP-2 was observed by (Shpitzer et al., 2007) in the 

saliva of OSCC patients in comparison to healthy controls.  

 A recent pilot study, carried out by (Katz et al., 2017) , observed that increased levels 

of salivary AGEs (advanced glycation endproducts) may act as a good way to 

determine biomarkers regarding the development of bone lesions in MM patients, 

especially those who have decreased marker expression for the progression of bone 

lesions. It was noted that patients who show multiple bone lesions also exhibit a 

significantly higher concentration of AGEs in both plasma (Gangemi et al., 2012) and 

saliva (Katz et al., 2017). AGEs are proteins that are post-translationally modified and 
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are known to act as markers of oxidative stress. They have been previously 

implicated in the proliferation of multiple types of cancer, such as prostate, OSCC, 

brain, breast and ovarian cancer by triggering proliferation, angiogenesis and 

inflammatory reactions during cancer progression (Yamagishi et al., 2015). These 

findings show great promise in the use of salivary biomarkers for disease diagnosis 

and bone lesion formation in MM. 

BMTs are considered the gold standard in MM diagnosis, allowing an insight into 

bone structure, cell distribution, focal lymphoid infiltrates and BM granulomas. This 

procedure is vital for base-line diagnosis and repeat biopsies must be obtained during 

follow up consultations. BMTs are considered superior to bone marrow aspirates 

(sampling the liquid of the soft tissue inside the bone (Bain, 2001a)) as the indication 

of more prevalent MM. Extensive infiltration can be observed in trephines, along with 

the identification of light chain associated amyloidosis more readily from BMTS than 

aspirates (Bain, 2001b). This procedure, however, is excruciatingly uncomfortable for 

patients, useful biopsies should measure at least 1.6 cm, and is vastly invasive for 

patients. Along with discomfort to patients, BMTs carry risk of infection and, in rare 

cases, death due to haemorrhage (Ben-Chetrit et al., 1984). This, therefore, leads to 

the requirement of reliable biomarkers for indication of when a BMT needs to be 

performed as opposed to immediately carrying out such an invasive and painful 

procedure regularly. 

Salivaomics has become an area of great interest in disease diagnosis over the last 

number of years, following the footsteps of the other “omics” based diagnostic tools. 

Saliva has been referred to as “the mirror of the body” as it gives an insight into the 

internal pathological state (Lee and Wong, 2009).  As saliva is considered a fast, 

inexpensive and non-invasive method of sample collection, the future of diagnosis, 

early detection, monitoring and prediction of progression of disease has been thought 

to lie here. Unfortunately, the development of saliva biomarkers has taken time and 

more research is still required for the clinical use of these biomarkers. 
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5.1.1 Experimental Design 

5.1.1.1 Patients and Samples 

91 saliva samples were provided by the Mater Misericordiae University Hospital, 

Dublin 7, Ireland. No exclusion criteria were applied to both patients and samples 

collected. Samples were collected and stored on-site at the Mater Misericordiae 

University Hospital. Samples were received from patients at varying diagnosis and at 

varying treatment stages (Table 5.1). Saliva sample collection was carried out using 

the GBO Saliva Collection System, requiring patients to thoroughly rinse the oral 

cavity for 2 minutes using the saliva extraction solution. The solution was then 

collected into sterile collection tubes and stored at -80ºC. 

 

Table 5.1: MM Patient Cohort Clinical Information.   
ID Disease Status Status Subtype 

MMA 01 MM Newly Dx IgG 
kappa 

MMA 02 MM Newly Dx IgA 
lambda 

MMA 03 MM Newly Dx IgG 
kappa 

MMA 04 MM Early Relapse (on 
Len/Dex) 

IgG 
kappa 

MMA 05 MM VGPR 
(Elotuzumab/Len/Dex) 

IgA 
lambda 

MMA 06 MM PR (post 8x Len/Dex) IgG 
kappa 

MMA 07 MGUS   

MMA 08 MM Stable disease IgA 
lambda 

MMA 09 MM VGPR (post 4x RVD) IgG 
kappa 

MMA 10 MM PR (had Tha/Dex EOT 
6/2010) 

IgG 
lambda 

MMA 11 SMM   

MMA 12 MM VGPR IgA 
lambda 

MMA 13 Plasma cell 
leukaemia 

  

MMA 14 MM Newly Dx IgG 
kappa 
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ID Disease Status Status Subtype 

MMA 15 MM Newly Dx IgG 
kappa 

MMA 16 MM Relapse (previously tx 
CTD to VGPR) 

IgG 
kappa 

MMA 17 SMM   

MMA 18 Solitary 
plasmacytoma Newly Dx  

MMA 19 MM Relapse Refractory IgG 
kappa 

MMA 20 MM Relapse IgG 
kappa 

MMA 21 MM Newly Dx IgA 
kappa 

MMA 22 Neutropenia Control  

MMA 23 MM Relapse IgG 
lambda 

MMA 24 MM Relapse IgG 
lambda 

MMA 25 MM Relapse IgG 
kappa 

MMA 26 MM CR (post ASCT) IgG 
lambda 

MMA 27 SMM  IgG 
kappa 

MMA 28 MM Newly Dx  

MMA 29 MM PR (post 4x Vel/Dex) IgG 
kappa 

MMA 30 MM VGPR (post ASCT, 8x 
VTD induction) 

IgG 
lambda 

MMA 31 MM VGPR (Elotuzumab) IgA 
lambda 

MMA 32 MM  IgG 
kappa 

MMA 33 MM PD (on Vel/Dex) IgG 
lambda 

MMA 34 MM Relapse IgA 
kappa 

MMA 35 MGUS Newly Dx IgG 

MMA 36 MM VGPR (on VTD) lambda 
LC 

MMA 37 MGUS Newly Dx IgG 

MMA 38 MGUS Newly Dx IgA 
kappa 

MMA 39 MM VGPR IgG 
kappa 

MMA 40 MM Newly Dx IgG 
lambda 
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ID Disease Status Status Subtype 

MMA 41 MM VGPR (post 4x Vel/Dex) IgA 
kappa 

MMA 42 MM Relapse (previously on 
Len/Dex) 

IgA 
kappa 

MMA 43 MGUS  IgG 

MMA 44 MM Relapse IgG 
lambda 

MMA 45 MGUS   

MMA 46 MM MGUS transformed to 
MM 

 

MMA 47 MM PR (6x Vel/Dex) IgG 
kappa 

MMA 48 MGUS   

MMA 49 MM VGPR (4x CyBorD) IgG 
lambda 

MMA 50 MM Relapse IgG 
kappa 

MMA 51 MM CR (post ASCT) IgG 
kappa 

MMA 52 MM relapse (previous 4x 
CTD, ?VGPR) 

IgA 
lambda 

MMA 53 MM Newly Dx IgG 
lambda 

MMA 54 SMM  IgG 
kappa 

MMA 55 MM relapse (previous RVD, 
then ASCT, VGPR) 

IgD 
kappa 

MMA 56 MM relapse (previous 5x 
Vel/Dex, 9x RVD, VGPR) 

IgG 
lambda 

MMA 57 MGUS   

MMA 58 MM PR (previous Vel/Dex, 
switched to RVD) 

IgG 
kappa 

MMA 59 MM ? Relapse refractory  (6x 
RVD) 

IgG 
lambda 

MMA 60 MM Relapse Refractory  

MMA 61 MM ?relapse IgA 
kappa 

MMA 62 Plasmacytoma Newly Dx  
MMA 63 MGUS   

MMA 64 MM VGPR (6x RVD) IgG 
lambda 

MMA 65    
MMA 66 MM Newly Dx  
MMA 67 MM Relapse Refractory  

MMA 68 MM Relapse Light 
chain 
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ID Disease Status Status Subtype 

MMA 69 MM Newly Dx Light 
chain 

MMA 70 MM Relapse IgG 
kappa 

MMA 71 MM VGPR IgA 
lambda 

MMA 72 MM Newly Dx kappa LC 
MMA 73 MGUS Newly Dx  
MMA 74 SMM Progressing to MM IgG 

MMA 75 MM Remission IgG 
kappa 

MMA 76 MM Newly Dx  
MMA 77    
MMA 78 MGUS Newly Dx  
MMA 79 MGUS Newly Dx  
 MMA 80 PRV Control  
MMA 81 MM Newly Dx  
MMA 82 MM Relapse  
MMA 83 MGUS Newly Dx  
MMA 84 Amyloidosis   
MMA 85    
MMA 86 Amyloidosis   

MMA 87 Mantle cell 
lymphoma Newly Dx  

MMA 88 Follicular lymphoma   
MMA 89 Amyloidosis   
MMA 90 MM Newly Dx IgA 
MMA 91 MM Remission  

 

 

5.1.1.2 Label-free LC-MS/MS Analysis of Patient Saliva Samples. 

Prior to mass spectrometric analysis, samples were purified by acetone precipitation. 

Five times the sample volume of cold 100% acetone was added to each sample and 

stored overnight at -20℃. Samples were centrifuged at 15,000 x g for 15 min at 4℃. 

The supernatant was decanted, and samples centrifuged again at 15,000 x g for 5 

min. The supernatant was discarded, excess supernatant was removed and the 

resulting pellet was allowed to air-dry for 10 min. The pellets were re-suspended in 

appropriate volume of label-free solubilisation buffer and vortexed and sonicated to 
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ensure full re-suspension. The protein amount was estimated using an RC/DC protein 

assay from Bio-Rad. BSA was used as a standard. Protein concentrations were 

equalised with label-free solubilisation buffer and 30 µg of protein was processed by 

the filter aided sample preparation (FASP) method (Wiśniewski et al., 2009) using a 

trypsin to protein ratio of 1:25 (protease: protein). Following overnight digestion and 

elution of peptides from the spin filter, 2% TFA in 20% ACN was added to the filtrates 

(3:1 (v/v) dilution).  

 

5.1.1.3 Data Analysis of all Statistically Significantly Proteins with 

Altered Abundance Observed in Patient Saliva. 

Protein identification and label-free quantification (LFQ) normalisation of MS/MS data 

was performed using MaxQuant v1.5.2.8 (http://www.maxquant.org). The 

Andromeda search algorithm incorporated in the MaxQuant software was used to 

correlate MS/MS data against the Homo sapiens Uniprot reference proteome 

database and a contaminant sequence set provided by MaxQuant. Perseus v.1.5.6.0 

(www.maxquant.org/) was used for data analysis, processing and visualisation. 

Normalised LFQ intensity values were used as the quantitative measurement of 

protein abundance for subsequent analysis. The data matrix was first filtered for the 

removal of contaminants and peptides identified by site. LFQ intensity values were 

log2 transformed and each sample was assigned to its corresponding group. 

ANOVA-based multisample t-test were performed using a cut-off of p<0.05 on the 

post imputated dataset to identify statistically significant differentially abundant 

proteins.  
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5.1.1.4 ELISA for Validation of Decreased Abundance of FABP5 from 

Newly Diagnosed MM to Remission 

50μl of crude saliva and serum samples were added to antibody-coated microtiter 

wells and incubated at room temperature for 2h, as directed by the manufacturers’ 

recommendations. All manufacturers guidelines were followed, unaltered. 

 

5.1.1.5 Immunoblotting for Validation of Increased Abundance of FABP5 

throughout Disease Progression 

20µg of acetone precipitated protein, quantified using a Bradford assay, from MGUS 

and newly diagnosed MM patient samples were loaded into each lane and an SDS-

PAGE gel was run. 20µl of the resuspended protein was also loaded into each lane 

for samples from multiple patients and different time points (serial samples). Anti-

FABP5 was used at a concentration stated in Chapter 2 and anti-goat secondary 

antibody was used at 1:1000. Transfer was carried out as previously detailed in 

Chapter 2 (Materials and Methods). For coomassie staining loading controls, proteins 

were run on 10% SDS gels and incubated in fixing solution (50% methanol, 10% 

glacial acetic acid) for 1 hour with gentle shaking. Gels were then incubated in 

staining solution (0.1% Coomassie Brilliant Blue R-250, 50% methanol, 10% glacial 

acetic acid) for 20 minutes, followed by incubation in de-staining solution (40% 

methanol, 10% glacial acetic acid) solution. This solution was renewed 3 times before 

exposure of gels using the G:BOX Chemi XRQ (Syngene). Densitometric analysis of 

each blot was carried out using ImageJ software. 
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5.1.1.6 Immunohistochemistry for Validation of Increased Abundance of 

FABP5 from MGUS to Newly Diagnosed MM. 

Immunohistochemistry analysis for validation of FABP5 as a potential salivary 

biomarker was carried out as stated in detail in Chapter 2. Anti-FABP5 was used at 

a concentration of 1:250 on BMTs of patients diagnosed with MGUS and MM. 

 

5.2 Results 

5.2.1 Quantitative Proteomic Analysis of Patient Saliva with MGUS and 

Newly Diagnosed MM.  

In-depth proteomic analysis of 8 MGUS saliva samples and 18 Newly diagnosed MM 

samples identified 152 proteins with altered abundance when comparing the 

proteomic signature of saliva samples MGUS and newly diagnosed MM patients. Of 

these 152 proteins, 42 of which have an increased abundance from MGUS to MM 

and 110 of which have a decreased abundance from MM to MGUS. Of the 152 

proteins with changed abundance, six statistically significant (p<0.05) proteins with 

an increase in abundance in disease progression from non-malignant to malignant 

disease (Table 5.2) have been identified. Interestingly, there were no statistically 

significant proteins recorded with a decreased abundance from MGUS to newly 

diagnosed MM. A fold change increase in abundance as high as 35.25 was recorded 

for FABP5 abundance.  
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Table 5.2: Significant proteins with increased abundance from MGUS to 

newly diagnosed MM. 

Accession 
Number 

Protein Name Fold Change p-value 

P01034 Cystatin C 1.890035303 0.0434095 

P11021 
78 kDa Glucose-Regulated 

Protein 3.442115345 0.0230914 

P27482 Calmodulin-like Protein 3 3.30620761 0.0214094 

P37802 Transgelin-2 5.222278045 0.0466408 

P47989 
Xanthine 

Dehydrogenase/Oxidase 1.58996479 0.0334987 

Q01469 
Fatty Acid-Binding Protein, 

Epidermal 35.25038341 0.00191934 

 

5.2.2 Quantitative Proteomic Analysis of Patient Saliva Samples at 

Multiple Time Points (Serial Samples). 

In-depth proteomic analysis of  saliva samples from 7 patients, 6 of which had two 

time points and 1 of which had three time points. Patient samples ranged from MGUS, 

newly diagnosed MM, post treatment and remission (Table 5.2). The in-depth 

analysis identified 74 proteins with a common altered abundance when comparing 

the proteomic signature of the serial saliva samples (Table 5.3). 23 proteins were 

identified with a changed abundance in patient one (Pt.1), 19 of which were identified 

as significant. 64 proteins were identified with altered abundance in patient 2 (Pt.2), 

52 were identified as statistically significant. 43 proteins were identified with a 

changed abundance in patient three (Pt.3), 31 of which were identified as significant. 

45 proteins were identified with a changed abundance in patient four (Pt.4), 32 of 

which were identified as significant. 23 proteins were identified with a changed 

abundance in patient five (Pt.5), 17 of which were identified as significant. 32 proteins 
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were identified with a changed abundance in patient six (Pt.6), 23 of which were 

identified as significant. 26 proteins were identified with a changed abundance in 

patient seven (Pt.7), 25 of which were identified as significant. As patient 7 had three 

serial samples, three comparisons were made for the change in abundance between 

each sample. Pt. 7A compares newly diagnosed to partial response, Pt. 7B compares 

partial response and remission and Pt. 7C compares newly diagnosed to remission 

in patient 7 (Table 5.4). 

