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Abstract 

Potato late blight (PLB), caused by oomycete Phytopthora infestans (Mont) De Bary, is 

arguably the most important disease of potato in terms of economic losses and 

environmental and economic impact of the disease management. The Irish Rules model 

was proposed in the 1950s and is operationally used by the national meteorological 

agency, Met Éireann, to aid identifying periods of blight conducive weather. Changes in 

the pathogen population and potato production systems prompted the need to evaluate the 

model criteria and decision thresholds. The evaluation and subsequent re-calibration of 

the model using historical disease and weather data led to a significant improvement in 

diagnostic performance. The modified Irish Rules (MIR) in combination with varietal 

resistance was further evaluated under field conditions to showcase and empower the use 

of integrated pest management tools to reliably inform the standard potato late blight 

management practice under growing conditions and contemporary Phytophthora 

infestans population in the Republic of Ireland. An extensive evaluation has shown that 

the MIR model represents an optimum modelling compromise due to the uncertainty of 

the model input variables, which currently demand simpler modelling approaches, such 

as the MIR. However, constant technological advancements will lead to improvements 

such as, in numerical weather prediction, and will provide possibilities for more complex 

risk prediction modelling. Hence, a new model which provides a more realistic 

interpretation of the P. infestans lifecycle is proposed. To facilitate a shorter time-gap 

between PLB model evaluations, the entire analysis is implemented in a single open 

source programming environment, completely reproducible and hosted on an open access 

server. Finally, the recommendations for a modification of the current model, its 

operational use are proposed, as well as suggestions for further research and improvement 

of the practical application of decision support in potato late blight forecasting. 
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1. General Introduction 

1.1. Introduction 

Globally, it is expected that the demand for agricultural production will increase between 

60 and 110% by 2050 (Tilman et al., 2011) due to increasing human population, expected 

to reach 9 billion by 2050. However, the production of food is strongly threatened by 

diseases and pests, particularly in recent decades, due to an increase in epidemic invasions 

linked to globalization (Crowl et al., 2008). Fungi and oomycetes causing crop diseases, 

have been at the centre of global food crises historically and continue to represent a 

serious threat to global food security (Savary et al., 2017). Crop losses, caused by fungal 

diseases, exceed 200 billion euros annually, which would be enough to feed 8.5% of the 

world's current population (Fisher et al., 2012). Therefore, in order to sustainably 

intensify agricultural production to meet growing demands, within environmental 

constraints, will require significant and ongoing management of these parasites. 

While the potato remains one of the most important food crops grown globally, 

Phytophthora infestans, the causal agent of the late blight disease (PLB), continues to be 

the primary biotic constraint of potato production. High humidity and mild temperatures 

are essential for the development of epidemics, and, under optimal conditions, the disease 

can destroy an entire crop in a couple of weeks (Fry et al., 2013). The pathogen population 

is also changing, continuously evolving through recombination and migration between 

geographical regions (Fry, 2008). While the frequent use of fungicides remains the most 

common tactic for the management of the disease (Fry, 2016), environmental 

considerations have led to the increasing use of integrated control measures such as 

resistant varieties, sanitation, decision support tools, in-field inoculum/disease detection 

and molecular characterisation (Schepers et al., 2009). In this chapter, the host-pathogen-

environment complex (plant disease triangle, (Scholthof, 2007)) and the disease 
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management practices of the potato late blight disease are presented, with a focus on 

north-western European and specifically, the Irish perspective. 

1.2. Potato 

1.2.1. The taxonomy and biology 

Potato (Solanum tuberosum L.) is a herbaceous perennial which belongs to the family 

Solanaceae. Amongst over 1000 other members of the genus Solanum, are food crops of 

high economic importance and include tomato (S. lycopersicum), eggplant (S. 

melongena) and agricultural weeds such as black nightshade (S. nigrum) and bittersweet 

(S. duclamara). The centre of origin of cultivated potato is the Andean region of South 

America where the wild relatives of the plant were domesticated at least 7000 years ago. 

The first record of potato cultivation in Europe dates from 1565 in Spain’s Canary Islands 

(Hawkes et al., 1993).  

The potato plant has a cycle of development which includes three main stages: growth, 

tuberization and vegetative rest. The first stage includes the breaking of dormancy and 

growth of sprouts (present in the soil) which are transformed into leafy stems in the aerial 

part, or in stolons in the underground part. The elongation of stolons leads to the 

tuberization phase. The tubers are then formed in stolon tip swellings, by storing reserve 

substances produced from the metabolites synthesized by the plant at the foliage level 

(Gregory, 1965). The initiation of marketable tubers lasts approximately two weeks, 

while the entire tuberization stage can last up to three months. 

1.2.2. Potato as a staple crop 

Globally, potato is one of the most important food crops grown: with 378 million tons 

produced on an estimated 19 million hectares of farmland (FAOSTAT, 2017). It is the 

world’s third most important food crop in terms of human consumption, after wheat and 

rice (FAOSTAT, 2013). The mean worldwide potato intake is equivalent to 93 g per 
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person per day. However there is considerable variation in consumption; varying from 50 

to 150 g per adult per day in developed countries to 300 – 800 g per day per adult in some 

rural areas of Africa and in the highlands of Latin America (FAO/OMS/UNU, 2005).  

The long-term trend analysis of the area cultivated under potato shows a trend of a low-

rate decline in the developed world (EUROSTAT 2008), whilst the production and 

demand are rapidly increasing in the developing world (Hijmans, 2001). However, the 

trend in the achieved yields is in marked contrast, primarily associated with more 

advanced agricultural practices in developed countries. For example, while farmers in the 

Netherlands harvest an average of over 50 t/ha; yields in China are seldom more than 20 

t/ha (FAOSTAT, 2008). In the northern hemisphere, the highest concentration of potato 

production is found in the temperate zone, where it is grown as a cash crop in summer, 

during the frost-free period (Devaux et al., 2020).  

1.2.3. Potato production in Ireland  

Over time, increasing economic, biological and environmental constraints on potato 

production in the Republic of Ireland have led to a marked decrease in the area planted. 

During the period from 1955 to 2015, the area cultivated decreased from 115,000 hectares 

to only 8,800 hectares, or approximately 1% of the available arable land (EUROSTAT) 

(Figure 1.1). This is in marked contrast to 1841, just prior to the Irish famine, when over 

1 million hectares were under potato crops; although this had decreased to 475,000 

hectares by 1859 (Bourke, 1993). The contemporary change in land area under potato 

production has also been accompanied with a decrease in the number of growers, 

decreasing from 1,741 in 1993 to 592 in 2001 (Leonard, 2003).  
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Figure 1.1 Potato production in the Republic of Ireland from 1955 to 2015. Yield (orange line) 

is presented on primary axis and cultivated area (blue line) on secondary (Data source: 

EUROSTAT). 

Table 1.1. The structure of potato production in 2011 in the Republic of Ireland (Anonymous, 

2011). 

Rooster 
Kerrs 

Pink 

British 

Queens 

Golden 

Wonder 
Record  Earlies 

Other 

Reds 
Processing Salads Whites 

55.60% 9.80% 7.80% 3.10% 1.90% 3.10% 0.20% 10.00% 1.20% 7.20% 

Geographically, the main potato producing areas are now concentrated along the east and 

south coasts of Ireland (Figure 1.2), with the exception of Donegal, largely reflecting the 

influence of market location and proximity to the large population of the capital city, 

Dublin. In terms of varieties, Rooster remains the most popular variety grown, followed 

by Kerrs Pink and British Queens (Anonymous, 2011) (Table 1.1). 
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Figure 1.2 Distribution of potato production (in hectares) per county in 2011 (Irish sub-

national division units in IE) (Anonymous, 2012)  

1.3. The potato late blight disease 

While potato crop is a host to numerous pests and pathogens, such as Common Scab 

(Streptomyces spp.), Early blight (Alternaria solani), Potato Virus Y and several parasitic 

nematodes (e.g. Globodera rostochiensis and G. pallida, Meloidogyne spp. and 

Pratylenchus spp.), potato late blight (PLB) caused by the Phytophthora infestans is one 

of the world’s most devastating diseases of potato and tomato crops (Fry, 2008). The re-

occurring problem of PLB, due to its explosive asexual cycle and recent diversification 

of P. infestans population, demands continuous attention and the use of integrated 

management tools in sustainable food production systems. The biology and life cycle of 

P. infestans, and PLB disease management are presented in this section. 

1.3.1. Taxonomy and biology 

Phytophthora infestans was previously classified as a fungus due to a resemblance to 

filamentous fungi but is now classified as oomycete in the kingdom of Stramenopiles 
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(Kamoun et al. 2014). It belongs to the family Peronosporaceae, a family which contains 

numerous plant pathogens  (Agrios, 2006). The approximately 60 species of 

Phytophthora arguably constitute the most devastating single genus of pathogens of 

dicotyledonous plants (Erwin et al., 1996). The genus name, Phytopthora, comes from 

the Greek φυτό–(phyto) and φθορά (phthora), meaning "plant" and "decay, ruin, perish", 

respectively. The species name, infestans, originates from the Latin verb infestare, which 

means "attacking, destroying". The "water moulds" belonging to genus Phytopthora spp. 

result in enormous economic losses on crops worldwide, such as P. capsici which infects 

the fruits of Cucurbitaceae plants or the soya bean root and stem rot agent P. sojae 

(Agrios, 2006). Phytophthora spp. are mostly pathogens of dicotyledons, and many are 

relatively host-specific. Amongst cultivated crops, P. infestans can infect only two 

agricultural crops, potato (Solanum tuberosum) and tomato (S. lycopersicum), and  

several weeds from the genus Solanum, such as bittersweet nightshade (S. dulcamara) 

(Lima et al., 2009). 

Phytophthora infestans is a heterothallic species, a near-obligate hemibiotrophic 

pathogen under natural and agricultural conditions, with two mating types, A1 and A2. 

Production of gametangia (antheridia, oogonia) is stimulated by the proximity of the two 

mating types and once sexually combined they form oospores, which can survive adverse 

conditions in a dormant state for a period of several years (Smoot, 1958). 

1.3.2. Symptoms of potato late blight 

Symptoms appear first as water-soaked spots on leaves and stems, light to dark brown in 

colour. In moist weather, the spots enlarge rapidly and form irregularly shaped lesions 

when not limited by leaf veins. The lesions can be surrounded by a yellow halo or a zone 

of white growth 3 to 5 mm wide which appears at the border of the lesions on the 

undersides of the leaves. The entire plant can be destroyed in a matter of days giving off 
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a characteristic odour under wet conditions. The pathogen is inactive during dry weather 

conditions, existing lesions stop growing, curl and wither, and no mycelial growth occurs 

on the underside of the leaves. The pathogen then reactivates when the weather becomes 

moist again. Symptoms on tubers present as areas comprised of slight depressions which 

are brown in colour. As symptoms develop, the affected areas become firm and dry and 

somewhat sunken. The rot continues to develop after harvest and in storage. Pathogen 

mycelium can develop on the surface of affected tubers, or it can be affected by secondary 

fungi and bacteria, causing soft rots and giving the rotting potatoes a putrid, offensive 

odour (Agrios, 2006). 

1.3.3. Origins and migrations  

Many consider that Central Mexico is the centre of origin for P. infestans (Grünwald et 

al., 2005). Phytophthora infestans was first introduced in Europe and North America in 

the early-nineteenth century, followed by several waves of migration (Spielman et al., 

1991). Potato late blight epidemics in the 19th century were caused by genotype HERB-

1, which persisted for over 50 years but was ultimately replaced by the US-1 (Yoshida et 

al., 2013).  

Smoot et al. (1958) reported that all isolates from the United States, Canada, western 

Europe, South Africa, the West Indies (105 isolates) and Mexico (4 isolates) were of the 

A1 mating type, except for some isolates from Mexico, which were of the A2 mating 

type. More recently, it was determined that most of the populations worldwide were 

dominated by a single clonal lineage referred to as US-1 (Fry, 2016). The first reported 

occurrence of the A2 mating type in Europe was in Switzerland during 1980 (Hohl et al., 

1984). Further studies indicated that A2 not only became widespread in Europe, but 

worldwide (Fry et al., 2015). It is hypothesised that the migration of A2 at this time was 

caused by the shipping of large quantities of potato in the mid-1970s to Europe from 
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regions in Mexico where the A2 mating type is common (Niederhauser, 1991). Since 

then, increasing globalization has resulted in further worldwide migration of the 

pathogen, leading to the rise and spread of new lineages, some of which demonstrate 

increased aggressiveness (Fry et al., 2015).  This has resulted in the displacement of the 

old clonal population (Day et al., 2004).  

Despite having relatively low genetic diversity, European populations of P. infestans 

undergo frequent and important changes (Cooke et al., 2012; Fry, 2008). Until recently 

these populations were dominated by clonal lineages such as EU_2_A1, EU_8_A1 or 

EU_5_A1, but in 2003, the first occurrence of  EU_13_A2 (hereafter 13A2) was recorded 

(Cooke et al., 2012). This clonal lineage, commonly called "Blue_13", became dominant 

within two to three years (Cooke et al., 2012; Li et al., 2012). Subsequently, another 

clonal line, EU_6_A1 (hereafter 6A1), commonly called "Pink_6", also experienced 

strong population growth, although not quite as rapidly as 13A2. First observed in 2004, 

the frequency of 6A1 remained low, before progressing rapidly in 2010 (Cooke et al., 

2012; Stroud et al., 2016). Since then, 13A2 and 6A1 have continued to dominate P. 

infestans populations in Western Europe. However, the population is continuously 

changing with new clonal lineages emerging, with EU_36_A2, EU_37_A2 and 

EU_41_A2 representing the new emerging threats (Cooke et al. 2019). As part of a 

European-wide monitoring programme, EuroBlight continuously monitors the ongoing 

evolution of the European P. infestans population and reports are regularly presented at 

meetings organised by the society and through their website 

(https://agro.au.dk/forskning/internationale-platforme/euroblight/).  

The first recording of the A2 mating type on the island of Ireland was in Northern Ireland 

(NI) in 1987, with an overall frequency of 3% in 1992; it subsequently appeared in the 

Republic of Ireland (ROI) where 9-10% of isolates typed were of the A2 type between 

https://agro.au.dk/forskning/internationale-platforme/euroblight/
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1993 and 1994 (Cooke et al., 1995). It is hypothesized that the major pathway of 

introduction of genetically different P. infestans was via infected seed tubers (Carlisle et 

al., 2001; Griffin et al., 2002); however, the transfer of air-borne inoculum from the 

south-east of England and continental Europe has also been identified as a potential 

pathway (Bourke, 1964; Griffin et al., 2002). Between 1998 and 2002, none of 204 

isolates recovered in Northern Ireland were of the A2 mating type; the population 

consisted of a limited number of clones related to, but in a different form, populations in 

the rest of the UK and Europe (Cooke et al., 2006).  

The occurrence of the A2 mating type in the UK and Ireland remained largely undetected 

until 2007 (Cooke et al., 2014); between 2008 and 2010, the 13A2 type became the 

dominant genotype (Kildea et al., 2010), declining markedly in 2011, only to resurge 

once again in 2012, with 37% of samples analysed belonging to this lineage (Cooke et 

al., 2014). The sudden increase in the frequency of the A2 type in the UK and Ireland was 

associated with the increase in this single genotype, following a similar trajectory to that 

experienced in France and the UK between 2004 and 2005 (Cooke et al., 2011). A similar 

trend was not evident with the 6A1 strain, which was established and become dominant 

in the UK, but was rarely detected in Ireland until 2014 (Cooke et al., 2014; Stellingwerf 

et al., 2018). The number of miscellaneous strains (i.e. strains not belonging to established 

pathogen strains) in the ROI is very low, suggesting that even though the potential for 

sexual reproduction exists (both 13A2 and 6A1 can be found in Irish potato crops), its 

occurrence or survival of sexually produced oospores and progeny is low. One possible 

reason is that mild winters may allow oospore germination, during periods when there is 

an absence or lack of host tissue availability.  

The factors that led to the recent changes in the western European populations of P. 

infestans remain a topic of discussion. Undoubtedly, one of the main factors determining 
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the long-term survival and success of individual clonal lineages depend on its level of 

aggressiveness (Day et al., 1997; Cooke et al., 2012). Clonal lines that exhibit most 

aggressiveness during the infectious cycle (e.g. short latency period, high level of 

sporulation) are likely to be more competitive and, therefore, have better evolutionary 

success. However, the overall fitness of a clone is also determined by its ability to survive 

between epidemics. Recent work shows the existence of a trade-off between 

aggressiveness and the inter-epidemic transmission of isolates in P. infestans (Pasco et 

al., 2016). Therefore, it is important to understand how the fitness of clonal lines is 

impacted by the interepidemic phase of the pathogen life cycle. 

1.4. The life cycle of Phytophthora infestans 

The life cycle of the P. infestans (Figure 1.3) can be broadly separated into an epidemic 

phase, fuelled by the succession of numerous production cycles of asexual spores, and a 

survival phase, whether on the host or as sexual oospores. The epidemic phase of the life 

cycle of P. infestans is initiated by multi-nucleated sporangia produced by the pathogen, 

that germinate when in contact with the host plant and infect the host, either directly or 

indirectly, through the formation of between 6 and 10 uni-nucleated biflagellate 

zoospores per sporangium which individually infect (Judelson et al., 2005). The infection 

mechanism depends on the climatic conditions, with indirect infection by the zoospores 

occurring at lower temperatures (10 - 15 °C) and direct infection at higher temperatures 

(15 - 20 °C), although at these higher temperatures the germination rate is reduced 

(<30%) (Crosier, 1934). Sporangia and zoospores (after encystment for the latter) 

produce a germ tube allowing them to penetrate the host plant, either through natural 

openings such as stomata and lenticels, or through the plant walls by the formation of an 

appressorium (Coffey et al., 1991). If the host is compatible, a haustorium is formed, and 

a network of intra- and intercellular hyphae invade the host tissues (Coffey et al., 1991). 
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Suitable environmental factors, such as a period of three days with temperatures between 

17 and 25 °C and high relative humidity, are required for sporangiophores to grow 

through stomata. These branched sporangiophores produce lemon-shaped sporangia at 

their tips (Judelson et al., 2005; Fry, 2008). The sporangia growing on the underside of 

the leaf can present as the first macroscopic symptom, and the entire cycle can be 

completed within 96 hours on a susceptible host and under optimal environmental 

conditions (Fry et al., 2013). The sporangia then become the secondary inoculum, which 

can then be dispersed over longer distances by wind or locally by rain splash to the same 

or nearby host plant, initiating a new infection cycle.  

 

Figure 1.3 The life cycle of Phytophthora infestans (source: Bengtsson, 2013) 

The brevity of the asexual cycle of P. infestans and formation of a large number of 

sporangia, estimated in the region of 300,000 per lesion over its lifetime (Fry, 2008) and 

facilitating the aerial dispersal of the disease (Aylor et al., 2001), are the main factors 

explaining the rapid development of the disease. While detached sporangia can survive 
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for weeks in soil, the survival time of sporangia in the air is reduced to hours or minutes, 

limiting the dispersal of P. infestans sporangia over longer distances. If exposed to 

sunlight, sporangia die in under an hour; under cloudy conditions, sporangia can survive 

for several hours in the air (Rotem et al., 1985; Mizubuti et al., 2000; Weille, 1961). 

Skelsey et al. (2009) estimate that the likely dispersal range of P. infestans sporangia is 

between 5-20 km.  

Phytophthora infestans can survive between the potato growing seasons as resilient 

sexually produced oospores or as mycelium surviving on either dormant tubers or actively 

growing plants  (Andrivon, 1994) (Figure 1.3). The former sexually produced oospores 

have a thick wall (0.7-1 μm) (Drenth et al., 1995), allowing them to survive for several 

years in the soil in the absence of a host, even under unfavourable weather conditions 

(Andersson et al., 1998). Oospores then germinate, producing a sporangium initiating the 

asexual cycle. Alternatively, asexual sporangia produced on the foliage during an 

epidemic fall or are washed to the ground and subsequently the developing tubers during 

rain. Once there, they can infect the tubers directly or germinate releasing zoospores 

which infect through the lenticels or wounds. Depending on infection levels, 

environmental conditions, and the specific aggressiveness of the P. infestans strain, tuber 

infections can stay dormant for several months. Infected tubers can be left in the soil after 

harvest, discarded on cull piles or potentially used as seed in the subsequent season. 

Epidemics are initiated when conditions are favourable for the development of P. 

infestans sporangiophores and sporangia and if available host tissue is in proximity.  

In geographical regions where climatic conditions limit the survival of infected tubers left 

in the soil after harvest or in cull piles, epidemics are mainly initiated via oospores or 

from infected seed tubers (Yuen et al., 2013).  In these regions, populations of P. infestans 

have higher levels of genetic diversity due to sexual reproduction (Sjöholm et al., 2013). 
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Conversely, in milder regions, such as in western Europe, epidemics are initiated by 

sporangia surviving in overwintering tubers or waste piles (Pasco et al., 2015). As such, 

P. infestans populations in these regions are characterized by clonal structures, and 

consequently, low levels of genetic diversity (Montarry et al., 2010; Cooke et al., 2012).  

1.5. Effects of the environmental factors on potato late blight epidemics 

While the impact of the environmental conditions will be treated in more detail in the 

following chapter, as a part of the modelling process, the most important aspects 

regarding the impact of weather conditions on the life cycle are presented here in a general 

context.  

The association between severe PLB epidemics and mild, wet weather has been observed 

since PLB was first observed in Europe (Large, 1959). If moisture is not limiting, foliar 

diseases induced by pathogenic fungi and oomycetes during the growing season are 

dependent on optimal temperatures for their growth (Fry, 1975). Although potato late 

blight mainly occurs under conditions of mild temperatures (12 - 24 °C) and moist 

conditions (Wallin, 1962), the speed of development depends on specific sequences of 

suitable conditions (Fry et al., 2013). Sequences of the secondary cycles of the disease 

require suitable environmental conditions, with diverse optimum ranges, for their 

completion; i.e. a temperature of 20 °C is optimum for sporulation; zoospore release and 

infection occur at lower temperatures in the range of 12 - 15 °C; direct sporangial 

germination and infection are promoted by higher temperatures with optimum at 24 °C, 

and; incubation at 23 °C (Crosier, 1934).  

Leaf wetness is critical for driving PLB epidemics, although it is only necessary for the 

infection stage (Crosier, 1934); while sporangia of P. infestans are produced only if the 

air around the infected surface where the pathogen is actively spreading is saturated 
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(Harrison et al., 1989). It has been reported that the formation of sporangia of P. infestans 

is inhibited during hours of high light intensity (Cohen et al., 1975; Xiang et al., 2014). 

Sporangia of P. infestans are actively released and dispersed in the morning, due to a drop 

in relative humidity, and breaking of sporangiophores and their survival depends on solar 

radiation, temperature and relative humidity (Fry et al., 2013).  

1.5.1. Irish weather and PLB  

The climate in Ireland is characterized as being mild, maritime, largely reflecting its 

proximity to the moderating effects of the Atlantic Ocean. The climatological mean 

annual temperature range is between 9-11 °C. At inland locations, summer temperatures 

typically reach between 18 – 20 °C and about 8 °C in winter (Met Éireann). Consequently, 

the temperature range in Ireland lies within the biological range for PLB throughout the 

potato growing season. As the dominant airflow direction is from the west and south-

west, the maritime influence on rainfall is most apparent along the Atlantic coast; 

precipitation is generally higher on the west coast due to the presence of natural mountain 

barriers interacting with the airflow and decreases with distance inland (Figure 1.4). Mean 

annual rainfall in the west of the country ranges between 1000 and 1400 mm, with receipts 

in excess of 2000 mm in upland locations; in the eastern half, receipts of between 750-

1000 mm are more typical.  The annual average rainfall over the entire country is 

approximately 1200 mm (Walsh, 2012). For these reasons, the weather conditions 

experienced during the growing season in the Republic of Ireland are considered 

conducive for blight development (Dowley et al., 2008). 
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Figure 1.4 Spring (upper row) and summer (lower row) sunshine (left), temperature (middle) 

and rainfall (right) meteograms of long term average (1981 – 2010) for Ireland (Walsh, 

2012).  

1.6. Disease management 

The continual displacement of P. infestans populations by increasingly aggressive 

lineages, the predominant cultivation of susceptible varieties and intensification of potato 

production makes the management of PLB an increasingly challenging task. It is therefore 

of the utmost importance that the risk of the disease outbreak is managed through the use 

of integrated pest management (IPM) approaches, such as sanitary measures and resistant 

varieties (Fry et al., 2015; Schepers et al., 2009). Sanitary measures include the use of 

healthy seed, removing or destruction of cull piles and volunteer plants (Schepers et al., 

2009). Strict crop rotation can help to reduce the potential of early disease outbreaks, 

especially in areas where the oospore infections are confirmed (Bødker et al., 2006). 

Desiccation or removal of the haulm before harvest by thermal, mechanical or chemical 

means, reduce the potential risk of tuber infection (Fry, 1982); while burial by ploughing 
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leads to increased risk of latently infected potato plants (volunteers) which could act as a 

primary infection source (Cooke et al., 2011). 

Another major way to manage PLB is through planting varieties with increased levels of 

resistance. Two main types of resistance have been described in plants: qualitative 

resistance and quantitative resistance. The first, also called specific resistance (van der 

Plank, 1968), is based on gene-for-gene interactions between the host plant and the 

pathogen after the host recognises the parasite (Flor, 1971) and is associated with a 

hypersensitivity reaction that can also be linked to dying of the plant cells located near 

the pathogen penetration point (Agrios, 2006). Quantitative resistance is generally 

governed by several genes or genomic regions called Quantitative Trait Loci (QTLs) that 

lead to a reduction in the severity of disease symptoms. The remarkable pathogenic 

potential of P. infestans has stimulated many attempts to breed resistant cultivars (Fry, 

2008). Initial efforts, dating from the mid-19th century, resulted in partially successful 

quantitative or ‘field resistance’ (Wastie, 1991). However, the discovery of the first 

resistance genes (R-genes), which conferred qualitative resistance shifted the attention of 

breeders towards the introduction of such R-genes from the wild species S. demissum. 

These R-genes were quickly circumvented by P. infestans, which led to rapid selection 

of the pathogen strains compatible with the specific R-gene, rendering them ineffective 

and failing to provide durable disease control (Malcolmson, 1969; Wastie, 1991). 

Currently, attention is shifting towards stacking R-genes by conventional resistance 

breeding or genetic engineering techniques (Leesutthiphonchai et al., 2019). Other 

strategies are based on the pyramid of major genes, with or without the use of genetic 

engineering techniques (Haverkort et al., 2009). Most of the current commercially 

available cultivars are blight susceptible due to market demand for traditional varieties 

(Agrios, 2006) and deploying stacked R genes through genetic modification of old, 
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known varieties which are in demand by the market could provide a sustainable long term 

solution for the PLB management problem (Kessel et al., 2018)  

The combination of partial resistance developed using conventional resistance breeding 

or genetic engineering techniques and fungicides can slow down the development of the 

late blight epidemic and help preserve the genetic potential of resistant varieties. Trials 

have been conducted in several European countries to investigate the possibilities for 

reduced fungicide usage in resistant cultivars (Fry, 1975; Nærstad et al., 2007; Spits et 

al., 2007). 

Fungicides still have a key role in the integrated control of PLB due to a zero blight-

tolerance requirement and the economic risks associated (Schepers et al., 2009). This 

intensive and primarily preventive control strategy has led to an excessive reliance on the 

prophylactic use of fungicides, with 5- to 7-day treatment frequency and up to 20 

applications in a single season to control the potato late blight disease (Cooke et al., 

2011). However, the frequent use of targeted selective oomycete fungicides has led to the 

development and rapid selection for fungicide resistance populations of P. infestans, e.g. 

the widespread development of resistance to the phenylamide group of fungicides, which 

has rendered these fungicide ineffective (Childers et al., 2015; Gisi et al., 1996; Matson 

et al., 2015). Additionally, it has been shown that fungicides have adverse effects on the 

health of users as well as on the environment (Savary et al., 1994). This problem has been 

recognised in the European Union (EU), and the European Community Directive 

128/2009 on the Sustainable Use of Pesticides (European Commission, 2009) establishes 

a strategy for the use of plant protection products (PPPs). Additionally, food chains are 

imposing increasing restrictions regarding pesticide residues on producers to meet 

consumer demands (Hardwick, 2006). To achieve these demands, decision-makers in 

conventional agricultural systems need to transition to IPM based systems, which require 
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increased knowledge as they must deal with greater complexity (Rossi et al., 2012). This 

knowledge, often not available or easily accessible, can potentially be streamlined 

through the use of a decision support system (DSS), which could aid timing of the 

treatment, as well as the selection and dose of the active ingredient, to achieve the 

maximum efficacy with the minimum use of PPPs (Rossi et al., 2012). Such systems do 

not only serve for the purpose of reducing impact of chemical crop protection, but also to 

justify its use (Hardwick, 2006). 

1.7. Problem statement and research objective 

Potato production in the Republic of Ireland is decreasing due to an increase in associated 

risks involved. Potato late blight is one of the leading financial and time inputs associated 

with potato production while remaining the main limiting factor of production. The potato 

late blight decision support system devised to assist in the disease management decision 

making process in the Republic of Ireland is based on the Irish Rules model (Bourke, 

1953a). The algorithm, its calibration and the decision strategy of the decision support 

tool operated by Met Éireann was devised in the 1950s. The system has not been 

systematically evaluated since it was originally devised.  Significant changes in the 

population of P. infestans, potato production systems and technological advancements 

with regards to weather observation and forecasting demand to be incorporated into a 

new, improved understanding of the opportunities, and limitations, of employing decision 

support in potato late blight management under Irish conditions.  

The aim of the present work is to integrate alternative, environmentally friendly and 

economically viable options to assist in the control of the primary disease of an important 

agricultural crop, potato, under Irish conditions. A key challenge is to apply a 

methodologically sound research approach to a practical problem that requires immediate 

attention and to apply these findings in an operational capacity. To achieve this, an 
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interdisciplinary approach is taken, integrating data analysis methods with both field and 

laboratory-based evaluations.  

Research Objectives:  

- Review the history and current state of the decision support in potato late blight 

disease management and assess possibilities for its integration in the Irish context 

(2nd chapter) 

- Evaluate and re-calibrate the IR model and decision thresholds (Paper 1) 

- Undertake field-based evaluations of approaches for optimising current grower’s 

practice using environmental risk estimation, varietal resistance and molecular 

tools (Paper 2) 

- Enhance the modelling framework to ensure that research findings can be readily 

integrated into the continued development of a DSS suitable for use in decision 

support (Paper 3) 

An additional objective of the thesis was to develop a robust model evaluation and 

calibration methodology, in a well-documented and reproducible manner, using a 

single accessible programming environment to facilitate future work on the 

development of potato late blight forecasting, and crop disease forecasting more 

generally, in Ireland. Additionally, such scientific contribution is not only valuable 

for the target ecosystem but should be transferable to other parts of the world with the 

potential to be used in practice, research and education.  

The collection of papers included in this thesis are contextualised in the 1st, 2nd and 6th 

chapters. Having defined the primary rationale and research aims; the principles, 

examples and history of potato late blight modelling for the use in practical disease 

management are presented in the 2nd chapter. The experimental work on the model re-
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calibration, evaluation and future-proofing is presented in the 3rd, 4th and 5th chapters, 

respectively, and the general discussion and conclusions are presented in the 6th chapter. 

A more detailed description of each chapter of this thesis is as follows:  

1. Initially, an overview of the potato late blight disease triangle is presented, 

including information regarding the pathogen, host, environment and human 

intervention to control the disease globally and from the Irish perspective. An 

overview of the work to be carried out is presented, as well as an outline of 

how this research will be implemented. 

2. Chapter 2 describes the historic development and the current state of potato 

late blight forecasting is reviewed, focusing on the development of models, 

the issues of model complexity and limitations, including their practical 

application. Chapter 2 also outlines the model currently used to forecast PLB 

in the Republic of Ireland, its current operational application and information 

delivery mechanism.  

3.  Chapter 3 undertakes a systematic evaluation of the Irish Rules model. 

Following this evaluation, the model is re-parameterised to reflect the changes 

in the potato late blight pathosystem since the IR model was originally 

proposed. 

4. Chapter 4 seeks to assess the available options for optimising current standard 

potato late management growers’ practice using integrated pest management 

tools. The modified IR model and varietal resistance were employed in order 

to assess if prophylactic fungicide inputs could be reduced. To complete the 

disease triangle, the response of the pathogen population to applied factors 

was also monitored. 

5. Chapter 5 presents a new modelling framework, which incorporates a suite of 

sub-models to facilitate the incorporation of improving meteorological 
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forecasting capabilities and increasing differentiation of the pathogen 

population. Additionally, the existing and newly proposed models are 

evaluated for suitability in relation to the uncertainty introduced by the 

weather forecast.  

6. Chapter 6 discusses the results from the work and develops recommendations 

for implementing measures regarding the optimisation of potato late blight 

control in Ireland. The limitations of the current research are identified and 

future avenues for research and development are highlighted.  
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2. Overview of potato late blight forecasting  

2.1. Introduction 

Potato late blight disease forecasting has been employed for informing the disease 

management for almost a century. There is a wide array of models and DSSs, which differ 

in their complexity, structure, purpose and user experience. Finding a compromise 

between the ability of the meteorological network and reasonable simplification of the 

pathogen biology, and providing it in a user-friendly, regularly updated, economically 

and environmentally beneficial system has proven challenging. However, the 

development and accessibility of technology and high-speed computing is having a 

positive impact on the revival of integrated pest management aided by a knowledge base 

stored on the computer. Whilst the overall complexity of the models used in PLB DSSs 

have increased over time, most of the systems are still based on the simple estimation of 

the duration of wet conditions within a certain temperature range, reflecting conditions 

conducive to sporulation and infection.  

In Ireland, PLB has a long history, as well as the attempt to forecast it. The risk prediction 

model used since the 1950s is in need of revision, as well as its decision thresholds and 

information delivery. To provide the background for the experimental work, an overview 

of biological and meteorological aspects, modelling frameworks, as well as their 

development globally and in the Republic of Ireland is presented.  While the main focus 

is on the empirical (territorial) models, some relevant examples from simulation 

modelling are presented, in the context of the current research.  
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2.2. Decision support systems in crop protection 

A decision-support system (DSS) is an interactive software-based system that helps 

decision makers obtain useful information from raw data, documents, personal 

knowledge, or models in order to identify and solve problems and make informed 

decisions (Power, 2007). DSSs in crop production collect and organise, analyse and 

interpret the information to recommend the most appropriate action or action choices to 

overcome a problem  (Rossi et al., 2012). In specific relation to plant disease control, 

DSSs utilise the available information (weather, crop growth stage and susceptibility, 

etc.) to provide users with an estimated level of risk their crop may be exposed to due to 

a particular disease (Figure 2.1) (Gent et al., 2010). They range from simple data 

processing tools, including rules, schedules of management, equations, combinations of 

decision aids, to expert systems, with a level of complexity determined by human 

resources (knowledge specialists), available technical and financial resources, the degree 

of industry organization and support, and the expectations of end users (Magarey et al., 

2002). 
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Figure 2.1 DSS scheme showing components (red font), methodology (black font), and tools 

(blue font). (Source: Magarey et al., 2002). 

Numerous DSSs have been developed which have contributed little to practical 

agriculture (Gent et al., 2010). Widespread adoption of DSSs in most cropping systems 

is low, with a number of users ranging between a few enthusiasts and up to just 3% of the 

number of professional farmers; and their main use is through advisors who serve as an 

“information filter” (Rossi et al., 2012). Reasons for their poor up-take range from a lack 

of comprehensive information regarding all management aspects (i.e. not a single 

disease), low quality (especially the commercial products); lack of a user friendly 

information delivery and presentation (Magarey et al., 2002); time required to operate; 

lack of maintenance and update (i.e. weather and PPPs) (Rossi et al., 2012). Magarey et 

al. (2002) suggested that the ideal, 21st century DSS was a ‘super consultant’, which 

incorporates total management solutions for growers, but that the user remains 

responsible for the choice and implementation of subsequent actions. 
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2.2.1. Disease risk models employed in crop disease DSSs  

A need for knowledge and understanding of climate in the environment where the 

pest/host interaction develops has long being recognised. However, this interaction was 

adequately quantified only after simulating these relationships using mathematical 

models (Magarey et al., 2006). The use of mathematical models to understand and control 

plant disease epidemics has a relatively long history (Kranz, 1974; Pietravalle et al., 

2003). Computing power has enabled plant pathologists to create, evaluate and use these 

models more effectively. Modelling a phenomenon, such as disease development, 

consists of integrating the knowledge acquired through experimentation, experience and 

theory in the form of mathematical equations (Madden et al., 2007).  

By including meteorological data into these models, the potential risk of outbreaks and 

their frequency and severity under favourable weather conditions can be estimated 

(Gommes et al., 2008). This is currently an irreplaceable segment of research in plant 

disease epidemiology, resulting in two main groups of models used to forecast plant 

disease (after Gommes et al., 2010):   

• Mechanistic (field) models intended for use at the microscale (field/canopy layer);  

• Empirical (territorial) models intended for use at the mesoscale.  

However, such divisions are arbitrary, since most models contain components from both 

(Madden et al., 1988a). Empirical models have been developed using observed historical 

data on the disease and weather data (most often temperature, relative humidity, rain, and 

in some studies solar radiation) to derive 'rules' from the associations identified. Such 

models provide qualitative information regarding the risk status and are typically limited 

to the specific geographical region and ecosystem in which they were developed. 

Empirical models are employed with macroscale weather conditions, providing limited 
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opportunities for point predictions, and are subject to the accuracy of the weather forecast 

(Gommes et al., 2010). Whilst empirical models have the advantage of being less 

laborious to produce and simpler to implement and calibrate, developing accurate models 

has proven difficult. More complex mechanistic type models are assumed to be more 

reliable but require increased information and development (Rossi et al., 2010a). 

However, Madden and Ellis (1988a) argue that to develop an accurate and usable disease 

forecast model, it has to be as simple as possible. In relation to potato late blight, complex 

models based on a number of questionable assumptions often based on experiments where 

the environment is not controlled, are only slightly more reliable than the simple ones 

(Harrison, 1995b). 

2.3. Potato late blight risk prediction DSSs 

It is often considered that the risk prediction model is a DSS, and vice versa, while in fact, 

it is only a part of a DSS platform. The risk estimation segment of DSSs typically includes 

several of the components shown in Table 2.1. Outputs of those components could be 

estimated using models or measured and/or observed. For example, leaf wetness could be 

measured using sensors or estimated with the aid of models (Gleason et al., 2008). The 

applicability and usefulness of the elements outlined in Table 2.1 depend on the type and 

purpose of the DSS and its scale of application. While a brief history of PLB DSSs and 

approach to modelling will be presented below, the main focus of this section is to review 

the possibilities of, and obstacles to, risk estimation modelling on a territorial level, in 

order to evaluate possibilities for improvement of the current PLB DSS in Ireland.  
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Table 2.1 Components utilized in various PLB DSSs. 

Weather Crop Pathogen Life cycle 

Temperature 
Blight resistance    

(foliar and tuber) 

Primary inoculum 

(asexual/oospores) 

Overwintering 

survival 

Leaf wetness Phenological stage Population size Sporulation 

Relative humidity New growth Population structure Spore release 

Solar radiation Fertilization Fungicide resistance Spore survival 

Wind General health status  Infection 

Weather forecast 
Fungicide protections 

status 
  

 

 

2.3.1. Development of PLB DSS  

Plant disease risk prediction models are a backbone of DSSs in crop protection.  An 

inherited trade-off between model framework uncertainty and data uncertainty requires 

finding an optimal level of model complexity to fit the purpose (Pascual et al., 2003), as 

shown in Figure 2.2. The complexity of models depends on resources available during 

development; their intended scale of application; contemporary knowledge regarding 

pathogen epidemiology; and, available data inputs (Magarey et al., 2002; Shtienberg, 

2013). However, the decision regarding the model complexity, or the point of minimum 

uncertainty, remains a subjective decision by the model developer. Hence, in this section, 

a brief overview of modelling approaches and uncertainty introduced by the input data, 

as well as the practical application of risk estimation information, is described. 
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Figure 2.2 Conceptual relationship between model uncertainty and uncertainty of the 

knowledge and data used to build the model, and their interaction (source: Pascual et al., 

2003).  

2.3.2. Modelling the life cycle of the P. infestans  

Risk estimated by plant disease risk model is typically based on one or more life stages 

of the pathogen (Madden et al., 1988a; Magarey et al., 2007). Relevant modelling 

examples are shown as segments of the life cycle of the pathogen in this subsection.  

Initial inoculum and infection pressure  

Empirical models are usually based on later stages of the life cycle, and the risk is 

estimated mainly on conditions for the infection; while dynamic models, due to their 

quantitative nature, make assumptions on the size of the initial inoculum to quantify the 

population growth (Rossi et al., 2010a). Initial inoculum depends on several factors 

including, levels of seed infection, hygiene of the waste piles and storage plants and the 

intensity of potato production in the surrounding region. Traditionally, empirical models 

consider that the inoculum originates from within the crop, rather than from external 

sources (e.g. Gutsche et al., 1996; Michaelides, 1991; Schrödter et al., 1967; Skelsey et 

al., 2009). This may be an acceptable assumption for regions in which potato production 
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is limited. However, in regions where intensive potato cultivation occurs, affected tubers 

in storage or in plots that are latently infected with P. infestans are an important factor. 

Only a few models include the influence of disease pressure from the surroundings, such 

as volunteer plants or infections in nearby crops. In Symphyt I, the model used in 

Germany (Kluge et al., 1990), initial inoculum is calculated to reflect the physiological 

state of the crop, PLB resistance of the varieties planted and a measure of infection 

pressure in the region. To develop a model that estimates disease pressure during the 

growing season, Forrer and Gujer (1991) monitored PLB disease progress in 100 small 

plots with an untreated susceptible variety (Bintje) across Switzerland. In their modelling 

approach, Krause et al. (1975) indicate that Blitecast should not be used for scheduling 

treatments if there is blight in the plot itself, while Fry (1977) advises against the use of 

warning systems, if abundant inoculum sources have been observed in the vicinity of the 

production field.  

Sporulation 

PLB lesions require extended humid periods for the production of sporangia, which are 

subsequently dispersed by rain and wind (Crosier, 1934; Harrison et al., 1989). Although 

sporulation has traditionally been included in some PLB disease prediction models, it has 

often only been in a qualitative manner signifying the minimum time duration needed for 

the production of sporangia, disregarding the lower rate of development that may occur 

at sub-optimal temperatures (e.g. Bourke, 1953a). Schrödter and Ullrich (1967) 

developed a model based on the temperature-dependent equilibrium of sporulation (at 

relative humidity > 90%), where a minimum of 10 hours with relative air humidity > 90% 

is required to initiate the risk accumulation. This function is employed in the Negative 

Prognosis (Schrödter et al., 1967) model as 6 temperature ranges with different weighting 

factors; the epidemic-free period ends when the threshold of 150 disease units is reached. 
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In his dynamic model, Michaelides (1985) implemented equations based on data from 

Crosier (1934) on the influence of temperatures between 3 and 26 °C (optimum at 18 °C) 

on the production of spores. He considered that spore production is only possible in 

saturated air and which linearly increases if the relative humidity is higher than 95%.  

Infection 

Crosier (1934) and Schrödter and Ullrich (1967) have shown that the plant is 

predominantly infected by the indirect, zoospore, infection pathway. At an optimum 

temperature of 12-13 °C, 60-80% of the zoospores germinated indirectly after 3 hours; at 

an optimum for direct germination (24 °C), only 20% of sporangia germinated after 20 

hours (Crosier, 1934). For this reason, indirect infection is assumed more important by a 

number of modelling groups  (See Hartill et al., 1990; Michaelides, 1991; Schrödter and 

Ullrich, 1967). Although several modellers used the data from Crosier (1934), their lateral 

temperature limits for pathogen development differ; for example, Duvauchelle (1993) 

employed the range from 5 to 33 °C (Duvauchelle, 1993) while Schrödter and Ullrich 

(1967) employed the range from 10 to 24 °C (Schrödter et al., 1967).  

Infections occur only if the leaf surface is wet (Crosier, 1934). Schrödter and Ullrich 

(1967) consider that germination and penetration occur after a minimum of four hours at 

relative air humidity > 90%. Bourke (1953a) considers that the infection period is initiated 

immediately after the sporulation period, but it is reduced by four hours if the rain was 

< 0.1 mm at the beginning of that period.  

Incubation time 

The incubation period is the only stage of the disease cycle that does not depend on 

relative humidity or leaf wetness. It is, however, temperature dependent. Hartill and 

Young (1990) report that incubation is optimised at 23 °C and the latent period for P. 
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infestans is 60 hours at this temperature, while it could take up to 160 hours at 10 °C. 

Incubation, however, is not included in disease prediction models used in practice, but is 

typically incorporated in simulation models used for research purposes, as it is necessary 

for the estimation of the time lag between reproduction cycles.   

Survival 

Rotem et al. (1978) argue that the survival of spores in Israel during the period from 3 

hours after sunrise to sunset is determined by the temperature, relative humidity and 

radiation. According to Rotem et al. (1970), the survival of spores on the leaf depends 

more on solar radiation than on air temperature and a formula defining this relationship 

can serve as an indicator of the sporangia survival. Similar work was later implemented 

in the US (Mizubuti et al., 2000) and more recently in the UK (Skelsey et al., 2017). 

Although all authors agree on the negative impact of radiation on sporulation, the 

estimated rate of survival varies, with a steeper exponential decrease in viability with 

cumulative solar radiation dose observed in the US study. Such differences could arise 

from differences in the diffusion of solar radiation in two different climatic zones (New 

York State, USA, and Scotland, UK) and pathogen lineages. Although the effect of 

radiation on spore survival is acknowledged by many authors, and simple equations are 

available (e.g. Mizubuti et al., 2000; Rotem et al., 1985; Skelsey et al., 2017; Sunseri et 

al., 2002), to the best of our knowledge it is yet to be included in disease prediction models 

used in practice. This could be explained by the fact that solar radiation data was not 

easily obtainable in the past (Gleason et al., 2008) or widely measured.  

According to Schroetter and Ullrich (1967), the number of hours per week with relative 

humidity < 70% is a measure of the negative influence of drought on P. infestans. 

Michaelides (1985) developed formulas based on data from Crosier (1934), which 
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quantify spore survival based on temperature and relative humidity; he considered the 

necessary temperature range to be 3-30 °C (optimum between 12.5-22.5 °C) and 

employed six categories of relative humidity above 45% (Figure 2.3).  

 

 
Figure 2.3 The probability of P. infestans sporangia survival based on the relationship between 

temperature and relative humidity (Michaelides, 1991). 

Whole infection cycle 

Most of the assumptions regarding the entire infection cycle in both empirical and semi-

empirical models employ a temperature-dependent period with relative humidity (most 

often > 90%) as a condition for PLB development (e.g. Bruhn, 1981; Duvauchelle, 1993; 

Krause et al., 1975; Wallin, 1962; Winstel, 1993). For example, in the model by Bruhn 

and Fry (1981), blight units are assigned according to temperature ranges of 3-7 °C; 8-12 

°C; 13-22 °C and 23-27 °C when the relative humidity > 90%. The accumulation of risk 

is highest in the 13-22 °C temperature range. Exceptions to the 90% relative humidity 

minimum threshold include some quantitative models, such as Simphyt I (Kluge et al., 

1990), where risk hours are accumulated according to hours with a temperature greater 

than 8 °C and relative humidity > 75%. Kluge and Gutsche (1990) summed the influence 
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of the temperature for germination, penetration, incubation time and sporulation. 

Duvauchelle (1993), in the Guntz Divoux model, considers that there is no risk of 

infection under 7 °C and depending on the temperature and number of hours with relative 

humidity > 90%, the model outputs three levels of risk for infection. 

2.3.3. Turning risk estimation into decision support 

The ultimate goal of PLB forecasting is to aid decision making regarding control 

programmes, for instance, the initiation of fungicide control programmes and subsequent 

treatments (Bourke, 1955a). In general, territorial models are mainly limited to 

indications of the risk or warnings of blight conducive weather; the more localised, micro-

scale models and DSSs attempt to translate the information into advice. Examples of 

DSSs offering advice on the initial and subsequent fungicide treatments are presented 

below.  

The initial treatment  

Several models provide an estimate of the initial fungicide treatment date based on an 

accumulation of incubation units (e.g. Kluge et al., 1990; Schrödter et al., 1967; Wallin, 

1962). In practice, fungicide protection is often initiated after a ‘zero date’ or a certain 

phenological stage (Cooke et al., 2011). While zero dates differ regionally, applications 

are not typically initiated until the plants meet in the row (Cooke et al., 2006). At that 

point, plants start forming their own microclimate with less turbulence resulting in an 

increase in humidity compared to the ambient or surrounding conditions (Jacobs et al., 

2009). Although this is not always acknowledged, in practice, applications can be 

initiated earlier due to perceived risk because of higher susceptibility of plants at earlier 

phenological stages (Fry et al., 1986). In Simphyt I, Kluge and Gutsene (1990) predict 

the start of an epidemic using empirically determined regional risk factors, based on 
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historical disease observations, in combination with the varietal resistance. Krause et al. 

(1975) proposed different thresholds for the initial fungicide application based on varietal 

resistance suggested in Blitecast. However, Doster et al. (1989) reported that disease 

occurred before these thresholds were reached, and advised against the use of Blitecast 

for the initiation of fungicide protection. Conversely, the recommendation to initiate 

fungicide protection by Prophy, a more personalised DSS, is related to the phenological 

stage of the plant. Prophy recommends initiation of fungicide programme when the crop 

reaches an average height of 15 cm (Nugteren, 2004).   

Spray intervals  

Spray intervals depend on the fungicide degradation rate, which is determined by 

exposure to ultra-violet light, temperature and rain (Caffi et al., 2018), the varietal 

resistance and the morphology of the potato variety (Fry et al., 1983). Whilst none of 

these specific aspects are considered in the older DSS based on simpler territorial risk 

estimation, they are often included in newer DSS platforms (e.g. Small et al., 2015a) and 

personalised commercial PLB DSS (e.g. Nugteren, 2004). However, in practice, there is 

a need for constant re-evaluation due to the dynamic nature of the pathosystem and 

changes of fungicide efficacy and varietal resistance levels (e.g. Fry et al., 1983; 

Grünwald et al., 2002). Bruhn and Fry (1981) proposed a spray interval correction in 

Simcast, based on varying the “blight unit” accumulation according to the varietal 

resistance, temperature and the duration leaf wetness. Simcast has three levels of varietal 

resistance (very sensitive; sensitive; moderately resistant) with different assumptions 

regarding the number of hours with relative air humidity > 90% needed to reach the 

decision threshold risk accumulation. Grünwald et al. (2002) reported that the system was 

advising too many spray warnings for cultivars with increased levels of blight resistance 

and they further modified the system to reduce the fungicide usage on such varieties. 
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Similar to Blitecast, Symphyt (Kluge et al., 1990) considers the varietal resistance based 

on the calculation of the new infections and three risk groups, to estimate fungicide 

treatment intervals. PhytoPRE (Forrer et al., 1993) and Blight Management (DK) 

(Hansen et al., 2017) also account for the high, intermediate and low-level resistance 

levels when advising different decision-making rules for spray intervals.  

2.3.4. Challenges 

Translating biological knowledge, usually derived from experiments implemented in 

controlled environments, into a modelling framework comes with uncertainty which 

impacts the subsequent estimation of risk (Madden et al., 1988a). A key challenge in 

developing DSS is to determine an optimum compromise between the current scientific 

knowledge regarding the biology of the pathogen that can be incorporated into a model, 

the level of the risk associated with the disease outbreak, ability of the weather network 

and numerical weather prediction models to provide reliable information at plot scale, 

and accessible computing resources. The following sections outline some of these 

challenges in more detail. 

Underlying Biology  

The algorithm of the model intended for practical use needs to be based on sound 

scientific knowledge (Pascual et al., 2003). However, several pathogen epidemiology in 

vitro experiments are reported with different equations quantifying the impact of an 

environmental variable on a certain stage(s) of the pathogen life cycle. Such quantitative 

differences arise mainly due to different experimental conditions, different pathogen 

strains used and their vitality, as well as the number of biological and environmental 

interactions included in the experimental design (Hartill et al., 1990; Madden et al., 

1988a; Rotem, 1971; Rotem et al., 1978). For example, while all researchers agree that 
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solar radiation has an inhibitory effect on sporangia, reports on the lethal doses vary (e.g. 

Mizubuti et al., 2000; Rotem et al., 1985; Skelsey et al., 2017; Weille, 1961).  

Host phenology 

It is important to differentiate genetic, physiological and crop ecological aspects, as well 

as their interaction, when discussing the relation of host phenology and PLB management.  

The critical stages of the potato crop phenology in relation to PLB management, are 

periods of intensive growth, stable canopy and tuberization. Fry and Apple (1986) found 

that the age of the plants affected the sensitivity to P. infestans, with epidemics 

developing faster on older plants (>90 days post-emergence) compared to those of 

intermediate age (60 days); while emerging crops will be very susceptible to infection but 

the rapid drying of the young and unformed canopy compensates by reducing the 

epidemic progression. Equally, it has been shown that the potato plant becomes more 

susceptible to PLB if excessive nitrogen fertilization is applied due to an increase in crop 

biomass, which in combination with the phenological stage and morphological 

characteristics of the potato variety, determines the microclimate of the crop (Harrison, 

1992a). Resistance levels increase for plant parts that are formed later in time, and late 

maturing varieties have higher levels of PLB resistance to early ones (Struik, 2010).  

However, such differences are hard to estimate with territorial models since the standard 

weather measurements come from 2 m height outside of the crop microclimate. Hence, 

synoptic risk models are regularly calibrated to minimise the risk and the level of 

assumption susceptible host with fully developed haulm is implied. 
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Temperature  

The temperature in the crop is strongly related to the development of crop. A closed crop 

develops its own (micro) climate. In an open, developing crop the temperature is also 

determined by the radiation from the ground. The temperature in an open crop is highest 

at 10 cm (2-4 °C warmer than at the official measuring height and in a closed crop about 

30 cm (Broadbent, 1950)). The lowest temperature of a crop in dry soil occurs at about 

60 cm, whilst in wet soil is at 10 cm. Variation is also due to the density of the crop, 

variety, etc. However, this difference is insignificant during rainy, low-radiation days and 

occasionally the crop minimum temperature can be higher than the screen minimum. Van 

Eimern (1964) found that during rainy weather, the temperature in the crop at the height 

of 15 cm was up to 0-1 °C lower than the temperature at 2 m, and at 45 and 60 cm height, 

it was 0.5-1 °C and 1 °C higher, respectively. Because the greatest risk of P. infestans 

occurs on such low-radiation days, temperature measurement at official measuring height 

(2m) may suffice (Hansen, 1993). However, deviations in meteorological conditions do 

not stop there. The radiation absorbed by leaves is not fully compensated by the cooling 

effect of transpiration, which leads to higher leaf temperatures than the surrounding air 

temperature. These differences are potentially important for the calculation of risk, such 

as incubation time, or for specific components of a DSS, such as, spray intervals reflecting 

fungicide degradation.  

Air moisture and surface wetness  

Two important environmental variables in the epidemiology of P. infestans are moisture 

in the air and on the plant surface. Moisture in the air can be expressed in different ways, 

with the relative humidity being the most widely used measurement in plant pathology, 

but is also the most troublesome (Rowlandson et al., 2014), often leading to inaccuracies 

in the risk estimation due to inaccurate representation of the crop microclimate conditions 
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(Hansen et al., 2017). Relative humidity indicates the relative amount of water vapour in 

the air and is expressed as a percentage of the amount needed for saturation at the same 

temperature; with the maximum saturation pressure increasing with temperature 

(Monteith et al., 2007). It is almost always higher in the crop than at the standard 

meteorological measurement height (van Eimern, 1964).  

Due to high spatial variability, leaf wetness estimation is even more problematic 

(Gillespie et al., 2008). Precipitation and dew are the main processes responsible for the 

establishment of wetness on leaf surfaces. It can be also be caused by deposition 

associated with fog and mist. Under rainy conditions, leaves intercept precipitation, 

leading to the formation of surface leaf wetness. Dew occurs mainly during the night 

when water is extracted from the atmospheric water reservoir; dew rise, a process which 

occurs when soil water evaporated during the night is intercepted by the canopy, and by 

guttation, a process where excess plant water is released (Beysens, 1995; Rowlandson et 

al., 2014). Whilst leaf wetness usually starts on the upper canopy levels, the longest 

wetness periods occur on the lower canopy layers (Jacobs et al., 2005). The duration of 

leaf wetness can also vary spatially in the crop due to leaf area index, shading, solar 

declination and soil structure (Gleason et al., 2008). Wind can equally influence leaf 

wetness formation and duration, but its effects vary depending on the phenology of the 

crop, having less impact on closed canopies (Anderson, 1936; Monteith, 1957). Leaf 

wetness is not a standard observed meteorological parameter because it is a property of 

surfaces as well as the atmosphere (Gleason et al., 2008). However, there is a long history 

of theoretical research on surface wetness formation (e.g. Anderson, 1936; Beysens, 

1995; Monteith, 1957). A number of leaf wetness models has been developed to estimate 

leaf wetness duration, ranging from simple empirical threshold based estimation 

techniques using a single minimum value of relative humidity (Rowlandson et al., 2014); 
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empirical models based on a set of simple if/else rules (e.g. Gleason, 1994), to complex 

physical models requiring a number of inputs, including those that are not available as 

standard measurements on simpler farm weather stations, such as net radiation (e.g. 