 
 
 
Table 5.3: Serial Sample Patient Diagnosis 

Patient ID 1st sample  2nd sample  3rd sample  

Pt.1 
Newly Diagnosed 

MM 
Remission  

Pt. 2 
Newly Diagnosed 

MM 
Remission  

Pt. 3 
Newly Diagnosed 

MM 
Post Treatment  

Pt. 4 Post Treatment Relapse  

Pt.5 
Newly Diagnosed 

MM 
Remission  

Pt. 6 Remission Post-Transplant  

Pt. 7 
Newly Diagnosed 

MM 
Partial Response Remission 
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Table 5.4: Compiled list of identified proteins with significantly changed 

abundances common across serial samples identified by LC-MS/MS.  

Accession 
number Protein Pt

. 1 

 
Pt
. 2 
 

 
Pt
. 3 
 

 
Pt
. 4 
 

 
Pt
. 5 
 

 
Pt
. 6 
 

Pt. 
7A 

Pt. 
7B 

Pt. 
7C 

P07355 
 

Annexin A2  ↓ ↓ - ↓ ↑ ↑ ↓ ↑ ↓ 

P01036 Cystatin-S  ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↑ 
Q96DA0 
 

Zymogen 
granule protein 
16 homolog B  

↑ ↑ - ↑ - ↑ ↓ ↑ ↑ 

P31025 Lipocalin-1  ↓ ↑ - - - ↓ ↑ ↓ ↓ 
P02788 Lactotransferrin  ↑ ↓ ↓ - ↑ - ↓ ↑ ↑ 
P01876 Ig alpha-1 chain 

C region  
↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ 

P04083 Annexin A1  ↓ ↓ ↑ ↑ ↑ - ↓ ↑ ↓ 
Q04118 
 

Basic salivary 
proline-rich 
protein 3  

↓ ↑ - ↑ ↓ ↑ ↑ ↓ ↑ 

P04745 Alpha-amylase 1  ↑ - ↑ ↑ - ↑ ↓ ↑ ↓ 
P02812 
 

Basic salivary 
proline-rich 
protein 2  

↓ - - ↑ - - ↑ ↓ ↑ 

P25311 Zinc-alpha-2-
glycoprotein  

↓ ↑ ↓ - - ↓ ↓ ↑ ↑ 

P04280 Basic salivary 
proline-rich 
protein 1  

↓ - - - - - ↑ ↓ ↓ 

P01833 
 

Polymeric 
immunoglobulin 
receptor  

↑ ↓ ↓ - - - ↓ ↑ ↑ 

P04080 Cystatin-B  ↓ - - - ↑ - ↑ ↓ ↓ 
Q9UGM3 Deleted in 

malignant brain 
tumors 1 protein  

↓ ↓ - - - ↓ ↓ ↑ ↑ 

P02810 
 

Salivary acidic 
proline-rich 
phosphoprotein 
1/2  

↓ - - ↑ ↓ ↓ ↑ ↑ ↑ 

Q9UBC9 Small proline-rich 
protein 3  

↓ ↑ ↑ ↑ - - ↑ ↓ ↓ 

P10163 Basic salivary 
proline-rich 
protein 4 

↓ - ↑ ↑ ↓ - ↑ ↓ ↓ 

P06702 Protein S100-A9  ↓ ↓ ↓ - ↑ - ↓ ↑ ↑ 
Q9HC84 Mucin-5B - ↑ ↑ ↓ - ↓ ↓ ↑ ↑ 
P10599 Thioredoxin  - ↓ - - - - - - - 
P63261 Actin, 

cytoplasmic 2  
- ↑ ↓ - - ↑ ↑ ↑ ↑ 
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Accession 
number Protein Pt

. 1 

 
Pt
. 2 
 

 
Pt
. 3 
 

 
Pt
. 4 
 

 
Pt
. 5 
 

 
Pt
. 6 
 

Pt. 
7A 

Pt. 
7B 

Pt. 
7C 

P02675 Fibrinogen beta 
chain  

- ↑ ↓ ↓ - - - - - 

P01834 Ig kappa chain C 
region  

- ↑ - - - ↑ - - - 

P01591 Immunoglobulin 
J chain  

- ↑ - - - - - - - 

P00738 Haptoglobin  - ↑ - - - - - - - 
P11684 Uteroglobin  - ↓ - - - - - - - 
P01857 Ig gamma-1 

chain C region 
- ↑ ↓ ↓ - - - - - 

Q08188 Protein-
glutamine 
gamma-
glutamyltransfera
se E 

- ↓ ↓ ↓ - ↓ ↑ ↓ ↓ 

Q9NZT1 Calmodulin-like 
protein 5  

- ↓ - - - - - - - 

P01023 Alpha-2-
macroglobulin  

- ↓ ↓ ↓ - - - - - 

P02647 Apolipoprotein A-
I  

- ↓ ↓ ↓ - - - - - 

P02679 Fibrinogen 
gamma chain  

- ↑ - - - - - - - 

P05109 Protein S100-A8  - ↓ - - - ↓ - - - 
P05164 Myeloperoxidase  - ↓ ↓ ↓ - - - - - 
P02814 Submaxillary 

gland androgen-
regulated protein 
3B 

- ↑ ↑ ↑ ↓ - - - - 

P07737 Profilin-1  - ↓ - - - - - - - 
P12273 Prolactin-

inducible protein  
- ↓ - ↑ ↓ ↓ ↑ ↑ ↑ 

P09211 Glutathione S-
transferase P  

- ↓ - - - - - - - 

P12429 Annexin A3  - ↓ - ↓ - - - - - 
P23528 Cofilin-1  - ↑ - - - - - - - 
P08311 Cathepsin G  - ↓ - - - - - - - 
P61626 Lysozyme C  - ↓ - - - - - - - 
P22079 Lactoperoxidase  - ↓ ↓ ↑ ↓ ↑ ↓ ↑ ↑ 
B9A064 Immunoglobulin 

lambda-like 
polypeptide 5  

- ↑ - - - - - - - 

A8K2U0 Alpha-2-
macroglobulin-
like protein 1 

- ↓ - - - - - - - 

P52566 Rho GDP-
dissociation 
inhibitor 2  

- ↑ - - - - - - - 
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Accession 
number Protein Pt

. 1 

 
Pt
. 2 
 

 
Pt
. 3 
 

 
Pt
. 4 
 

 
Pt
. 5 
 

 
Pt
. 6 
 

Pt. 
7A 

Pt. 
7B 

Pt. 
7C 

Q96DR5 BPI fold-
containing family 
A member 2  

- ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↑ 

P13796 Plastin-2  - ↑ ↓ ↓ - ↑ - - - 
Q8TDL5 BPI fold-

containing family 
B member 1 

- ↑ - - - - - - - 

P02671 Fibrinogen alpha 
chain  

- ↑ ↓ - - - - - - 

P80723 Brain acid 
soluble protein 1  

- ↑ - - - - - - - 

Q6UWP8 Suprabasin  - ↑ ↓ - - - - - - 
P06733 Alpha-enolase  - ↑ - - - - - - - 
P00338 L-lactate 

dehydrogenase 
A chain 

- ↑ - - - - - - - 

P11021 78 kDa glucose-
regulated protein  

- ↓ - - - - - - - 

P04206 Ig kappa chain 
V-III region GOL  

- ↑ - - - - - - - 

Q9BQE3 Tubulin alpha-1C 
chain  

- ↓ - - - - - - - 

P16401 Histone H1.5  - - ↓ - - - - - - 
P02790 Hemopexin  - - ↓ - - - - - - 
Q8TAX7 Mucin-7  - - ↓ - - - - - - 
P61769 Beta-2-

microglobulin  
- - ↓ - ↓ ↓ - - - 

P35908 Keratin, type II 
cytoskeletal 2 
epidermal  

- - ↑ - - - - - - 

P14618 Pyruvate kinase 
PKM 

- - ↓ ↓ - - - - - 

P01024 Complement C3 - - ↓ ↓ - ↓ - - - 
P01037 Cystatin-SN  - - - ↑ ↑ - - - - 
P07108 Acyl-CoA-binding 

protein 
- - - ↓ - - - - - 

P01859 Ig gamma-2 
chain C region 

- - - ↓ - - - - - 

P60709 Actin, 
cytoplasmic 1  

- - - ↓ - - - - - 

P30740 Leukocyte 
elastase inhibitor 

- - - ↓ - - - - - 

A8K2U0 Alpha-2-
macroglobulin-
like protein 1 

- - - ↓ - - - - - 

P23280 Carbonic 
anhydrase 6 

- - - - ↓ - - - - 

P10909 Clusterin  - - - - - ↓ - - - 
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Q08380 Galectin-3-
binding protein  

- - - - - ↓ - - - 

 
 

5.2.3   Comparative Immunoblotting Analysis of Increased Abundance of 

FABP5 for MGUS Verses Newly Diagnosed MM. 

For verification of an increased abundance of potential targets from MGUS to newly 

diagnosed MM from the mass spectrometric data, comparative immunoblotting of four 

MGUS and four newly diagnosed MM acetone precipitated saliva samples was 

preformed, investigating the abundance of FABP5. The overall trend of an increased 

abundance of FABP5 in saliva from MGUS to newly diagnosed MM was confirmed 

by the comparative immunoblotting analysis (Figure 5.1)   

  

Figure 5.1: Comparative immunoblot analysis of FABP5 Abundance from 

MGUS to Newly Diagnosed MM.  

Shown is a representative immunoblot with immuno-decorated bands labelled with 

an antibody specific to FABP5 (A). B is the graphical analysis of the immuno-

decoration (MGUS n=4, MM n=4). C depicts a coomassie stained SDS-gel to indicate 

equal loading of each individual saliva sample for immunoblotting. 
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5.2.4 ELISA analysis of the increased abundance of FABP5 throughout 

disease progression of patient saliva samples. 

ELISA analysis was carried out on crude saliva samples of five patients to identify an 

increased abundance of FABP5 throughout disease progression. Three of five 

patients exhibited a decreased abundance of FABP5 from newly diagnosed MM to 

remission.  A decreased abundance was also observed from newly diagnosed MM 

to post  VMP treatment (x8). Interestingly, an increased abundance  of FABP5 was 

observed from newly diagnosed MM to remission for one of the five serial patients 

(Figure 5.2). 

 

Figure 5.2:  Bar Chart of ELISA Analysis Comparing Abundance of  

FABP5 in Saliva of Serial Sample Patients.  

Figure depicts a comparative bar chart of the change in abundance of FABP5 in 

serial saliva from five patients. Each colour represents an individual patient at each 

of two time points. VMP x8 indicates eight cycles of treatment using Bortezomib, 

Melphalan and Prednisone.  
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5.2.5 Immunohistochemical Analysis of FABP5 abundance in Bone 

Marrow Trephines of MGUS and Newly Diagnosed MM Patients. 

Comparative IHC was carried out with the use of an FABP5 to identify the change in 

abundance of FABP5 from premalignant MGUS to malignant newly diagnosed MM. 

FABP5 was identified as a potential biomarker in saliva for disease progression in 

MM, identified by LC-MS/MS (Table 5.2). This increase in abundance was verified 

using immunoblotting analysis in saliva samples (Figure 5.1), however, a bone 

marrow trephine is considered the gold standard for patient diagnosis of MM. 

Evaluating the change in abundance in BMTs can lead to the verification of reliability 

of the potential biomarker. Independent, blind scoring of stained slides was carried 

out, to ensure an unbiased evaluation of the staining intensity. Staining was observed 

to be negative in the MGUS sample (0) and weak positive staining was observed in 

the newly diagnosed MM sample (+1) (Figure 5.3).  
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Figure 5.3: Comparative Immunohistochemistry (IHC) staining of FABP5 in BM trephines from MGUS to Newly Diagnosed. 

The figure depicts the comparative IHC staining of BMTs using an antibody specific for FABP5. the increased abundance of FABP5 from MGUS 

to newly diagnosed MM is noted in staining of the sectioned tissue, the scoring of which is depicted in the corresponding graph. 
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5.3 Discussion  

Serum biomarkers have become an important tool in the diagnosis of multiple 

myeloma, increasing the criteria for diagnosis to include three vital biomarkers for the 

disease (Rajkumar et al., 2014). All verified biomarkers for MM are, however, serum 

biomarkers. The collection of serum is an invasive process, which has been noted to 

cause varying levels of stress/discomfort to patients. The logical progression in the 

search for new biomarkers is to consider saliva as a biofluid for analysis as saliva 

collection is a non-invasive process, it is inexpensive and a fast biofluid to collect. 

Limited research has been published, to date, based on salivaomics in relation to 

cancer biomarkers in general, especially in MM.  

Cystatin C (CysC) is a cysteine protease inhibitor produced by the majority of 

nucleated cells (Filler et al., 2005) that is filtered by the glomerulus, reabsorbed and 

metabolizes by the proximal tubule and is considered an accurate endogenous maker 

of glomerular filtration rate (GFR) in chronic kidney disease (Stevens et al., 2008). It 

has been noted in MM studies that CysC is one of the most highly upregulated genes 

expressed (De Vos et al., 2002) and has been recognised as a potential serum 

marker for prognosis in MM. One of the key diagnostic criteria of MM is renal failure, 

explaining the increased expression in CysC (Rajkumar et al., 2014).  A significantly 

increased abundance of CysC has been noted in multiple studies of MM progression 

and, interestingly, a reduction in expression has been noted in patients after 

treatment using bortezomib (Terpos et al., 2009). As treatment with bortezomib has 

shown a direct correlation with decreased kidney damage, in some cases the 

improvement was seen in numbers as high as 77% of patients treated (Zannetti et 

al., 2015), the reduction in the over expression of CysC shows positive results from 

bortezomib. In the study presented above, the results exhibited an expression of 

CysC in the progression of disease from MGUS to MM. The statistically significant 

increase (P<0.05) exhibited in disease progression samples leads to the prediction 
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that salivary CysC may be considered as reliable as serum CysC at predicting 

disease from MGUS to MM. 

Fatty Acid Binding Protein 5 (FABP5) is one of several isoforms of FABP (Coe and 

Bernlohr, 1998) and is known to enhance the transcriptional activity of nuclear 

receptor peroxisome proliferator-activated receptor β/δ (Adhikary et al., 2013) and 

promotes cell proliferation, survival and migration (Wang et al., 2006).  FABP5 has 

been observed to be implicated in the proliferation of cancer and has been seen to 

be increased in abundance in multiple cancer types such as breast (Levi et al., 2013), 

prostate (Nitschke et al., 2019), cervical (Zhan et al., 2019) and HCC (Ohata et al., 

2017). Interestingly, in a study carried out by Waheed and colleagues, FABP5 in MM 

patients was associated with poor outcome and unfavourable clinical parameters. 

FABP5 has been observed, in this study, to be statistically significant in comparisons 

between MGUS and MM. The abundance is significantly higher (P<0.002) of FABP5 

in the newly diagnosed MM patient samples in comparison with the MGUS patient 

samples (Table 5.2). This would lead us to believe that FABP5 levels increase as the 

disease progresses. Based on the data in this study, FABP5 is predicted to be a 

useful salivary marker in the determination of disease progression as this information 

correlates with multiple distinct types of cancer. Using ELISA analysis, a decrease in 

the abundance of FAPB5 was noted in serial samples from newly diagnosed to 

remission in four of the five patients tested (Figure 5.2). This, again, leads us to 

believe that an increase in FABP5 is directly linked to disease progression and 

severity. The IHC analysis of BMT trephines from premalignant MGUS to newly 

diagnosed MM revealed an increased abundance of FABP5 in disease progression. 

As the increase is not determined to be vast in abundance and, due to limitations 

from small BMT sample size, no strong conclusions could be based on this analysis 

alone. However, due to the nature of diagnosis of MM, BMTs are considered the gold 

standard in diagnosis and the fact that there is an increased abundance of FABP5 in 
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the bone marrow, along with the ELISA and immunoblotting data (Figure 5.1), it is 

evident that an increase in FABP5 in MM patients may indicate disease progression.  