Sentelhas et al., 2006). Rowlandson et al. (2014) suggest that, considering the uncertainty 

behind each approach and the ease of calculation, the best compromise is using a 

minimum relative humidity threshold. However, they also warn about the need for 

calibration of this threshold for each agroecosystem and individual crop type. Magarey et 

al. (2005a) also warn that the leaf wetness duration resulting from rainfall could persist 

for several days in certain crop types, even after the relative humidity values are below 

the indicated threshold.   

Uncertainty in forecasted weather data 

Given the predominance of protective fungicides for PLB control with short (5-7 day) 

intervals which results in several applications per year and the low availability of curative 

fungicides and their limited effect (24-48 hours)(Cooke et al., 2011), models require the 

use of weather forecast data due to time constraints (Magarey et al., 2002). While DSSs 

based on extended weather forecast data have been on the market since the 1990s 

(Magarey et al., 2002), there is a shortage of information regarding the accuracy of these 

products (Baker et al., 2007; Firanj Sremac et al., 2018).  

Over the last decade, numerical weather prediction (NWP) forecasts have become more 

skilful largely due to significant advances in computational resources and 

parameterization schemes. However, model skill varies depending on the meteorological 

variable and the forecast lead time (McDonnell et al., 2017). For example, the high-

resolution (HRES) atmospheric model developed by the European Centre for Medium-

Range Weather Forecasts (ECMWF), operationally employed in the current Irish PLB 
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risk forecasting system, has been reported to have a significant loss in accuracy of 

forecasted temperature values after the 5-day lead time (Firanj Sremac et al., 2018).  

Although numerical models employed to derive forecasts of the weather with lead times 

out to 10 days are improving, predicting the weather over even these short timescales 

entails an additional error factor beyond those inherent in making weather measurements 

and model-based estimates; necessitating a trade-off between timeliness and accuracy 

(Gleason et al., 2008).  

2.4. Model evaluation 

As described in the previous section, the development of risk prediction models is often 

subjective, reflecting a compromise between scientific knowledge and available data. 

Translation of the risk estimation into decision thresholds is an integral part of the model 

application in decision support; both the model and its decision thresholds require 

continuous re-evaluation (Magarey et al., 2007). The reasons for this are twofold. Firstly, 

the quality of the input data is constantly improving (Gleason et al., 2008) as well as our 

knowledge regarding the PLB disease cycle, offering opportunities for improving the 

models. Secondly, one that is more dangerous and urgent, is that the evolving pathogen 

population and intensification of the potato production (Fry, 2016) could lead to an 

increased ability of the pathogen to operate beyond model assumptions (Shtienberg, 

2013).  

Validation of the IR model  

The IR model was extensively validated in the 1950s, during the period when it was 

proposed (Bourke, 1953b, 1953c). A humid period of 12 hours was considered as a 

requirement for the occurrence of sporangia (Bourke, 1955a). Humid spells of 16 hours 

were found to be the minimum requirement for blight spread. Risk accumulations 
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occurring early in the season were noted as less effective because of the low inoculum 

pool. Conversely, shorter humid spells later in the season were identified as possible 

triggers for epidemics (Bourke, 1959). Initial blight infections were usually found in the 

West, South and South-West. The first half of June was identified as a period of high risk, 

with the highest number of blight weather spells occurring in this month during ‘bad 

blight years’: 1924, 1931, 1936, and 1943. The disease outbreaks and their subsequent 

development was monitored by 32 inspectors in 26 counties; the focus of monitoring 

efforts was mainly on fields with certified potato seed (Bourke, 1953c); blight scouting 

and reporting continued throughout the second half of the last century (Keane, 1982). 

Bourke (1953b, 1953a, 1953c) concluded that the first outbreaks of the disease, as well 

as being a period of major spread, were in agreement with model outputs, although no 

quantitative analysis or methods were reported. 

The first evaluation of the IR model was undertaken by agricultural scientists in the 1970s, 

when Frost (1976) evaluated the model at the Oak Park agricultural research station, 

located in County (Co.) Carlow. Frost (1976) did not find any significant correlation 

between disease outbreaks and the accumulation of Effective Blight Hours (EBH) based 

on weather data from Mullingar (Co. Westmeath) and Kilkenny (Co. Kilkenny), the two 

closest synoptic weather stations. This analysis was re-evaluated by Keane (1982), who 

included two additional weather stations (Casement Aerodrome, Co. Dublin and Birr, Co. 

Offaly) and examined ten-day periods during the growing season. Keane (1982) found 

that at least two stations had accumulations of EBH ten days prior to primary disease 

outbreak at Oak Park; and that high accumulation of 25 EBH or more during a ten-day 

period would give rise to 1 to 5 % of disease in plots according to the PLB measuring 

scale. These high accumulations were found to occur more frequently in the regions of 
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the South and South West, and temporally, during the months of July and August (Figure 

2.4). 

 

Figure 2.4 Average accumulations of effective blight hours (EBH) from May to September for 

the period 1957-1981 (after Keane, 1982). 

The development of technology and increased awareness of environmental damage 

caused by the conventional approach to pest management led to an increased effort to use 

DSSs to support IPM approaches. Changes in the pathogen population (Cooke et al., 

1995), fungicide resistance (Dowley et al., 2002; Griffin et al., 2002), agricultural 

practices, and feedback from producers, have resulted in the value of existing forecasting 

schemes being questioned both in Ireland and internationally (Taylor et al., 2003). During 

that period, Leonard (2001) reported results of field trials, implemented at Oak Park, 

comparing routine fungicide protection, with Met Éireann warnings using the IR model 

and the Negfry DSS (Hansen, 1995) for the years 1996, 1997 and 1998. The variety used 

in the experiments was the Rooster, which at the time had the resistance rating of 4 (on a 

scale of 1-9, with 9 being highest resistance level) for the foliage and 6 for the tuber blight 
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resistance, according to the EuroBlight scale (Hansen et al., 2005). Both DSSs resulted 

in a significant reduction in treatments. However, only the Negfry DSS was able to 

provide an acceptable level of blight protection. Although it is suggested that the warnings 

from Met Éireann were used, the exact decision thresholds remain unclear.  

2.5. History of PLB models 

The initial models used to estimate the risk of PLB were proposed in the early 20th 

century and are still being developed. Some of the important references and models are 

presented below, starting with early qualitative models, initial quantitative models and 

finishing with examples of modern web-based DSS platforms which include several 

elements from Table 2.1. Further details regarding these models and DSSs, their 

components and use have been reviewed elsewhere (e.g. Bourke, 1959; Large, 1959; 

Schepers et al., 1995; Schepers, 2004; Mizubuti et al., 2006) and presented on the 

following web pages: 

- The web page of the Integrated Pest Management Program of University of 

California Davis   

(http://ipm.ucanr.edu/DISEASE/DATABASE/potatolateblight.html) 

- The EuroBlight webpage: (https://agro.au.dk/forskning/internationale-

platforme/euroblight/control-strategies/dss-overview/  

- Models included in IPMBlight2.0 project (Andrivon et al., 2017) 

https://agro.au.dk/forskning/internationale-platforme/euroblight/research-

projects/ipmblight20/decision-support-systems-overview/ )  

However, it is worth noting that the only reported model in 2000s, which is also being 

used in practical PLB risk forecasting, is Simblight (Kleinhenz et al., 2007). 

http://ipm.ucanr.edu/DISEASE/DATABASE/potatolateblight.html
https://agro.au.dk/forskning/internationale-platforme/euroblight/control-strategies/dss-overview/
https://agro.au.dk/forskning/internationale-platforme/euroblight/control-strategies/dss-overview/
https://agro.au.dk/forskning/internationale-platforme/euroblight/research-projects/ipmblight20/decision-support-systems-overview/
https://agro.au.dk/forskning/internationale-platforme/euroblight/research-projects/ipmblight20/decision-support-systems-overview/
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The initial models: Qualitative empirical models 

Empirical models are normally associated with the simple qualitative rule-based criteria, 

indicating a risk period (one or more days) without quantifying the risk. Although such 

models were predominantly 'legacy' models developed in the past, they remain in active 

use. An example of such model is Hutton criteria (Dancey et al., 2017) from the UK, 

previously known as the Smith Period (Smith, 1956). The Smith Period aimed to help 

identify critical periods for PLB development to aid timing of the fungicide applications; 

it constitutes two consecutive days where the minimum temperature ≥ 10 °C and on each 

day there are at least 11 hours where the relative humidity is ≥ 90% (Smith, 1956). The 

validity of the environmental parameters was brought to question due to reports of an 

increasing number of missed events (Taylor et al., 2003) and the changes of the P. 

infestans population (Cooke et al., 2012). This led to the revision of the Smith Period, 

resulting in a new model named the Hutton Criteria, which kept the same requirement in 

terms of the length and temperature threshold (two days where each day has a minimum 

temperature of 10 °C). However, the Hutton Criteria has a reduced requirement for the 

duration of humid periods, from at least 11 to at least six hours with relative humidity 

≥ 90%, to reflect changes in the ‘new’ pathosystem (Dancey et al., 2017). Similar models 

have been reported from Norway (Försund and Flaatten, 1958), The Netherlands (Van 

Everdingen, 1926), and the USA (Hyre et al., 1955).  

Further development: Quantitative empirical models 

While quantitative empirical models are often classified as empirical models, they differ 

from simple yes/no criteria (described in the previous section), in their ability to quantify 

the risk. The risk is usually estimated as matrix based system where a risk value is 

assigned to the period fulfilling certain criteria. Models started gaining such quantitative 

features in the 1950s. The IR model (Bourke, 1953a) was the first model of this kind; it 
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sought to include knowledge of the disease life cycle as opposed to being entirely an 

empirical approach linking weather conditions to blight outbreaks (Bourke, 1953a). The 

selection of suitable weather criteria was determined from previously published in vitro 

experiments by Crosier (1934). 

Additional examples of such models used for predicting the initiation of the epidemics 

are the Wallin Period (Wallin, 1962), from the USA, and Negative Prognosis (Schrödter 

et al., 1967), from Germany. Both models estimate the epidemic initiation by 

accumulating the risk values according to temperature ranges during periods with high 

relative humidity > 90%. Similarly, the Guntz Divoux model (Duvauchelle et al., 1997) 

from France estimates risk, classified into three categories, within the temperature range 

7 - 27 °C and relative humidity > 90%.  

The access to automated weather data and the use of computers to automate the algorithm 

calculations have led to further evolution of models. To compensate for some of the 

limitations associated with earlier models and to provide more comprehensive advice, 

new quantitative empirical models have been developed on the basis of these earlier 

models. For example, NegFry (Hansen, 1995) is a combination of the Negative Prognosis 

model (Schrödter et al., 1967), used for the scheduling of initial treatments, and the model 

by Fry (Fry et al., 1983), incorporating the scheduling for subsequent treatments. 

Following the same principle, BliteCast (Krause et al., 1975) combines elements of the 

Wallin Period (Wallin, 1962) criteria, and the Hyre model (Hyre et al., 1955), to time the 

initial and subsequent treatments, respectively.  

An example of a model integrating even more elements, moving towards a mechanistic 

approach, is the French model Milsol proposed in 1985 (after Ladeveze, 1988). It was 

built from elements of the Guntz-Divoux model, the Wallin model, Blitecast and the 
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English model Blight developed by Sparks (1983). The quantification of the epidemic in 

Milsol is comprised of 4 compartments depending on the epidemic cycle of P. infestans: 

infection, inoculum pressure, survival and sporulation capacity.  

Disease Simulators  

One of the first plant disease simulators was developed by Waggoner (1968), followed 

by a number of other models simulating temporal (e.g. Andrade-Piedra et al., 2005a; 

Michaelides, 1991; Shtienberg et al., 1989), as well as spatial disease development 

(Firester et al., 2018; Skelsey et al., 2009). Although complex disease forecasting models, 

such as Milsol (after Ladeveze, 1988) or Symblight 3 (Kleinhenz et al., 2007), incorporate 

some elements of dynamic models, their level of detail is not as high as in simulation 

models. Due to their complexity and high level of assumption, simulation models are not 

often employed in practical disease forecasting, but serve as a base for each new 

generation of models used in practice through the incorporation of new elements 

(Harrison, 1995a). They are mainly used as a tool in basic research (Van Oijen, 1991) and 

education (Small et al., 2015a).  

2.5.1. Current PLB DSS platforms  

While the weather is the primary driver of PLB epidemics, the correction of the disease 

risk estimation is necessary by means of integration of the other parts of the disease 

triangle, including human intervention. Hence, contemporary DSSs employ a variety of 

segments and are based on models of different complexity, subject to availability of 

resources and predominant research tendencies. Examples of commercial and non-

commercial DSSs employed in neighbouring geographical areas and worldwide 

reflecting this diversity are presented below.  
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International PLB DSSs 

In the UK, the newly proposed Hutton Criteria are employed in the DSS system called 

Blightwatch.  Alerts are provided free-of-charge by the AHDB Potatoes (Agricultural and 

Horticultural Development Board, Potato Division) throughout Great Britain; e-mail or 

text message alerts are sent to the grower if a Hutton Period occurs in their specified 

postcode district. Another free-of-charge tool is provided by Syngenta, BlightWatch 

(www.syngenta.co.uk/blightcast), which employs both Smith Periods and Hutton Criteria 

for the strains of blight capable of developing at shorter humid periods. The risk is 

calculated for a lead time of five days based on weather forecast data.  

The German PLB DSS, operated by ISIP (Information System for Integrated Plant 

Production), is based on two components: monitoring and prognosis. The initial treatment 

is calculated based on model SYMPHYT2 (Gutsche et al., 1996). The 14-day disease 

pressure is calculated based on  SIMBLIGHT3 (SYMBLIGHT1 is described by 

Kleinhenz et al., 2007). The risk is calculated for 570 weather stations based on observed 

weather and three days of weather forecast data interpolated to 1 km2 grid; outputs are 

presented using a ‘traffic light’ warning system. An example output of both models is 

available in Figure 2.5. The system was recently supplemented with field-specific 

individual forecasts.  The monitoring system is based on the actual disease observations 

in more than 250 monitoring fields and validated regularly. SYMPHYT2 model correctly 

predicted 81% of disease outbreaks in 2010 using the closest weather station data and 

78% using the interpolated weather data (www.imisp.de). 
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Figure 2.5 SIMPHYT1 (upper) and SYMBLGHT3 (lower) risk maps from 2010 (source 

www.isp.de) 

BlightPro (US) is an integrated web platform which provides outputs of three models 

(Small et al., 2015a): 

- Blitecast, used to predict the initial occurrence of late blight in northern temperate 

climates, as well as the subsequent spread of late blight (Krause et al., 1975),  

- Simcast, the model that integrates host resistance into subsequent treatments with 

varietal resistance correction, and 

- LB2004 (Andrade-Piedra et al., 2005a) simulations used to predict disease 

dynamics and fungicide weathering and loss. 

BlightPro (Small et al., 2015a) was developed not only in order to improve in-season 

disease management, but also as a research tool which could be used with historical 

weather data to explore disease management scenarios, or function as a teaching aid. It is 

a personalised information system, where a user defines the location of the crop. Outputs 

of models are then calculated using the nearest weather station as a source of observed 

weather data and corresponding 2.5 square km grid resolution weather forecast. A cultivar 

http://www.isp.de/
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resistance database was created from published plant disease management reports and 

field experiments. The system generates reports for observed and forecasted weather and 

all three models for the period of +/- 7 days. Users can sign up for automated alerts about 

upcoming critical thresholds, distributed via SMS or e-mail. 

An example of a successful commercially available PLB DSS is ProPhy (Netherlands), 

marketed by Opticrop (now Agrovision). ProPhy was initially developed in 1988 

(Nugteren, 1997; 2004). The system is built on several elements derived from empirical 

data and practical knowledge. Country specific versions were developed to accommodate 

differences in varieties, chemicals, application laws etc. Risk is calculated based on 

observed and forecasted weather data. The duration of the protection is calculated based 

on the active ingredient, the dose, variety, resistance, rain fastness of the fungicide, 

disease pressure and crop growth. The system provides advice on the timing of fungicide 

treatments, product choice and dose.   

PLB DSS in the Republic of Ireland 

The IR model (based on the Irish Rules as described briefly above) is operationally 

deployed by Met Éireann (Ireland National Meteorological Service). They currently 

employ forecasts from two NWPs as input to the model in order to generate the blight 

warning forecasts. The NWP forecasts employed are: 

• Numerical weather forecasts from European Centre for Medium-range Weather 

Forecasts (ECMWF) which are updated daily at 7 and 19h. The NWP model, 

referred to as ECMWF-fine, has a 12.5 km horizontal resolution and 3-hourly 

temporal resolution, for the first 6 days of the forecast, decreasing to 6-hourly 

resolution out to 10-day lead time. 
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• Numerical weather forecasts from HIRLAM, updated every 6 hours starting from 

4 hours after midnight. The HIRLAM model has a 10 km horizontal resolution 

and a 3-hourly temporal resolution for 48 hours. 

The decision to issue a blight warning is made based on the following outputs: 

• Meteogram with plots of relative humidity, temperature, EBH accumulation and 

precipitation (Figure 2.6). Accumulations on EBH plot are yellow until reaching 

12 hours of a single spell when they turn red. Meteograms are produced for the 

point-based locations of meteorological stations, selected as representative for the 

most important potato growing areas (the distribution of potato production in the 

Republic of Ireland is presented in Figure 1.2): East Cork (Fermoy - Moorepark), 

Wexford (Johnstown Castle), Dublin (Dunsany), Carlow (Oak Park) and Donegal 

(Malin Head). 

• Animated Blight maps showing the spatial distribution of accumulated effective 

blight hours based on HIRLAM model (Figure 2.7) is produced for ten-day lead 

time in the form of single ‘quick glance’ map as well as animations. 
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Figure 2.6 Meteogram showing the forecasted weather conditions and the model outputs for 

the ten-day lead time. 

 

Figure 2.7 Animated maps showing accumulation of EBH for the ten-day lead time. 

Currently, the decision to issue a blight warning and its termination is a human decision, 

made by the meteorologist on duty. Blight warnings include information about areas 

affected, duration of the spell, and opportunities for spraying, where possible. Optimal 
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spraying conditions considered by Met Éireann are winds of force 3 or less ( < 11 knots, 

or 5.66 m-s) according to Beaufort scale (Mather, 2005), with little or no precipitation and 

trafficable soils. A blight warning is cancelled when the blight conditions cease. If blight 

conditions are expected to cease sooner than it is indicated in an existing blight warning, 

then a cancellation is issued. The warnings are cancelled/prolonged if the meteorological 

situation changes during the time before the blight spell. An example content of a warning 

message:  

“Weather conditions favouring the spread of potato blight will develop through the 

midweek period. There will be opportunities for spraying and these should be optimal on 

Tuesday.” 

“Weather favourable for the spread of Potato Blight in Connacht, Ulster and north 

Leinster on Wednesday, Thursday and Friday. There will be opportunities for spraying 

this afternoon and evening.” 

Currently, the ‘zero date’ for the initiation of the blight warning service is 1st May, and 

warnings issued during May include the specification ‘for early planted crops’.  

2.6. Summary and conclusions 

DSSs in crop protection typically have low uptake (Gent et al., 2013; Shtienberg, 2013). 

To propose a successful DSS, one must keep in mind the numerous components of plant 

disease pathosystem, the human factor, technological opportunities and limitations. 

Setting over-enthusiastic and over-ambitious goals could lead to not only failure of the 

system but could also potentially endanger the livelihood of producers in such high-risk 

pathosystem. Ultimately, even if a proposed complex system and proven as a useful 

disease management tool, there is a constant need for its validation due to the nature of 
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the dynamic pathosystem. Hence, the territorial models employed in practical disease 

forecasting remain simpler compared to those used for studying dynamic processes due 

to a lower level of required assumptions and input variables. The century-long 

development of modelling approaches applied to PLB DSSs was condensed in this 

chapter, to present the opportunities and challenges in developing one.  

Due to the complexity of the system, DSSs in crop protection are based on the integration 

of knowledge from different fields, such as agronomy, agrometeorology, plant pathology, 

but also information technology. To develop a DSS, the modeller(s) acquires the 

knowledge regarding these segments and decides on the point of minimum uncertainty 

introduced by each component of pathosystem based on available technology and 

knowledge, as well as personal opinions and risk adversity. Examples of different DSS 

have been shown depicting a variety of approaches employed over time. While some 

DSSs have increased in their complexity, there are examples of those which have 

remained relatively simple, possibly for subjective reasons based on an awareness of high 

risk associated with the uncertainty of complex assumptions. The approach taken in this 

thesis is to find an optimum compromise between these uncertainties under Irish 

conditions, with the consideration of current knowledge of pathosystem as well as the 

ability of the weather measuring network and numerical weather prediction models.  

Despite the great diversity, all models are based on the PLB lifecycle - epidemics are 

initiated and heavily dependent on the environment, most importantly, availability of 

moisture and mild temperatures. Although simple, the IR model goes beyond the simple 

empirical qualitative risk estimation and incorporates additional information, expressed 

as the duration of weather conditions suitable for PLB development. It is a well-known 

and established tool in the Republic of Ireland but is in need of evaluation due to changes 
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in P. infestans population and production conditions in the Republic of Ireland (Chapter 

1). However, as indicated in Section 2.4, our knowledge of the pathosystem is increasing, 

as well as the quality of model inputs, which presents an opportunity for seeking an 

increase in accuracy of the PLB risk estimation, providing an opportunity to overcome 

some of the oversimplifications heretofore required to develop these models. 

In conclusion, while the complexity of the model and demands from the input variables 

should be kept to a minimum due to the potential risks, there is a need to attempt to push 

the model boundaries forward to achieve more accurate and more precise risk estimates. 

If these goals can be achieved, the potential exists to increase the security, and lead to 

more sustainable food production – the one certainly needed in case of potato late blight. 

Hence, the current operational model employed in Ireland, the IR, is evaluated and re-

calibrated as an immediate solution in Chapters 3 and 4; a new risk prediction framework 

and model approach, which seeks to improve the risk estimation, is presented Chapter 5.  
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3. Evaluation of Irish Rues, the Potato Late Blight Forecasting Model 

and its Operational use in the Republic of Ireland 

3.1. Preface 

This Chapter is published as:  

Cucak, M., Sparks, A. H., Moral, R., Kildea, S., Lambkin, K., Fealy, R. (2018) Evaluation 

of Irish Rules, the Potato Late Blight Forecasting Model and its Operational use in 

Republic of Ireland. Agronomy, 9(9): 515 

This paper is positioned at the beginning of the present collection as this work was 

necessary to lay the groundwork for the rest of the research. The main assumptions of the 

IR model, related to environmental conditions for the disease outbreak under changing 

PLB pathosystem were evaluated using mathematical methods, while keeping in sight the 

biology of the pathogen. Also, it was considered necessary to confirm that the new 

proposed calibration is still an economically viable alternative and/or supplement to the 

standard growers’ practice in the Republic of Ireland.  

While the methodology for the evaluation of risk prediction models for the diseases of 

medium risk has been in use since the 1990s (Yuen et al., 1996; Hughes et al., 1999), 

such methods were not directly applicable to zero-tolerance disease. Hence, the method 

was adapted to fit the purpose of the re-calibration of the IR model. Additionally, being 

aware of the lack of coherent methodology and systemic evaluation of the model over 

time, the entire analysis is provided as a fully reproducible open-source compendium to 

facilitate the ongoing evaluation of the model.    
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3.2. Abstract 

Potato late blight caused by Phytophthora infestans is one of the most important plant 

diseases known, requiring high pesticide inputs to prevent disease occurrence. The 

disease development is highly dependent on weather conditions and as such several 

forecasting schemes have been developed worldwide, which seek to reduce the inputs 

required to control the disease. The Irish Rules, developed in the 1950s and calibrated to 

accommodate the meteorological network, the characteristics of potato production and 

the P. infestans population at the time, is still operationally utilised by the national 

meteorological agency, Met Éireann. However, numerous changes in the composition and 

dynamics of the pathosystem and the risks of production/economic consequences 

associated with potato late blight outbreaks have occurred since the inception of the Irish 

Rules model. Additionally, model and decision thresholds appear to have been selected 

ad hoc and without an explicit criterion. We developed a systematic methodology to 

evaluate the model using the empirical receiver operating curve (ROC) analysis and the 

response surface methodology for the interpretation of the results. The methodology, 

written in the R language, is provided as an open, accessible and reproducible platform 

to facilitate the ongoing seasonal re-evaluation of the Irish Rules and corresponding 

decision thresholds. Following this initial analysis, based on the available data, we 

recommend the reduction of the thresholds for relative humidity and initial period 

duration from 90% and 12 hours to 88% and 10 hours, respectively. Contrary to recent 

reports, we found that the risk of blight epidemics remains low at temperatures below 

12 °C. With the availability of more comprehensive outbreak data and with greater insight 

into the founder population to confirm our findings as robust, the temperature threshold 

in the model could potentially be increased from 10 °C to 12 °C, providing more 

opportunities for reductions of pesticide usage. We propose a dynamic operational 

decision threshold between 4 and 11 EBH set according to frequency of the disease 
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outbreaks in the region of interest. Although the risk estimation according to the new 

model calibrations is higher, estimated chemical inputs, on average, are lower than the 

usual grower’s practice. Importantly, the research outlined here provides a robust and 

reproducible methodological approach to evaluate a semi-empirical plant disease 

forecasting model. 

3.3. Introduction  

Potato late blight (PLB) caused by Phytophthora infestans (Mont.) de Bary (De Bary, 

1876) is amongst the most destructive diseases of potato crops (Mizubuti et al., 2006); 

due to its fast reproductive cycle and aggressiveness, if left untreated it can rapidly lead 

to the total destruction of the crop, either in the field or in storage, following harvest 

(Hardwick, 2006). In Ireland, historical outbreaks of potato blight have had a significant 

cultural and economic impact and are partly attributed to mass starvation and the 

subsequent migration of large portions of the population fleeing from famine during the 

1840s (Bourke, 1993). In Ireland alone an estimated €5 million is spent annually on 

fungicides to control PLB, whilst globally the cost of control and losses are estimated to 

exceed €1 billion annually (Haverkort et al., 2008a). Although P. infestans can form 

overwinter oospores, under Irish conditions these are not believed to occur (Louise 

Cooke, personal communication) and typically the pathogen overwinters in infected 

tubers (in dumps, volunteers or infected seed) (Hirst et al., 1960). The rate of late blight 

epidemic progression is highly dependent on the weather; with temperature, relative 

humidity and precipitation being the most important variables, with the latter two closely 

related (Harrison, 1992b). Prolonged periods of humid and cool weather provide 

conditions favourable for pathogen sporulation (Crosier, 1934); short-lived sporangia 

subsequently spread through a mixture of rain splash and wind dispersal (Wallin, 1962). 

The disease impacts yield both indirectly and directly, indirectly, by reducing 
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photosynthetic surface, and directly, when sporangia washed from foliage infect tubers in 

the ground (Hirst et al., 1960).  

Since the late 1970s, increasing globalization has resulted in the worldwide migrations of 

pathogen genotypes of both mating types, leading to the displacement of dominant older 

clonal lineages or genotypes commonly referred to as US-1 (Goodwin et al., 1994); this 

has facilitated the development and spread of new lineages, some of which demonstrate 

an increased aggressiveness (Fry, 2016). This rise of new genotypes has introduced 

changes in the ecology of P. infestans  (Mizubuti et al., 1998, 2000; Fry, 2008; Mariette 

et al., 2016a). The increasing genetic variability of P. infestans is likely reducing the 

durability of late blight resistance based on R gene stacks (Li et al., 2012). Although the 

structure of the Irish P. infestans population shows little genetic variation, it is dominated 

by a few clonal genotypes comprised of more aggressive EU_13_A2 and EU_6_A1 

strains (Cooke et al., 2006; Griffin et al., 2002). New genotypes have established in 

Ireland and have been reported in higher frequencies in recent years (Kildea et al., 2010; 

Cooke, 2015; Stellingwerf et al., 2018). In addition, the majority of potato production in 

Ireland is based on more susceptible potato cultivars, guided by market demand 

(Anonymous, 2011). Population diversification coupled with the influence of climate 

change (Haverkort et al., 2008b) has led to increased difficulty in controlling PLB (Baker 

et al., 2005; Chowdappa et al., 2015). Presently, due to the high risk of PLB epidemics 

in high-input agriculture, associated with increased aggressiveness of the pathogen, 

intensive fungicide regimes are routinely used; in Western Europe this equates to more 

than 10 applications per season (Haverkort et al., 2008a; Dowley et al., 2008), while in 

some countries crops can receive as many as 20 fungicide applications (Cooke et al., 

2011). The need to develop late blight forecasting models for use as decision support tools 

has been long acknowledged as one of few integrated pest management (IPM) approaches 

available for PLB management, motivated by both environmental and economic factors 
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(Bourke, 1970; Fry, 1982; Shtienberg, 2013). In response to the environmental challenges 

posed from increased pesticide usage, the European Community Directive 128/2009 on 

the Sustainable Use of Pesticides provides strict guidelines for the sustainable use of plant 

protection products in order to reduce risks to human health and the environment (Rossi 

et al., 2012). Reliable disease forecasting offers the potential to reduce yield losses and 

crop inputs during unfavourable blight weather conditions, while also supporting an ex 

post facto justification for the use of plant protection products (Hardwick, 2006; 

Shtienberg, 2013) in compliance with national and international regulations. Kessel et al. 

(2018) have shown the necessity for environmental risk prediction to guide low input 

chemical protection to prevent the resistance breakdown of currently resistant potato 

cultivars. Forecasting systems that involve numerous alerts have been shown to be useful 

in this regards when applied on a pathosystem involving a valuable crop and rapid disease 

(Madden et al., 1988b). 

At their core, crop disease forecasting systems employ algorithms, either mechanistic 

(fundamental) or empirically based, to predict disease cycle. Mechanistic based models 

are developed from laboratory experiments in controlled environment chambers, 

greenhouse or field and describe one or more segments of the host-parasite relationship 

as influenced by the environment (Madden et al., 1988b). Initially, the development of 

such models centred around the use of weather events to predict the development and 

onset of epidemics and were mainly empirical in nature (Pavan et al., 2011), based on the 

duration of weather events beyond a crude weather threshold (e.g. (Van Everdingen, 

1926; Smith, 1956)) and phenological stage (Baldacci, 1947). More recently, the use of 

mechanistic approaches has been increasingly employed in an effort to encompass more 

complex components of PLB epidemics, as well as crop growth, chemical protection and 

cultural practices (Fry, 2016; Kessel et al., 2018). Due to its historical and relative 
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economic importance, Ireland has a long history in the development of forecasting 

systems for use in PLB management.  

Austin Bourke, one of potato late blight forecasting pioneers, developed the PLB model 

referred to as the ‘Irish Rules’ (IR). This model sought to include knowledge of the 

disease life cycle as opposed to being an entirely empirical approach (Bourke, 1953a). 

For example, the selection of suitable weather criteria was determined from previously 

published laboratory experiments (Crosier, 1934), rather than a retrospective analysis of 

historical weather during blight outbreaks such as in the development of the ‘Dutch rules’ 

(Van Everdingen, 1926) and ‘English rules’ (Beaumont, 1947). Bourke (Bourke, 1953b) 

found that the frequency of warnings produced by these latter models was too high under 

Irish conditions and consequently the IR model was devised as an intermediate solution 

between empirical and process based approaches (Harrison, 1992b; Madden et al., 2007) , 

to aim of which was to increase the accuracy of disease life cycle interpretation.  

The first attempt to undertake an evaluation of the IR model dates back to the 1970s, 

when Frost (1976) found no significant relationship between disease outbreaks at a site 

located in the south east of the country, Oak Park, Co. Carlow (now a Teagasc research 

centre) and risk accumulation derived from weather data from two nearest synoptic 

weather stations, Mullingar and Kilkenny. Following re-analysis of this work, Keane 

(Keane, 1982), who included two additional surrounding weather stations, reported that 

IR were able to predict those outbreaks, although the exact evaluation methodology is not 

well documented. Reported field evaluations of the IR model performance have shown 

that the control according to the model outputs results in a significant reduction in 

fungicide usage, but with unsatisfactory disease control compared to the Negfry Decision 

Support System (DSS) (Hansen, 1995) or routine fungicide protection (Dowley et al., 

2004). More recently, as part of a pan-European initiative, a theoretical comparison of the 
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risk accumulation between several European PLB risk prediction models has shown that 

the IR model simulates the lowest estimate of risk due to its strict criteria (Hansen, 2017). 

The uptake and use of DSS in blight forecasting worldwide is limited largely due to the 

level of risk associated with a costly disease outbreak (Gent et al., 2013; Magarey et al., 

2017; Shtienberg, 2013). Risk-averse farmers use DSS to support an increased number of 

chemical treatments (Madden et al., 1988b), which is often the case in Ireland. The main 

incentive for producers to use plant disease risk prediction in recent times is to increase 

economic benefit through cost reduction, and to comply with pesticide use policies 

required by supermarket chains (Gent et al., 2013; Hardwick, 2006). Irish producers use, 

but do not necessarily rely on, operational blight warnings, hence it is now timely to 

review the IR and undertake an evaluation with a view to refining the rules in light of 

recent changes in disease and plant ecology.  

The aim of this study was therefore to provide a comprehensive, systematic and 

transparent method to facilitate an ongoing evaluation of the IR model, and its operational 

application, in the context of changes in the disease epidemiology and increasing 

regulation (market/policy). The impact of the proposed modifications on the potential 

number of treatments and fungicide usage is also determined and presented. Additionally, 

this research provides the first completely reproducible report in the area of plant disease 

forecasting, with a view to inspire and enable researchers elsewhere to modify, adapt and 

use the proposed methods and the code outlined here. 

3.4. Data and Methods 

The paper is structured as follows, initially, an overview of the site and available 

biological and weather data is presented. The Irish Rules model is described after which 

the evaluation of the model parameter thresholds, currently employed operationally is 
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presented. Proposed model modifications and identified decision thresholds are further 

assessed by comparison of treatment frequency and dose reduction. A schematic of the 

workflow is outlined in Figure 3.1.  

 
Figure 3.1 Simplified flowchart of the steps taken in IR model evaluation. 
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Table 3.1. List of frequently used abbreviations in the manuscript along with their full forms. 

Abbreviations Full form 

IPM Integrated Pest Management 

DSS Decision Support System 

PLB Potato late blight 

IR Irish Rules 

RHt Relative humidity threshold 

Tt Temperature threshold 

SDt Sporulation duration threshold 

LWt Leaf wetness threshold 

EBH Effective blight hours 

ROC Receiver operating characteristic 

AUROC Area under the ROC curve 

FP False positive 

TP True positive 

FN False negative 

TN  True negative 

3.4.1. Site description 

Oak Park, Co. Carlow, Ireland (latitude: 52.8560 and longitude: -6.9121), a Teagasc (Irish 

agricultural advisory body) research centre, is located in the south-east of Ireland. Soils 

are composed of light limestone gravelly soils and heavy textured soils derived from 

limestone till. 

Typical weather conditions calculated over the growing period (April to October) for the 

period 2007 to 2016 indicate that average daily relative humidity values were typically 

high throughout the potato growing season, which is a characteristic of Irish conditions 

more generally. The mean temperature over the period was 13 °C, relative humidity 

80.2 % and the average sum of precipitation 398.31 mm. The nighttime temperatures 

during the early part of the potato growing season are low, with averages of 6.6 °C in 

April and 9.2 °C May.  
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3.4.2. Data 

Biological data 

Planting dates and primary disease outbreak data were acquired from the Teagasc 

breeding program field trial records for the period 2007 to 2016. The breeding program 

trials consisted of 25-60 potato varieties in all years, representing all levels of 

susceptibility to potato late blight. Trials were laid out in randomised complete block 

design, with six blocks and plots of 20 plants. The seeds were propagated in accordance 

with the seed certification scheme of the Irish Department of Agriculture, Food and the 

Marine (DAFM) to ensure no latently infected tubers; the P. infestans inoculum 

originated from natural sources. Crop rotation was undertaken on a five-year cycle. Plots 

did not receive any fungicide treatments. All plots were visually inspected for disease 

occurrence on a weekly basis, from crop emergence, and generally more frequently 

during periods of humid weather. This data provided information about the disease 

outbreaks used in the model analysis and evaluation outlined here.  

Planting dates in the biological data are somewhat later compared to the usual agricultural 

practice in Ireland, which is suitable for the analysis because the healthy green tissue is 

present throughout summer. Outbreak dates vary from 26th of June to 23rd of August.  

Weather data 

Hourly weather data for the historical period under investigation, was acquired from the 

Met Éireann synoptic weather station at Oak Park. The weather variables obtained include 

the hourly air temperature (℃) and relative humidity (%) at 2m, and the total hourly 

precipitation (mm). The trial sites were within a radius of 500 m of the weather station in 

all years and are located on flat ground with no physical barriers in between.  

Availability of good quality weather and biological data is crucial for successful 

calibration and evaluation of plant disease forecasting models (Gleason et al., 2008). 
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Quality control of the available weather data and appropriate imputation of missing values 

is often disregarded in agriculture, which could lead to imprecise or wrong results 

(Hansen, 2017; Magarey et al., 2002). Post-processing of the weather data undertaken as 

part of this study included checking for duplicate entries and recorded values outside of 

'expected' ranges, determined using histograms. The data had only six missing values for 

both precipitation and temperature and seven missing values for relative humidity, over 

the period of interest. These short intervals of consecutive hours of missing data for 

temperature and relative humidity were imputed by spline interpolation using the 

Forsythe, Malcolm and Moler method (Forsythe et al., 1977), as suggested by Shah et al. 

(Shah et al., 2013).  

The IR model and its operational use 

According to original Irish Rules (Bourke, 1953b), illustrated in Figure 3.2, periods with 

temperatures ≥ 10 ℃ and relative humidity ≥ 90 % provide the necessary environmental 

conditions considered conducive for potato late blight. These periods are further split into: 

• Sporulation period - the initial stage considered necessary for the formation of 

sporangia is set to a minimum of 12 consecutive hours; and, 

• Infection period - starts after the 12-hour sporulation period is completed. If the 

surface of the plant is not wet at the beginning of the infection period, effective blight 

hours (EBH) begin accumulating from the 16th hour (12 hours sporulation period + 

4 hours = 16 hours); where the surface of the plant is wet at the beginning of the 

infection period, the EBH accumulation is reduced by a period of 4 hours (16 hours 

– 4 hours = 12 hours). The leaf (surface) wetness (LWt) is considered present if there 

was a considerable amount of precipitation (≥ 0.1 mm) during the time window of 3 

hours before and 3 hours after the 12th consecutive hour of sporulation. The infection 
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period lasts until conditions (temperatures ≥ 10 ℃ and relative humidity ≥ 90 %) are 

not broken for more than 5 consecutive hours, required for spore survival.  

Hours fulfilling these criteria are termed effective blight hours (EBH). The risk of potato 

late blight outbreak estimation is based on the longevity of the infection period, expressed 

as a sum of the EBH. 

 

Figure 3.2. Simplified presentation of Irish Rules algorithm. The operational warning threshold 

scale is presented as the “traffic light” scheme, ranging from green (no warning), yellow when 

the warning considered and red when the warnings are issued without delay.  

Currently, the warning system is used operationally by the national meteorological 

service, Met Éireann. The IR model is utilised in their original form to support the blight 

warning service issuing spray advice (Dowley et al., 2004; Keane, 1982). The decision 

on issuing a blight warning and its termination is determined by the meteorological officer 

on duty after visual inspection of the IR model outputs based on a 10-day numerical 

weather prediction (NWP) model forecast from the European Centre for Medium-range 
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Weather Forecasts (ECMWF). Warnings are disseminated through the Met Éireann web 

portal, radio and television weather broadcasts and mobile application. Operationally, a 

decision threshold to issue a blight warning is considered for an accumulation of 12 EBH. 

Additionally, if a continuous spell of mild, humid and damp weather lasting 24 hours or 

more is expected, a blight warning may be considered even if it does not explicitly meet 

the warning criteria. Blight warnings are typically issued 2 to 6 days in advance and 

include information about areas likely affected, duration of spell and opportunities for 

spraying, where possible. The decision threshold of 12 EBH is established from 

operational experience since the 1950’s (for example, between 1950 and 2000, a network 

of blight scouts reported on regional blight outbreaks and the progress of epidemics) 

although it was not systemically documented. Currently, the 1 May is the 'Zero date', a 

date threshold after which warnings are considered valid. 

3.4.3. Evaluation procedure 

Model thresholds under evaluation.  

The IR model is a set of algorithms mimicking the processes contained in mechanistic 

models. The transition between these processes is determined by an empirically derived 

set of thresholds, which ultimately influences the risk estimation expressed as the duration 

of an infection period. Four of these primary thresholds were subjected to a sensitivity 

analysis. The environmental thresholds for relative humidity (RHt), temperature (Tt) and 

the duration of period considered as necessary for the inoculum production - the 

sporulation duration threshold (SDt), were varied from -3 to +3 units of their respective 

default values (Table 3.2). To assess the leaf surface wetness indicator, the default 

estimation using rain (≥ 0.1 mm) was compared to using the combined rain and relative 

humidity thresholds as an indicator (Rain ≥ 0.1 mm and RH ≥ 90). The model was run 

using all combinations of model variable thresholds. Outputs were then combined with 

the hourly weather data for further analysis.  
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Table 3.2 Model variable threshold variations evaluated in the analysis. 

Range 
Relative humidity 

(%) (RHt) 

Temperature 

(℃) (Tt) 

Sporulation duration 

(hours) (SDt) 

+3 93 13 15 

+2 92 12 14 

+1 91 11 13 

Existing 90 10 12 

-1 89 9 11 

-2 88 8 10 

-3 87 7 9 

 

Analysis of diagnostic performance  

The period considered in the sensitivity analysis was from planting date to the recorded 

disease outbreak in each season, which was further split in two segments (Figure 3.3): 

• No infection period: considered as the period when the healthy (susceptible) host is 

present, but no infections were observed. This period lasts from emergence, which is 

estimated to start three weeks after planting, to 14 days prior to the first observation 

of the disease in the field. Specificity or true negative rate was measured during this 

period. It was considered that each warning during this period activates a chemical 

treatment which provides protection for the subsequent period of 7 days and is 

considered as a false positive (FP). True negatives (TN) were calculated as a 

proportion of the remaining period, when fungicide protection was not 

recommended.  

• Warning period: considered as a period when infections occurred and was assigned 

a 10-day time window, starting 14 days and ending 4 days prior to the disease being 

observed in the field. A risk warning of disease outbreak 10 days ahead has been 

reported as an optimum warning time (Taylor et al., 2003), and a period of four days 

was considered to be a minimum incubation period. Sensitivity or true positive rate 

was assessed during ‘warning period’. Warning periods where the value of the 

warning threshold was reached and would trigger a fungicide treatment, is considered 

as a true positive (TP) and if the warning was not issued false negatives (FN).  
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Figure 3.3. Simplified schematics illustrating the temporal split of the data for the diagnostic 

performance calculation (source (Bleiholder et al., 2001)).  

Contingency tables were created with sensitivity and specificity values from a confusion 

matrix (as shown in Table 3.3) for each evaluated disease warning decision threshold for 

all model outputs. The range of decision thresholds used as cut-off points, or the level of 

risk leading to treatment, was from 1-18 EBH.  

Table 3.3. Confusion matrix used for calculating the cutoff points for contingency tables.  

Disease Forecast 

Disease Observed 

Yes No 

Yes 

TP 

Warning 

period 

FP 

No infection 

period 

No 

FN 

Warning 

period 

TN 

No infection 

period 

Measures of 

the performance 

Sensitivity 

TP/(TP + FN) 

Specificity 

TN/(TN + FP) 

 

Receiver Operating Characteristic (ROC) curves  

The performance of each model was assessed using receiver operating characteristic 

curves (ROC). An ROC curve is a graphical technique for assessing model predictive 

ability through the relationship of specificity and sensitivity (Skelsey et al., 2017; Yuen 

et al., 2002). Empirical ROC curves were constructed with cut-off points for different 

thresholds on a discrete scale. Specificity (i.e. 1-specificity) on the x-axis and the 

sensitivity on the y-axis was plotted for each cut-off point. The accuracy of the model 

was evaluated based on the area under the ROC curve (AUROC), serving as a single 
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measure of the discriminatory ability of the model (Hanley et al., 1982; Rosner, 2015). 

The area under the curve (AUROC) was calculated for model outputs using the 

trapezoidal rule (Rosner, 2015). In general, an AUROC of 0.5 suggests no discrimination 

(i.e. the model is no better than a random predictor); as the value of AUROC approaches 

1, the better the predictive value of the model (Hosmer Jr et al., 2013). 

3.4.4. Statistical analysis 

Evaluation of leaf wetness estimation 

In order to evaluate the LWt estimation, two indicators are evaluated; values of hourly 

rain (rain ≥ 0.1 mm) and rain and humidity (rain ≥ 0.1 mm and RH ≥ 90 %). The model 

runs were split in two groups with each run having a measure of the LWt indicator in each 

group. The difference between paired samples was calculated and normality of the sample 

distribution was visualised using a histogram and density plot and assessed with the 

Shapiro–Wilk test. Where samples did not conform to a normal distribution, a non-

parametric paired two-samples Wilcoxon rank sum test was carried out to assess the 

difference between groups. Model outputs with a higher performing LWt indicator were 

kept for further analysis.   

Evaluation of main variable thresholds 

Boxplots were used for the initial visualisation of change in model accuracy with change 

in each factor level of a single variable. A polynomial surface, using locally estimated 

scatterplot smoothing (LOESS), was fitted to the AUROC data using each variable as a 

predictor and all possible interactions, to model the trend of AUROC response with 

change for each variable threshold individually.  

An orthogonal polynomial regression model was used to study the sensitivity of the 

AUROC with the change in the model variable thresholds and their interaction. 

Polynomial response models have shown to be useful for summarizing relationships 
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(Rawlings et al., 1998). The response surface methodology (Box et al., 1951) consists of 

a group of mathematical and statistical procedures used for approximating the functional 

relationship between a selection of control variables which have an influence on the 

response variable (Khuri, 2017). The polynomial models were fitted sequentially, starting 

from first order and adding higher degree terms up to the fourth order. Model fits were 

assessed with R2 -value and an R2 adjusted-value, Shapiro-Wilks test of residuals and 

examination of the fitted surface, until overfitting was indicated on the response surface 

plane. Additionally, the non-parametric local regression (loess) was used to obtain 

predicted values for the 4- dimensional response surface, using RHt, Tt, and, SDt and all 

3- and 2- way interactions as the predictors. The extent of agreement was then compared 

between polynomial regressions and the loess regression to aid in choosing the degree of 

the polynomial regression, measured using the concordance correlation coefficient (Lin, 

1989). The lowest-degree polynomial that accomplished the required degree of 

approximation was subsequently adopted. The higher degree polynomial models offer 

increased flexibility in the response surface, but they need to be fitted with caution due to 

the potential to ‘overfit’ these models (Rawlings et al., 1998).   

The fitted polynomial equation was then expressed in the form of three-dimensional (3D) 

surface plots, in order to visualise the interaction between the changes in thresholds 

(Table 2) and the response variable. The graphical representation provides a method to 

visualize the relationship between the response and experimental levels of each variable, 

and the type of interactions between the test variables. 

Due to awareness of constraints of the limited data set, current knowledge of PLB disease 

epidemiology is used as a guide for interpretation of the results. Hence, a suite of model 

versions was selected based on the results of the sensitivity analysis which were subjected 

to further examination based on the position and grouping of the cut-off points in the 
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ROC space. Defining an optimal decision threshold is not a trivial task (Skelsey et al., 

2017). The high cost of false negatives (FN) associated with potential onset of PLB 

epidemics (Fry, 2008; Large, 1959) predetermines that the decision threshold lie closer 

to the upper right-hand corner of the ROC curve in order to minimise the associated risk 

of the disease development (Madden, 2006).  

Treatment frequency and dose reduction 

The crop risk prediction model is useful only if it provides the same level of protection 

as the standard practice, while reducing necessary costs and labour (Madden et al., 1988b; 

Rossi et al., 2012). In this theoretical study, the differences in the active ingredient or the 

type of the fungicide are not taken into account, but merely try to associate a reasonable 

estimation of possible reductions in the number of treatments or/and dose reduction with 

predictive power at predefined decision thresholds. After defining the 'optimum' sets of 

model thresholds, it was necessary to compare the number of treatments and the pesticide 

usage recommended by the model versions compared to standard growers’ practice. This 

was done in order to determine if the recommended model parametrisations are 

economically and environmentally viable. Currently, spray intervals range from 5-7 days 

under Irish conditions, which are the intervals accounted for in this study. Three model 

parametrizations are evaluated, the IR with the default parameters (Section 2.1.3, The IR 

model and its operational use), and two improved parametrisations as identified in the 

subsequent analysis.   

We assume that planting starts the day after the daily average soil temperature is greater 

than 8 °C for three consecutive days after the 1 April. This is a common practice in Ireland 

in line with recommendations from the national advisory body, Teagasc. Farmers 

typically start fungicide treatments as soon as the emergence progresses over 50% and 

continue until the potato above-ground potato haulm completely dies off, typically three 
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weeks after desiccation. It is assumed here that the growing season lasts 120 days. 

However, the pesticide protection continues during these three weeks, until the above-

ground potato haulm is desiccated.  

The difference between standard growers’ practice and model versions is evaluated in 

two ways:  

1. Reduction in the number of treatments, split into: 

• Model guided: A fungicide treatment is applied every time the warning threshold is 

reached with a minimum period of 5 days prior to following treatment; and, 

• Model and calendar guided: a minimum of 5 and maximum of 10 days between 

treatments.  

The sum of recommended treatments is calculated for all decision thresholds and seasons. 

The resulting summaries are presented visually as point graphs. A LOESS curve was 

fitted to estimate the minimum decision threshold where the protection according to the 

model is for fewer treatments then the usual 5- or 7-day practice. 

 

2. Dose reduction based on 7-day calendar treatment. Currently, Irish growers do not 

rely on the operational warnings issued by the Met Éireann, but do increase the dose 

or use stronger, often less environmentally friendly, formulations during those periods 

identified as at risk. Possible dose reductions are calculated for the usual 7-day 

calendar treatment. The dose reductions are based on the maximum risk calculated by 

the model during the 7-day period between treatments. The maximum dose is applied 

if the risk is over 12 EBH, which is the current warning decision threshold in Ireland.  

Software used for the analysis and the reproducibility 

This analysis has been implemented in R, a freely available statistical programing 

language (R Core Team, 2018).  A portion of the data was imported using readxl 



 

74 

(Wickham et al., 2016). Packages used for data munging: tidyverse (Wickham, 2017), 

zoo (Zeileis et al., 2005), data.table (Dowle et al., 2019) and pracma (Borchers, 2018). 

Packages used for visualisations: ggplot2 (Wickham, 2016), cowplot (Wilke, 2018), 

ggrepel (Slowikowski, 2018) and rsm (Lenth, 2009), ggthemes (Arnold et al., 2019). 

Univariate series imputation was implemented using functions from package imputeTS 

(Moritz et al., 2017). Package zoo (Zeileis et al., 2005) was used for processing dates. 

Formatting of tables was done with pander (Daróczi et al., 2018). Packages rmarkdown 

(Allaire et al., 2019) and knitr (Xie et al., 2019) were used for creating a reproducible 

compendium. Package here (Müller, 2017) was used to ensure reproducibility on different 

platforms. Programming functions from R.utils (Bengtsson, 2019), string manipulation 

with mgsub (Ewing, 2019) and statistical tests and visualisations: rcompanion 

(Mangiafico, 2019).  

The full analysis can be reproduced using code and data archived at 

https://mladencucak.github.io/AnalysisPLBIreland/.  

3.5. Results 

3.5.1. Evaluation leaf wetness estimation 

A Wilcoxon signed rank test showed that there was a significant difference (p<0.001) 

between AUROC values for the models using the combined estimators as indicator for 

leaf wetness (RH ≥ 90% and rain ≥ 0.1mm) which were significantly higher than using 

only rain (≥ 0.1mm). The median AUROC for the method based on rain and RH 

thresholds was 0.735 compared to 0.695 for the method only using rain indicator (Figure 

3.4). 

 

https://mladencucak.github.io/AnalysisPLBIreland/
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Figure 3.4. Group median difference between models with leaf wetness estimation using rain 

(rain ≥ 0.1mm) or the combined rain and relative humidity (rain ≥ 0.1mm and RH ≥ 90 %) as 

an estimator.   

3.5.2. Evaluation of main variable thresholds 

Scatterplots with LOESS smoothing and boxplots indicated a non-linear relationship with 

change in each factor level. The AUROC was found to increase when the thresholds for 

relative humidity and sporulation duration were reduced. Conversely, an increase in the 

temperature threshold resulted in an improvement in the predictive power of IR. For all 

variables, levels of predictor variables showing an increase in AUROC also show higher 

levels of dispersion, indicating the necessity to investigate the interactions.  

A statistically significant cubic polynomial model (F3,323 = 105.9, p < 0.0001) was fitted 

to the AUROC data with the proportion of variance explained by the model of 0.8617 and 

0.8535 for R2 and adjusted R2 values, respectively (Table 3.4). Diagnostic plots of 

residuals versus order of the data and histogram indicated no violation of the normality 

assumption. The 4th order polynomial model showed only a slight increase in the R2 and 

adjusted R2 value while the Shapiro-Wilks test indicated a lack of normality in the 

distribution of the residuals. Visual assessment of the response surface plotted with the 
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4th order model indicated a potential overfitting problem. Linear and quadratic fits had 

lower R2 and adjusted R2 values and were considered unsuitable. In addition, the 

predictions from the third-order polynomial model agreed the most with the local non 

parametric regression (concordance correlation coefficient (Lin, 1989) of 0.9896 (95% 

CI: 0.9876; 0.9913)), and hence this model was deemed to adequately reproduce the 

behaviour of the response surface.  

Table 3.4. The table of fit statistics for polynomial models from first to fourth order fitted to 

AUROC data. 

Order 
No. of 

Parameters 

Degrees 

of 

Freedom 

R2 
Adj. 

R2 

F 

statistic 
p value 

Shapiro 

-Wilk 

test 

Shapiro – 

Wilk p-

value 

1 4 339 0.637 0.634 198.68 <0.001 0.993 0.137 

2 10 333 0.758 0.751 115.98 <0.001 0.997 0.813 

3 20 323 0.861 0.853 105.89 <0.001 0.996 0.610 

4 35 308 0.881 0.868 67.12 <0.001 0.990 0.030 

The 3D response surface for the AUROC against any two independent variables while 

keeping the third independent variable at -3, 0, + 3 level, respectively, is presented in 

Figure 3.6. In total, nine 3D response surfaces were obtained by considering all possible 

variable combinations.  

Figure 3.6 a-c depicts the interaction between RHt and Tt, keeping SDt at its -3, 0 and +3 

level. Figure 3.6 a shows that AUROC increased with increasing Tt, up to 12 °C, and 

reducing RHt to 88% when SDt is set at 9h. If SDt is kept at the threshold of 12 hours, a 

decrease in the AUROC is evident (Figure 3.6 b), while an increase in SDt to 15h results 

in a significant reduction in model accuracy (Figure 3.6 c).  

It can be observed from Figure 3.6 d-f, that the accuracy of the model increases with an 

increase in Tt and a reduction in SDt. The area of AUROC of above 0.85 is achieved with 

the reduction of sporulation period for 2 hours and an increase of the temperature 

threshold of 2 °C. This effect on the AUROC is reduced below 0.85 with SDt at the 
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default threshold (12 hours); while increasing SDt results in a large reduction of the 

AUROC, to the level of an unacceptable prediction model.  

Figure 3.6 g-i show the interaction between RHt and SDt, keeping Tt at its -3, 0 and +3 

level. Increasing Tt positively influences the model accuracy. Over the range of the Tt 

factor levels, the area with the highest AUROC values is 0.79, 0.83, 0.87 associated with 

a temperature threshold reduced to 7 °C, the default and increased to 13 °C respectively.  

Overall, results indicate that reducing RHt to 88 % and SDt to 10 hours and increasing Tt 

to 12 °C result in the largest improvements in the overall predictive performance of the 

model (Figure 3.5 a, b and i). Variations in Tt do not have the same magnitude effect on 

the model accuracy, as do the manipulations of RHt and SDt.  
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Figure 3.5 3D surface for interaction effect of two variables with third variable fixed on a 

specific level. 3D surface plots represent interaction between: Tt and RHt, with SDt of 9 (a)), 

12 (b)) and 15 hours(c)); SDt and Tt, with RHt fixed at 87 % (d)), 90 % (e)), and 93 % (f)); and 

SDt with RHt, with Tt of 7 C° (g)), 10 C°(h)), and 13 °C(i)). 

Figure 3.5 a-c depicts the ROC curves for the individual, selected model variable 

thresholds for RHt (88 %), SDt (10 hours) and Tt (12 °C), respectively. Adjusted RHt and 

SDt provides improvement in terms of model specificity with the grouping of cut-off 

points moving upwards in the ROC plane and having no associated FN; overall accuracy 

displays some improvement. Overall, adjusting RHt (Figure 3.5 b) resulted in the greatest 

improvement in the model accuracy, with sensitivity of 0.8 and high corresponding 

decision threshold scale of 3-9 EBH. Practically, this means that the risk accumulation of 

up to 9 EBH was necessary for the onset of the disease in 8 (out of 10) years. Adjusting 
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Tt only influenced the model performance with the sensitivity similar to the default model 

variable thresholds, having 2 FN predictions, indicating that the change in Tt had the least 

impact on the improvement in model performance (Figure 3.5 c).  