An increased abundance of multiple proteins during disease progression at different 

time points has been noted, and specifically a significant down regulation from newly 

diagnosed to remission in patient samples. Protein-glutamine gamma-

glutamyltransferase E or Tranglutaminase-3 (TGM3) was seen to have a significantly 

decreased abundance in five of the seven patients studied. TGM3 has been noted 

as being vital for the formation of cornified cell envelope (Kalinin et al., 2002) and 

epidermal terminal differentiation. Expressed in the suprabasal layers of stratified 

squamous epithelium in skin and mucosa, and regularly expressed in small intestine 

and brain (Hitomi et al., 1999), TGM3 has been implemented in multiple cancer types 

such as oral squamous cell carcinoma (Wu et al., 2018), head and neck squamous 

cell carcinoma (Wu et al., 2013) and oesophageal cancer (Li et al., 2016).  

β2M (Beta-2-microglobulin) was significantly decreased in abundance in three of 

seven patients from diagnosis to remission. β2M, in combination with albumin, has 

been established since 2005 as a predictive biomarker for disease progression and 

stage according to the ISS. The ISS uses serum β2M to provide three stage 

classifications with three different median survival periods, establishing that lower 

expression of β2M is directly correlated with increased overall survival (Palumbo et 

al., 2009). The significant decreased abundance noted in this study further supports 

the finding of the ISS (the increased expression of β2M indicates decreased overall 

survival) and strengthens the use of saliva as a biofluid for prediction of disease 

progression as it mirrors the findings in serum. β2M is a widely known housekeeping 

gene and interacts and stabilizes “tertiary structures of the major histocompatibility 

complex class I α-chain for presenting antigenic peptides from intracellular proteins 

to cytotoxic T lymphocytes” (Bjorkman and Burmeister, 1994). In a study carried out 

by Rajpal and colleagues, the significant upregulation of β2M in non-responders, in 

comparison to responders to thalidomide-based therapy was recorded, providing a 
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link to over expression of β2M and drug resistance in multiple myeloma. This β2M 

increase in drug resistance has also been linked to resistance using bortezomib for 

treatment of MM  (Ting et al., 2017). The presence of β2M, with increased abundance 

in the saliva of MM patients again solidifies the relevance of carrying out proteomic 

analysis on patient samples for predictive markers for disease progression.  

Saliva has been observed to have undetermined potential as a biomarker for disease 

diagnosis, prognosis and progression. However, saliva also has infinite potential as 

a source of biomarkers for patient monitoring. MM patients must undergo a BMT 

biopsy, a hugely invasive, uncomfortable process, for diagnosis of disease. Saliva 

has proven to show a direct, reliable correlation between protein abundance of the 

proteins profile and disease progression from non-malignant to malignant 

malignancy. This proves saliva potential to predict the need for a BMT procedure to 

be carried out, as opposed to initially carrying out the traumatic procedure making 

diagnosis and disease monitoring much less invasive on the patients involved.  
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Chapter 6 
 
 

The Proteomic Analysis of Disease Burden 
from RsqVD Clinical Trial Samples 
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6.1 Introduction  
 

Translational research is considered the movement of “basic scientific research from 

the lab bench to the patients’ bedside”. This encompasses the transfer of knowledge 

from basic to clinical research and the transfer of these findings from trials to practical 

use in the clinic (Rubio et al., 2010). Traditionally, the progression from basic 

research to clinical use has taken arduous amounts of time with minimal cross over 

between the two. This gap, however, has been shortened over recent years with the 

identification of potential biomarkers for disease progression, diagnosis and 

treatment management being developed for clinic use. Knowledge of tumour 

microenvironment, molecular characterisation of tumours, tumour-driving molecular 

pathways, the establishment of new treatment targets and immuno-oncology have all 

vastly changed the way in which cancer is treated (Shrager and Tenenbaum, 2014). 

Using translational oncology approaches to clinical trials, patients can be monitored 

more closely than previously, allowing for the early identification of adverse side 

effects from the trial or disease progression, allowing the early discontinuation of 

treatment. This chapter combines proteomic analysis and early clinical trial samples 

for the identification of potential biomarkers indicating patient response, further 

closing the gap between basic research and clinical use. 

  
The clinical trial in question, RsqVD, is a Phase Ⅱ multi-centre, transatlantic study of 

MM patients. The study involves treatment using standard RVD treatment regime 

(Lenalidomide, Bortezomib and Dexamethasone), however the Bortezomib is 

administered subcutaneously (sq), as opposed to the standard method of 

administration via Intravenous (IV) line (Attal et al., 2017). Bortezomib administration 

through an IV has notoriously been linked with peripheral neuropathy and toxicity in 

patients, leading to the need for alternative administration methods to improve patient 

health. Sq administration of Bortezomib has shown equal effectiveness to that of IV 
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administration and has been seen to be less time consuming and more convenient 

for both patients and hospital staff (Barbee et al., 2013). Bortezomib, through 

standard administration methods, has been linked extensively to peripheral 

neuropathy (Richardson et al., 2009), anaemia, vomiting, diarrhoea, leukopenia and 

thrombocytopenia (Lonial et al., 2005). The prevalence of peripheral nerve damage 

associated with IV bortezomib is a worrying trend, which leads to painful sensory 

neuropathy seriously affecting patients over all standard of living (Richardson et al., 

2006). This neuropathy is predicted as due to metabolic changes from the 

accumulation of bortezomib in dorsal root ganglia cells, dysregulation of 

neurotrophins and Ca++ homeostasis dysregulation mediated by mitochondria 

(Argyriou et al., 2008). Sq administration of bortezomib has been observed as vastly 

decreasing the incidences of peripheral neuropathy, leukopenia and 

thrombocytopenia (Ye et al., 2019). As studies are still being carried out on the 

effectiveness of IV versus sq administrative methods for bortezomib, a direct 

correlation between sq bortezomib and decreased prevalence of adverse side effects 

such as peripheral neuropathy, leukopenia, thrombocytopenia, anaemia, nausea, 

vomiting and diarrhoea is becoming more apparent (Hu et al., 2017). The 

establishment of sq bortezomib as standard practice seems to be the logical answer 

in combatting adverse side effects.  

Serum, the most commonly used biofluid for proteomic analysis, is collected after 

coagulation and is centrifuged to remove any clotting agents from the blood sample 

(Yu et al., 2011). With the abundance of proteins present within serum, the minimally 

invasive collection method and the fact that serum comes into direct contact with all 

tissues within the body, the information available from proteomic analysis of serum is 

endless. Serum is, generally, more stable than plasma after storage due to the 

removal of coagulation material and is also less contaminated with free cells and 

platelets. However, serum must be left to coagulate for 30 minutes after collection, to 

allow clot formation, whereas plasma can be directly used for analysis (Oddoze et 
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al., 2012). Serum is comprised of proteins, lipids, electrolytes, antibodies, hormones, 

as well as exogenous substances with proteins such as albumin, transferrins, 

immunoglobulins and complement factors making up 99% of the serum proteome.  

The remaining 1% of lower abundance circulatory are considered the proteins of 

interest in terms of their potential as prognostic and diagnostic biomarkers 

(Betgovargez et al., 2005).  

To date, ELISA has been considered the most efficient assay based technology for 

low abundant target detection in patient samples. However, in recent years, the 

development of Luminex screening technologies, using multiplex arrays, has allowed 

the identification of multiple analytes in the same sample at the same time. Utilising 

this technology has a number of distinct advantages over ELISA such as less sample 

volume required and higher efficiency in terms of cost and time. The maximum 

number of analytes that can be analysed at one time using this multiplex assay is 500 

and the maximum number of samples that can be analysed at once is dependent on 

the plate used, either 96 samples or 384 samples (Purohit et al., 2015). Among these 

advantages, multiplex assays also give the opportunity to evaluate levels of the 

analyte in the context of multiple other analytes, allows reproducibility across assays 

and allows the detection of analytes across a broad range of concentrations (Leng et 

al., 2008). Luminex multi-analyte profiling is based on the use of antibody coated 

beads, which are distinguishable using flow cytometry. Each antibody coated bead 

contains a fluorescence or streptavidin-labelled detection antibody that binds to 

specific targets, leading to the identification and measurement of multiple targets from 

one biological sample. The chromogenic or fluorogenic emission is detected by flow 

cytometric analysis (Leng et al., 2008).  
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6.1.1 Experimental Design 
 

6.1.1.1 Patients and Samples 

 

The ethics committees of the participating hospitals approved the study in compliance 

with the Declaration of Helsinki. A total of 70 serum samples were collected from 

patients enrolled in the clinical study. Patient characteristics and details of response 

are stated in Table 6.1. No exclusion criteria were applied to the patients and the 

samples were collected prospectively. 

 

 

Table 6.1: Clinical details of patients involved in RsqVD study. 

 

Patient Visit 
Sample 

ID 

Post C4 

Response 

On 

treatment 

Reason 

discontinued 

1 Screening 01-1 CR Yes N/A 

2 Screening 02-1 PR Yes N/A 

3 Screening 03-1    

4 Screening 04-1 VGPR No Progression 

5 Screening 05-1 PR Yes N/A 

6 Screening 06-1 PR Yes N/A 

7 Screening 07-1 VGPR No Toxicity 

8 Screening 08-1 PR No Progression 

 EoT 08-2    

11 Screening 11-1 CR Yes N/A 

12 Screening 12-1 Unevaluable Yes N/A 

14 Screening 14-1 VGPR Yes N/A 

15 Screening 15-1 PR No Progression 

17 Screening 17-1 PR No Progression 

18 Screening 18-1 PR No Progression 

 EoT 18-2    

 EoT 18-3    

19 Screening 19-1 VGPR No Progression 
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Patient Visit 
Sample 

ID 

Post C4 

Response 

On 

treatment 

Reason 

discontinued 

 MC5 19-2    

20 Screening 20-1 PR Yes N/A 

21 Screening 21-1  Yes N/A 

 MC5 21-2    

23 Screening 23-1 VGPR No Progression 

 
Pre-

Maintenance 
23-2    

25 Screening 25-1 CR Yes N/A 

 MC2 25-2    

 MC2 25-3    

27 Screening 27-1 

Did not 

complete 4 

cycles 

No Toxicity 

 C4 27-2    

28 Screening 28-1 Unevaluable Yes N/A 

 C8 28-2    

 MC2 28-3    

29 Screening 29-1 PR Yes N/A 

 MC1 29-2    

 MC2 29-3    

30 Screening 30-1 PR No Progression 

 
Pre-

Maintenance 
30-2    

 MC2 30-3    

32 Screening 32-1 PR Yes N/A 

 C8 32-2    

 
Pre-

Maintenance 
32-3    

 MC2 32-4    

33 Screening 33-1 PR No 
Withdrew 

consent 

34 Screening 34-1 VGPR No Toxicity 

 C2 34-2    
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Patient Visit 
Sample 

ID 

Post C4 

Response 

On 

treatment 

Reason 

discontinued 

 C6 34-3    

 C8 34-4    

 C6 34-5    

35 Screening 35-1 CR No 
Withdrew 

consent 

36 Screening 36-1 PR Yes N/A 

 Post C4 36-2    

37 Screening 37-1 CR Yes N/A 

 C4 37-2    

 C6 37-3    

39 Screening 39-1 PR Yes N/A 

 Post C4 39-2    

41 Screening 41-1 SD Yes N/A 

 C2 41-2    

42 Screening 42-1 CR Yes N/A 

43 C4 43-2 PR Yes N/A 

 Post C4 43-3    

 Post C4 43-4    

44 C4 44-1 VGPR Yes N/A 

 Post C4 44-2    

45 Screening 45-1 PR No Progression 

 C2 45-2    

 C4 45-3    

46 Screening 46-1 VGPR Yes N/A 

 C2 46-2    
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6.1.1.2 MILLIPLEX® MAP Kit analysis using Luminex technology of 

RsqVD clinical trial patient serum.  

 

MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Magnetic Bead Panel Ⅰ, 

MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Panel Ⅱ and MILLIPLEX® MAP 

Kit: Human Circulating Cancer Biomarker Magnetic Bead Panel 4 were all used in 

the targeted analysis of all patient serum samples. 25μl crude serum was used per 

sample and all manufacturers guidelines were followed, with variations stated in 

Chapter 2.   

 

6.2 Results 
 
6.2.1 Luminex Technology Analysis of Clinical Trial Patient Serum 

Samples. 

 

For further identification of changes in the proteomic profile of varying RsqVD clinical 

trial serum samples, MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Magnetic 

Bead Panel Ⅰ, MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Panel Ⅱ and 

MILLIPLEX® MAP Kit: Human Circulating Cancer Biomarker Magnetic Bead Panel 4 

were utilised. The analysis of the changed abundance of targeted proteins in 70 

serum samples allowed the identification of previously established biomarkers, 

implicated previously in multiple types of cancer, in trial patient serum. Comparative 

bar charts were compiled with the use of the concentration of each individual potential 

target abundant in each sample. Trends in decreased/increased concentrations were 

analysed in-depth in samples from individual patients at multiple timepoints, allowing 

a more comprehensive study of the changed abundance throughout the trial (Table 

6.2). In-depth analysis of the results obtained from the multiplex assays revealed 

several established biomarkers exhibiting trends in RsqVD patients. Of the 62 

potential biomarkers analysed, CD44, Eotaxin, EGF, MIP-1α and L1CAM all exhibited 
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trends in changed abundance. CD44 showed an obvious increase in abundance in 5 

of the patients with multiple samples in the cohort. This increase was observed as 

significant as the initial sample failed to record a value for CD44 abundance (Figure 

6.1). The most significant increase in abundance in Eotaxin was observed in three of 

the serial samples, with vastly different abundances of Eotaxin recorded from sample 

one to sample two (Figure 6.2). A significant increase in abundance of EGF was 

noted in two of the serial sample patients, again with a significant increase of 

abundance recorded from sample one to sample two (Figure 6.3). MIP-1α (Figure 

6.4) and L1CAM (Figure 6.5) were both observed to have significant changes in two 

of the serial patient samples. MIP-1α exhibits vastly different abundances from 

sample one to sample two for each patient.  

 

Table 6.2: Patient details of focused study 

 

Patient Visit 
Sample 

ID 

Post C4 

Response 

On 

treatment 

Reason 

discontinued 

8 Screening 08-1 PR No Progression 

 EoT 08-2    

18 Screening 18-1 PR No Progression 

 EoT 18-2    

 EoT 18-3    

19 Screening 19-1 VGPR No Progression 

 MC5 19-2    

21 Screening 21-1  Yes N/A 

 MC5 21-2    

23 Screening 23-1 VGPR No Progression 

 Pre-

Maintenance 

23-2    

25 Screening 25-1 CR Yes N/A 

 MC2 25-2    

 MC2 25-3    
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Patient Visit 
Sample 

ID 

Post C4 

Response 

On 

treatment 

Reason 

discontinued 

27 Screening 27-1 Did not 

complete 4 

cycles 

No Toxicity 

 C4 27-2    

28 Screening 28-1 Unevaluable Yes N/A 

 C8 28-2    

 MC2 28-3    

29 Screening 29-1 PR Yes N/A 

 MC1 29-2    

 MC2 29-3    

30 Screening 30-1 PR No Progression 

 Pre-

Maintenance 

30-2    

 MC2 30-3    

32 Screening 32-1 PR Yes N/A 

 C8 32-2    

 Pre-

Maintenance 

32-3    

 MC2 32-4    

34 Screening 34-1 VGPR No Toxicity 

 C2 34-2    

 C6 34-3    

 C8 34-4    

 C6 34-5    

36 Screening 36-1 PR Yes N/A 

 Post C4 36-2    

37 Screening 37-1 CR Yes N/A 

 C4 37-2    

 C6 37-3    

39 Screening 39-1 PR Yes N/A 

 Post C4 39-2    

41 Screening 41-1 SD Yes N/A 

 C2 41-2    
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Patient Visit 
Sample 

ID 

Post C4 

Response 

On 

treatment 

Reason 

discontinued 

43 C4 43-2 PR Yes N/A 

 Post C4 43-3    

 Post C4 43-4    

44 C4 44-1 VGPR Yes N/A 

 Post C4 44-2    

45 Screening 45-1 PR No Progression 

 C2 45-2    

 C4 45-3    

46 Screening 46-1 VGPR Yes N/A 

 C2 46-2    

 

 

 

 

 

 

 
 

Figure 6.1: Comparative bar chart of change in abundance of CD44. 