The performance of the IR model with default variable thresholds is presented in Figure 

3.6 d. ROC for the existing IR variable thresholds revealed a lack of specificity, with no 

risk accumulation in two years, while the current operational blight warning threshold 

was reached in only four out of ten years.  

 

Figure 3.6 ROC curves for the model parameterizations according to the results of the 

sensitivity analysis.  The IR model parameterizations with the change in a single model 

variable threshold: relative humidity (a), sporulation duration (b) and the sporulation duration 

(c), followed by the default (d), optimised (e) and low risk (f) model parametrization. 

A model with variable thresholds recommended by the analysis of the response surface 

(SDt = 10 hours, RHt = 88 % and Tt = 12 °C ), hereafter referred to as the optimised 

model (Figure 3.6 e), shows improved performance, with no FP. The disease outbreak 

was correctly indicated in all years of the study, although the sensitivity drops 
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significantly in six years (corresponding to decision thresholds higher than 5 EBH), 

indicating that the maximum acceptable decision threshold for this model variation is 4 

EBH, corresponding to sensitivity of 0.9.  

An additional model variation was chosen for further analysis, hereafter referred to as the 

low risk model, with optimised SDt (10 hours) and RHt (88 %) and Tt kept at the original, 

default threshold of 10 °C (Figure 3.6 f). This was guided by the limited impact of 

changing the temperature threshold on the specificity of the model (Figure 3.6 c), 

limitations related to the size of the biological data set used in the evaluation, a lack of 

knowledge of the pathogen founder population and the risk associated with a possible 

disease outbreak. The ROC curve for this model showed improvement in the sensitivity 

of the model, with 8 years having up to 11 EBH accumulations. While a drop is evident 

in the AUROC value due to loss in specificity, the grouping of decision threshold points 

higher in the ROC plane allows consideration for another decision threshold as high as 

11EBH with a sensitivity of 0.8. 

3.5.3. Treatment frequency and dose reduction 

Assuming the usual calendar spray practice was followed during the period investigated, 

the number of treatments calculated for the seven- and five- day calendar spray 

programmes were 15 and 22, respectively. The decrease in the number of recommended 

treatments with the increasing decision threshold approximated with the LOESS curve is 

presented in Figure 3.7. All model versions provide a reduction in the number of 

treatments compared to the standard five-day calendar treatment.  

The number of treatments according to the default parametrization of IR is lower than the 

calendar practice across the range of decision thresholds (Figure 3.7a and d). In the case 

of the optimised model, the LOESS curve does not intersect any of the growers practice 

lines, indicating that the average number of treatments recommended by the model is 
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lower than any grower practice schedule across the range of decision thresholds (Figure 

3.7b and d). Given that the optimum decision threshold should not be lower than 4 EBH, 

the optimised model still provides an opportunity for a reduction in the number of 

treatments in all but one year and as low as five per season when compared to the seven-

day programme.  

The number of treatments advised by the low risk model when the decision threshold is 

set to 3 EBH (lowest observed risk accumulation prior to the disease outbreak) is lower 

than the 7-day treatment interval on average. However, this is not the case in years such 

as 2012 or 2007, when the number of treatments with a decision threshold of 7 EBH is 

close to the seven-day treatment frequency. However, the possibility to set higher 

decision threshold provides more opportunities for reducing the number of treatments, in 

the range from 5 to 11 EBH, with an average ranging from 12 to as low as 6 for the five-

day strategy and 13 to 10 for the five to ten day strategy.  
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Figure 3.7. Difference between the model guided and the standard grower practice number of 

treatments over the range of decision thresholds. Figures a) to c) depict the sums of 

modelguided, d) to f) with model and calendar guided number of treatments per year. The dots 

represent the number of treatments per corresponding warning threshold in each year. LOESS 

curve represents the average potential benefit from the use of the model. The 5 and 7-day line 

represent number of treatments per estimated crop season. If the fitted smoothed line is above 

the estimated calendar frequency line, the model recommends more treatments than the usual 

standard calendar programme, on average.  

The cumulative proportion of the total fungicide applied using model guided strategy and 

the number of treatments is compared to the 7-day calendar practice (Figure 3.8). All 

model versions provide reductions in both the total dose and the number of treatments 

applied. The reductions are lowest for the year 2012 which was one of the most severe 

‘blight years’ on record (Fry et al., 2015). Overall, the highest mean dose reduction is 

achieved by the default IR (0.248), followed by optimised IR (0.33); the lowest mean 

dose reduction is expectedly associated with the low risk IR (0.436).  
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Figure 3.8 Dose reduction and a number of treatments recommended per year by the IR, 

optimized model and low risk model. Facets marked with the year on top represent summaries 

for individual years while the last facet represents the averages and variance across all years. In 

the facets for the individual years, the height of bars represents the proportion of the dose 

applied per model compared to the total dose, while numbers at the top of the bars represent 

the total number of treatments recommended by the model in each year.  In the overall 

summary (facet on the far right), the height of the bar represents the mean dose reduction, the 

number above the bar is the mean number of treatments during the year, and the error bar 

represents the standard deviation.  

3.6. Discussion 

We presented an evaluation of the operational algorithm for potato late blight risk 

forecasting in Ireland. To evaluate the selected algorithm, a sensitivity analysis of the 

threshold values associated with the most important variables were assessed using 

empirical ROC curves derived from 10 years of historical weather and disease 

observation data. Guided by the results of the sensitivity analysis, current epidemiological 

knowledge and PLB risk awareness, two improved sets of model parameters and a range 

of operational thresholds are identified. Finally, three disease control strategies, based on 

these improved model thresholds and currently used model parametrisation, are compared 

to standard growers’ practice.  
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Crossovers between empirical and mechanistic models are a common approach in crop 

disease forecasting (Madden et al., 2007); the IR model is one example. Mechanistic 

algorithms are a function-based estimation of conditions for the development and 

completion of several (or a single) segments of disease development; while, in the IR, 

these segments are limited to a threshold-based prediction of their completion. The 

threshold selection is often based on estimates by the model developer and may not be an 

accurate representation of the complex nature of biological processes (Yuen et al., 2015). 

Such algorithms have their appeal in their simplicity, although biological processes, such 

as the development of disease epidemics, do not have a binary state but are a part of a 

complex system that encompasses soft transitions between minimum, optimum and 

maximum states (Hartill et al., 1990). The semi mechanistic form of the IR adopted at the 

time for operational use in Ireland, required a number of simplifying assumptions. These 

favoured more “conservative” variable thresholds, to reduce the frequency of warnings. 

Our results indicate that the previously defined default thresholds of the Irish Rules are 

no longer fit for risk prediction in the new PLB pathosystem and based on the available 

data.   

This study is in agreement with older reports stating that blight epidemics in Ireland are 

most often the second half of June (Dowley et al., 2008) due to low night temperatures 

(Cooke, 1991). Average minimum daily temperature in Oak Park was low in April and 

May, 4.5 ˚C and 7.2 ˚C respectively, providing a potential explanation for the low 

pathogen activity during this period. Lower temperatures in the early stages of potato 

development can provide a certain level of protection until the plants reach a level of 

maturity where they are more resistant to attack (Grainger, 1979). This has been 

challenged in recent times due to the rise in aggressiveness of the newer pathogen strains 

active over a wider range of environmental controls (Cooke et al., 2011; Fry et al., 2015; 

Mizubuti et al., 1998). The Irish Rules model uses a hypothetical lower temperature 
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threshold of 10 ˚C without an upper boundary, consistent with a number of early 

prediction models employed in Northern Europe (Beaumont, 1947; Everdingen, 1926; 

Førsund, 1983; Schrödter et al., 1967; Smith, 1956). Our results indicate that the 

development of P. infestans under typical Irish weather conditions is low if the 

temperature is less than 12 ℃. However, considering a relatively small gain in overall 

model accuracy, a more comprehensive evaluation would be necessary prior to 

recommending increasing the current temperature threshold. Previous research from areas 

with a diverse pathogen population cautions that blight epidemics will progress even if 

temperatures are lower than 10 ℃, under extended humid periods, although the rate of 

this progress is low (Grünwald et al., 2002; Hermansen et al., 2003).  Additional years of 

data and knowledge of the founder population would be required to ensure that this is a 

robust conclusion, suitable for deployment on an operational basis.  

Evidence exists for reducing the relative humidity threshold and duration of initial 

sporulation period. The diagnostic performance of the optimized model versions with 

these factors provides a ‘safer sleep’ for the farmer. Our results are in agreement with the 

report from Fennoscandia rejecting a relative humidity threshold of 90 % as a 

development threshold (Lehsten et al., 2017). This threshold has been adjusted in a 

number of models used throughout Europe, i.e. the French model, Milsol, uses a threshold 

of 86 % (Gaucher, personal communication) and the Danish Blight management uses a 

threshold of 88 % (Hansen, personal communication). There are a number of reasons to 

opt for lower risk when deciding on which reported relative humidity threshold should be 

considered blight favourable, such as accuracy of measurements, distance between 

weather data source and the production area, topography of the area, physiological and 

phenological differences in crop haulm density and shaded areas of the production fields 

(Gent et al., 2010; Magarey et al., 2005a, 2017).  
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Leaf wetness estimation is one of the key parameters in agricultural meteorology 

controlling pathogen infection and determining disease development rates (Rowlandson 

et al., 2014; Sentelhas et al., 2008). In agricultural field conditions, leaf wetness may 

result from rain, fog, irrigation or distillation from the soil (Monteith et al., 2007); our 

results indicate that a simple use of a precipitation threshold is not an appropriate 

estimator of leaf wetness in this context and should be supplemented with an additional 

estimator based on a simple empirical model for RH. Due to lack of in-field 

measurements, we have used a ‘reverse’ approach to test the validity of proposed 

estimation method by comparing the leaf wetness estimation to the disease occurrence 

(Beruski et al., 2019). This estimation method has been successfully employed in a 

number of DSS worldwide (Gleason, 1994; Rowlandson et al., 2014).  

A low risk of three and four EBH was predicted by both the optimised and low risk 

models, prior to the disease onset during 2 of 10 years studied, 2011 and 2014. Possible 

reasons for this are the proximity and strength of the inoculum source or the 

aggressiveness of the pathogen lineage initiating the epidemics. The specific P. infestans 

lineages that initiated the epidemics in our data is not known, but it can be hypothesized 

that these infections were initiated by the more aggressive strains. Additionally, 

epidemics in both years were initiated later in the season, on 28 July and 1 August, 

possibly coinciding with a shift in the structure of pathogen population, increasing the 

probability that the infections were initiated by a more aggressive strain. Limited findings 

from our monitoring of the founder population at Oak Park, from 2016 to 2018, show that 

the epidemics are predominantly initiated by the older clonal EU_8_A1 genotype, while 

the population structure changes in favour of new genotypes EU_6_A1 and EU_13_A2 

over the course of the season. This is in agreement with recent experimental evidence 

regarding the establishment of the new P. infestans genotypes under Irish conditions 

(Cooke, 2015; Kildea et al., 2010; Stellingwerf et al., 2018) exhibiting an increase in 
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aggressiveness (Fry, 2008; Li et al., 2012; Mizubuti et al., 2000, 1998; Mariette et al., 

2016a). Hence, we can recommend 4 EBH as the minimum decision threshold to be 

considered under conditions of high disease pressure or if the outbreak of an aggressive 

strain of the pathogen is reported.  

The optimised model offers significant potential to increase the model specificity and 

consequentially, reduction in the number of required treatments, compared to the low risk 

model in the high sensitivity range of the ROC curve, between 0.9 and 1. The difference 

between the optimised and low risk model, calling for caution, is the grouping of the cut-

off points corresponding to the decision thresholds above 5 EBH. A number of decision 

thresholds for the low risk model is closer to the higher sensitivity area (5 - 11 EBH at 

0.8 sensitivity) compared to the optimised model (all cut-off points higher than 5 EBH 

correspond to 0.6 sensitivity). Thus, determining a higher decision threshold, which 

requires fewer treatments, is possible for the low risk model at 0.8 sensitivity, although 

defining an exact threshold is difficult since values from 5 to 11 EBH correspond to the 

same sensitivity value. In the case of small sample sizes, the crude empirical estimate has 

the disadvantage of providing the same sensitivity values for different specificity values. 

The robust methodology and highly reproducible coding example allows for the regular 

updating and evaluation of the model leading to clearer definitions of the risk and/or 

benefit associated with each decision threshold as the new data becomes available.  

It has been shown that on average, the use of risk prediction models offers a possibility 

for reducing fungicide inputs compared to standard Irish growers’ practice. Possible 

reductions in the dose and the number of treatments exhibit variation across the period 

studied. This reflects the nature of agricultural production and further empowers the need 

for IPM approach to defining the treatment intervals. While spray intervals should be 

longer than seven days, most of the time these intervals could be justifiably reduced 
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during parts of the ‘blight year’. Currently, operational decision thresholds for issuing 

blight warnings are not clearly defined and based on experience. Hence, an estimation of 

risk associated with decision thresholds in the higher sensitivity range is provided. The 

accumulation of EBH needed to issue the warning at sensitivity levels of 0.9 and 1 is the 

same for both the optimised and low risk models, with the optimised model providing 

greater opportunities for reducing the number of fungicide treatments and/or the dose. 

However, an important advantage of the low risk model is related to the sensitivity, 0.8, 

providing more certainty in model outputs if the warning is considered at a higher 

decision threshold, from 5 to 11 EBH. Such situations may be considered when other 

factors necessary for the disease development are estimated lower, such as during the 

earlier part of potato growing season, if more resistant varieties are planted or low number 

of reported disease outbreaks in the region. The adoption of decision support systems and 

utilisation into everyday practice could have numerous benefits for growers, such as 

optimisation, as well as, justification of fungicide inputs (Taylor et al., 2003). Our 

findings indicate that the original Irish Rules model parameters need to be altered for two 

model variables, which inevitably will result in an increase in the frequency of warnings. 

Optimisation of the control programme does not necessarily mean reduction in the 

number of treatments, and an effective forecasting scheme could advise at least as many 

fungicide treatments as the standard growers practice during seasons with blight 

favourable conditions (Doster et al., 1991), which often occur with typical weather 

conditions experienced in Ireland. The decision on the level of risk acceptable by a grower 

is a complex one made according to the price of treatment, the value of production, 

legislative restrictions (Lehsten et al., 2017) and the need for reduction to prevent the 

development of fungicide resistance (Cooke et al., 2011). Hence, here we do not make a 

recommendation for the exact decision threshold but elaborate on possible reductions and 

varying levels of risk deemed acceptable by a producer. Met Éireann issues regional 
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warnings and these warnings, and the quality of these warnings could be improved with 

information regarding the disease outbreaks and rapid identification of the pathogen 

lineage, due to reasons outlined above.  

Decision support at the synoptic level is not a silver bullet to provide an ultimate solution 

for optimal environmentally friendly disease control, but merely another tool to get closer 

to it. Unfortunately, if it is not utilised as such and in an appropriate manner, it can lead 

to an opposite effect. Plant disease models are often parochial in nature, evaluated by 

researchers who developed them, and are often used without calibration when employed 

in agroecosystems different from those they were developed for (Harrison, 1995a; 

Shtienberg, 2013). The interdisciplinary nature of the work related to decision support in 

crop protection, requiring skills and knowledge in informatics, mathematics, 

meteorology, agronomy and biology are often a limiting factor for the sustainable 

development of this branch of plant disease epidemiology (Magarey et al., 2017). One 

possible way to overcome some of the obstacles is the acceptance of open and 

reproducible methods. The importance and need for open-science in the field of 

phytopathology has been reported as a way include recruitment of experts from different 

fields, application of cutting-edge methods, and timely replication of data analyses as a 

way to increase the robustness of the findings (Kamoun et al., 2019). Some of the relevant 

examples are coming from other fields of research related to potato late blight. The 

development of our understanding and knowledge of P. infestans population diversity has 

been empowered with POPPR, a widely used R package for enabling easier genetic 

analysis of clonal populations (Kamvar et al., 2015). Also, Sparks et. al. (Sparks et al., 

2014) evaluated the possible implications of the climate change on potato late blight in 

the future. These do not have only a scientific value, but represent a significant 

contribution to the education of a new generation of phytopathologists, who will need to 
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be equipped with such knowledge and skillsets to be able to keep up with the ‘fight’ 

against ever-evolving plant pathogens.  

Easily accessible tools are necessary for validation and calibration of risk models using 

historical data prior to field evaluation in other climatic regions or re-evaluation in the 

original ecosystem, which could potentially save a considerable amount of time and 

money and lead to more sustainable use of decision support in plant protection. To the 

best of our knowledge, this is the first completely reproducible evaluation of a crop 

disease risk prediction model, implemented in a single computing environment, within a 

freely accessible software language. Such work, it is hoped, will empower the sustainable 

development of potato late blight and crop disease forecasting in general.  

3.7. Conclusions 

The results have shown that there is a need to revisit the parameters of the Irish Rules 

model, proposed for the different ecosystem and operational abilities at the time, as well 

as the operational use of the model. On the basis of the work presented here, we 

recommend the reduction of variable thresholds for relative humidity from 90 % to 

88 % and sporulation duration from 12 to 10 hours; and adopting an additional leaf 

wetness indicator, incorporating both precipitation (≥ 0.1 mm) and relative humidity (≥ 

90 %). Our analysis indicated that very little blight development was occurring at 

temperatures lower than 12 °C, however, this increase recommended operationally due to 

lack of certainty associated with the small data sample size and the high risk related to 

possible disease outbreaks and wider decision threshold range in the high sensitivity area 

of the ROC space for the low risk model. However, the thresholds identified here should 

be continuously evaluated after each growing season, facilitated here by the development 

of the methodology and associated model evaluation code. Our recommendation for the 

operational application of the model is to use the range of 4 to 11 EBH and set the 
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threshold dynamically during the season based on the reports of the frequency of the 

disease outbreaks in the region of interest. Future development of the Irish PLB warning 

system should include rapid in-season identification of pathogen genotype distribution to 

be used as a guide for selection of the decision threshold.  

Representation of the complex aetiology of P. infestans is omitted or generalized with 

synoptic empirical prediction algorithms, as well as other components of this 

pathosystem, such as pesticide protection status, crop resistance (Harrison, 1992b), 

quality of meteorological network coverage and distances between production field and 

weather stations (Taylor et al., 2003), crop phenological stage (Hirst et al., 1960) and 

pathogen genotype (Cooke et al., 2011; Fry, 2016).  Understanding the complexities of 

the agroecological system under investigation is crucial for interpreting the results of the 

analysis. Small data sets may carry high variability due to a limited number of 

observations (Yuen et al., 2002). Hence, a note of caution is recommended when 

employing the model proposed here.  

The exact methodology used in the development of early models, such as the IR, is not 

always clear, but the assumption is that they were a product of empirical, often trial and 

error based methodologies and weather data available at the time (Yuen et al., 2015).  

Hence, the recommendation for future development is to explore the possibility of 

redesigning currently employed models to facilitate the transition from the threshold 

based binary estimation of stages of host parasite interaction, to a more realistic one, 

based on a functional relationship between host, parasite and the environment. Future 

work on development of risk prediction algorithms, should also take into consideration 

additional uncertainty introduced by forecasted weather data; avoiding the usual practice 

in crop disease modelling where models are developed with observed weather data and 

applied on forecasted weather with no evaluation of the impact of weather forecast 
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uncertainty on model predictions (Magarey et al., 2017). Approaches in IPM cannot be 

limited to a single discipline effort. The vast amount of data available nowadays that are 

currently under-utilized provides a number of opportunities for smarter farming 

(Kamilaris et al., 2017) 

The challenge still remains in front of the end-user to adequately employ information 

provided in the decision-making process with an awareness or knowledge of 

characteristics of the variety grown, growth stage, control measures used, risk from 

surrounding areas, accessibility of active ingredients and similar. The often hard-earned 

confidence by the final user could be maintained through constant evaluation of the 

system and adequate education regarding the appropriate use of decision support tools. 
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4. Optimising potato late blight management in the Republic of 

Ireland using risk prediction, varietal resistance and molecular 

tools  

4.1. Preface 

This chapter is submitted as: 

Cucak, M., Moral, R., Fealy, R., Downes, P., Kildea, S. Optimising potato late blight 

management in the Republic of Ireland using risk prediction, varietal resistance and 

molecular tools. Submitted to Phytopathology. 

Currently, due to the high risk involved with possible disease outbreaks, there is a high 

dependency on fungicides for the control of potato late blight. The environmental 

conditions on the island of Ireland provide opportunities for explosive epidemics and 

proposing sustainable IPM management solutions require a careful evaluation using an 

interdisciplinary approach. This study builds on the previous report on the re-evaluation 

of the IR, currently used potato late blight risk prediction model in the Republic of Ireland. 

The modified model is to be operationally deployed in the management of PLB, the 

disease, which, in case of outbreak due to wrong risk estimation, could rapidly lead to 

significant losses and endanger the livelihood of a farmer. Hence, the field validation was 

considered necessary, and for that purpose, we employed some of the major tools in the 

hands of a modern phytopathologist, encompassing an innovative field evaluation of an 

environmental disease risk prediction model, supplemented with the use of a molecular 

method to determine the full scope of possible benefits and/or repercussions. In an attempt 

to overcome inherited lack of trust in the use of DSSs, the approach we took here is to 

use a publicly available DSS to tailor the grower's usual management practice, rather than 

imposing a completely DSS dependent spray advice.  
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4.2. Abstract 

Potato late blight remains the most significant threat to potato cultivation globally, often 

requiring expensive, time-consuming and environmentally unfriendly approaches to 

disease management. The goal of this research was to evaluate if the environmental risk 

estimation combined with increased varietal resistance can be reliably used to tailor the 

standard potato late blight management practice under growing conditions and 

contemporary Phytopthora infestans population in the Republic of Ireland. Using the 

modified Irish Rules model, it was possible to reduce fungicide usage compared to current 

standard practices used by Irish growers without adversely compromising disease control 

and yield. The delay in the initiation of the epidemics, the final foliar disease levels and 

the reduction of fungicide usage was correlated with increased host resistance levels. 

Although the epidemics on highly resistant varieties remained at low levels, a clear 

selection pattern towards the P. infestans genotypes EU_13_A2 and EU_6_A1 was 

observed. The rise in the frequency of strains of Phytophthora infestans with increased 

pathogenicity and virulence matching higher levels of host resistance was observed in the 

latter part of each of each growing season. Such variation in the population structure and 

possibility of the tuber blight infections calls for caution in the interpretation of the 

environmental risk estimation as the potato growing season progresses.  

4.3. Introduction 

Potato late blight (PLB) caused by the filamentous oomycete Phytophthora infestans is 

one of the world’s most devastating diseases of potato and tomato crops (Fry, 2008). 

Historically, failure of the potato crop due to PLB contributed to food shortages which 

resulted in dramatic changes in the demographics of Ireland mid-1800s (Bourke, 1964, 

p.64; Savary et al., 2017). Globally, the cost of control and associated yield losses are 

estimated to exceed €1 billion annually (Haverkort et al., 2008b). In Ireland, the annual 
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loss from the disease has been estimated at 8% (Copeland et al., 1993) with potential 

yield loss of 10.1 t/ha without fungicide protection (Dowley et al., 2008). Potato late 

blight epidemics proliferate under conditions of cool and moist weather, typical in the 

northwestern part of Europe (Bourke, 1955b; Cooke et al., 2011; Harrison, 1995b). Shifts 

in the pathogen population since the 1980s, the reliance on susceptible varieties and 

intensification of production make this disease a high-risk segment of production. Hence, 

disease control is supported by prophylactic fungicide applications with constantly 

increasing frequency. Fungicides are often applied at high rates and in short 5-7 day 

intervals, throughout the growing season (Cooke et al., 2011; Kirk et al., 2001). In 

addition to fungicide applications, management of the disease includes the use of the 

healthy seed, appropriate removal of inoculum (such as discarded tubers), frequent 

scouting of the crops and the use of support tools to aid decisions relating to the 

implementation of these measures. The reliability and subsequent adoption of these 

measures are continually challenged due to an increasingly unpredictable climate, the 

evolution of fungicide resistance and virulence, and the ability of these traits to move 

between populations due to increased global trade (Fry, 2016). 

Phytophthora infestans is a heterothallic species generally requiring the presence of both 

A1 and A2 mating types for sexual reproduction and recombination (Fry, 2008; Goodwin 

et al., 1994). Prior to the late 1970s, global P. infestans populations were dominated by 

strains belonging to the A1 mating type, hence limiting the diversity that existed in 

populations. Since then reports of the A2 mating type have increased (Goodwin et al., 

1997) facilitating the rise and spread of new lineages, some of which demonstrate 

increased fitness levels (Fry, 2016). Despite the low genetic diversity still often found in 

Western European P. infestans populations, they regularly undergo frequent and vital 

changes, with the rise of both EU_13_A2 (13A2) and EU_6_A1 (6A1) multilocus 

genotypes (MLG) as an example of such changes (Cooke et al., 2011). The arrival and 
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establishment of these two MLGs on the island of Ireland was likely delayed, probably 

due to its geographical location on the western fringe of Europe. Although the Irish 

population is dominated by EU_8_A1 (8A1), they have been reported in higher frequency 

recently, varying from year to year (Cooke et al., 2014; Kildea et al., 2010; Stellingwerf 

et al., 2018). The relatively recent establishment of both 13A2 and 6A1 has greatly 

impacted control measures, with foliar resistance ratings of several cultivars being 

downgraded from resistant to moderately resistant or even susceptible (Lees et al., 2012). 

These lineages also exhibit increased aggressiveness on susceptible varieties which 

dominate Western European production systems (Mariette et al., 2016b). The Republic 

of Ireland is not an exception, with potato production dominated by susceptible varieties: 

Rooster (51.9%), Kerrs’ Pink (15.1%), British Queen (8.6%) and Golden Wonder (4.0%) 

(Anonymous, 2011).  

Reducing fungicide inputs for control of PLB on moderately resistant potato cultivars has 

been shown to be an effective control strategy (Bain et al., 2014; Fry, 1975; Nærstad et 

al., 2007; Spits et al., 2007). Fry (1978) reported that combining cultivar resistance and 

regular applications of protective fungicides had an additive effect on controlling foliar 

PLB infections. More recently, Bain et al. (2014) demonstrated that, even in the presence 

of aggressive P. infestans populations, reduced rates of protectant fungicides slowed the 

progress of epidemics, and in doing so, varieties with moderate levels of resistance 

performed similarly to resistant varieties. However, P. infestans populations can adapt to 

locally dominant cultivars, irrespective of their resistance levels, and may render 

polygenic, partial resistance non-durable if not properly managed (Andrivon et al., 2007). 

Even amongst the highly clonal P. infestans population currently present in Ireland, 

Stellingwerf et al. (2018) reported that 13A2 was found more often on varieties with some 

level of resistance, indicating the potential for the selection of increased virulence in local 

populations through varietal deployment. Numerous examples from early potato late 
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blight breeding efforts show that the deployment of major resistance genes (R-genes), 

which offered a high level of resistance, became rapidly ineffective due to an increase in 

the frequency of the virulent isolates (Fry, 2008). The cultivar Pentland Dell in Scotland 

was known to contain genes R1, R2 and R3 and was resistant to the common race (Race 

4), which led to its popularity, becoming the third most popular potato cultivar within 

three years and subsequent selection of a resistance-breaking biotype in a local pathogen 

population (Malcolmson, 1969). Currently, attention is shifting towards stacking R-genes 

by conventional resistance breeding or genetic engineering techniques 

(Leesutthiphonchai et al., 2019). A promising environmentally friendly strategy to 

prevent the resistance breakdown of potato cultivars under conditions of rapidly evolving 

pathogen population is to use disease risk prediction approaches to guide low input 

chemical protection (Kessel et al., 2018).  

The utilisation of decision support systems (DSS) to help guide and reduce the use of 

pesticides for the control of PLB has shown promise around the world (Bourke, 1959; 

Grünwald et al., 2002; Hermansen et al., 2003; Fry et al., 1983; Small et al., 2015b) and 

in Ireland (Bourke, 1953b; Dowley et al., 2004). Due to technical and perceptual 

constraints, the update and utilisation of these systems in routine disease management has 

been perceived as slow (Gent et al., 2010; Raatjes et al., 2004; Shtienberg, 2013). In a 

case of high-risk disease, routine prophylactic applications of fungicide treatments appear 

to be economically justified unless a highly accurate disease risk model can be developed 

or during periods when the low disease pressure can be determined (Pethybridge et al., 

2009).  