Depicted is the change in abundance of CD-44 across all RsqVD trial samples. A 

clear increase in abundance in trends outlined in red.  
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Figure 6.2: Comparative bar chart of changed abundance in Eotaxin.  

Depicted is the change in abundance of Eotaxin across all RsqVD trial samples. Clear 

trends in increased abundance are outlined in red. 

 

 
Figure 6.3: Comparative bar chart of changed abundance in EGF. 

Depicted is the change in abundance of EGF across all RsqVD trial samples. Clear 

trends in increased abundance are outlined in red.  
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Figure 6.4: Comparative bar chart of changed abundance in MIP-1α.  

Depicted is the change in abundance of MIP-1α across all RsqVD trial samples. Clear 

trends in increased abundance are outlined in red.  

 
Figure 6.5: Comparative bar chart of changed abundance in L1CAM.  

Depicted is the change in abundance of L1CAM across all RsqVD trial samples. Clear 

trends in increased abundance are outlined in red.  
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6.3 Discussion  
 
Translational oncology is the combination of basic scientific research and clinical 

application to improve the treatment of cancer, improve diagnosis, aid in prognosis 

prediction and monitoring disease progression. Bridging the gap between the lab 

bench to the patient bedside has seen rapid improvement in cancer diagnosis. The 

establishment of molecular level changes through different disease timepoints have 

been acknowledged as being the route to improved treatment, combining the 

application of basic science with patient resources available. In this study we combine 

the applications of basic science via proteomics to RsqVD clinical trial samples to 

establish potential markers for disease progression, treatment response and, 

importantly, markers for disease related adverse effects from treatment.  

Through high throughput, multiple target multiplex assays, 5 potential disease 

related biomarkers have been identified using a combination of MILLIPLEX® MAP 

Kit: Human Cytokine/Chemokine Magnetic Bead Panel Ⅰ, MILLIPLEX® MAP Kit: 

Human Cytokine/Chemokine Panel Ⅱ and MILLIPLEX® MAP Kit: Human 

Circulating Cancer Biomarker Magnetic Bead Panel 4 and Luminex technologies. 

CD44 was identified as being increased in abundance in 5 patients who underwent 

treatment with Lenalidomide, Dexamethasone and subcutaneous Bortezomib. On 

further analysis, all 5 patients were identified as having a partial response (PR) to 

the treatment administered. No evidence of the presence of CD44 was observed 

in all 5 screening samples but an increased abundance was observed in the 

second sample taken, the lowest of which being 23.2 ng/ml for sample 18.3 (Figure 

6.1). This trend indicates that CD44 may elude to partial response in patients after 

initial treatment. CD44, as discussed in detail in Chapter 3, is a cell surface receptor 

that plays a role in cell-cell interactions, cell migration, response to tissue 

microenvironment changes and cell adhesion (Crosby et al., 2009). CD44 functions 
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in recirculation, inflammation, haematopoiesis, activation and T-lymphocytes 

homing (Funaro et al., 1994). The decreased abundance of CD44 has been 

observed as sensitising myeloma cells to treatment using Lenalidomide (Canella 

et al., 2015) and the increased abundance has shown a direct correlation to both 

Dexamethasone and Bortezomib resistance (Ohwada et al., 2008). Interestingly, 

of the 5 patients with an observed increased abundance, 2 of those patients had 

to be discontinued from the trial due to disease progression. This increased CD44 

could be an early indicator of disease progression while receiving RsqVD 

treatment. Eotaxin is a chemokine which has been implicated in the inflammatory 

response by the recruitment of both eosinophils and neutrophils (Menzies-Gow et 

al., 2002). Through interaction with CC chemokine receptor-3 (CCR3), Eotaxin has 

been seen to promote cell growth and survival, especially of anaplastic large cell 

lymphoma cells (Miyagaki et al., 2011). Eotaxin has previously been confirmed as 

a biomarker for prostate cancer (Ugge et al., 2019), along with ovarian cancer 

(Nolen and Lokshin, 2010) and colorectal cancer (Johdi et al., 2017). The 

significantly increased abundance observed in 3 patients with multiple samples 

enrolled in the RsqVD trial of Eotaxin was noted as being linked to disease 

progression in patients. Notably, all 3 of the patients exhibiting the increase were 

removed from the clinical trial due to progression of MM (Table 6.2). Epidermal 

Growth Factor (EGF), in combination with the EGF receptor control cell 

proliferation, differentiation, motility and survival by downstream activation 

(Massagué and Pandiella, 1993). Significant levels of EGF have previously been 

noted in both MM cell lines and in the BM microenvironment in comparison to 

healthy donors (Cao et al., 2010). Two patients exhibited a significant increase in 

the abundance of EGF from screening sample to second sample taken (Figure 

6.3). Interestingly, both patients were withdrawn from the clinical trial due to 

disease progression. These findings elude to significant increases of EGF have the 
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potential to be considered a marker for disease progression in RsqVD 

administration.  

Generally, bortezomib is the first line of treatment for patients diagnosed with MM. 

Bortezomib, a proteasome inhibitor, has vastly improved the treatment of MM, with 

the use of its treatment directly correlating with increased OS in MM patients. 

Bortezomib, however, has shown important links to adverse side effects, classed as 

toxicity, such as leukopenia, thrombocytopenia and peripheral neuropathy 

(Richardson et al., 2009). These side effects have been observed as a complication 

from IV administration of bortezomib, the prevalence of which has been observed to 

decrease significantly with subcutaneous administration of bortezomib (Hu et al., 

2017). As these adverse side effects cause a significant decrease to a patient’s 

quality of life, predictive markers for the early detection of these are needed. MIP-1α 

and L1CAM were both chosen as potential targets for unique reasons. Both potential 

targets show a significant increase in patients discontinued from the clinical trial due 

to toxicity. A significant increase in the abundance of MIP-1α in patient 27 was 

observed from initial screening sample to the second sample, with a less drastic 

increase observed in patient 34 from initial screening sample to subsequent samples. 

Although there is only one sample within the study for patient 07, a significant peak 

in abundance is observed in comparison to all other patient samples. As the 

abundance of MIP-1α is very low in all other patient samples in comparison to patient 

07, patient 27 and patient 34, it is being hypothesised that MIP-1α plays a role in 

toxicity in patients. Patient 07, patient 27 and patient 34 are the only patients in the 

study that exhibited adverse effects to treatment and, subsequently, are the only 

patients exhibiting a high abundance of MIP-1α (Figure 6.4). MIP-1α is an 

inflammatory CC chemokine, known for promoting cell migration against immune 

cells (Lee et al., 2000). With direct inhibitory activity on normal hematopoietic 

stem/progenitor cells (HSPC) growth (Graham et al., 1990), MIP-1α has previously 

been implicated in the proliferation of chronic myeloid leukaemia (Baba et al., 2013) 
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and MM (Tsubaki et al., 2007). Interestingly, the direct correlation between MIP-1α 

and adverse side effects from bortezomib has previously been identified, linking the 

adverse effects to the inhibition of ERK1/2, Akt and mTOR activation (Tsubaki et al., 

2018). L1CAM (L1 cell adhesion molecule) plays a role in cell migration, cell 

adhesion, cell survival and myelination (Maness and Schachner, 2007) and has 

previously been linked with poor prognosis, advanced tumour stage and metastasis 

in multiple cancer types (Tangen et al., 2017). L1CAM has been considered as a 

suitable biomarker for disease progression in a number of cancer types, such as 

ovarian (Fogel et al., 2003), gastrointestinal (Zander et al., 2011) and breast cancer 

(Wu et al., 2018). Figure 6.5 depicts the increased abundance of L1CAM in all 

patients samples from the RsqVD clinical trial. It’s increased abundance has been 

noted specifically in patient 07, 27 and 34. A significant increase in the abundance 

has been observed specifically in patient 34, but  an increase has also been noted in 

both other patients. All three patients have been withdrawn from the clinical trial due 

to toxicity, leading the prediction that L1CAM plays a role in the development of 

adverse side effects in patients treated with bortezomib.  

As the RsqVD clinical trial develops, more information and samples will become 

readily available for proteomic analysis. This resource has the potential to form 

panels of biomarkers for all MM related complications, such as disease progression, 

adverse side effects of treatment, prognosis prediction etc. The establishment of 

these panels of biomarkers, via proteomics, is hugely important as it will allow the 

identification of disease related complications at early stages, allowing the 

appropriate action to be taken. As the clinical trial is on-going, further analysis and 

validation of the potential biomarkers mentioned above can be done with less 

restriction on patient details, patient response and sample volume.  
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Chapter Seven 
 
The Proteomic Characterization of Acute 
Myeloid Leukaemia Cells and Serum with 
Ranging Prognostic Risk Grouping. 
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7.1 Introduction  
 

With approximately 20,000 diagnosis per year in the USA alone, acute myeloid 

leukaemia (AML) is considered the most common acute leukaemia in adults. This 

rate of diagnosis accounts for approximately 80% of all acute leukaemia diagnosed 

in adults annually (Siegel et al., 2015). Similarly to MM, AML is considered a disease 

of old age, with only 1.3 per 100,000 patients diagnosed with AML being aged under 

65. The trend in age leads to difficulty in disease treatment and, therefore, leads to a 

short OS for AML patients. Younger patients tend to have significant improvements 

in clinical outcomes due to advances in treatment. In patients over 65, it has been 

observed that the average survival rate after diagnosis is less than one year. 

Interestingly, AML comprises 15-20% of leukaemia cases in patients aged ≤15 years, 

with highest incidence occurring in the first year from birth and declining until the age 

of 4 years. Disease diagnosis has been observed to plateau throughout childhood 

and early adulthood, with risk increasing again in later life (Aquino, 2002).  

The abnormal proliferation and differentiation of a clonal population of myeloid stem 

cells, derived from differing chromosomal translocations characteristic of AML, leads 

to the formation of chimeric proteins (RUNX1-RUNX1T1 and PML-RARA) therefore 

altering the normal maturation process of myeloid precursor cells. Some of the 

physical manifestations of AML are anaemia, leukocytosis (an increased abundance 

of white blood cells in the blood), thrombocytopenia (a low blood platelet count), 

fatigue and severe weight loss or anorexia. Swollen or enlarged lymph nodes 

(lymphadenopathy) and enlargement of organs (organomegaly) are rarely observed 

in AML patients but cases of this have been recorded (De Kouchkovsky and Abdul-

Hay, 2016). The proliferation of myeloid stem cells results in the accumulation of 

malignant myeloid cells in the BM, peripheral blood and, in some rare cases, in other 

organs. Further diagnosis is established by demonstrating the origin of the myeloid 

stem cells, determined by myeloperoxidase activity. Minimal requirements for AML 
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diagnosis combine immunophenotyping, morphology, cytochemistry and 

molecular/cytogenetic screening of patients bone marrow aspirate. A peripheral 

blood diagnostic test is sufficient if patient conditions contraindicates a bone marrow 

aspirate, along with a cerebrospinal fluid biopsy for all patients indicating central 

nervous system (CNS) involvement (Creutzig et al., 2012). Immunophenotyping is 

carried out in diagnosis, as AML patients show distinct cytogenetic and molecular 

abnormalities. One of the chromosomal translocations related to AML is t(8;12), 

resulting in the formation of chimeric proteins. These chimeric proteins change 

normal maturation of myeloid precursor cells. The presence of Auer rods, azurophilic, 

needle-shaped cytoplasmic inclusion bodies, are present predominately in AML with 

t(8;21) and diagnosis can also be established due to the presence of extramedullary 

tissue infiltration (Vardiman et al., 2009).  

Three separate classification systems have been employed for the characterisation 

of AML: the French-American British (FAB) classification system, the World Health 

Organisation (WHO) classification system (Table 7.1) and the European 

LeukemiaNet (ELN) Classification system (Table 7.2). The FAB system identifies 

30% blast infiltration as the cut off for diagnosis and classifies AML into 9 sub 

categories, M0-M7. Subject to cell morphology, cytochemical characteristics and cell 

type in which AML cells in question have been derived. This classification system 

focuses on the routine use of microscopy to identify stained, malignant blast cells 

(Bennett et al., 1991). This system aimed to provide a means to distinguish between 

individual cases easily but was noted as unable to differentiate immunophenotypic 

characteristics, failed to identify myelodysplastic alterations and cytogenetic defects 

related to AML. The WHO developed a more inclusive classification system for AML, 

combining genetic information, immunophenotyping, clinical aspects and 

morphological observations to define disease. This classification system divides AML 

into distinct sub categories, combining all recent scientific findings relating to the 

disease (Arber et al., 2016) (Table 7.1). A revised cut off point of ≤20% blast cell 
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infiltration in peripheral blood or BM was also established by the WHO for a more 

well-rounded classification method (Döhner et al., 2010).  

 

 

Table 7.1: WHO Classification of AML.  

*Table was modified from (Arber et al., 2016) 
 

AML Type Genetic Abnormalities 

AML with recurrent 

genetic abnormalities 

AML with t(8;21)(q22;q22); RUNX1-RUNX1T1 

AML with inv(16)(p13.1q22) t(16;16|)(p13.1;q22); 

CBFB-MYH11 

APL with PML-RARA 

AML with t(9;1)(p21.3;q23.3); MLLT3-KMT2A 

ML with t(6;9)(p23;q34.1); DEK-NUP214 

AML with inv(3)(q21.3q26.2) or 

t(3;3)(q21.2;q26.2); GATA2, MECOM 

AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); 

RBM15-MKL1 

AML with BCR-ABL1 (provisional entity) 

AML with mutated NPM1 

AML with biallelic mutations of CEBPA 

AML with mutated RUNX1 (provisional entity) 

AML with myelodysplasia-

related changes 
 

Therapy-related myeloid 

neoplasms 
 

AML not otherwise 

specified 

AML with minimal differentiation 

AML without maturation 

AML with maturation 

Acute myelomonocytic leukemia 

Acute monoblastic/monocytic leukemia 

Acute erythroid leukemia 

Pure erythroid leukemia 

Acute megakaryoblastic leukemia 

Acute basophilic leukaemia 
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Acute panmyelosis with myelofibrosis 

Myeloid Sarcoma  

Myeloid proliferations 

related to Down 

syndrome 

Transient abnormal myelopoiesis 

ML associated with Down syndrome 

 

 

The final classification system, established by the ELN, links cytogenetic aberrations 

with prognosis and therapeutic response, establishing 3 distinct groups: Favourable 

(Group 1), Intermediate (Group 2) and Adverse (Group 3) (Table 7.2). By grouping 

patients by prognosis risk group, it allows more informed clinical decisions to be made 

regarding treatment strategies such as standard or increased intensity courses, 

consolidation chemotherapy or ASCT and choosing between conventional therapies 

or investigational therapies (Döhner et al., 2017). Favourable group 1s are observed 

in approximately 15% of diagnosis cases of AML and have a survival rate of 

approximately 65%, intermediate group 2 patients make up approximately 55% of 

AML cases and have a survival rate of 50% and adverse group 3 patients are 

observed in 30% of AML diagnosis and have a survival rate of 20% (Döhner et al., 

2010). The ELN system also allows the incorporation of patient associated risk 

factors, such as old age, co-existing illnesses and predicted treatment related early 

death to make treatment decisions for a more effective clinical course of action 

(Walter et al., 2011).  
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Table 7.2: AML Prognostic Risk Grouping Based on Cytogenetics and 

Molecular Profile.  