The Irish Rules (IR) (Bourke, 1953a) is a semi-empirical PLB risk prediction model 

developed to accommodate the PLB pathosystem, management practices and suitability 

of the meteorological network in Ireland during the 1950s. The IR is still utilized in their 
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original form to support the blight warning service with issuing spray advice. The service 

is led operationally by the national meteorological service, Met Éireann (Dowley et al., 

2004). An evaluation of the IR by Dowley and Burke (2004) reported a significant 

reduction in fungicide usage, but with unsatisfactory disease control. More recently, these 

findings were confirmed through a theoretical comparison of the currently used PLB risk 

prediction models in Europe (Hansen et al., 2017). This study has shown that the Irish 

Rules model produces the lowest risk accumulations, due to its conservative set of 

parameters. Considerable changes in the PLB pathosystem since the establishment of the 

rules, limited evaluation of the model and questions regarding its performance (Dowley 

et al., 2004; Hansen et al., 2017) prompted us to evaluate and re-calibrate the model and 

the decision strategy (Cucak et al., 2019). The following changes of the model thresholds 

were recommended: 1) reduction of the thresholds for relative humidity and an initial 

period duration from 90% and 12 h to 88% and 10 h, respectively; 2) keeping the 

temperature threshold at 10°C, and 3)  adopting an additional leaf wetness indicator which 

incorporates both precipitation (0.1 mm) and relative humidity (90%). Based on the re-

parameterised model, our results have shown that a minimum of 3 and a maximum of 11 

effective blight hours (EBH) are necessary for the disease outbreak. While the reduction 

of the model variable thresholds inevitably results in an increase in risk estimation, the 

results of the simulation analysis showed that the re-parametarised model still provides 

reductions in fungicide usage when compared to the current grower practice.  

Given the potential risks to the production associated with failing to control PLB under 

Irish growing conditions, a field evaluation of the revised model and decision strategy 

was implemented in order to validate the previously conducted theoretical analysis. Our 

aim is to show how subtle adjustments of the standard grower’s practice using a reliable, 

publicly available decision support tool is possible under Irish conditions. Our specific 

goals are to compare the performance of fixed and environmental adjustment of standard 
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grower’s potato late blight chemical control on foliar disease control and the effect on 

yield of varieties varying in disease resistance levels under field conditions. Additionally, 

the pathogen population was monitored to evaluate the implications of developed disease 

management strategies. An open and reproducible presentation of the methods and the 

analysis employed is provided, to facilitate further evaluation and development of IPM 

strategies, following the principles set in our previous study. 

4.4. Methods 

Frequently used abbreviations in are presented in Table 8.1.  

4.4.1. Trial design and cultural practices 

Field trials were conducted at the Teagasc Crops Research Centre at Oak Park, Carlow, 

Ireland (latitude: 52.85, longitude: -6.91) during the period 2016-2019. Fertilization and 

non-experimental pesticide applications, pre-emergence herbicide and insecticides, were 

applied according to local potato growing practices. In each season the preceding crop 

was spring barley, with the potato crop representing the non-cereal break crop in a five-

year rotation. For each trial, the soil was a free draining medium sandy loam. The planting 

dates were approximately one month later than the standard grower’s practice to avoid 

plant senescence towards the end of the season. The disease was allowed to develop 

naturally. Due to an extended dry period in early July 2018, the trial was irrigated on two 

occasions to prevent abiotic impacts of drought. The irrigation had no impact on disease 

development since the first disease occurrence was not noted until 20 August. The entire 

trial was desiccated in late September and harvesting took place in October of each 

season. Drills in each plot were mechanically lifted and tubers were then hand-picked 

from the soil surface. Potatoes were stored in open storage for at least two weeks to allow 

tuber blight symptoms to develop. Dates of the agronomic operations are presented in 

Table 8.2.  
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The trial was designed as a split plot, with two factors; fungicide programme randomised 

to the whole plots and variety to sub-plots, with 4 replications. The sub-plot consisted of 

20 tubers of each variety per replicate. Factors are described below. The trials were 

planted into pre-formed 81 cm wide ridges, with a planting distance and the distance 

between tuber centres was 31 cm. Each main plot was made up of six drills 11.3 m long, 

with sub-plots consisting of two drills with ten plants each. To facilitate harvesting 1 m 

was left unplanted at the end of each sub-plot. In addition, the middle two drills of each 

plot were planted with the variety King Edward to allow a uniform development of the 

disease. A 3 m divider strip was left between the replicates to facilitate fungicide 

application and avoid interplot interference. Spraying was carried out with a conventional 

sprayer mounted on a utility vehicle with an independent power source. The spray volume 

was 200 1 ha-1 and the spray pressure was 3 bars to give a medium/fine spray quality 

using anti-drift spray nozzle number 4110-20.  

4.4.2. Cultivars 

Six potato varieties (Table 4.1) were included in the trials and were selected as they either 

represent those most widely cultivated in Ireland, or the extremes of resistance and 

susceptibility currently available. The breeding clone T5821/11, bred within the Teagasc 

breeding programme, was also included to represent an elite variety with a high level of 

partial resistance. The seed was acquired from commercial sources, with the exception of 

T5821/11, which was propagated as part of the Teagasc potato breeding programme. 
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Table 4.1 Potato cultivars and breeding clones used in the field trials, their foliar and tuber 

resistance to Phytophthora infestans (scale from 1 to 9, with 9 being the most resistant), and 

growing season lengths. 

Variety/ 

breeding clone 

Foliage resistance: 

Field  

Tuber resistance: 

Laboratory 

Maturity 

King Edward 3 5 Maincrop 

British Queen*1 3 4 Second Early 

Rooster*1 3 5 Late 

Setanta 6 7 Maincrop 

T5821/11 8 8  Late 

Sarpo Mira 8 9 Very late 

*1Included after 2016 

4.4.3. Disease control 

We followed the approach outlined by Madden and Ellis (1988a), that an appropriate 

validation of a warning system should include a comparison of a DSS generated 

programme with a standard spray programme and a no-fungicide control. All infections 

were natural. The application of fungicides commenced when the plants were beginning 

to meet within the drills. Six late blight control strategies based on weekly intervals were 

employed in the trials; 1: untreated control, 2-3: full and half label dose of fungicide 

programme considered as standard growers practice (further referred to as the full and 

half dose), respectively, and 4-6: dose adjustment of the standard growers fungicide 

programme based on the disease risk prediction for the following seven days determined 

as follows:  

4. Irish Rules (IRp): full-dose applied if the IR model output reached the threshold of 12 

EBH as per Bourke (1953a);  

5. Blight Management (BMp, included during period 2017-2019): adjusted dose applied 

based on a limited version of Blight Management including only model A (for susceptible 

varieties) as per Nielsen et al. (2015) (Table 8.3) without altering our fungicide 

programme (curative treatments recommended by the Blight Management were not 

implemented);  
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6. Modified Irish Rules (MIRp): adjusted dose applied based on risk predicted by the MIR 

model as per Cucak et al. (2019), with doses applied (five categories: no treatment, 

quarter, half, three quarters and the full dose) reflective of respective risk accumulations 

of effective blight hours (EBH): 0, 1-3, 4-6, 7-9 and 10-12.  

The fungicide programmes were typical of locally applied programmes including the 

following fungicides applied in rotation (the active substance and the label dose are 

indicated in brackets): Ranman (cyazofamid 400 g/l, 0.5 l/ha); Shirlan (fluazinam 500 g/l, 

0.4 L/ha); Infinito (fluopicolide 625 g/l + propamocarb 62.5g/l, 1.6 L/ha); and Revus 

(mandipropamid 250 g/l, 0.6 L/ha). In all cases, the recommended label dose was 

considered as the full dose. See Table 8.4 for further details on dates of application and 

doses applied for each treatment. 

An automated service to run the above-described risk prediction models was implemented 

in the R programming language. For each blight control strategy, the risk was calculated 

based on the observed and forecasted hourly weather relevant for the trial location. The 

historical weather files contain the hourly values for the following variables: mean air 

temperature (℃) and relative humidity (%) at 2 m and the total hourly precipitation (mm) 

measured at the Oak Park synoptic weather station operated by Met Éireann. All trials 

were within a radius of up to 500m from the meteorological station. The weather forecast 

was extracted from the nearest grid point of the high-resolution forecast (HRES) 

atmospheric model, operationally run by the European Centre for Medium-Range 

Weather Forecasts (ECMWF). The HRES grid resolution is approximately 9 km. The 

provided weather forecast data consisted of three files with intervals from 0 to 90, 120 

and 240 hours lead time with the corresponding 1, 3 and 6-hour temporal resolutions, 

respectively. Files were merged for the entire 240 hour period prioritising forecasts with 

lower temporal resolutions (0-90 hours: 1-hourly forecast, 91-120 hours: 3-hour forecast 
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and 121-240 hours: 6-hour forecast). Temperature and relative humidity were downscaled 

to hourly resolution by spline interpolation using the Forsythe, Malcolm and Moler 

method (Forsythe et al., 1977); while the rain totals were divided by 3 for 3-hourly and 6 

for 6-hourly files. Data files were obtained from Met Éireann daily at 09:30 UTC; the 

observed files are then concatenated with the 240 hours weather forecast, starting from 

the midnight of the current day. The automated service ingests the weather data and 

generates the dose calculation for the respective fungicide application on the current day 

and graphical outputs of the model calculations for the following 7 days (Figure 4.1).  

 

Figure 4.1 An example output of the system providing the outputs of the risk prediction 

models. 

4.4.4. Disease and yield assessments  

Disease severity, identified as the proportion of diseased crop tissue in each sub-plot plot, 

was estimated visually in accordance with ADAS potato late blight foliage assessment 

key (Anonymous, 1976) every 3 to 7 days. The assessments were initiated after the 

disease was first observed in the trial site and continued until the untreated control plots 

were completely necrotic or plants were naturally senescing.  
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Following harvesting and storage, tubers between 45 and 85 mm were considered as 

marketable yield (further on referred to as yield). Yields were estimated by harvesting 

tubers and re-scaling actual yields to tonnes per hectare, without adjusting for the effect 

that small plot sizes have on yields. Each subplot was mechanically harvested with tubers 

subsequently picked by hand. Following harvesting, the tubers were stored at ambient 

temperature for 3-6 weeks prior to grading.  

4.4.5. Pathogen sampling and molecular characterization 

Collection and isolation 

Pathogen collection was completed by sampling infected potato leaflets from each plot 

with visible disease symptoms at the end of the epidemic in 2016 and at different stages 

of the epidemic development during years 2017 - 2019 (See Table 8.5 for sampling dates 

and Table 8.6 for the number of isolates per variety and factor per year). The number of 

samplings was dictated by the duration of epidemics and weather conditions allowing 

their implementation. The number of samples varied per plot and sampling date. To avoid 

disturbing the progress of epidemics, the first samples from a plot were taken when at 

least two lesions were found in plot and only half the lesion (and leaflet) was collected, 

the exception being late infections on the resistant cultivars, T5821/11 and Sarpo Mira. 

The number of lesions collected per plot was reciprocal to the disease progress with the 

maximum number of 4 lesions per plot. Single P. infestans lesions were identified and 

pressed onto Whatmann FTA cards (GE Healthcare), with the exception of 2017, when 

live cultures were also isolated as follows; cuttings of the sporulating lesions were placed 

underneath pea agar medium (160 g peas per L and 1.5% w/v agar) amended with 

antibiotics: rifampicin (37.5 mg/L), ampicillin (10 mg/L) and nystatin (37.5 mg/L). Petri 

dishes were closed with parafilm and incubated at 18°C in darkness. When clear aerial 

mycelial growth was visible, approximately 5-7 days after isolation, a piece of mycelium 

was transferred to the fresh pea-agar medium using a sterile scalpel blade and incubated 
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at 18 °C. Axenic isolates of P. infestans were transferred to pea-agar for subsequent DNA 

extraction and transferred onto the rye agar slopes (Caten et al., 1968) for long term 

maintenance at 4 °C.  

DNA extraction 

A single 2 mm disc was punched from the FTA cards and transferred into 1.5 ml 96 well 

PCR plates. The disc was washed three times with 400 µl of the FTA purification reagent 

(Whatman Inc., USA) followed by two rinses with 400 µl Tris-EDTA buffer (10mM Tris 

and 0.1 mM EDTA). The disks were dried for 2 hours in a laminar flow after which they 

were kept at 4 °C. PCR amplification was implemented within the following four days. 

For the P. infestans isolates, pieces of lyophilized mycelium were placed in a 2-mL 

polypropylene vial with glass beads and homogenized. The tissue was disrupted using a 

mixer mill (MM400 Retsch). DNA extracted using the MagMAX™ Plant DNA Kit 

(A32580, ThermoFisher) on King-Fisher 96DW instrument (Thermo Scientific) and 

stored at -20 °C. DNA concentration was measured using NanoDrop 2000 

Spectrophotometer (Thermo Scientific, United States) and adjusted to 10 ng/µl.  

Microsatellite genotyping 

Polymorphic simple sequence repeat (SSR) regions of P. infestans isolates were amplified 

using previously designed standardized set of twelve microsatellite markers (Pi02, Pi4B, 

G11, Pi04, Pi63, Pi70, D13, SSR2, SSR4, SSR6, SSR8 and SSR11) (Knapova et al., 

2002; Lees et al., 2006; Li et al., 2010). Amplification of the SSR markers was carried 

out as previously described (Li et al., 2013). PCR reactions were performed with Qiagen 

Type-it Microsatellite PCR kit (Qiagen Corporation) in accordance with the 

manufacturer’s instructions (Qiagen, Hilden, Germany). Primers labelled with a 

fluorescent dye (G5 dye set: 6-FAM, NED, VIC; Applied Biosystems) were used. 

Samples from 2016 were analysed using ABI 3130xl, and 2017 - 2019 using ABI 3500XL 
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capillary DNA sequencer according to the manufacturer’s instructions (Applied 

Biosystems). SSR allele size was determined relative to GeneScan 500 LIZ standard and 

scoring was done using GeneMapper version 3.7 (Applied Biosystems). MLGs were 

assigned as per allele sizes per Stellingwerf et al. (2018). 

4.4.6. Data analysis 

Software Used for the Analysis and the Reproducibility 

The entire analysis was implemented using a freely available tool for statistical 

programming, R language (R Core Team, 2018). The research compendium, containing 

the entire data analysis is archived at:  

https://mladencucak.github.io/PLBFieldTrial/index.html  

The list of packages that were not used directly for the analysis is provided here. A portion 

of the data was imported using readxl (Wickham et al., 2019). Packages used for data 

munging: tidyverse (Wickham, 2017). Packages used for visualisations: ggplot2 

(Wickham, 2016), cowplot (Wilke, 2018), and ggthemes (Arnold et al., 2019). Univariate 

series imputation was implemented using functions from package imputeTS (Moritz et 

al., 2017). Package zoo (Zeileis et al., 2005) was used for processing dates. Formatting 

of tables was done with pander (Daróczi et al., 2018). Packages rmarkdown (Allaire et 

al., 2019) and knitr (Xie et al., 2019) were used for creating a reproducible compendium. 

Package here (Müller, 2017) was used to ensure reproducibility on different platforms. 

Programming functions from R.utils (Bengtsson, 2019), string manipulation with mgsub 

(Ewing, 2019). 

Disease control and yield analysis 

The disease observations were used to calculate the relative area under the disease 

progress curve (rAUDPC) (Campbell et al., 1990) to enable comparison between 

treatments with different assessment periods. The rAUDPC was calculated using the R 

https://mladencucak.github.io/PLBFieldTrial/index.html
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“agricolae” package (De Mendiburu, 2014).  The values of the response variable, 

rAUDPC are proportions, beta GLMMs with a logit link were fitted using package 

“glmmTMB” (Brooks et al., 2017). Generalized linear mixed models (GLMM) can be 

used for the analysis of the data with greater heterogeneity of the disease incidence than 

would be expected from the random pattern (Madden et al., 2002). Models were fitted to 

the first year, and remaining years separately, due to lack of two levels of both treatments 

in 2016. The effects of block and plot were included as random in the linear predictor of 

the model. The deterministic (fixed-effect) components were fungicide programme, 

variety and the interaction between fungicide programme and variety for 2016 data, and 

for the remaining years of the study, the three-way interaction between 

programme*variety*year was also included. The two-way interaction between the 

programme, variety (model fit 2016) and the three-way interaction between factors year, 

programme and variety were significant, hence all of the terms were kept in the model. A 

linear mixed effect model was fitted to the yield data using the package “lsmeans” (Lenth 

et al., 2018) following the same procedure. The same interactions were observed to be 

significant and all terms were kept in the model. 

Goodness-of-fit of the models was evaluated using plots of residuals. ANOVA-like tables 

were calculated using Wald Chi-Squared Test statistics for comparisons, using the Anova 

function from the “car” package (Fox et al., 2018). For multiple comparisons and post 

hoc tests, the estimated marginal means, standard errors and confidence intervals were 

calculated using the “emmeans” package (Lenth et al., 2019) and compact letter displays 

of all pairwise comparisons using the “multcomp” package (Hothorn et al., 2019). The 

estimates were combined for both models and presented with the point chart with error 

bars. A linear mixed effects model was fitted to the yield data using the same modelling 

procedure and post hoc testing. In addition to plots of residuals, half normal plots with 
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simulation envelopes were used to assess the goodness-of-fit of the fitted models, using 

package “hnp” (Moral et al., 2017).  

Analysis of the microsatellite data 

The genotyping data and metadata was collated into a single file and subsequently 

formatted as GenAlEx comma separated files to be imported as a genclone object. 

Frequency charts of genotype proportions per variety and fungicide programme were 

created for the two-way contingency tables to explore possible selection patterns. 

Selection patterns between fungicide programme, variety and year.  

The Bruvo distance among MLGs was calculated and minimum spanning networks 

(MSN) were constructed to visualise the structure of the population across the studied 

years using the “Poppr” package (Kamvar et al., 2014). Clustering of genetically similar 

individuals was sought using the Discriminant Analysis of Principal Components 

(DAPC), a multivariate method that uses genetic data to describe the differences between 

pre-defined biological populations (Jombart et al., 2010), using the “Adegenet” package 

(Jombart et al., 2018). In DAPC, data is first transformed using Principal Component 

Analysis and, subsequently, clusters are identified using the k-means clustering 

algorithm. The number of clusters (K) was allowed to vary from 5 to 25 and the optimal 

K was determined based on the Bayesian information criterion (BIC). 

In-season temporal variation of population structure.  

To provide an overview of how the epidemics progressed in relation to the dynamics of 

the different P. infestans MLGs the number and the proportion of samples assigned to 

specific MLGs for each sampling date were calculated for the complete collection, from 

2017 to 2019 (Table 8.7). As MLGs relating to 2016 were collected from a single 

sampling time point they were excluded from the analysis. To reduce the potential 
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impacts that the more resistant varieties/fungicide treatments may have had on the P. 

infestans population a subset of data consisted of samples from susceptible the varieties 

(King Edward, British Queen and Rooster) plots where the epidemics were allowed to 

develop unimpeded (untreated controls and IRp) were also analysed. The data is presented 

using frequency plots.   

4.5. Results 

4.5.1. Climatic conditions and disease progress 

Conduciveness of weather conditions (Figure 8.1), and subsequently, potato late blight 

disease progress (Figure 8.2), varied considerably throughout the years studied. The 

disease pressure developed to extreme levels due to high foliar disease levels in eight 

untreated and Irish Rules plots with susceptible varieties (King Edward and British 

Queen), in all years except in 2018 when the highest mean foliar disease level was 25 %. 

2016 and 2017 were similar to average blight years in Ireland, while 2018 late blight 

season was impeded in June and the first half of July, due to uncharacteristically high 

temperatures and lack of rainfall (Figure 8.1). A severe blight epidemic prevailed in 2019, 

due to extremely blight conducive weather conditions throughout, and especially in the 

latter half of August. The first detections of PLB in the trial site were on 25 July 2016, 3 

July 2017, 26 July 2019, which was in accordance with the 25-year average (Dowley et 

al., 2008), with the exception of the extraordinarily dry 2018, when the disease was not 

observed until 20 August 2018. Epidemics in untreated control plots of the highly 

resistant potato varieties, T5821/11 and Sarpo Mira, started later and developed very 

slowly reaching from 0 to 0.5 and 5% disease foliage on T5821/11 and Sarpo Mira, 

respectively.  
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4.5.2. Fungicide applications  

The number of fungicide applications and the proportion of the total label dose for all 

years of the trial and the overall averages for 2017-2019, due to the missing levels in 

2016, are presented in Figure 4.2. Over the four-year period of the experiment, the 

average number of fungicide applications was 9.3 for the fixed 7-day programmes, with 

8 applications in all years except in 2017 with 12 applications; while the DSS programmes 

varied from 1 to 9.3. The IRp received an average of 1 application and 9.7% of the total 

dose applied in the full dose programme. The BMp did not provide any reductions in the 

number of applications, while the average total dose ranged from 87.5% to 43.6%, with 

a three-year average of 79.2%. The MIRp received an average of 8.7 fungicide 

applications and an average total dose of 41.3% of the full programme applied. 
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Figure 4.2 The proportion of the total label dose and the number of pesticide applications 

recommended per year by the fixed and varying dose programmes. Facets marked with the 

year on top represent summaries for individual years while the last facet represents the overall 

averages and variance per programme. In the facets for the individual years, the height of the 

bars represents the proportion of the dose applied per model compared to the total dose 

(number of applications x 100%), while the numbers at the top of the bars represent the total 

number of applications recommended by the model in each year. The overall summary (facet 

on the far right) includes years 2017 - 2019 because of the missing levels in 2016, where the 

height of the bar represents the mean dose reduction, the error bars represent the standard 

deviation and the number above the bar is the mean number of applications during the year. 

4.5.3. Disease control and the impact on the yield  

The higher order interactions were significant, between fungicide programme and variety 

in 2016 (p < 0.001 and p = 0.004, for the foliage disease and yield, respectively); and 

year, fungicide programme and variety in the remaining years (p = 0.0014 and p < 0.001, 

for the foliage disease and yield, respectively). Observed values, the estimated means and 

confidence intervals of each treatment combination (α = 0.05) showing the variation of 

the foliage disease and the yield in relation to fungicide programme and variety in 

different years are presented in Figure 4.3.  

The performance of fungicide programmes followed a similar trend across the studied 

period (Figure 4.2 a). Foliar disease levels were highest in the IRp, while half dose, MIRp 

and BMp were similar to the standard growers’ practice for the susceptible and 

moderately resistant varieties. The yield levels followed a similar pattern, except in the 
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low-disease, warm and dry 2018, when there was no difference between the programmes. 

In the other seasons, the differences were significant only for the susceptible varieties. 

No differences between fungicide programmes were identified between the resistant 

varieties T5821/11 and Sarpo Mira in terms of either foliar disease control or yield 

between irrespective of fungicide programme or year.  

A single fungicide application recommended by the IR at the beginning of the season in 

2016 provided a significant reduction in foliar disease levels compared to the untreated 

control but was not comparable to the levels of protection provided by the other 

programmes. However, this was not reflected in yield, and the IRp was not significantly 

different from the untreated control. In the case of the prolonged epidemic experienced 

in 2017, the two fungicide applications recommended by the IRp were not sufficient to 

provide significantly different levels of disease control compared to the untreated controls 

of susceptible and moderately susceptible varieties. The same effect was observed in 

terms of yield, except for the medium resistant Setanta. Due to late disease onset and slow 

epidemics in 2018, the overall rAUDPC was low and the season finished with low disease 

levels. There was no significant difference between IRp and untreated control for 

susceptible varieties, B. Queen, K. Edward and Rooster and between the remaining levels 

of factors. Warm and dry weather conditions caused the final yield to be lower than the 

historical average. Lower foliar disease control achieved by IRp and untreated control did 

not significantly reflect on the yield, which was not significantly different between the 

fungicide programmes.  

The environmental conditions were favourable for blight development in 2019 (Figure 

8.1). The rAUDPC values were the highest, compared to the other years the trials were 

conducted. Disease control by IRp was not significantly different from the untreated 

control for B. Queen and K. Edward. ‘Related’ models MIRp and IRp recommended a 
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full dose fungicide programme on 15 August, prior to the onset of severe blight weather 

(Table 8.4). This led to a significant reduction of the disease levels on Rooster and Setanta 

compared to the untreated control but still higher than all other programmes. Similar to 

2016, the disease control by the IRp on Roster and Setanta was significantly reduced 

compared to the untreated control, although it was still higher than the rest of the 

fungicide programmes.  
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Figure 4.3 The estimated marginal means and 95% confidence intervals of the three-way 

interactions between year, variety and fungicide programme for models fitted to: a) the disease 

and b) the yield data. Observed values are presented as dots. The colour-coding is according to 

the fungicide programme. For both, the disease and yield data, separate models were fitted, one 

to the 2016 data set, due to the lack of two fungicide programmes and varieties, and the second 

one to 2017-2019 data set. Varieties are presented as discrete values on the x-axis with 

increasing level of resistance from (left to right): King Edward (KE), British Queen (BQ), 

Rooster (RO), Setanta (SE), the clone from Teagasc breeding programme T5821/11 (CL) and 

Sarpo Mira (SM). 
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4.5.4. Population structure and selection patterns between fungicide programme, 

variety and year 

A total of 1287 single lesions were successfully genotyped and used to characterise the 

response of the local population, fungicide programme and potato variety during period 

2016-2019. The population remains simple and all samples were associated with 

previously identified MLGs 8A1, 6A1 and 13A2, with the exception of a single isolate 

from 2019, associated to EU_36_A2 (36A2) MLG (Figure 4.4) This is the first report of 

the 36A2 MLG in the Republic of Ireland. Due to low frequency of 36A2, this isolate was 

was not considered in further analysis. 

 
Figure 4.4 Minimum spanning networks (MSN) for Phytophthora infestans isolates collected 

at the field trial at Oak Park, 2016-2019. The allelic variation between Phytophthora infestans 

field samples was estimated using standardized multiplex short sequence repeat (SSR) marker 

assay. Each node represents grouping and the node sizes are proportional to the number of the 

isolates. Genetic similarity between MLGs is indicated with shared nodes, while Bruvo genetic 

distance determines the thickness of the node connectors 
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With the exception of the resistant variety Sarpo Mira, large collections of P. infestans 

were established from the different varieties (Figure 4.5). 13A2 was found at greater 

frequencies on varieties with increased foliar resistance levels. Conversely, 8A1 was 

found more frequently on the susceptible cultivars and in similar frequencies (67.3, 64.9, 

66.2, on K. Edward, B, Queen and Roster, respectively). 

The corresponding DAPC analysis of the data confirmed the differentiation indicated by 

the frequency distributions of the clonal MLGs per variety. While clusters of varieties 

were overlapping, varieties with increasing levels of resistance were further from the 

complete overlap of the three susceptible varieties, indicative of the population shift 

obvious in the frequency charts. Both the frequency charts and the corresponding DAPC 

analysis for fungicide treatments suggest limited if any impacts of the different fungicide 

programmes on the population structure. Frequencies of the clonal MLGs varied over the 

years of the study, with the most obvious difference observed in dry and warm 2018, 

when 90.3% of samples belonged to 8A1 genotype. DAPC indicated differences between 

the annual populations, showing the shift of the population in 2018, after which the 

population from 2019 remained in the same cluster. 
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Figure 4.5 Relative frequencies (the bar charts on the left) and discriminant analysis of 

principal components (DAPC) (right) of P. infestans populations sampled at the field trial at 

Oak Park, 2016-2019. Samples were pooled per variety (top row), fungicide programme 

(middle row) and year (bottom row), disregarding the sampling date. Varieties are presented as 

discrete values on the x-axis with increasing level of resistance from (left to right) (upper left 

chart) and labels (upper right DAPC scatterplot): King Edward (KE), British Queen (BQ), 

Rooster (RO), Setanta (SE), the clone from Teagasc breeding programme T5821/11 (CL) and 

Sarpo Mira (SM). Programmes are presented as discrete values on the x axis: Untreated control 

(0), half dose (50), full dose (100), Irish Rules (IR), Blight management (BM) and Modified 

Irish Rules (MIR). 
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4.5.5. In-season temporal variation of population structure 

A total of seven, four and two individual samplings were implemented in 2017, 2018 and 

2019, respectively. An apparent temporal population shift is observed in all years of the 

study, with the founder population consisted of the old clonal lineage 8A1, being replaced 

with newer strains (6A1 and 13A2) as the epidemics progressed (Figure 4.6). In the final 

sampling in 2017 and 2019, 87.2% and 80% of all samples and 92.3 and 64% of the subset 

samples belonged to 6A1 and 13A2. This shift was not as expressed in 2018 when 

frequencies of 6A1 and 13A2 remained at a low level (11.5 and 17.2 for full and the 

subset of data, respectively. However, the population structure at that stage of the 

epidemics (approx. 25% in control plots with susceptible varieties) in 2018 is directly 

comparable to the similar level of epidemics in 2017 and 2019 when the same level of the 

foliar disease occurred at an earlier date.  
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Figure 4.6 In-season temporal variation of P. infestans population structure and the potato late 

blight disease progress 2017-2019 in the field trial at Oak Park. Bars represent the proportion 

of samples belonging to specific clonal maximum locus genotype (MLG) per sampling. 

Horizontal rows of facets represent MLG frequencies in the entire collection (upper row) and 

the subset samples collected from plots with unimpeded disease development (lower row). The 

number of samples per sampling date is presented below bars. Lines represent the mean 

disease progress in control plots. 

4.6. Discussion 

The results of an interdisciplinary study assessing possibilities for the integration of 

economically and environmentally friendly strategies in standard potato late blight 

management practices to control potato late blight, a notorious plant disease, under Irish 

conditions are presented. Currently, potato production is completely reliant on the 

prophylactic use of pesticides, and potato producers are facing the challenge to reduce 

pesticide inputs for controlling the disease. This is largely through legislative demands, 

namely, the European Community Directive 128/2009 on the Sustainable Use of 

Pesticides (European Commission, 2009, 2009), as well as increased demands by the 

supermarket chains to reduce the use of pesticides for crop disease control (Rossi et al., 

2012). It has been shown here that the subtle modification of the standard grower’s potato 

late blight management practice can lead to reduced usage of chemicals to control the 
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disease. In addition, the response of the pathogen population to treatments was monitored, 

to understand possible implications on the decision making in disease management. Our 

findings indicate that although the Irish population of P. infestans remains simple, 

frequency of virulent strains matching the host resistance is increased in latter parts of the 

potato growing season. Publicly available DSS can be used to preserve the durability of 

varietal resistance and prevent selection patterns under conditions of high disease 

pressure, since the MIR successfully indicated periods of severe disease pressure.  

All three forecasting schemes provided significant reductions in fungicide usage 

compared to the full label fungicide dose programme considered as the standard grower’s 

practice. Both the IRp and the MIRp also required lower inputs than the half dose 

programmes, while BMp required a mean total dose of 79.2%. The higher mean fungicide 

usage required by the BMp may in part be due to a limited implementation of the Blight 

Management DSS. The limitations were as follows: only model A (for susceptible 

varieties) was used due to our experimental design constraints; later planting dates 

causing dose correction to be based mostly on the high infection pressure tiers of the 

model dose correction and pre-defined fungicide programme was not altered to 

accommodate the curative treatments recemented by the system. The dose correction was 

employed due to the split-plot design constraints, as each main plot received the same 

fungicide treatment. Most importantly for Irish potato cultivation, the IRp failed to 

provide acceptable levels of foliar disease control on varieties with lower and medium 

levels of blight resistance, which constitute the majority of the Irish potato production. 

However, levels of control achieved by both the BMp and the MIRp were not different 

from either the half dose or full dose fungicide programme. Interestingly, there was also 

no significant difference between the half dose and full dose programmes in terms of 

disease control, even on the most susceptible varieties in the trial. 
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Disease control and the yield achieved across fungicide programmes were not different 

for the resistant varieties included in trials. For the two most resistant varieties, disease 

levels remained low across the years, with epidemic onset only late in the season. These 

epidemics were likely initiated due to the high disease pressure, an inflow of the 

aggressive strains and the maturity induced reduction of the polygenetic resistance (Fry 

et al., 1986). This scenario is especially dangerous when the environmental conditions 

are very conducive, as occurred in 2019, if the resistant varieties are not protected. PLB 

is a classic example of a polycyclic disease with a pronounced exponential phase (Van 

der Plank, 1963) and rapid disease cycles which could lead to resistance breakdown and 

act as a primary inoculum pool for surrounding potato fields, under conducive conditions. 

Both the IRp and the MIRp have indicated such periods in August 2019 and 

recommended full label dose fungicide application, indicating that the algorithm is 

suitable for the PLB prediction in the Irish ecosystem. 

Crop disease risk prediction models are routinely developed and calibrated using the 

historical weather data, without evaluating the uncertainty introduced by employing the 

forecasted weather data (Magarey et al., 2017). Crop disease DSSs that utilize real short-

term weather forecasts created by operational numerical weather prediction models are 

not very common (Caffi et al., 2011; Fernandes et al., 2011). Surprisingly, results shown 

here indicate that the use of a 7-day weather forecast with high temporal resolution 

resulted in a reliable risk prediction. This could perhaps be explained by the simplicity of 

the models employed in the study, which do not require very precise predictions beyond 

the developmental thresholds. An empirical approach is often applied for the development 

of territorial models operated on the mesoscale, while the field models operating on the 

microscale are frequently based on more fundamental (mechanistic) approach (Gommes 

et al., 2010). It appears that the simpler models representing a combination of the two, 

such as the IR (and MIR), are currently a good compromise when employed ‘between 
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scales’ using the extended short-range weather forecast, up to seven days. This indicates 

that the reliability of using weather forecast data in disease risk prediction is significantly 

improved. Due to technical and experimental constraints, we did not include possible 

adaptable treatment windows, i.e. 5-10 days, as proposed in Cucak et al. (2019), which 

seems to be a realistic possibility based on the current findings. These results are 

encouraging considering constant improvements and the increasing spatial resolution of 

weather forecasts. High-risk diseases on valuable crop require frequent interventions 

throughout the season (Pethybridge et al., 2009) and the risk estimation is based on short-

range forecasted weather, which could potentially alleviate the need for expensive on-site 

stations.  

One of the key inputs for effective management of potato late blight disease is information 

regarding the population dynamics and structure of the causal agent P. infestans (Fry et 

al., 2013). Similar to previous reports by Kildea et al. (2010) and Stellingwerf et al. 

(2018), SSR analysis indicated that the genetic composition of the P. infestans population 

remained relatively simple with only three major clonal lineages found in all years (13A2, 

6A1 and 8A1). None of the strains belonging to 5A1 genotype was found, which have 

been previously detected by Stellingwerf et al. (2018). The older clonal lineage 8A1 is 

being displaced by newer strains with increased levels of aggressiveness (e.g. 13A2, 6A1) 

in Northwest Europe (Cooke et al., 2012; Mariette et al., 2016). The ‘always more 

aggressive’ hypothesis is often advocated to explain such clonal lineage replacements in 

P. infestans populations (Day et al., 1997; Cooke et al., 2012). Conversely, findings of 

this study are in agreement with previous reports and the 8A1 still remains a dominant 

lineage in Ireland (e.g. Cooke et al., 2014; Kildea et al., 2010), which appears to be well 

accommodated to the Irish climatic conditions.  
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Observed selection patterns related to varieties with increased blight resistance levels are 

in agreement with those from Stellingwerf et al. (2018), indicating that more resistant 

varieties are selecting more aggressive strains. This is especially pronounced in the case 

of Sarpo Mira and 13A2. Highly resistant, Sarpo Mira contains multiple R genes 

(Rietman et al., 2012). Hobby and organic growers mostly rely on resistant varieties, with 

Sarpo Mira being one of the popular choices in Ireland. Due to low input crop protection 

by these groups and a high potential for selecting fittest strains is leading to a risk increase 

as the season progresses (Fry, 2008). However, Stellingwerf et al. (2018) have also 

reported selection patterns between the susceptible varieties Desire and King Edward. 

Contrary to their findings, such pattern was not observed between the three susceptible 

varieties included in our trials, King Edward, British Queens and Rooster, of which the 

last two constitute over two-thirds of the conventional Irish potato production 

(Anonymous, 2011). It was also confirmed that there was no selection pressure caused by 

the use of reduced dosages across fungicide programmes.  

Whilst the findings regarding the monitoring of the temporal structure of the pathogen 

population originate from the field trials, which may not be representative of typical 

potato production systems in which will often be a single variety and high levels of 

disease are avoided, clear patterns of selection were observed. Firstly, the epidemics were 

exclusively initiated by the 8A1, and secondly, its frequency reduced in favour of the 

13A2 and 6A1 genotypes as the epidemic progresses, with the rate of change depending 

on the rate of disease progression. Such findings may be explained by trade-offs between 

pathogenicity (within-season fitness) or survival (between-season fitness) shaping the 

invasive potential of lineages (Andrivon et al., 2013). Higher aggressiveness (e.g. short 

latency period, high spore production, high lesion growth rate) provide a comparative 

advantage at the beginning and, consequently, during epidemics (Montarry et al., 2007) 

but may reduce asexual transmission between seasons (Andrivon et al., 2007). Highly 
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aggressive isolates on the foliage could decrease the number and size of daughter tubers, 

which will be severely infected and rot in soil, limiting the overwintering inoculum pool 

thus reducing the number of volunteer plants (Andrivon et al., 2007; Flier et al., 1998).  

Pathogenicity trade-off in combination with the overall weather conditions between and 

at the beginning of the potato growing seasons dictate the composition and amount of the 

initial inoculum pool. For example, the cold winter 2017/18 and a period of dry and 

uncharacteristically warm weather in the spring of 2018 led to a significant reduction of 

the pathogen survival, delay in disease onset and ultimately, ‘mild’ epidemics for Irish 

conditions. Even after the dry period ended and the typical wet Irish weather conditions 

began in the second half of July - the first infections were not observed until 20 August 

due to severe reductions of the pathogen inoculum availability. The disease levels and the 

final proportion of fitter strains remained at a low level of 9.7% at the end of the season. 

Conversely, the weather conditions prior to and especially during August of 2019 allowed 

uninterrupted and continuous disease cycles which led to an exponential increase in the 

size of the pathogen population, and most importantly those aggressive strains, resulting 

in a severe blight epidemic. This, in turn, affected all of the disease control programmes, 

even the full dose standard growers practice programme.  

Integrated and multifaceted strategies have the best chance for successful and 

environmentally friendly management of late blight (Fry et al., 2013). Incorporation of 

information regarding the pathogen population and recognising and understanding 

pathosystem patterns in the ecosystem of interest is crucial in order to incorporate 

environmental risk prediction into disease management advice. It is expected that the 

availability of big data technologies, easier data collection and the transfer will result in 

improved DSSs (Andrivon, 2018). The direct integration of this information into risk 

prediction models is still under development. Hence, each model output should go 
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through a human filter before being turned into a practical advice (Rossi et al., 2012) and 

the inherently complex provision of pest risk forecasts clearly requires a collaborative, 

multidisciplinary approach involving researchers with expertise in pest biology, crop 

management, meteorology, and information technology (Magarey et al., 2017). Building 

an infrastructure to support the environmental disease risk prediction would lead towards 

sustainable IPM, such as a functional spore sampling network (Fall et al., 2015) and rapid 

pathogen molecular characterisation (Fry et al., 2013) and interactive reporting of disease 

outbreaks (Anonymous, 2019).  

A key challenge for research is to evaluate and propose economically and 

environmentally friendly and yet still effective strategies to control the PLB. This study 

combines major tools in the hands of a modern phytopathologist enabling one to start 

moving towards the IPM; from a classical field evaluation built on the basis of extensive 

epidemiological evaluation of an environmental disease risk prediction model, 

supplemented with the use of molecular methods to determine the full scope of possible 

benefits or repercussions of their use. Additionally, the analysis is highly reproducible, 

providing a prime example of an integrated approach in plant pathology experimentation, 

enabling the extensive and accessible review and possible improvement of the 

implemented work using a single open-access computing platform, the R language. Such 

resources are lacking in the field of plant pathology and are as important for a new plant 

pathologist entering the field, as well as for the experienced ones.  
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5. Rethinking crop disease risk modelling: BlightR, a new potato late 

blight forecasting model  

This chapter is due for submision:  

Cucak, M., Esker, P., Kildea, S., Downes, P., Fealy, R. (2020) Rethinking crop disease 

risk modelling: BlightR, a new potato late blight forecasting model.  

The initial refinement and field evaluation of IR brought significant improvement of the 

model performance but also pointed out its core deficiencies which limit further 

improvements of the model's operational capabilities. Over the duration of this research, 

new disease outbreak data became available and information regarding the temporal shift 

in the pathogen population structure (outlined in Chapter 4). For these reasons, it was 

necessary to develop a more comprehensive model which could facilitate more detailed 

risk estimation, calibrated to the level of P. infestans genotype.  

Additionally, the motivation behind this research was to establish a precedent in the way 

crop disease risk prediction models are developed, evaluated and validated. The approach 

applied here allows easier and more accessible peer review; improve credibility and 

reproducibility of research; enable validation and re-calibration over time in the 

ecosystem it is intended for as well as its easy transfer to any intended ecosystem.    

5.1. Abstract 

Crop production systems are threatened by numerous pathogens endangering sustainable 

food production. Decision support systems have often been developed to tailor crop 

disease management programmes. However, their use remains limited due to several 

issues regarding their development, application, evaluation and re-calibration. Here, a 

new potato late blight risk prediction model is proposed, aimed to tackle these issues. 

This research is aimed to help steer the future of crop disease risk prediction models 
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towards more reproducible and transferable resources, providing opportunities for global 

transferability. The model pathosystem is potato late blight, the devastating disease of 

potato and tomato. The model retains the simplicity required to reach a compromise 

between uncertainties introduced with modelling assumptions regarding Phytophthora 

infestans lifecycle and those entailed with the numerical weather prediction. The 

proposed model was developed, evaluated and calibrated for the use under a highly 

conducive environment in the Republic of Ireland using recent disease observations and 

weather data. Additionally, the proposed model was compared with the currently used 

model, the Irish Rules, in terms of diagnostic performance and accuracy using forecasted 

weather data as model inputs. Accessibility and reproducibility of the model and approach 

enables prompt re-calibration of the model to respond to frequent shifts of the P. infestans 

population, resulting in occurrence and establishment of clonal lineages active over 

different environmental conditions. The results indicate that the proposed model can 

safely extend current 7-day standard grower practice fungicide application intervals up to 

11-days. Resources such as this should help reduce ever-increasing trend of reliance on 

the prophylactic use of fungicides to control the potato late blight, as well as empower 

the development and application of IPM approaches in cropping systems globally.  

5.2. Introduction 

Crop production systems are threatened by numerous pathogens (Fisher et al., 2012) 

which have the potential to cause severe epidemics and lead to interruptions of food 

supply chains (Chakraborty et al., 2011). Population factors (such as the emergence of 

new strains), environmental influences (such as weather and climate impacts on inter- and 

intra- season pathogen population), and disease management intervention-driven 

pathosystem interactions (such as crop breeding and pesticide-driven population 

selection) are important factors in disease risk mitigation (Newlands, 2016). These are 
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likely to be further complicated by changes in climate which could have profound effects 

on future plant disease dynamics (Garrett et al., 2011; Pautasso et al., 2012; Savary et al., 

2011) and the evolution of pesticide resistance, as well as virulence matching host 

resistance, all of which require an increasing need to manage, and mitigate the impacts of 

pests. As a consequence, integrated pest management (IPM) is facing numerous 

challenges (Lamichhane et al., 2016). Trans-national networking can help overcome 

some of the increasing internal IPM challenges, including decreasing trends in budget 

allocation, scarcity of expertise, inter- and intra- country communication gaps and the 

lack of inter- and trans- disciplinary IPM research (Lamichhane et al., 2016). In relation 

to plant pathology, and more specifically crop disease forecasting, problems such as a 

lack of generalised encyclopaedia-like generic models, and their implementation and 

accessibility, are limiting cooperation pathways and the development of the discipline 

(Magarey et al., 2007; Bregaglio et al., 2012).  

Potato late blight (PLB), caused by Phytophthora infestans, is the cause of major crop 

losses in potato and tomato production globally (Savary et al., 2017). An integrated 

approach to PLB control encompasses the reduction of primary inoculum sources (e.g. 

dumps and volunteers and seed hygiene) and cultivation of PLB resistant varieties 

(Schepers et al., 2009). Efforts to breed varieties resistant to PLB have been hampered, 

due to market-driven demand for more well known, traditional varieties which tend to 

have low blight resistance levels. In parallel, the P. infestans population has undergone 

significant changes since the 1980s leading to the rise of strains with higher levels of 

aggressiveness worldwide (Fry et al., 2015) and in Ireland (Cooke, 2015; Kildea et al., 

2010). Hence, chemical protection, which represents a substantial cost burden for 

growers, is often applied preventively, based on perceived, rather than actual, risk 

(Carisse et al., 2009); in the case of PLB, chemical protection is applied at a constant 5 

to 7-day calendar-based interval due to a zero-tolerance management approach to this 
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disease (Cooke et al., 2011; Kirk et al., 2001). Such a high pesticide input approach, 

besides being costly, leads to selection pressure and the emergence of more pesticide 

tolerant strains  (Chen, 2007; Nielsen, 2014; Schepers et al., 2018) and is associated with 

detrimental environmental and human health impacts (Newlands, 2016).  

The use of mathematical models to understand plant disease epidemics in order to inform 

their management has a relatively long history (e.g. van der Plank, 1968). In general, crop 

disease prediction models can be divided into empirical, often applied for creating 

territorial models, and mechanistic (fundamental), often employed for field-based 

approaches (Gommes et al., 2010). While this is a general division, many of the models 

lie between these two ends of the continuum (Madden et al., 1988a). Numerous risk 

prediction models have been developed to aid practical day-to-day PLB management 

decisions. While mechanistic models simulating the entire life cycle of the pathogen have 

been developed since the 1960s (i.e. Andrade-Piedra et al., 2005; Michaelides, 1991; 

Skelsey et al., 2009; Van Oijen, 1991; Waggoner, 1968), their use in practical PLB 

disease management remains low due to uncertainty caused by the numerous assumptions 

regarding the pathogen biology and complexities involved in their integration into 

Decision Support Systems (DSS) (Harrison, 1992a). Early models employed in the PLB 

DSSs were mostly of a qualitative empirical nature, based on simple threshold rules (e.g. 

Försund et al., 1958; Hyre et al., 1955; Smith, 1956; Van Everdingen, 1926; Wallin, 

1962). Over time, models have integrated mechanistic features, describing the suitability 

of environmental conditions in a more realistic, quantitative manner (Bourke, 1970). Such 

models were developed using statistical relationships which described the relationship 

between the weather and disease development from field trials (e.g. the Negative 

Prognosis (Schrödter and Ullrich, 1967) or reported disease outbreaks and theoretical 

knowledge (e.g. Irish Rules (Bourke, 1953a); Simphyt I (Kluge and Gutsche, 1990) and 

MILSOL (Ladeveze, 1988)). Contemporary PLB risk prediction models are mainly based 
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on a matrix-type accumulation of risk values within crudely defined threshold criteria for 

disease outbreaks. The descriptions of a number of models are available at the UC Davis 

website (http://ipm.ucanr.edu/DISEASE/DATABASE/potatolateblight.html) and those 

currently used in Europe can be found on the EuroBlight website (Hansen et al., 2017).  

Phytophthora infestans populations have been continuously evolving since the 1980s, 

with unique clonal lineages arising with differences in pathogen fitness and pathogenicity, 

potentially impacting epidemiology of the disease (Cooke et al., 2011; Fry et al., 2015). 

Isolates with clonal lineage, or asexual descendants of a single genotype, share the same 

genotypic (e.g. mating type and SSR profile) and similar phenotypic characteristics (e.g. 

fungicide sensitivity) which are routinely evaluated and reported (Fry, 2008). Other 

epidemiologically important phenotypic characteristics, such as sporulation or infection, 

have been less frequently quantitatively explored in the past. While genotypic differences 

have been studied using simulation models (Andrade-Piedra et al., 2005; Andrade-Piedra 

et al., 2005; Seidl Johnson et al., 2015), they have not been employed for the purpose of 

practical disease forecasting. Recent efforts to monitor P. infestans population, and 

quantify the pathogenicity traits of current genotypes (e.g. Andrivon et al., 2017) will 

inevitably lead to some extension of their practical application into PLB disease 

forecasting systems. However, empirical and crude threshold-based models currently 

employed cannot readily accommodate the integration of such information in practical 

risk prediction models.  

In the past, a lack of technical ability has led, by necessity, to numerous compromises and 

over-simplifications being required in PLB risk estimation modelling. An increasing 

knowledge about the pathogen population and phenotypic traits of the dominant pathogen 

lineages, as well as the accessibility and quality of observed and forecasted weather data 

and accessibility of high-speed computing, requires a re-evaluation of some of these 

http://ipm.ucanr.edu/DISEASE/DATABASE/potatolateblight.html
http://ipm.ucanr.edu/DISEASE/DATABASE/potatolateblight.html
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simplifications. In doing so it may increase the accuracy, flexibility and usability of risk 

prediction in PLB management decision making. Hence, the objective of this study was 

to develop a simple PLB model, representing an optimum compromise between pathogen 

biology interpretation and the constraints associated with the practical application of 

models to improve the reliability of the DSS for PLB. The proposed model, intended for 

use in a high risk ecosystem, is evaluated under Irish conditions and outputs are compared 

with the simpler, threshold-based, IR model, currently used operationally in Ireland. 

Additionally, a structured, comprehensive, reproducible and open access of the model 

implementation and evaluation methodology, using observed and forecasted weather data 

and disease outbreak information, is provided as means to accommodate further 

community-based model development, refinement and applications across different 

ecosystems.  

5.3. Methods 

A schematic overview of the study is presented in Figure 5.1. The model development 

framework employed here is based on what Magarey and Sutton (2007) defined as the 

most important factors (and common obstacles) in the development of reliable pest risk 

prediction models: environmental inputs, model construction and parameterization, 

validation, and implementation. Initially, a background to the modelling approach is 

provided, followed by a description of the sub-components and the subsequent calculation 

of the risk. Model subcomponents can be switched on, depending on data availability, 

resulting in a number of model variants. The proposed model variants were compared 

with the current IR model and assessed using the ratio of model sensitivity and its 

economic value for a number of decision thresholds. The uncertainty of the risk 

predictions with a ten-day lead time were also evaluated using forecasted weather data. 
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Figure 5.1 Simplified presentation of major steps undertaken in this research (Diag. perf. 

=diagnostic performance). 
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5.3.1. Model development 

Conceptual framework  

The model outlined here, which was developed to be applied at the synoptic scale, was 

built on well-known and accepted scientific knowledge regarding the environmental 

conditions influencing the life cycle of P. infestans. Explosive PLB epidemics are driven 

by environmental conditions and a high reproduction rate of the pathogen. Extended 

periods of humid weather with mild temperatures are known as blight favourable weather 

conditions and have been widely employed in blight forecasting since the initial 

development of models (Fry, 1982); here, a refinement of this approach is proposed. 

However, compromises are still inevitable when deploying synoptic models, as certain 

aspects of the life cycle are omitted due to the existing gap between the scale of 

development of pests and diseases (e.g. micrometeorological scale, canopy layer) and the 

representative reference scales of available weather information. For example, sporangia 

are released due to a rapid drop in relative humidity resulting in the break-up of the 

sporangiophores; this usually occurs in the morning (Fry et al., 2012). It is considered 

that, due to the high spatial variability associated with relative humidity, such precision 

could not be expected for the intended synoptic scale application of the model.  

The Irish Rules (IR) (Bourke, 1953) is a PLB forecasting model developed in the 1950s 

and has remained largely unchanged since then. The IR was revolutionary at the time, as 

it was the first PLB quantitative model that mimics the life cycle of the pathogen using a 

set of empirical threshold-based processes. Cucak et al. (2019) previously described and 

evaluated the model in detail and suggested simple modifications to parameter and 

decision thresholds. This modified version of the IR (hereafter MIR) exhibited a certain 

loss of specificity but resulted in a significant improvement in model accuracy. However, 

this work clearly highlighted the need to transition from a threshold-based binary 

estimation of stages of host-parasite interaction to a more biologically realistic one, based 
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on a functional relationship between pathogen and its environment. For example, Cucak 

et al. (2019) highlighted the disadvantages of employing a crude threshold-based 

approach for risk estimation; indicative with regards to the temperature threshold, 

employed as a single lower limit estimator for all life stages of the pathogen. While it was 

clear that pathogen activity was low at the existing model threshold value of 10 °C, Cucak 

et al. (2019) did not advise increasing the temperature threshold due to zero risk PLB 

tolerance, even though it was clear that pathogen activity was low at the existing model 

threshold value of 10 °C.  

In our approach to infection modelling, an attempt was made to upgrade the current IR 

model towards a more fundamental approach (Madden et al., 1988a; Magarey et al., 

2007) or one which mimics the nature of the biological system under investigation. For 

example, temperature-moisture response functions for estimating sporulation and 

infection conditions as an adaptation of a widely used method proposed by Duthie (1997) 

and Magarey et al. (2005b) were implemented, as they are based on biologically 

meaningful parameters.  

Although numerous crop disease risk prediction models are based solely on the estimation 

of the infection conditions, it is of value to include additional stages of the life cycle, such 

as the pathogen inoculum availability (Magarey et al., 2007) or pathogen survival (e.g. 

Skelsey et al., 2007). Sporangia are structures enabling the spread of the disease aerially 

on longer distances (Aylor et al., 2011) or locally by rain splash (Fry, 2013). Their long-

distance dispersal is rare due to the reduction of germinative power after exposure to 

sunlight (Bashi et al., 1983; De Weille, 1964; Mizubuti et al., 2000; Wallin, 1962). Hence, 

levels of sporulation estimated are based on the local conditions, assuming that inoculum 

originates from nearby sources. Solar radiation has a major impact on the viability of 

detached oomycete sporangia (Bashi et al., 1983; De Weille, 1964; Mizubuti et al., 2000; 
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Wallin, 1962). In the current work, a model recently proposed by Skelsey et al. (2007) is 

employed for estimating the probability of P. infestans spore survival; once the 

sporangium is deposited on the plant surface it requires moisture to germinate and 

establish the infection, either directly, by forming a germ tube, or indirectly by releasing 

biflagellate zoospores  (typically 8 to 12) (Fry et al., 2013). Infection efficiency is directly 

related to the temperature during periods when leaf wetness is present (Rotem et al., 1978) 

and the proposed model estimates conditions for both infection pathways during the 

period when the leaf is wet.  

While numerous approaches have been suggested for estimating leaf wetness, ranging 

from very simple empirical to complex physical to models, there is a general consensus 

that a simple relative humidity threshold is satisfactory for estimating leaf wetness when 

there is a high probability that the plant surface is wet (Rowlandson et al., 2014). 

However, this threshold varies spatially and temporally, and numerous researchers have 

proposed a range of values, from 85 to 92% relative humidity (Rowlandson et al., 2014). 

While there is a greater likelihood that the plant surface is wet if the RH is > 95%, lower 

thresholds are often utilised to prevent false negative estimates associated with minor 

instrument errors or precision (Bourke, 1970). However, leaf wetness is not a binary 

process, the upper layer of potato haulm is most often wetted before the inside layers, 

while the drying process is a reversal of this (Jacobs et al., 2009). As far as the authors 

are aware, no research has been conducted with regards to leaf wetness under Irish 

conditions. However, our previous analysis has shown that PLB infections can occur 

below 90% RH, which raises the question on the usefulness of this approach in humid 

ecosystems, such as on the island of Ireland.  Hence, an adapted method was employed, 

in the form of a scaled leaf wetness risk estimate, to derive a probability that the leaf is 

wet for values below a threshold of 95% relative humidity.   
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The model consists of three subcomponents which estimate risk based on: 1) sporulation 

on the first night; 2) survival during the first day; and 3) infection during the first day 

and the second night. The model inputs are based on readily available meteorological 

measurements obtained at standard synoptic heights for variables: the average hourly air 

temperature (°C) and relative humidity (%) at 2m and total daily solar radiation 

(MJ/m2/day). The model output is a daily risk estimation. The model requires three days 

of weather data for the risk estimation on the second day, hence the first and last day of 

the weather data do not have an associated estimation of risk.   

General functions  

Temperature response function. The impact of temperature on sporulation and infection 

risk was modelled using an adapted five parameter beta distribution density function, 

commonly applied in modelling crop growth, after Yan and Hunt (Yan et al., 1999). 

While (Magarey et al., 2005b) proposed a simplified version of this function with only 

three parameters, defining cardinal (minimum, maximum and optimum) temperatures, it 

was considered that the two parameters left out in Magarey et al. (2005b) are relevant for 

estimating the development of P. infestans, especially if the model is going to be applied 

using pathogen genotype corrected parameterization. Consequently, the model was 

defined as follows: 

𝒓(𝒕) =

{
 

 
𝑹𝒎𝒂𝒙 [(

𝑻(𝒕)  −  𝑻𝒎𝒊𝒏

𝑻𝒐𝒑𝒕 −  𝑻𝒎𝒊𝒏
) ∗ (

𝑻𝒎𝒂𝒙 − 𝑻(𝒕)

𝑻𝒎𝒂𝒙 − 𝑻𝒐𝒑𝒕
)

𝑻𝒎𝒂𝒙−𝑻𝒐𝒑𝒕
𝑻𝒐𝒑𝒕−𝑻𝒎𝒊𝒏

]

𝒄

𝒊𝒇 𝑻𝒎𝒊𝒏 ≤ 𝑻(𝒕) ≤ 𝑻𝒎𝒂𝒙

𝟎 𝒆𝒍𝒔𝒆

 𝟓. 𝟏 

Equation 5.1 Temperature response function 

Where r represents the hourly risk contribution of the modelled process and the five 

parameters in the equation are the three cardinal temperatures (Tmin, Topt and Tmax), the 

maximum rate Rmax at Topt, and parameter c which determines the shape of the curve 
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(Figure 5.2a). The purpose of the parameter c is to adjust the estimation of sporulation 

and infection rates on sub-optimal temperatures. In practical terms, this means that 

increasing the shape parameters narrows the curve around the optimum temperature. The 

parameter Rmax determines the rate of the process. Initial parameters of the model, 

cardinal temperatures, c and Rmax were obtained from the literature.    