*Table was modified from (De Kouchkovsky and Abdul-Hay, 2016) 
Prognostic-risk 

Group 
Cytogenetic Profile 

Cytogenetic profile and 

Molecular Profile 

Favourable 

(Group 1) 

t(8;21)(q22;q22) 
t(8;21)(q22;q22) with no c-KIT 

mutation 

inv(16)(p13;1q22) inv(16)(p13;1q22) 

t(15;17)(q22;q12) t(15;17)(q22;q12) 

 

Mutated NPM1 without FLT3-

ITD (CN-AML) 

Mutated biallelic CEBPA (CN-

AML) 

Intermediate 

(Group 2) 

CN-AML 
t(8;21)(q22;q22) with muted c-

KIT 

t(9;11)(p22;q23) 

CN-AML other than those 

included in either favourable or 

adverse risk group. 

Cytogenetic 

abnormalities not 

included in either 

favourable or adverse 

risk group. 

t(9;11)(p22;q23) 

Cytogenetic abnormalities not 

included in either favourable or 

adverse risk group. 

Adverse 

(Group 3) 

inv(3)(q21q26.2) 
TP53 mutation, regardless of 

cytogenetic profile 

t(6;9)(p23;q34) 

CN with FLT3-ITD 

CN with DNMT3A 

CN with KMT2A-PTD 

11q abnormalities other 

than t(9;11) 
inv(3)(q21q26.2) 

-5 or del(5q) 

t(6;9)(p23;q34) 

11q abnormalities other than 

t(9;11) 

-7 5 or del(5q) 

Complex karyotype -7 
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Clinical decisions on the treatment of AML are made according to disease prognostic 

risk group, age and overall health status of the patient. Induction therapy is the first 

line of action in treatment, usually employing a “7+3” treatment regime. This course 

entails a patient undergoing treatment using a combination of 7 days infusion 

cytarabine, followed by 3 days of anthracycline (Dombret and Gardin, 2016) and is 

prescribed to patients with prognostic group 1 or 2 and patients with a low risk of 

treatment related mortality (Estey, 2014). Complete Remission (CR) is obtained by 

60-80% of patients less than 60 years of age and 40-60% in patients over the age of 

60 after “7+3” treatment regime (Büchner et al., 2012). As with MM, AML is a disease 

linked with extensive amounts of relapse cases. The inevitability of relapse in AML is 

linked to minimal residual disease (MRD) persisting in CR (defined as <5% blast 

count in total nonerythroid cells in the BM) (Chen et al., 2015). After induction therapy, 

patients who reach CR have been noted as having significantly increased OS in 

comparison to those who are noted as treatment resistant. This increased survival 

does, however, depend on the presence of persistent thrombocytopenia, which has 

been observed as directly correlating with a shorter OS (Walter et al., 2010). The 

detection of MRD, by flow cytometry, is an indicator of disease relapse and 

subsequent survival for both favourable and intermediate prognostic risk groups 

(Buccisano et al., 2012). When relapse occurs in patients, consolidation therapy is 

utilised in one of three methods: high dose chemotherapy paired with allogeneic HLA-

matched stem cell transplant from biological sibling, high dose chemotherapy paired 

with ASCT or conventional dose chemotherapy (Löwenberg, 2013). 
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7.1.1 Experimental Design 
 

7.1.1.1 Patients and Samples 

 

Both plasma cell and serum AML samples were collected from 49 patients with 

varying grade of disease, ranging from grade 1 to grade 3. This grading was carried 

out by the participating hospitals and the study was approved in compliance with the 

Declaration of Helsinki. These samples were obtained from the Finnish Haematology 

Registry and Clinical Biobank (FHRB).  Patient details for plasma cell samples used 

(40 samples) are detailed on Table 7.3 and patient details for serum samples used 

(49) are detailed in Table 7.4. 

 

 

Table 7.3: Patient details of cell lysate samples analysed by LC-MS/MS 

 

Sample 

ID 
Gender 

Diagnosis 

Age 

Risk 

Class 
Diagnosis Type 

1266 Female 46.4 1 
9871 Ac. myelomonocytic leuk. 

w abn. mar. eosinophils 

1497 Female 35.3 1 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

1644 Male 21.6 1 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

2688 Female 67.3 1 9861 Acute myeloid leukemia 

2788 Female 68.8 1 9861 Acute myeloid leukemia 

2908 Male 16.8 1 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

3101 Female 55.5 1 
9873 Acute myeloid leukemia 

without maturation 

3708 Female 44.8 1 9861 Acute myeloid leukemia 

3786 Female 53.5 1 
9874 Acute myeloid leukemia 

with maturation 

3884 Male 72.8 1 9861 Acute myeloid leukemia 
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Sample 

ID 
Gender 

Diagnosis 

Age 

Risk 

Class 
Diagnosis Type 

3893 Female 48.7 1 
9891 Acute monocytic 

leukemia 

1219 Male 76.9 2 9861 Acute myeloid leukemia 

1712 Female 62.9 2 
9874 Acute myeloid leukemia 

with maturation 

1886 Male 56.5 2 9861 Acute myeloid leukemia 

2035 Female 63.8 2 9861 Acute myeloid leukemia 

2067 Female 78.1 2 
9891 Acute monocytic 

leukemia 

2098 Female 24.3 2 9861 Acute myeloid leukemia 

2774 Male 67.3 2 
9895 Acute myeloid leuk. with 

multilineage dysplasia 

2796 Female 48.6 2 
9873 Acute myeloid leukemia 

without maturation 

2889 Male 72.6 2 
9874 Acute myeloid leukemia 

with maturation 

3298 Male 16.5 2 
9891 Acute monocytic 

leukemia 

3520 Female 62.9 2 9861 Acute myeloid leukemia 

3730 Female 61.5 2 
9891 Acute monocytic 

leukemia 

3822 Female 66.7 2 
9897 Acute myeloid leukemia, 

11q23 abnormalities 

3869 Male 57 2 
9874 Acute myeloid leukemia 

with maturation 

4021 Female 35.4 2 
9920 Therapy-related acute 

myeloid leukemia, NOS 

4980 Female 68.2 2  

1314 Female 76.6 3 
9873 Acute myeloid leukemia 

without maturation 

1320 Female 54.3 3 
9867 Acute myelomonocytic 

leukemia 

1413 Male 28.6 3 
9891 Acute monocytic 

leukemia 
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Sample 

ID 
Gender 

Diagnosis 

Age 

Risk 

Class 
Diagnosis Type 

2095 Male 66.7 3 
9873 Acute myeloid leukemia 

without maturation 

2294 Female 52 3 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

3443 Female 21.8 3 
9873 Acute myeloid leukemia 

without maturation 

3490 Male 44.6 3 
9873 Acute myeloid leukemia 

without maturation 

3591 Female 71.1 3 
9873 Acute myeloid leukemia 

without maturation 

3600 Female 39.7 3 
9891 Acute monocytic 

leukemia 

3630 Male 40.6 3 9861 Acute myeloid leukemia 

3853 Female 59.4 3 

9865 Acute myeloid leukemia 

with t(6;9)(p23;q34) DEK-

NUP214 

4000 Male 77.7 3 
9895 Acute myeloid leuk. with 

multilineage dysplasia 

4919 Male 62.5 3 
9727 Precursor cell 

lymphoblastic lymphoma, NOS 

5034 Female 64.7 3 
9920 Therapy-related acute 

myeloid leukemia, NOS 
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Table 7.4: Patient details of serum samples included in Luminex study 

 

Sample 

ID 
Gender 

Diagnosis 

Age 

Risk 

Class 
Diagnosis Type 

1266 Female 46.4 1 
9871 Ac. myelomonocytic 

leuk. w abn. mar. eosinophils 

1497 Female 35.3 1 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

1644 Male 21.6 1 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

2688 Female 67.3 1 9861 Acute myeloid leukemia 

2788 Female 68.8 1 9861 Acute myeloid leukemia 

2908 Male 16.8 1 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

3101 Female 55.5 1 
9873 Acute myeloid leukemia 

without maturation 

3708 Female 44.8 1 9861 Acute myeloid leukemia 

3769 Male 50 1 9861 Acute myeloid leukemia 

3786 Female 53.5 1 
9874 Acute myeloid leukemia 

with maturation 

3884 Male 72.8 1 9861 Acute myeloid leukemia 

3893 Female 48.7 1 
9891 Acute monocytic 

leukemia 

1219 Male 76.9 2 9861 Acute myeloid leukemia 

1690 Female 63.2 2 9861 Acute myeloid leukemia 

1712 Female 62.9 2 
9874 Acute myeloid leukemia 

with maturation 

1886 Male 56.5 2 9861 Acute myeloid leukemia 

2035 Female 63.8 2 9861 Acute myeloid leukemia 

2067 Female 78.1 2 
9891 Acute monocytic 

leukemia 

2098 Female 24.3 2 9861 Acute myeloid leukemia 

2448 Male 72.6 2 
9874 Acute myeloid leukemia 

with maturation 

2774 Male 67.3 2 
9895 Acute myeloid leuk. with 

multilineage dysplasia 
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Sample 

ID 
Gender 

Diagnosis 

Age 

Risk 

Class 
Diagnosis Type 

2796 Female 48.6 2 
9873 Acute myeloid leukemia 

without maturation 

2889 Male 72.6 2 
9874 Acute myeloid leukemia 

with maturation 

3298 Male 16.5 2 
9891 Acute monocytic 

leukemia 

3520 Female 62.9 2 9861 Acute myeloid leukemia 

3730 Female 61.5 2 
9891 Acute monocytic 

leukemia 

3822 Female 66.7 2 
9897 Acute myeloid leukemia, 

11q23 abnormalities 

3869 Male 57 2 
9874 Acute myeloid leukemia 

with maturation 

4021 Female 35.4 2 
9920 Therapy-related acute 

myeloid leukemia, NOS 

4980 Female 68.2 2  

5184 Female 78.7 2 
9897 Acute myeloid leukemia, 

11q23 abnormalities 

1314 Female 76.6 3 
9873 Acute myeloid leukemia 

without maturation 

1320 Female 54.3 3 
9867 Acute myelomonocytic 

leukemia 

1413 Male 28.6 3 
9891 Acute monocytic 

leukemia 

1867 Male 70 3 
9891 Acute monocytic 

leukemia 

2095 Male 66.7 3 
9873 Acute myeloid leukemia 

without maturation 

2294 Female 52 3 
9896 Acute myeloid leukemia, 

t(8;21)(q22;q22) 

3443 Female 21.8 3 
9873 Acute myeloid leukemia 

without maturation 

3490 Male 44.6 3 
9873 Acute myeloid leukemia 

without maturation 
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Sample 

ID 
Gender 

Diagnosis 

Age 

Risk 

Class 
Diagnosis Type 

3529 Male 54.1 3 
9891 Acute monocytic 

leukemia 

3591 Female 71.1 3 
9873 Acute myeloid leukemia 

without maturation 

3600 Female 39.7 3 
9891 Acute monocytic 

leukemia 

3630 Male 40.6 3 9861 Acute myeloid leukemia 

3853 Female 59.4 3 

9865 Acute myeloid leukemia 

with t(6;9)(p23;q34) DEK-

NUP214 

4000 Male 77.7 3 
9895 Acute myeloid leuk. with 

multilineage dysplasia 

4690 Male 52.3 3 
9874 Acute myeloid leukemia 

with maturation 

4919 Male 62.5 3 

9727 Precursor cell 

lymphoblastic lymphoma, 

NOS 

4991 Male 64 3 
9873 Acute myeloid leukemia 

without maturation 

5034 Female 64.7 3 
9920 Therapy-related acute 

myeloid leukemia, NOS 

 

7.1.1.2 Label-free LC-MS/MS Analysis of AML Cell Lysates. 

AML patient cells were initially lysed in RIPA buffer (25mM Tris, pH 7 – 8; 150 mM 

NaCl; 0.1% SDS; 0.5% sodium deoxycholate and 1% NP-40). The lysates were buffer 

exchanged using the 'filter aided sample preparation' (FASP) method in a buffer 

containing 8M urea/50 mM NH4HCO3/0.1% ProteaseMax. The protein amount was 

estimated using an RC/DC protein assay from Bio-Rad. BSA was used as a standard. 

After dithiothreitol reduction and iodoacetic acid-mediated alkylation, a double 

digestion was performed using Lys-C (for 4 hours at 37°C) and Trypsin (overnight at 

37°C) on 10µg of protein. Digested samples were desalted prior to analysis using 



 212 

C18 spin columns (Thermo Scientific, UK). 500 ng of each digested sample was 

loaded onto a Q-Exactive (ThermoFisher Scientific, Hemel Hempstead, UK) high-

resolution accurate mass spectrometer connected to a Dionex Ultimate 3000 

(RSLCnano) chromatography system (ThermoFisher Scientific, Hemel Hempstead, 

UK). Peptides were separated using a 2% to 40% gradient of acetonitrile on a 

Biobasic C18 Picofrit column (ThermoFisher Scientific, Hemel Hempstead, UK) 

(100mm length, 75mm ID) over 65 min at a flow rate of 250nl/min. Data was acquired 

with the mass spectrometer operating in automatic data dependent switching mode. 

A full MS scan at 140,000 resolution and a range of 300–1700 m/z was followed by 

an MS/MS scan, resolution 17,500 and a range of 200–2000 m/z, selecting the 10 

most intense ions prior to MS/MS. 

 

7.1.1.3 Data analysis of all statistically significantly proteins with altered 

abundance for each diagnostic group. 

Protein identification and label-free quantification (LFQ) normalisation of MS/MS data 

was performed using MaxQuant v1.5.2.8 (http://www.maxquant.org). The 

Andromeda search algorithm incorporated in the MaxQuant software was used to 

correlate MS/MS data against the Homo sapiens Uniprot reference proteome 

database and a contaminant sequence set provided by MaxQuant. Perseus v.1.5.6.0 

(www.maxquant.org/) was used for data analysis, processing and visualisation. 

Normalised LFQ intensity values were used as the quantitative measurement of 

protein abundance for subsequent analysis. The data matrix was first filtered for the 

removal of contaminants and peptides identified by site. LFQ intensity values were 

log2 transformed and each sample was assigned to its corresponding group. 

ANOVA-based multisample t-tests were performed using a cut-off of p<0.05 on the 

post imputated dataset to identify statistically significant differentially abundant 

proteins. 
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7.1.1.4 Bioinformatic analysis of all statistically significantly proteins 

with altered abundance for each treatment. 

In order to group identified proteins based on their protein class and to identify 

potential protein targets with increased abundance in all three patient prognostic risk 

groups, publicly available bioinformatics software programmes were employed. The 

programs used were the PANTHER database of protein families 

(http://pantherdb.org/). KEGG colour pathway analysis was carried out with a focus 

on proteins increased in abundance in both patient groupings using the Kyoto 

Encyclopaedia of Genes and Genomes databank (https://www.genome.jp/kegg). 

 

7.1.1.5 MILLIPLEX® MAP Kit analysis using Luminex technology of AML 

patient serum.  

 

MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Magnetic Bead Panel Ⅰ, 

MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Panel Ⅱ and MILLIPLEX® MAP 

Kit: Human Circulating Cancer Biomarker Magnetic Bead Panel 4 were all used in 

the targeted analysis of patient serum samples, ranging in prognostic risk grouping 

from group 1 to group 3. 25μl crude serum was used per sample and all 

manufacturers guidelines were followed, with variations stated in Chapter 2.   
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7.2 Results 
 
7.2.1 Quantitative Proteomic Analysis of AML Cell Lysates using Label-

Free LC-MS/MS for Group 1 (Favourable) versus Group 3 (Adverse). 

 

In-depth proteomic analysis of 11 Group 1 samples and 13 Group 3 samples 

identified 65 statistically significantly changed proteins (p>0.05). Of these 65 

statistically significant proteins, 8 were observed to have an increased abundance in 

group 1 patients, in comparison to group 3, and 57 proteins were observed to have 

an increased abundance in group 3, in comparison to group 1.  Fold changes as high 

as 1.978 times were recorded for Receptor-type tyrosine-protein phosphatase C in 

group 1 to group 3 and fold changes as high as 6.954 were recorded for Transcription 

intermediary factor 1-beta in group 3 compared to group 1 (Table 7.5). 

 

Table 7.5: List of proteins with statistically significant altered abundance 

between Group 1 and Group 3, identified by label-free LC-MS/MS and 

Perseus analysis. 

 

Gene name Protein ID 
ANOVA p 

value 

↑ in Gr1 

(fold-

change) 

↑ in Gr3 

(fold-

change) 

LA Lupus La protein 0.001  4.138 

OTUB1 Ubiquitin thioesterase 0.001  2.212 

CNDP2 
Cytosolic non-specific 

dipeptidase 
0.001  5.283 

RAN 
GTP-binding nuclear 

protein 
0.001  2.531 

HNRPC 
Heterogeneous nuclear 

ribonucleoproteins C1/C2 
0.002  4.106 

HNRPQ 
Heterogeneous nuclear 

ribonucleoprotein Q 
0.003  4.228 
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Gene name Protein ID 
ANOVA p 

value 

↑ in Gr1 

(fold-

change) 

↑ in Gr3 

(fold-

change) 

CH60 
60 kDa heat shock protein, 

mitochondrial 
0.003  6.610 

PRDX6 Peroxiredoxin-6 0.004  2.927 

TBA1B Tubulin alpha-1B chain 0.005  3.711 

TERA 
Transitional endoplasmic 

reticulum ATPase 
0.006  2.235 

SET Protein SET 0.006  2.172 

ROA2 
Heterogeneous nuclear 

ribonucleoproteins A2/B1 
0.006  2.839 

CAPZB 
F-actin-capping protein 

subunit beta 
0.007 1.419  

RCC2 Protein RCC2 0.007  2.001 

ECHA 

Trifunctional enzyme 

subunit alpha, 

mitochondrial 

0.007  4.205 

ARPC4 
Actin-related protein 2/3 

complex subunit 4 
0.007 1.267  

PTPRC 
Receptor-type tyrosine-

protein phosphatase C 
0.007 1.978  

NONO 

Non-POU domain-

containing octamer-binding 

protein 

0.008  2.475 

THIO Thioredoxin 0.009  2.897 

ILF3 
Interleukin enhancer-

binding factor 3 
0.011  1.981 

VIME Vimentin 0.011  3.464 

TALDO Transaldolase 0.012  2.122 

LDHA 
L-lactate dehydrogenase A 

chain 
0.013  1.990 

TCPH 
T-complex protein 1 

subunit eta 
0.013  2.322 

NUCL Nucleolin 0.014  2.828 
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Gene name Protein ID 
ANOVA p 

value 

↑ in Gr1 

(fold-

change) 

↑ in Gr3 

(fold-

change) 

NAGK 
N-acetyl-D-glucosamine 

kinase 
0.016 1.672  

DHX9 
ATP-dependent RNA 

helicase A 
0.016  4.069 

PRDX4 Peroxiredoxin-4 0.016  1.041 

TCP4 

Activated RNA polymerase 

II transcriptional 

coactivator p15 

0.017  2.524 

HS90A 
Heat shock protein HSP 

90-alpha 
0.018  1.919 

ROA1 
Heterogeneous nuclear 

ribonucleoprotein A1 
0.018  2.548 

LDHB 
L-lactate dehydrogenase B 

chain  
0.019  2.609 

EF1A3 
Putative elongation factor 

1-alpha-like 3 
0.020  2.408 

FEN1 Flap endonuclease 1 0.020  1.805 

EF2 Elongation factor 2 0.021  1.925 

NPM Nucleophosmin 0.024  2.604 

F10A1 Hsc70-interacting protein 0.025  2.431 

1433Z 14-3-3 protein zeta/delta 0.026  1.593 

TIF1B 
Transcription intermediary 

factor 1-beta 
0.027  6.954 

ESTD 
S-formylglutathione 

hydrolase 
0.028  2.092 

HNRH1 
Heterogeneous nuclear 

ribonucleoprotein H 
0.029  2.369 

LC7L2 
Putative RNA-binding 

protein Luc7-like 2 
0.030  2.108 

TCPZ 
T-complex protein 1 

subunit zeta 
0.030  1.745 

GANAB 
Neutral alpha-glucosidase 

AB 
0.030  2.254 
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Gene name Protein ID 
ANOVA p 

value 

↑ in Gr1 

(fold-

change) 

↑ in Gr3 

(fold-

change) 

PGAM1 Phosphoglycerate mutase 1 0.031 1.298  

ACTB Actin, cytoplasmic 1 0.031  1.694 

PARP1 
Poly [ADP-ribose] 

polymerase 1 
0.032  2.879 

RUVB2 RuvB-like 2 0.032  2.135 

NPS3A 
Protein NipSnap homolog 

3A 
0.034 1.192  

NDKB 
Nucleoside diphosphate 

kinase B 
0.034  2.163 

RHOA Transforming protein RhoA 0.035  1.599 

SFPQ 
Splicing factor, proline- and 

glutamine-rich 
0.035  1.949 

IF4A3 
Eukaryotic initiation factor 

4A-III 
0.035  2.311 

HNRPU 
Heterogeneous nuclear 

ribonucleoprotein U 
0.037  2.430 

DLDH 
Dihydrolipoyl 

dehydrogenase, 
mitochondrial 

0.039  2.613 

RSSA 40S ribosomal protein SA 0.041  3.584 

ROA3 
Heterogeneous nuclear 

ribonucleoprotein A3 
0.042  2.377 

G3P 
Glyceraldehyde-3-

phosphate dehydrogenase 
0.042  2.775 

RS3 40S ribosomal protein S3 0.042  4.481 

FSCN1 Fascin 0.044  1.014 

RL40 
Ubiquitin-60S ribosomal 

protein L40 
0.046 1.219  

PDIA3 
Protein disulfide-isomerase 

A3 
0.049  1.687 

HSP7C 
Heat shock cognate 71 kDa 

protein 
0.049  1.743 

TSN Translin 0.050 1.167  
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7.2.2 Quantitative Proteomic Analysis of AML Cell Lysates using Label-

Free LC-MS/MS for Group 1 (Favourable) versus Group 2 (Intermediate). 

 

The in-depth proteomic analysis of 11 Group 1 samples and 16 Group 2 samples 

revealed 18 statistically significantly changed (p>0.05) proteins with altered 

abundance between group 1 and group 2. Of these identified proteins, 7 were 

confirmed to have an increased abundance in group 1 and 9 were noted as having 

an increase abundance in group 2. Fold changes as high as 2.263 for Spectrin alpha 

chain, non-erythrocytic 1 were noted in group 1, in comparison to group 2, and fold 

changes as high as 5.218 were observed in group 2 in comparison to group 1 for 

Carbonic anhydrase 1 (Table 7.6) 

 

Table 7.6: List of Proteins with Altered Abundance between Group 1 and 

Group 2, Identified by Label-free LC-MS/MS and Perseus Analysis. 

 

Gene name Protein ID 
ANOVA 

p value 

↑ in Gr1 

(fold-

change) 

↑ in Gr2 

(fold-

change) 

UBP7 
Ubiquitin carboxyl-terminal 

hydrolase 7 
0.001 1.424  

HS105 Heat shock protein 105 kDa 0.004  2.017 

DPYL2 
Dihydropyrimidinase-related 

protein 2 
0.006  1.165 

SRSF2 
Serine/arginine-rich splicing 

factor 2 
0.007  1.130 

FUS RNA-binding protein FUS 0.010 1.581  

RTCB 
tRNA-splicing ligase RtcB 

homolog 
0.012 1.448  

ANM1 
Protein arginine N-

methyltransferase 1 
0.017 1.251  

PSA1 
Proteasome subunit alpha 

type-1 
0.020 1.212  
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HNRL1 

Heterogeneous nuclear 

ribonucleoprotein U-like 

protein 1 

0.020  1.067 

RAB5C Ras-related protein Rab-5C 0.022  1.314 

SYVC Valine--tRNA ligase 0.030 1.267  

1433Z 14-3-3 protein zeta/delta 0.032  1.244 

CAH1 Carbonic anhydrase 1 0.035  5.218 

SPTN1 
Spectrin alpha chain, non-

erythrocytic 1 
0.035 2.263  

LDHA 
L-lactate dehydrogenase A 

chain 
0.043  1.317 

FLNA Filamin-A 0.045  1.461 

ANXA6 Annexin A6 0.046  1.290 

G6PD 
Glucose-6-phosphate 1-

dehydrogenase 
0.048  1.815 

 

 

 

7.2.3 Quantitative Proteomic Analysis of AML Cell Lysates using Label-

Free LC-MS/MS for Group 2 (Intermediate) versus Group 3 (Adverse). 

 

The in-depth proteomic analysis of 16 Group 2 samples and 13 Group 3 samples 

revealed 41 statistically significantly changed (p>0.05) proteins with altered 

abundance between group 2 and group 3 patients. Of these 41 proteins, 31 were 

seen to be differentially abundant in group 2 and 10 were found to have an altered 

abundance in group 3. Fold changes as high as 11.978 were observed for DNA-

dependent protein kinase catalytic subunit in group 2 and fold changes as high as 

8.187 for Haemoglobin subunit delta were recorded for the abundance change from 

group 3 to group 2 (Table 7.7). 
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Table 7.7: List of proteins with altered abundance between Group 2 and 

Group 3, identified by label-free LC-MS/MS and Perseus analysis. 

 

Gene name Protein ID 
ANOVA 

p value 

↑ in Gr2 

(fold-

change) 

↑ in Gr3 

(fold-

change) 

DHX9 
ATP-dependent RNA 

helicase A 
0.000 3.410  

ATPB 
ATP synthase subunit beta, 

mitochondrial 
0.001 6.149  

GSTK1 
Glutathione S-transferase 

kappa 1 
0.001 6.689  

AHNK 
Neuroblast differentiation-

associated protein AHNAK 
0.004 6.487  

SYNC 
Asparagine--tRNA ligase, 

cytoplasmic 
0.004 1.390  

TCPA 
T-complex protein 1 subunit 

alpha 
0.005 2.220  

1433G 14-3-3 protein gamma 0.007 1.337  

CH60 
60 kDa heat shock protein, 

mitochondrial 
0.010 2.924  

VATA 
V-type proton ATPase 

catalytic subunit A 
0.010 2.286  

PRKDC 
DNA-dependent protein 

kinase catalytic subunit 
0.010 11.978  

TAGL2 Transgelin-2 0.011 1.733  

RPN1 

Dolichyl-

diphosphooligosaccharide--

protein glycosyltransferase 

subunit 1 

0.012 1.873  

TCPH 
T-complex protein 1 subunit 

eta 
0.013 1.679  

UB2V1 
Ubiquitin-conjugating 

enzyme E2 variant 1 
0.013  1.357 

PA2G4 
Proliferation-associated 

protein 2G4 
0.016  1.067 
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Gene name Protein ID 
ANOVA 

p value 

↑ in Gr2 

(fold-

change) 

↑ in Gr3 

(fold-

change) 

ROA2 
Heterogeneous nuclear 

ribonucleoproteins A2/B1 
0.016 1.457  

ATPA 
ATP synthase subunit alpha, 

mitochondrial 
0.018 5.940  

UBA1 
Ubiquitin-like modifier-

activating enzyme 1 
0.020 1.559  

FUBP1 
Far upstream element-

binding protein 1 
0.020 1.917  

TCPG 
T-complex protein 1 subunit 

gamma 
0.020 1.642  

TBB4B Tubulin beta-4B chain 0.021 4.392  

FUBP2 
Far upstream element-

binding protein 2 
0.022 2.836  

PNPH 
Purine nucleoside 

phosphorylase 
0.023  2.214 

GSTO1 
Glutathione S-transferase 

omega-1 
0.025  1.909 

CAN1 Calpain-1 catalytic subunit 0.026 1.469  

HBB Haemoglobin subunit beta 0.029  4.749 

BAX Apoptosis regulator BAX 0.029 1.854  

EF2 Elongation factor 2 0.030 1.362  

DDX1 
ATP-dependent RNA 

helicase DDX1 
0.031 3.311  

URP2 Fermitin family homolog 3 0.031 1.791  

HBA Haemoglobin subunit alpha 0.032  5.373 

ESTD 
S-formylglutathione 

hydrolase 
0.032  1.372 

HBD Haemoglobin subunit delta 0.034  8.187 

ACTZ Alpha-centractin 0.038 1.899  

TCPB 
T-complex protein 1 subunit 

beta 
0.039 1.635  

CBX3 
Chromobox protein homolog 

3 
0.040  1.237 
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Gene name Protein ID 
ANOVA 

p value 

↑ in Gr2 

(fold-

change) 

↑ in Gr3 

(fold-

change) 

TIF1B 
Transcription intermediary 

factor 1-beta 
0.043 2.774  

PGM1 Phosphoglucomutase-1 0.045  1.139 

IF4A1 
Eukaryotic initiation factor 

4A-I 
0.045 2.943  

CPNS1 Calpain small subunit 1 0.047 3.485  

TCPE 
T-complex protein 1 subunit 

epsilon 
0.048 1.643  

 

 

 

7.2.4 Comparative Analysis of Biological Processes Related to Protein 

Signatures Abundant in Group 1 and Group 3. 

 

Bioinformatic analysis, using KEGG software, was carried out on each individual 

prognostic risk group, identifying the pathways associated with the proteins with 

changed abundance. The proteins with altered abundance Group 1, in comparison 

to Group 3, was most associated with metabolic pathways and 

glycolysis/gluconeogenesis. Group 3 also showed an increased abundance of 

proteins associated with metabolic pathways and glycolysis/gluconeogenesis, in 

comparison to Group 1. Unsurprisingly, the amount of protein related pathways for 

group 3 is vastly more than that of group 1, with proteins related to microRNAs in 

cancer, tight junction and endocytosis pathways (Figure 7.1). 

  

 



 223 

 

Figure 7.1: Comparative bar chart of  KEGG Pathway associated with 

differentially abundant proteins from Group 1 to Group 3.  

This figure depicts a comparison of the number of proteins, identified by Perseus 

analysis, associated with each individual KEGG pathway. Group 1 is depicted in blue 

and Group 3 is depicted in pink. 

 

 

7.2.5 Comparative Analysis of Biological Processes Related to Protein 

Signatures Abundant in Group 1 and Group 2. 

 

Bioinformatic analysis, using KEGG software, was carried out on each individual 

prognostic risk group, identifying the pathways associated with the proteins with 

changed abundance. The proteins with altered abundance Group 1, in comparison 

to Group 2, was most associated with metabolic pathways and 

glycolysis/gluconeogenesis, followed by carbon metabolism. Group 2 also showed 

an increased abundance of proteins associated with metabolic pathways, 

glycolysis/gluconeogenesis and carbon metabolism, in comparison to Group 1. 
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Group 1 also showed an increased abundance of proteins related to HIF-1 signalling 

pathway, which was not recorded in Group 2 (Figure 7.2). 

 

 

 

 

Figure 7.2: Comparative bar chart of  KEGG Pathway associated with 

differentially abundant proteins from Group 1 to Group 3.  

This figure depicts a comparison of the number of proteins, identified by Perseus 

analysis, associated with each individual KEGG pathway. Group 1 is depicted in blue 

and Group 2 is depicted in green. 
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glycolysis/gluconeogenesis and  carbon metabolism. Group 3 also showed an 

increased abundance of proteins associated with metabolic pathways, 

glycolysis/gluconeogenesis and carbon metabolism, in comparison to Group 2. 

Group 2 showed an increased abundance in proteins related to Protein processing 

in endoplasmic reticulum and oxidative phosphorylation pathways, neither of which 

were recorded in Group 3 proteins (Figure 7.3). 

 

 

 

Figure 7.3: Comparative bar chart of  KEGG Pathway associated with 

differentially abundant proteins from Group 2 to Group 3.  

This figure depicts a comparison of the number of proteins, identified by Perseus 

analysis, associated with each individual KEGG pathway. Group 2 is depicted in 

green and Group 3 is depicted in pink. 
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7.2.7 Luminex Technology Analysis of AML Patient Serum Samples with 

Varying Prognostic Risk Grouping. 

For further identification of changes in the proteomic profile of varying prognostic risk 

groups in AML MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Magnetic Bead 

Panel Ⅰ, MILLIPLEX® MAP Kit: Human Cytokine/Chemokine Panel Ⅱ and 

MILLIPLEX® MAP Kit: Human Circulating Cancer Biomarker Magnetic Bead Panel 4 

were utilised. The analysis of the changed abundance of targeted proteins in 49 AML 

serum from Group 1 (Favourable), Group 2 (Intermediate) and Group 3 (Adverse) 

patients allowed the identification of previously established biomarkers, implicated in 

multiple types of cancers, in AML serum. Box and whisker plots were constructed 

from the findings of all three MILLIPLEX® MAP Kits, to illustrate the range, median 

and quartiles for the specific markers used. Of the 62 potential biomarkers tested,  

Interleukin-17A (IL-17A), Interleukin -1 receptor (IL-1RA), Interleulin-1 alpha (IL-1α) 

and Stromal cell-derived factor 1 (SDF1Aβ) were found to have statistically significant 

changes in abundance over the three prognostic risk groups. IL-17A exhibits an 

increase with statistical significance of 0.03 from group 2 to group 3 and a significant 

increase of 0.025 from group 1 to group 3 (Figure 7.4). Analysis of IL-1RA indicates 

a significant increase in abundance of p=0.032 for group 1 versus group 2 and 

p=0.045 for group 2 versus group 3 (Figure 7.5). IL-1α was observed to have a 

significant increase of p=0.039 in group 2 versus group 1 only (Figure 7.6) and 

SDF1Aβ was observed to have a significantly changed abundance from group 1 to 

group 2 of p=0.025 and group 1 versus group 3 of p=0.029 (Figure 7.7). All p values 

were calculated using the Mann Whitney U Test, where p ≤ 0.05. 
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Figure 7.4: Box and Whisker plot for IL-17A abundance in AML serum 

samples. 

Shown is a box and whisker plot from Luminex analysis carried out using AML serum 

samples from favourable, intermediate and adverse prognostic risk groups for IL-17A. 

Green indicates statistical significance (p ≤ 0.05). There are no minimum or maximum 

outliers observed in the changed abundance of IL-17A.  
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Figure 7.5: Box and Whisker plot for IL-1RA abundance in AML serum 

samples. 

Shown is a box and whisker plot from Luminex analysis carried out using AML serum 

samples from favourable, intermediate and adverse prognostic risk groups for IL-

1RA. Green indicates statistical significance (p ≤ 0.05). There are no minimum or 

maximum outliers observed in the changed abundance of IL-1RA. 
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Figure 7.6: Box and Whisker Plot for IL-1α abundance in AML serum 

samples. 

Shown is a box and whisker plot from Luminex analysis carried out using AML serum 

samples from favourable, intermediate and adverse prognostic risk groups for IL-1α. 

Green indicates statistical significance (p ≤ 0.05).  
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Figure 7.7: Box and Whisker Plot for SDF1αβ abundance in AML serum 

samples. 

Shown is a box and whisker plot from Luminex analysis carried out using AML serum 

samples from favourable, intermediate and adverse prognostic risk groups for 

SDF1Aβ. Green indicates statistical significance (p ≤ 0.05). There are no minimum 

observed in the changed abundance of SDF1Aβ. 
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7.3 Discussion  
 

AML is a heterogeneous disorder, caused by the abnormal proliferation and 

differentiation of a clonal population of myeloid stem cells, due to the production of 

chimeric proteins which alter normal maturation of myeloid precursor cells. 97% of 

AML patients present genetic abnormalities (Patel et al., 2012), the prevalence of 

which led to the ELN classification system for prognostic determination. The 

formation of these grouping guidelines led to more efficient diagnosis of AML and 

faster determination of treatment course for patients.  

With little proteomic analysis carried out for AML, the identification of potential protein 

biomarkers for disease diagnosis, treatment response, prognosis and progression is 

a novel area with much needed work. The in-depth analysis of both lysed AML cell 

samples by label-free LC-MS/MS and AML serum samples by Luminex technologies 

revealed multiple potential target proteins with altered abundance across favourable 

group 1, intermediate group 2 and adverse group 3. The LC-MS/MS analysis 

revealed the potential of multiple markers with altered abundance between each 

prognostic risk groups. The 65 statistically significant, differentially abundant proteins 

in favourable to adverse groups revealed the increased abundance of Receptor-type 

tyrosine-protein phosphatase C from group 1 to group 3, with a fold increase of 1.978 

(Table 7.5). Receptor-type tyrosine-protein phosphatase C is a tyrosine-protein 

phosphatase essential for T-cell activation, acting as a positive regulator of T-cell 

coactivation after binding to Dipeptidyl peptidase 4 (Charbonneau et al., 1988). The 

increased abundance of Transcription intermediary factor 1-beta was recorded in 

group 3 in comparison to group 1, with a fold increase of 6.954 (Table 7.5). 

Transcription intermediary factor 1-beta has previously been noted as being required 

for the transcriptional repressor activity of FOXP3 and has been observed as 

functionally supressing regulator T-cells (Huang et al., 2013). Interestingly, 

transcription intermediary factor 1-beta has been implicated in the progressive 
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chronic lymphocytic leukaemia (Huang et al., 2016), indicating a similarity between 

the two haematological malignancies. The 18 statistically significant, differentially 

abundant proteins when comparing group 1 and group 2 revealed a differing 

proteomic signature between favourable and intermediate AML prognostic risk 

groups (Table 7.6). Spectrin alpha chain, non-erythrocytic 1 was noted as being 

increased in abundance in favourable prognostic group in comparison to intermediate 

prognostic group, with a fold increase of 2.263. Spectrin alpha chain, non-erythrocytic 

1 is noted as being a significant component of neuronal cytoskeletal and has been 

previously implicated in atypical chronic myeloid leukaemia in patients presenting 

with t(1;9)(p34;q34) aberration (Sheng et al., 2017). Carbonic anhydrase 1 was noted 

as being significantly increased in group 2 in comparison to group 1, exhibiting a 

5.218 fold abundance increase. Carbonic anhydrase 1 (CA1) is a cytoplasmic protein. 

It is the most abundant of the CA family in adult red blood cells (Pocker and Sarkanen, 

1978) and has been linked to hypertension. Decreased abundance is also linked to 

anaemia and type Ⅱ diabetes (Gambhir et al., 2007), with CA Ⅸ and CA Ⅻ having 

already been identified as biomarkers for disease diagnosis, staging and progression 

in multiple cancer types (Zamanova et al., 2019). Of the 41 statistically significant 

proteins with altered abundance between group 2 and group 3 (Intermediate and 

adverse) the proteins with the most drastically altered abundance are DNA-

dependent protein kinase catalytic subunit, with an 11.978 fold increase from group 

2 to group 3, and Haemoglobin subunit delta, with a noted fold increase of 8.187 from 

group 3 to group 2 (Table 7.7).  DNA-dependent protein kinase catalytic subunit 

(DNA-PK) is a serine/threonine-protein kinase which exhibits molecular sensor like 

functions for DNA damage, high levels of which have been implicated in breast 

cancer (Zhang et al., 2019b), gastric cancer (Zhang et al., 2019a) and radiation 

resistance in thyroid cancer (Ihara et al., 2019). Haemoglobin subunit delta is involved 

in the transport of oxygen to the lungs and other peripheral tissue. 
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The analysis of serum samples using Luminex technologies, in conjunction with 

MILLIPLEX® MAP Kits, lead to the identification of 4 potential, already established, 

biomarkers by using targeted analysis. Interleukin 17A, a pro-inflammatory cytokine 

encoded by the IL-17A gene and secreted by Th17/CD4+/CD8+ cells (Parker, et al., 

2015) is reported to exhibit significant concentration differences between AML and 

normal cells, indicating a pathophysiological significance for AML (Abousamra, et al., 

2013). IL-17A acts as a hematopoietic stimulatory cytokine, aiding blast development 

and the proliferation of neutrophils. It has also been observed functioning in T-cell 

mediated angiogenesis and shows evidence promoting MDSC formation (Yazawa, 

et al., 2013). A statistically significant increase of IL-17A was recorded from both 

group 1 vs group 3 and group 2 vs group 3, with p=0.025 and 0.03 respectively 

(Figure 7.5). Notably, group 3 has the lowest average concentration value and hence 

poorest prognosis, correlating with findings that IL-17A abundance is increased with 

favourable prognosis/survival rate (Abousamra, et al., 2013). Interleukin-1 receptor 

antagonist is an IL-1 family member protein encoded by the ILR1N gene (Arend, et 

al., 1998). IL-1RA non-productively binds to the cell surface interleukin-1 receptor (IL-

1R),  inhibiting IL-1α/IL-1β interaction with IL-1R. This prevents downstream 

signalling cascade initiation and other agonistic activities that provoke inflammation 

and chronic diseases (Carter, et al., 1990). It has been observed that IL-1RA can 

stimulate suppression of AML blast replication in the presence of various growth 

factors and reduction of GM-CSF in AML cells  (Estrov, et al., 1992). A statistically 

significant increased abundance of IL-1RA is noted in group 2, in comparison to group 

1, with p=0.039. Interestingly, this statistical significance is not noted in either of the 

comparisons from group 2 to group 3 or group 1 to group 3. The increased abundance 

of IL-1RA may be attributed to an attempt to regain cell differentiation/proliferation 

control by the immune system. Interleukin-1α is an interleukin-1 family cytokine 

encoded by the IL-1A gene with immune and haematopoietic functions and is 

produced by macrophages, neutrophils, endothelial and epithelial cells (Bankers-
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Fulbright, et al., 1996). In most AML cases, the pro-inflammatory cytokines IL-1α and 

IL-1β inhibit normal progenitor growth while eliciting abnormal growth of blasts 

(Cozzolino, et al., 1989). IL-1α improves p38 MAPK phosphorylation while stimulating 

growth factor and inflammatory cytokine secretion to promote AML cell development 

(Carey, et al., 2017). A statically significant increase in the abundance of IL-1α from 

group 1 in comparison to group 2, where p=0.039, suggests IL-1α may be necessary 

for favourable prognostic risk stratification in AML.  

Encoded by the CXCL12 gene, SDF-1 alpha and beta (CXCL12) are commonly 

expressed cytokines in many tissue/cell types (Janowski, 2009). CXCL12 binding to 

CXCR4 activates intracellular signalling events which initiate chemotaxis, 

proliferation, cell survival and kick-starts gene transcription. CXCR4 is expressed on 

numerous cell types including lymphocytes and haemopoietic stem cells (HSCs) 

(Moore et al., 2017). In the immune system, the binding of CXCL12 to CXCR4 

induces intracellular signalling through several divergent pathways (phospholipase 

C, MAPK, and PI3K-Akt-mTOR), pathways involved in chemotaxis, cell survival, cell 

proliferation and gene transcription. CXCR4 is expressed on multiple cell types 

including lymphocytes, hematopoietic stem cells, endothelial and epithelial cells, 

together with cancer cells, where the ligand/receptor complex is involved in tumour 

progression, angiogenesis, metastasis, and survival. Upregulation of CXCL12 by 

hypoxia also occurs during cancer development to promote angiogenesis, as has 

been demonstrated for ovarian cancer (Kryczek et al., 2005). Recently, it was 

reported that 56.7% of pancreatic cancer tissues, 50.0% of para-cancerous tissues, 

and 53.3% of pancreas surrounding lymph nodes express CXCR4 compared to 

18.3% of the normal pancreatic tissues using immunohistochemistry data (Zhang et 

al., 2018). Analysis of breast cancer data sets uncovered a role for CXCL12 over-

expression correlating with better prognosis in breast cancer (Liu et al., 2018). 

Additionally, higher CXCL12/SDF1 expression was related to positive ER status, 

negative HER2 status and small tumour size. The bone marrow microenvironment 
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facilitates the survival, differentiation, and proliferation of both normal and malignant 

hematopoietic cells. Bone marrow factors produced, such as CXCL12, mediate 

homing, survival and proliferation of tumour cells. Integrin-mediated adhesion 

sequesters tumour cells to this niche, as exemplified in acute lymphoid leukaemia 

and acute myeloid leukaemia (Juarez et al., 2007); (Nervi et al., 2009)). The 

chemokine receptor CXCR4 facilitates cell anchorage in the bone marrow 

microenvironment and is overexpressed in 25–30% of patients with AML (Spoo et al., 

2007). Lately, researchers have shown how a new CXCR4 receptor antagonist IgG1 

antibody (PF-06747143) binds strongly to AML cell lines and to AML primary cells 

inhibiting their chemotaxis in response to CXCL12 (Zhang et al., 2017). Previously, 

Rombouts and co-workers found that patients with a high CXCR4 expression in the 

CD34+ subset of cells have a significantly reduced overall survival and have a greater 

risk of leukaemia relapse (Rombouts et al., 2004). This data supports the role for 

CXCL12 in the risk profile associated with different cohorts of AML patients, and the 

increase in CXCL12 found in the adverse risk group in this study (serum levels) and 

the increase in metabolism seen at the cellular level in the adverse risk group. 

Schelker and colleagues demonstrated that human mesenchymal stromal cells 

(MSC) are effective feeder cells, able to maintain AML cells in long-term culture, due 

in part to key molecules (including TGF-β1 and CXCL12) that are important for 

intercellular communication within the niche (Schelker et al., 2018). Blockade of the 

CXCL12 pathway (using a commercially available CXCR4 antagonist (plerixafor)) 

modulated AML cell proliferation and chemotherapy resistance.  

Although AML is a different haematological malignancy to MM, the same proteomic 

techniques can be utilised to identify disease changes and potential biomarkers. As 

stated above, a plethora of potential biomarkers have been identified by the use of 

label-free LC-MS/MS and a targeted approach using Luminex technologies, which 

can be used in conjunction with the prognostic risk classification improving patient 
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diagnosis rates, increasing speed to treatment and reducing uncertainty within 

prognostic grouping. 
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8.1 Discussion 

 

Haematological malignancies are typically based on four broad categories: 

Leukaemia, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma and myeloma, and 

account for approximately 9% of all cancers diagnosed yearly (Smith et al., 2011). As 

the fourth most commonly diagnosed cancer type worldwide, in both men and 

women, approximately 1,186,598 people were diagnosed with one of the 

aforementioned categories in 2018 alone (Bray et al., 2018). Of this figure, MM was 

reported to be diagnosed approximately 159,985 times. As haematological 

malignancies are considered complex cancers, diagnosis must be carried out using 

a multitude of differing techniques including histology, cytology, immunophenotyping 

and cytogenetics, to name but a few (Sabattini et al., 2010).  

The use of proteomic analysis to determine individual protein signatures to 

understand disease was utilised in Chapter 3, where label-free LC-MS/MS 

technology was combined with commonly used bioinformatic software to determine 

unique proteomic signatures to help determine the molecular mechanisms with which 

drug resistance occurs. A cohort of 35 MM patients were used to determine a drug 

sensitivity score for each of six established/investigational drugs. These patients 

were then grouped into the ten most sensitive and ten least sensitive to each 

individual drug. After bioinformatic analysis of the established groups, a clear link 

between drug resistance and the focal adhesion pathway became clear for four of 

the six drugs tested. Bortezomib, Carfilzomib, Quizinostat and PF-04691502 all 

exhibited a statistically significant increased abundance in proteins related to the 

focal adhesion pathway, namely Vinculin, Talin-1, Integrin β3 and Filamin-A (Figure 

8.1). All of the aforementioned proteins interact in the focal adhesion pathway, with 

downstream activation of actin polymerization. The activation of this section of the 

focal adhesion pathway subsequently leads to cell motility. 
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Figure 8.1: Focal Adhesion Pathway 

Depicted is the focal adhesion pathway with highlighted (in pink) the proteins 

observed to have an increased abundance in the least sensitive patients to 

Bortezomib, Carfilzomib, Quizinostat and PF-04691502, discussed in Chapter 3.  

 

Further investigation into the peptides identified by LC-MS/MS revealed multiple 

interesting potential targets indicating drug resistance, such as CD44 and CD68. The 

abundance of both potential targets, along with Vinculin, Talin-1 and Integrin β3 was 

further investigated using immunohistochemistry on patient bone marrow trephines. 

Both CD44 and CD68 showed an increased abundance in active MM, in comparison 

to other disease stages, indicating a role in disease homeostasis.  
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Phosphoproteomics is an area of great interest for understanding cancer and its 

survival enhancing molecular mechanisms. The manipulation of the phosphorylation 

“on/off’ switch, which is observed in a multitude of different cancers, aids in cancer 

survival and proliferation (Ardito et al., 2017). To examine this manipulation in MM, 

Chapter 4 involved the enrichment of 32 CD138+ lysed cells for phosphopeptides. 

These enriched samples were analysed using label-free LC-MS/MS, in combination 

with commonly used bioinformatic software, to determine unique phosphoproteomic 

signatures for drug resistant MM patients. With the combination of quantitative and 

qualitative proteomic approaches, it became clear that the manipulation of 

phosphorylation is used to drive drug resistance in the non-responding patients to 

treatment. In a direct comparison between Group 1 (drug sensitive patients) and 

Group 4 (drug resistant patients), the increased abundance of one particular 

phosphorylation site in TCP4, 118 Phosphoserine residue, was observed as 

significantly increased in Group 1 patients. This particular phosphorylation site has a 

decreased abundance in the resistant cohort of patients, leading to the increased 

activation of dsDNA-binding and its cofactor function in Group 4 patients. A Human 

Phospho-Kinase array was used to identify further phosphorylation residues with a 

changed abundance in drug resistance. HSP27 phosphoserine 78 was identified as 

having an increased abundance in Group 4 patients in comparison to Group 1 

patients, indicating that increased phosphorylation of HSP27 at serine 78 is helping 

to drive drug resistance in MM patients.  

In combining the information obtained from Chapter 3 and Chapter 4, it becomes 

apparent that MM uses multiple molecular mechanisms to develop drug resistance 

against multiple established/investigational drugs. In resistance against Bortezomib, 

Carfilzomib, Quizinostat and PF-04691502, the least sensitive patients exhibit an 

increased abundance of a combination of focal adhesion related proteins, all of which 

combine for downstream actin production activation. Phosphorylation events were 

also observed to drive drug resistance in this cohort of patients,  such as increased 
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phosphorylation of phosphoserine 78 in HSP27 and decreased phosphorylation of 

phosphoserine 118 in TCP4. The combination of this information, along with drug 

sensitivity screens carried out on CD138+ MM cells in patients allows the 

identification of drug resistance in patients before starting a treatment regime (Figure 

8.2). The combination of these sample analysis techniques is predicted to allow more 

informed clinical decisions to be made about treatment, ensuring better outcomes for 

patients and eventually increased OS.   

 

 

Figure 8.2: Workflow for Personalised Course of Treatment Combining 

DSS and Proteomic Approaches. 

Depicted is the workflow for combining the drug sensitivity screening approaches, 

developed by the Institute of Molecular Medicine, Helsinki, Finland (Majumder et al., 

2017), and proteomic approaches established in chapter 3 and 4 for the development 

of personalised treatment for individual patients depending on their proteomic profile 

and DSS score.  
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Although saliva has been considered the mirror of the body, minimal research has 

been carried out in the area of salivaomics. Approximately 3000 differentially 

abundant proteins have previously been identified in the salivary proteome (Grassl et 

al., 2016), and thus, saliva is a biofluid with huge disease marker potential. Chapter 

5 explores the differentially abundant proteins present in saliva during MM disease 

progression, from pre-malignant MGUS to malignant newly diagnosed MM and from 

newly diagnosed MM to remission in patients. Through label-free LC-MS/MS and 

bioinformatic analysis, six statically significant proteins were identified with altered 

abundance from MGUS to MM. Of these six proteins, in-depth validation was carried 

out with focus on the increased abundance of FABP5 from MGUS to MM and through 

disease progression. The increased abundance of this protein was identified using 

immunoblotting (MGUS to newly diagnosed comparison) and ELISA (disease 

progression analysis using serial samples). Further analysis of this change in 

abundance of FABP5 was carried out using immunohistochemical techniques in 

BMTs of MGUS and newly diagnosed MM patients. The increase in abundance of 

FABP5 was observed in the BM microenvironment, with a non-existent presence in 

MGUS BM and a visible abundance in newly diagnosed MM. As BM is considered 

the gold standard of MM diagnosis, the change in abundance of FABP5 in the BM 

microenvironment further validates FABP5 potential as a salivary biomarker for 

disease progression in MM. The potential of this biomarker does not eradicate the 

need for BM samples to be taken but could be used alongside this diagnostic sample 

as an indicator for the need for re-staging of MM patients and monitoring disease 

progression. The identification of β2-microglobulin within patient saliva via label-free 

LC-MS/MS analysis further evaluates the use of saliva as a source of potential 

biomarkers. β2-microglobulin is considered an important biomarker for MM, which is 

already established and integrated into CRAB criteria for diagnosis. Used in 

diagnosis and staging of MM, the identification of β2-microglobulin within the saliva 

of patient samples is an extremely important finding.  
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Intravenous RVD (Lenalidomide, Bortezomib and Dexamethasone) is considered 

as a standard treatment regime for all MM patients, regardless of diagnosis, 

prognosis or general health (Roussel et al., 2014). Although the worldwide use of 

this three-drug combination is standard practice, a multitude of adverse side effects 

have been strongly linked to the intravenous administration of Bortezomib. These 

side effects include vomiting, diarrhoea, anaemia, thrombocytopenia (a low blood 

platelet count), leukopenia (reduction in white blood cell count) and peripheral 

neuropathy (Richardson et al., 2009). In the hopes of eradicating these adverse 

side effects, a multicentre clinical trial has been established with the administration 

of Bortezomib through subcutaneous tissue as opposed to through IV. Chapter 6 

examines the proteomic profile of 70 samples from this Phase Ⅱ clinical trial, 

obtained from the Dana Farber Cancer Institute, Boston. The use of three multiplex 

assays allowed the identification of trends exhibited by patients with a targeted 

approach. This proteomic approach included the use of MILLIPLEX® MAP Kit: 

Human Cytokine/Chemokine Magnetic Bead Panel Ⅰ, MILLIPLEX® MAP Kit: 

Human Cytokine/Chemokine Panel Ⅱ and MILLIPLEX® MAP Kit: Human 

Circulating Cancer Biomarker Magnetic Bead Panel 4, analysed using Luminex 

technologies. Of the 62 potential targets included in these multiplex assays, five 

proteins were identified as showing significant trends across patients enrolled in 

the trial. CD44 showed a spike in abundance in patients with partial response to 

treatment, 2 of which withdrew from the clinical trial due to disease progression. 

This observed increase in abundance correlates with the findings in 

immunohistochemistry in Chapter 3, where an increased abundance was observed 

in the BMT of active MM in comparison to other disease states. This correlation 

leads to the prediction that CD44 is more highly abundant in patients with active 

disease or partial response to treatment and therefore may be considered a 

predictive biomarker for disease progression or lack of satisfactory response to 
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Bortezomib treatment. This finding was also observed in a study by Ohwada et al., 

who established a link between increased CD44 and disease progression 

associated with Bortezomib treatment in MM. The most significant finding of the 

Rsq-VD proteomic analysis was a significant increase in the abundance of MIP-1α 

and its direct correlation to toxicity in patients enrolled in this clinical trial. Each of 

the three patients included in the clinical trial with toxicity exhibited a significantly 

increased abundance of MIP-1α. All other patients included in the trial showed a 

minimum abundance of MIP-1α. This finding is considered extremely important as 

it indicates that MIP-1α may play a direct role in the development of adverse side 

effects. The potential to monitor a patients well-being during treatment, using a 

biomarker specific for adverse side effects, is highly sought after. Moreover, MIP-

1α has previously been implicated in MM, exhibiting links to poorer prognosis than 

patients with a low level abundance of MIP-1α (Terpos et al., 2005), along with the 

observation that MIP-1α promotes cell proliferation in MM cell lines (Lentzsch et 

al., 2003) and promotes drug resistance in MM (Tsubaki et al., 2016). The finding 

that MIP-1α is directly correlated with the development of adverse side effects has 

previously been observed, linking this with ERK1/2, Akt and mTOR inhibition 

(Tsubaki et al., 2018).  

Acute myeloid leukaemia (AML) is attributed to the abnormal differentiation and 

proliferation of myeloid stem cells. This proliferation leads to the formation of chimeric 

proteins which alter the normal maturation of myeloid precursor cells (De 

Kouchkovsky and Abdul-Hay, 2016). This further leads to the accumulation of 

malignant myeloid cells in the BM and peripheral blood. To date, a minimal amount 

of proteomic analysis has been carried out in AML. Chapter 7 is comprised of the 

discovery (40 lysed cell samples) and targeted (49 serum samples) proteomic 

analysis of AML samples from patients with differing prognostic risk grouping. This 

grouping ranges from favourable Group 1, Intermediate Group 2 and Adverse Group 

3. Discovery analysis was carried out using label-free LC-MS/MS in combination with 



 245 

a variety of bioinformatic techniques. This analysis revealed 65 statistically 

significant, differentially abundant proteins when comparing Favourable prognosis to 

Adverse prognosis, 18 statistically significant, differentially abundant proteins from 

Favourable to Intermediate prognosis and 41 statistically significant, differentially 

abundant proteins from Intermediate to Adverse prognosis. Interestingly, an 

increased abundance has been noted in Intermediate patients in comparison to 

Adverse patients of Transgelin-2. Transgelin-2 had an increased abundance in 

chapter 5 from MGUS to MM and an increased abundance was observed in the least 

sensitive patients after treatment with Bortezomib and Carfilzomib in chapter 3. 

Transgelin-2 is an actin-binding protein with a basic function of regulating the actin 

cytoskeleton through actin binding, stabilizing actin filaments. This regulation is 

involved in cell proliferation, differentiation apoptosis and migration related to 

cytoskeleton remodelling (Dvorakova et al., 2014). Transgelin-2 has been observed 

as being highly abundant in BM mesenchymal stem cells (MSCs) showing links to 

proliferation and differentiation of these MSCs (Kuo et al., 2011) and has previously 

been implicated in B-cell chronic lymphocytic leukaemia and B-cell lymphoma, 

suggesting that Trangelin-2 plays a significant role in B cell development (Gez et al., 

2007). Evidence of an increased abundance of Transgelin-2 in patient saliva from 

MGUS to MM and in drug resistant groups after treatment with bortezomib and 

carfilzomib further links trangelin-2 and B-cell development, specifically monoclonal 

B-cells. The transcriptional and translational alteration of Transgelin-2 has been 

identified as playing a role in a plethora of different cancer types, with the increased 

abundance noted in tumour-derived lung cancer endothelial cells and lung cancer 

tissue. This increased abundance directly correlated with tumour size, clinical stage 

and histological neural invasion (Jin et al., 2016). It was also observed that 

Transgelin-2 suppression inhibited cancer cell migration and proliferation in uterine 

cancer squamous cell carcinoma (Fukushima et al., 2011). The increased abundance 

of Transgelin-2 has been observed to play a role in chemoresistance in two specific 
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chemotherapies, methotrexate and paclitaxel (Chen et al., 2004), with the 

suppression of Transgelin-2 resulting in restored sensitivity to the treatment, while 

leading to inhibited invasion, migration and proliferation (Cai et al., 2014). The 

analysis of the targeted proteomic approach, carried out using the three multiple 

assays mentioned in chapter 7 on 49 serum samples, revealed 4 potential biomarkers 

of interest. The most interesting of these 4 potential biomarkers was SDF-1. SDF-1 

has previously been implicated in AML OS, with patients showing an increased 

abundance of SDF-1αβ correlating with reduced OS and greater risk of leukaemia 

relapse . 

 

8.1.1 Concluding Remarks and Future Direction 

“OMIC” based technologies have become the future of patient monitoring, 

diagnostics and prognosis. With disease prevalence increasing in the modern era, 

proteomics and the study of altered protein abundances in disease has the potential 

to increase OS, identify potential drug targets, develop predictive biomarkers for 

varying disease states and give a better understanding of disease and its molecular 

mechanisms. Here we analysed a multitude of patients samples with different 

haematological malignancies using standard proteomic approaches, to identified 

predictive markers, aiding in the treatment and diagnosis of both MM and AML. In the 

analysis of drug resistant patient samples, we identified multiple different predictive 

markers for drug resistance to four established/investigational treatments. These 

predictive biomarkers included Vinculin, Talin-1, Filamin A and Integrin β3, all of 

which interact within the focal adhesion pathway. CD44 and CD68 were also 

identified as having the potential to monitor drug resistance. Multiple different 

phosphorylation sites were also identified as playing a role in drug resistance across 

four groups scored from sensitive to resistant, namely Activated RNA polymerase II 

transcriptional coactivator p15 118 phosphoserine and heat shock protein 27 
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phosphoserine 78. The evaluation of saliva as a potential biofluid for MM disease 

progression identified multiple potential targets with altered abundance, with focus 

on FABP5. It was determined that FABP5 exhibits an increased abundance in saliva 

throughout disease progression in MM, revealing saliva as a source of potential 

biomarkers. Subcutaneous bortezomib, along with lenalidomide and 

dexamethasone, is predicted to be the optimum administration method for the three-

drug based regime. The evaluation of patient serum from this clinical trial identified 

potential markers for disease progression (CD44) and adverse side effects (MIP-1α) 

from subcutaneous Bortezomib. Multiple isoforms of Interleukin, along with stromal 

derived growth factor 1 were identified as potential biomarkers to aid in prognostic 

risk grouping in AML. To conclude, proteomic approaches to sample analysis 

provides a huge amount of information regarding disease, along with holding the 

potential to predict drug resistance, disease progression, treatment outcome, 

prediction of treatment side effects and relevant diagnostic biomarkers for both MM 

and AML. 

Future work would involve further validation of the identified potential biomarkers 

throughout this project. A more extensive patient cohort would be needed to truly 

verify these findings as biomarkers population-wide. 308 compounds, both 

investigational and established, were used to group patients into drug sensitive to 

drug resistant cohorts, with in-depth proteomic analysis carried out on six of the 308 

compounds. Analysis of the 302 compounds to identify potential biomarkers for drug 

resistance in the remaining compounds is future work of interest. Further 

immunohistochemistry, including CD138 staining to identify plasma cells, is essential 

future work to verify the increased abundance of potential targets expressed by 

mutated plasma cells. Saliva samples have been collected alongside the serum 

samples from the multicentre clinical trial. Proteomic analysis of these saliva samples 

to identify potential biomarkers for disease response, disease progression and 

adverse side effects to the Rsq-VD trial is an area of great interest as further 
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validation for the use of saliva as a biomarker source. The research presented in this 

thesis has provided the first steps to marker discovery for both MM and AML, with 

further work being required before these markers can be considered for clinical use. 
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