Sunrise and sunset calculations. Sunrise and sunset were estimated using a modified 

function ‘suncalc’ from the package RAtmosphere (Biavati et al., 2013) based on the 

methods proposed by Teets (2003).  
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Figure 5.2 Functions used in the proposed model: a) general presentation of beta function; b) 

probability of spore survival; c) impact of temperature on sporulation; d) impact of relative 

humidity on sporulation; e) impact of temperature on infection; and f) relative humidity 

infection factor.  

5.3.2. Model Subcomponents 

Parameter descriptions and their values for modelled life stages are presented in Table 

5.1. If not stated in the description of the subcomponents, default parameter values were 

obtained from Crosier (1934). Parameter names correspond to the model code provided 

in the supplementary material. 
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Table 5.1 The code, description and values of model parameters. 

Parameter Description (unit) Default 
Parameter 

corrections 

Sporulation 

TminSpor Minimum sporulation temperature (°C) 6 7 

ToptSpor Optimum sporulation temperature (°C) 20 21 

TmaxSpor Maximum sporulation temperature (°C) 26 25 

RfactSpor The maximum sporulation rate (unitless)  1 unchanged 

ShapeSpor The shape of the sporulation curve(unitless) 2 4 

KSpor Maximum carrying capacity 97049.81 unchanged 

n0Spor Initial population size 6.05E-04 unchanged 

rSpor The growth rate 1.734924 unchanged 

spor_dur The minimum duration of sporulation conditions (h) 10 unchanged 

hr_before_spor Initiate sporulation counter before the first night (h) 5 unchanged 

hr_after_spor Terminate sporulation counter after the first night (h) 5 unchanged 

Spore mortality 

B0 Derived coefficient of the logistic function (unitless) 2.37 unchanged 

B1 Constant term of the logistic function (unitless) 0.45 unchanged 

Infection 

TminInf (Tmin) Minimum indirect infection temperature (°C) 6 unchanged 

ToptInf (Topt) Optimum indirect infection temperature (°C) 12 14 

TmaxInf Maximum indirect infection temperature (°C) 26 unchanged 

RfactInf  The maximum indirect infection rate (unitless) 1 unchanged 

ShapeInf The shape of the indirect infection curve(unitless) 15 unchanged 

TminInfDir Minimum direct infection temperature (°C) 6 unchanged 

ToptInfDir Optimum direct infection temperature (°C) 23 unchanged 

TmaxInfDir Maximum direct infection temperature (°C) 26 unchanged 

RfactInfDir The maximum direct infection rate (unitless) 0.4 unchanged 

ShapeInfDir The shape of the direct infection curve (unitless) 0.5 unchanged 

RhminInf Lower leaf wetness relative humidity threshold (%) 86 unchanged 

RhoptInf Optimum leaf wetness relative humidity threshold (%) 95 unchanged 

hr_after_inf 
Termination of infection counter after the second night 

(h) 
5 unchanged 
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Sporulation 

Sporulation period. Sporulation is inhibited during hours of high light intensity (Cohen 

et al., 1975; Xiang et al., 2014). Hence, it was considered that the sporulation conditions 

start 5 hours before sunset (hr_before_spor) and ends 5 hours after the sunrise 

(hr_after_spor). Under typical summer daylength conditions experienced at the latitude 

of Ireland, this approximately equates to the period from 15:00 to 11:00 hrs on the 

following day.  

Temperature effect on sporulation. Crosier (1934) reported that while no sporangia 

were formed outside the range from 3 to 26 °C, very few were formed below 9 °C 

(Mizubuti and Fry, 1998). Hence, it was considered that the lower developmental 

temperature (TminSpor) to be the midpoint at 6 °C. A left-skewed beta function was fitted 

for the estimation of the effect of temperature on sporulation (SPORt) (Figure 5.2c).  

𝑺𝑷𝑶𝑹𝒕𝒆𝒎𝒑(𝒕)

=

{
 
 

 
 

𝑹𝒇𝒂𝒄𝒕𝑺𝒑𝒐𝒓 [(
𝑻(𝒕)  −  𝑻𝒎𝒊𝒏

𝑻𝒐𝒑𝒕 −  𝑻𝒎𝒊𝒏
) ∗ (

𝑻𝒎𝒂𝒙 − 𝑻(𝒕)

𝑻𝒎𝒂𝒙 − 𝑻𝒐𝒑𝒕
)

𝑻𝒎𝒂𝒙−𝑻𝒐𝒑𝒕
𝑻𝒐𝒑𝒕−𝑻𝒎𝒊𝒏

]

𝑺𝒉𝒂𝒑𝒆𝑺𝒑𝒐𝒓

𝒊𝒇 𝑻𝒎𝒊𝒏 ≤ 𝑻(𝒕) ≤ 𝑻𝒎𝒂𝒙

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 
𝟓. 𝟐 

Relative humidity effect on sporulation. Harrison and Lowe (1989) reported that the 

formation of sporangia occurs under conditions of high saturation vapour pressure 

surrounding infected tissue. Hence, the functional relationship between relative humidity 

and sporulation is modelled using the data they reported on, employing a logistic equation 

(parameter descriptions in Table 5.1) that is solved analytically, as follows: 

𝑺𝑷𝑶𝑹𝒓𝒉(𝒕) =
𝑲𝑺𝒑𝒐𝒓 ∗  𝒏𝟎𝑺𝒑𝒐𝒓 ∗  𝒆𝒓𝑺𝒑𝒐𝒓 𝑹𝑯

𝑲𝑺𝒑𝒐 +  𝒏𝟎𝑺𝒑𝒐𝒓 ∗ (𝒆𝒓𝑺𝒑𝒐𝒓 𝑹𝑯 − 𝟏)
 𝟓. 𝟑 

Eqn 5.3. was fitted to the reported sporulation at a wind speed of 1.4 m/s, using the 

‘nlsLM’ function from the ‘minpack.lm’ package (Elzhov et al., 2016) (Figure 5.2d). 
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The estimated hourly sporulation was calculated as a product of temperature and relative 

humidity effects on sporulation: 

𝑺𝑷𝑶𝑹(𝒕)  =  𝑺𝑷𝑶𝑹𝒕𝒆𝒎𝒑(𝒕) ∗ 𝑺𝑷𝑶𝑹𝒓𝒉(𝒕)  𝟓. 𝟒 

Daily sporulation risk estimation. PLB lesions require extended humid periods for the 

production of sporangia (Crosier, 1934; Schrödter and Ullrich, 1967; Harrison, 1995; 

Hartill et al., 1990). While Bourke (1953) considered that the minimum duration of this 

period is 12 hours, Cucak et al. (2019) indicated that this period should be reduced to 10 

hours. Hence, it was considered that the minimum conditions for sporulation have been 

met if there was a continuous period of 10 hours (spor_dur) where the hourly sporulation 

conditions have been met (SPOR(t) >0). If the sporulation duration conditions are met, 

the daily sporulation risk is calculated as a sum of hourly sporulation; otherwise, the risk 

of sporulation is set to zero.   

Survival 

An estimate of the daily survival rate of the detached P. infestans sporangia was 

calculated as a function of the daily solar radiation (Figure 5.2b) (after Skelsey et al., 

2017), as follows: 

𝒅𝒂𝒚𝑺𝑼𝑹𝑽 =
𝟏

𝟏 + 𝒆𝒙𝒑−(𝑩−𝑩𝟎𝑿) 
 𝟓. 𝟔 

where daySURV is the probability of spore survival and B and B0 are logistic function 

parameters. 

𝒅𝒂𝒚𝑺𝑷𝑶𝑹 = {
∑𝐒𝐏𝐎𝐑(𝐭) =

𝒏

𝒕=𝟏

∑𝐒𝐏𝐎𝐑𝐭𝐞𝐦𝐩(𝐭) ∗ 𝐒𝐏𝐎𝐑𝐫𝐡(𝐭)

𝒏

𝒕=𝟏

𝒊𝒇 𝒔𝒑𝒐𝒓_𝒅𝒖𝒓 =  𝑻𝑹𝑼𝑬

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 𝟓. 𝟓 
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Infection 

Temperature effect on infection. There is no general consensus regarding the exact 

cardinal temperatures of the two infection pathways (Harrison, 1992a), as outlined 

previously, due to differences in experimental conditions between laboratories, or 

reference plant and pathogen strains used for the experimentation (Madden et al., 1988a). 

However, it is widely accepted that the indirect germination pathway favours cooler 

temperatures (10 – 15 °C) and the direct pathway tends towards somewhat higher 

temperatures (18 – 24 °C) although with a lower rate of success which was accounted for 

with a lower rate for the direct infection (RfactInfDir) (Crosier, 1934; Fry et al., 2013). 

Consequently, the temperature effect on infection is estimated by using two beta 

functions, for zoospore infection (zooINFtemp): 

𝒛𝒐𝒐𝑰𝑵𝑭𝒕𝒆𝒎𝒑(𝒕)

=

{
 
 

 
 

𝑹𝒇𝒂𝒄𝒕𝑰𝒏𝒇𝒁𝒐𝒐 [(
𝑻(𝒕)  −  𝑻𝒎𝒊𝒏𝑰𝒏𝒇𝒁𝒐𝒐

𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝒁𝒐𝒐 −  𝑻𝒎𝒊𝒏𝑰𝒏𝒇𝒁𝒐𝒐
) ∗ (

𝑻𝒎𝒂𝒙𝑰𝒏𝒇𝒁𝒐𝒐 − 𝑻(𝒕)

𝑻𝒎𝒂𝒙𝑰𝒏𝒇𝒁𝒐𝒐 − 𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝒁𝒐𝒐
)

𝑻𝒎𝒂𝒙𝑰𝒏𝒇𝒁𝒐𝒐−𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝒁𝒐𝒐
𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝒁𝒐𝒐−𝑻𝒎𝒊𝒏𝑰𝒏𝒇𝒁𝒐𝒐

]

𝑺𝒉𝒂𝒑𝒆𝑰𝒏𝒇𝒁𝒐𝒐

𝒊𝒇 𝑻𝒎𝒊𝒏 ≤ 𝑻(𝒕) ≤ 𝑻𝒊𝒏𝒕

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝟓. 𝟕  

and direct infection (dirINFtemp): 

𝒅𝒊𝒓𝑰𝑵𝑭𝒕𝒆𝒎𝒑(𝒕)

=

{
 
 

 
 

𝑹𝒇𝒂𝒄𝒕𝑰𝒏𝒇𝑫𝒊𝒓 [(
𝑻(𝒕) −  𝑻𝒎𝒊𝒏𝑰𝒏𝒇𝑫𝒊𝒓

𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝑫𝒊𝒓 −  𝑻𝒎𝒊𝒏𝑰𝒏𝒇𝑫𝒊𝒓
) ∗ (

𝑻𝒎𝒂𝒙𝑰𝒏𝒇𝑫𝒊𝒓 − 𝑻(𝒕)

𝑻𝒎𝒂𝒙𝑰𝒏𝒇𝑫𝒊𝒓 − 𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝑫𝒊𝒓
)

𝑻𝒎𝒂𝒙𝑰𝒏𝒇𝑫𝒊𝒓−𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝑫𝒊𝒓
𝑻𝒐𝒑𝒕𝑰𝒏𝒇𝑫𝒊𝒓−𝑻𝒎𝒊𝒏𝑰𝒏𝒇𝑫𝒊𝒓

]

𝑺𝒉𝒂𝒑𝒆𝑰𝒏𝒇𝑫𝒊𝒓

𝒊𝒇 𝑻𝒎𝒊𝒏 ≤ 𝑻(𝒕) ≤ 𝑻𝒊𝒏𝒕

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 
𝟓. 𝟖 

Parameters were obtained from the literature (e.g. Crosier, 1934; Fry et al., 2012; 

Mizubuti and Fry, 1998) (Table 5.1). The intersection point between both approaches was 

calculated using the function ‘curve_intersect’ from the package reconPlots (not on 

CRAN). For temperature values below and above the intersection point, the infection risk 

was calculated using functions parameterized for the indirect (zooINFt) and direct 

infection (dirINFt), respectively (Figure 5.2e). 
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𝑰𝑵𝑭𝒕𝒆𝒎𝒑(𝒕) = {
𝒛𝒐𝒐𝑰𝑵𝑭𝒕𝒆𝒎𝒑(𝒕) 𝒊𝒇 𝑻𝒎𝒊𝒏 ≤ 𝑻(𝒕) ≤  𝑻𝒊𝒏𝒕

𝒅𝒊𝒓𝑰𝑵𝑭𝒕𝒆𝒎𝒑(𝒕) 𝒊𝒇 𝑻𝒊𝒏𝒕 <  𝑻(𝒕) ≤ 𝑻𝒎𝒂𝒙
𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

  𝟓. 𝟗 

Effect of leaf wetness duration on infection. The risk of the plant surface being wet is 

scaled linearly from 0 to 1 for the values in the range from 86% to 95% RH, respectively, 

and the leaf is considered wet for RH values higher than 95% (Figure 5.2f), as follows: 

𝑰𝑵𝑭𝒍𝒘(𝒕) = {

𝟏 𝒊𝒇 𝑹𝑯(𝒕) ≥ 𝑹𝒉𝒐𝒑𝒕𝑰𝒏𝒇

−𝟗. 𝟓𝟓𝟔 + 𝑹𝑯(𝒕) ∗ 𝟎. 𝟏𝟏𝟎 𝒊𝒇 𝑹𝒉𝒎𝒊𝒏𝑰𝒏𝒇 ≤  𝑹𝑯(𝒕) < 𝑹𝒉𝒐𝒑𝒕𝑰𝒏𝒇

𝟎 𝒊𝒇 𝑹𝑯(𝒕) < 𝑹𝒉𝒎𝒊𝒏𝑰𝒏𝒇

 𝟓. 𝟏𝟎 

Daily infection risk estimation. The risk of infection is calculated as a function of 

temperature and leaf wetness risk factors. The hourly risk of infection (INF(t)) estimation 

starts after the minimum sporulation duration conditions have been met. The risk of 

infection is then calculated as a product of the temperature (INFtemp(t)) and leaf wetness 

(INFlw(t)) infection risk functions. The accumulation breaks if the infection conditions 

were not met for more than 3 hours (infstop), which leads to spore die-off. The risk of 

infection is calculated as follows 

𝒅𝒂𝒚𝑰𝑵𝑭 =

{
 
 

 
 
∑𝐈𝐍𝐅(𝐭) =  ∑𝐈𝐍𝐅𝐭𝐞𝐦𝐩(𝐭) ∗ 𝐈𝐍𝐅𝐥𝐰(𝐭)

𝒏

𝒕=𝟏

𝒏

𝒕=𝟏

, 𝒖𝒏𝒕𝒊𝒍  ∑𝐈𝐍𝐅(𝐭)

𝒕+𝟐

𝒕

= 𝟎 𝒊𝒇 𝒔𝒑𝒐𝒓_𝒅𝒖𝒓 =  𝑻𝑹𝑼𝑬

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 𝟓. 𝟏𝟏 

5.3.3. Calculation of the daily risk 

Different stages of the pathogen life cycle have been employed to estimate the risk of 

disease outbreak (Madden et al., 1988a; Magarey et al., 2005b). The model, as currently 

described, outputs a daily estimate of risk. To evaluate if the inclusion of all three 

modelled life stages represents an improvement over the simpler, two-stage, threshold-

based IR model, evaluated three model versions or variants were evaluated (Figure 5.3) 

where the daily risk is estimated as the product of the following model subcomponents: 
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1. Sporulation, survival and infection risk (hereafter referred to as the R model 

variant), 

2. Sporulation and infection risk (the Rsi model variant); and 

3. Survival and infection risk (the Rmi variant).  

For all model variants, the infection estimated risk is calculated from the morning of day 

1 until the morning of day 2 and survival during day 1.  

 

Figure 5.3 Simplified scheme of the daily risk calculation for different versions of the model. 

5.3.4. Model Evaluation 

The model was evaluated using disease outbreak and weather data obtained from 

Northern Ireland and the Republic of Ireland (ROI).   

Data 

Weather data.  

Hourly weather data for the historical period 2002 -2018, was acquired from Met Éireann 

for the Republic of Ireland and the UK Met Office (UKMO) for Northern Ireland (Met 

Office, 2012). The weather variables obtained include hourly air temperature (°C) and 

relative humidity (%) at 2m and total hourly precipitation (mm). Quality control and data 

imputation for temperature, relative humidity and rain were implemented according to 

methods previously described (Cucak et al., 2019). Solar radiation measurements were 

not available for Northern Ireland; estimated daily solar radiation (MJ/m2/day) was 
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obtained from the NASA POWER global meteorology and surface solar energy 

climatology data (Stackhouse Jr et al., 2018) using the function ‘get_power’ from the 

‘nasapower’ package (Sparks, 2018). The accuracy of the estimated solar radiation data 

was evaluated using measured data from 11 synoptic stations in the Republic of Ireland, 

using the concordance correlation coefficient (CCC) (Lin, 1989). CCC of 0.947 (95% CI: 

0.946 - 0.948) was considered satisfactory to use the data in the analysis (Figure 5.4).  

 

Figure 5.4 Concordance correlation coefficient of measured and estimated daily solar radiation 

for 11 synoptic stations in the Republic of Ireland. The blue line represents the perfect 

agreement between the observed and estimated data and the red line is the concordance line. 

Observed Weather data subset for testing model specificity.  

The initial data set consisted of 54 weather stations distributed across the island of Ireland. 

In an effort to obtain a geographically representative sample of stations, a subset of 34 

stations was selected for further analysis. All agronomic stations were kept in the data 

set; the final selection also included a number of coastal stations, including airport 

stations. From the subset of 34 stations (Figure 5.5), only station years with less than 1% 

of missing values for the period from 1 May until 30 September were kept, resulting in 

371 station/year environments (Figure 8.3). 
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Figure 5.5 Map of the weather stations included in the model evaluation. The number of years 

of historical weather observations per weather station is indicated in brackets.  The stations 

marked with the blue triangle are locations of both observed and forecasted weather data. 

Numerical Weather forecast data.  

Numerical, gridded weather forecast data was obtained for 5 weather stations, 

representative of the most important potato growing regions in the Republic of Ireland 

(Table 5.2), for the period 2017 to 2019. For each year, the forecast data was subsetted 

for the part of the potato growing season when the PLB risk is estimated, starting from 1 

May and ending on 30 September. The forecast data was extracted from representative 

model grid from the high-resolution (HRES) atmospheric model (grid resolution approx. 

9 km), operationally run by the European Centre for Medium-Range Weather Forecasts 
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(ECMWF). Weather forecast datasets were delivered as three files with intervals from 0 

to 90, 120 and 240 hours lead time with the corresponding 1, 3 and 6-hour temporal 

resolutions, respectively. Files were merged for the entire 240-hour period prioritising 

forecasts with lower temporal resolutions. Temperature and relative humidity were 

temporally scaled to an hourly resolution, consistent with the observed weather data, by 

spline interpolation using the Forsythe, Malcolm and Moler method (Forsythe et al., 

1977). Solar radiation totals were not interpolated since the model only requires daily 

totals. NWP derived solar radiation values were converted from W/m2 to (MJ/m2) prior 

to ingesting into the model. Files containing 240 hours of interpolated and simulated 

weather forecast data were then concatenated with the observed weather data, starting 

from midnight of day one.  

The final data set consisted of 2010 ten-day daily sets after removing 95 (4.51%) data 

sets which contained missing values after the interpolation procedure was applied. To 

enable model runs and the calculation of risk estimates for each of the ten days, a day of 

observed data was attached before day one and after day ten for each of the station files.  

Risk estimation for all models was calculated based on the observed and forecasted hourly 

weather data.  

Table 5.2 Locations of stations included in the analysis and coordinates of the  high-resolution 

forecast (HRES) atmospheric model grid points. 

Station name Latitude  Longitude 
Grid point 

lat.  

Grid point 

long. 

Dunsany 53.51 -6.656 53.533 -6.68 

Gurteen 53.052 -8.005 53.04 -8.016 

Johnstown 52.292 -6.491 52.337 -6.469 

Moorepark 52.158 -8.258 52.127 -8.227 

Oakpark 52.857 -6.909 52.83 -6.89 
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Disease outbreak data.  

The disease outbreak data consisted of the date and coordinates of 352 late blight 

outbreaks from across NI over an 11- year period (2005-2014) and 10 outbreaks from 

Oak Park, ROI, for a similar period (2007-2016). The NI data were collected every year 

as part of the Agriculture and Horticulture Development Board (AHDB) Potatoes ‘Fight 

Against Blight’ campaign (https://potatoes.ahdb.org.uk/). The disease outbreak data from 

Oak Park was acquired from the Teagasc breeding program field trial records.  

The coordinates of blight outbreak locations were obtained using the ‘geocoding’ 

function from the ‘ggmap’ package (Kahle and Wickham, 2013) and confirmed manually. 

The ‘haversine’ formula was used to calculate the great-circle distance between outbreaks 

and surrounding weather stations. The closest weather station, with less than 1% of 

missing data, was then found iteratively and the weather data was assigned to each 

outbreak. The average distance between outbreaks and the weather stations of 14.73 km 

(IQR = 7.3 - 20.7 km) was considered acceptable for the intended purpose and no outliers 

and possible false values were detected regarding the date of the reported disease 

outbreaks (Figure 5.6).  

 

 

https://potatoes.ahdb.org.uk/
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Figure 5.6 Bar charts showing the number of outbreak reports per: a) the distances up to 40 km 

from weather stations; and b) per each date from 1st July to 1st October..   

Evaluation of diagnostic performance  

The concept of applying information theory to diagnostic decision making based on the 

assessment of probabilities in plant disease management was introduced in the 1990s 

(Hughes et al., 1999) and remains a commonly used method for the evaluation of the 

diagnostic performance of crop risk prediction models (e.g. Gent et al., 2010; McRoberts 
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et al., 2011; Skelsey et al., 2017; Yuen et al., 1996). It is based on the premise that a 

known value of a prior probability of a disease can be utilised with a prediction that allows 

the prior probability to be updated to a posterior probability of disease. Most applications 

of information theory to epidemiology are concerned with the designation of comparison 

and reference probabilities, followed by calculation of information contents and their 

expectations in order to characterise predictions and the diagnostic tests used to make 

them (Hughes, 2017). The application of these principles requires the presence of controls 

(no disease) and cases (disease present). The application of the methodology is limited in 

the case of potato late blight due to a lack of ability to assess the ‘negative events’, the 

controls, and no defined way to measure the false positive rate. Here, an alternative 

measure of the diagnostic performance based on the estimation of sensitivity, the true 

positive rate, and adapted estimation of the model specificity was proposed. This 

methodology is based on the approach presented in Cucak et al. (2019) but adapted for 

the current data set.  

To evaluate the diagnostic performance of the models, risk estimates were categorised. 

Contingency tables were then created for a range of risk cut-off points, representing a 

fungicide application decision threshold, as follows: the range of values from minimum 

to maximum observed daily risk estimation for each model in all years of the study were 

cut into 4% quantiles, resulting in 26 cut-off points. This comparison was not possible for 

the IR and MIR models due to its semi mechanistic nature, where the risk is calculated 

on an hourly basis and expressed as an effective blight hour (EBH). Hence, the diagnostic 

performance for MIR and IR was calculated for the values from 1-26 EBH.  

Diagnostic performance curves were generated using the model performance indicators 

for each cut-off point, calculated as a ratio of:  
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• True positive rate (TPR): Proportion of the outbreaks successfully predicted prior to 

the disease outbreak. The prediction was considered successful if the threshold was 

reached during the time window starting 14 days and ending 4 days prior to the 

disease being observed in the field. A risk warning of disease outbreak 10 days ahead 

has been reported as an optimum warning time, and a period of four days was 

considered to be a minimum incubation period.  

• Treatment reduction rate (TRR): Calculated as a proportion of the maximum number 

of treatments during potato vegetation. While potatoes are grown from March to 

October, the typical plant protection season lasts from May until September, 

inclusively. The length of each year/season environment data set was 138 days and 

19.7 (138/7) fungicide treatments would normally be applied under the standard 

seven-day grower’s practice. The number of fungicide applications recommended by 

each model was calculated as follows: Fungicide was applied when the risk threshold 

was reached; it was considered that each application would keep the plants protected 

for a minimum period of seven days when no application was recommended. For 

example, if a fungicide treatment was applied on day one, no treatments would be 

applied in the following seven days, but if the decision threshold was reached then a 

new fungicide application would follow on the seventh day. 

Considering the high risk associated with a possible disease outbreak, the high TPR 

decision thresholds for the PLB management was considered, maximising the model TPR 

with an associated ‘cost’ in the treatment reduction rate. Partial area under the curve 

(pAUC) in the high sensitivity region (TPR > 0.8) was used to estimate the diagnostic 

performance of each model variation. Additionally, the maximum achieved TRP (%) was 

calculated. 
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The pAUC was calculated as follows: the maximum TPR value was extrapolated to the 

highest TRR value (TRR= 1) as a horizontal line and the cut-off value for TPR = 0.8 was 

linearly interpolated between the two closest TPR values. The pAUC was then calculated 

using the trapezoidal rule (Rosner, 2015).  

Sensitivity analysis and parameter correction 

A local sensitivity analysis to changes in parameter values was implemented by varying 

each model parameter value from -3 to +3 units from their default values, within a 

sensible parameter space (Table 8.8). The exception was the r factor for sporulation and 

direct infection, where six units below the default maximum value of 1 were evaluated. 

The sensitivity of the model to parameter changes was compared using diagnostic 

performance in the high sensitivity region the pAUC and maxTPR. 

Based on the evaluation of model sensitivity, model parameters indicating significant 

overall improvement of pAUC were altered, guided by the knowledge of biology and 

assumptions made in the model development, and the updated-parameterized models 

were re-evaluated.  

5.3.5. Uncertainty of the risk estimation based on the forecasted weather data  

Initially, verification statistics were used to assess the accuracy and identify biases for 

each weather variable used to run the models. The statistics included root mean square 

error (RMSE) and the concordance correlation coefficient (CCC) (Lin, 1989). The 

statistics were calculated for 10-day and 240-hour lead time for relative humidity and 

temperature and 10-day lead time for solar radiation. 

The agreement between the observed and predicted outputs of the risk prediction models 

over the ten-day lead time was assessed with CCC. To remove bias and diminish the 

effects of high-risk estimations, the value-to-rank transformation was implemented. Risk 

outputs are converted into risk groups based on the evaluation of the model performance, 
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as follows: 1: low (TPR = 1-0.95), 2: medium (TPR = 0.95-0.9), 3: high (TPR = 0.9 - 

0.85), 4: very high (TPR = 0.85-0.8) and 5: extreme (TPR < 0.8). The corresponding risk 

ranks were then grouped per day and compared using the Spearman correlation 

coefficient.  

5.4. Results 

5.4.1. Diagnostic performance  

The diagnostic performance of models evaluated in this study is presented in Figure 5.7. 

The proposed models covered the entire TRR space, allowing flexibility in the selection 

of the decision threshold. Overall, the proposed models Rsi, R, and Rmi performed 

similarly in terms of pAUC (0.049, 0.046 and 0.044, respectively) as the MIR (0.048). 

The default IR model failed to estimate any risk for 12.15% of disease outbreaks (no risk 

accumulation prior to 12.15 % of outbreaks), which led to low performance in the high 

sensitivity AUC region (pAUC = 0.027), although it did provide the highest TRR in that 

region. With the exception of the IR model, all models provided the possibility for a 

reduction in treatments compared to standard 7-day growers’ practice, ranging from an 

average of an 8-9-day schedule for TRR for 0.95 - 1 to 10-12-day schedule in the TRR 

0.8 - 0.85 range.    
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Figure 5.7 The diagnostic performance of models included in the analysis. 

5.4.2. Sensitivity analysis of proposed models 

The results of the sensitivity analysis expressed as an effect of parameter changes on 

pAUC are presented in Figure 5.7. The most consistent improvement of the model 

performance was observed with an increase in the optimum temperature for the direct 

infection (ToptInf). Increasing the lower leaf wetness indicator threshold (RhminInf) led 

to a decrease in pAUC, which had the highest effect on R, the model which is based only 

on infection and mortality. Reducing the impact of suboptimal temperatures (ShapeInf) 

on the indirect infection has a positive impact on R and Rsi pAUC and negative on Rmi 

pAUC. 

A major impact on the model performance was observed with changes in parameter 

values for the sporulation subcomponent, indicating a need to narrow the area under the 

temperature response function. The observed improvements were: a decrease of the 

impact of sub-optimal temperatures by increasing ShapeSpor (model R does not have the 
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sporulation subcomponent); increasing the optimum (ToptSpor) and minimum 

(TminSpor) values, and decreasing the maximum sporulation temperature (TmaxSpor) 

parameters.  

While no consistent response with parameter changes in the mortality subcomponent was 

observed, one of the parameters determining the model temporal boundaries had an 

impact; increasing the minimum sporulation duration (spor_dur) led to a decrease in the 

maxTPR (Figure 8.4) and pAUC. Changes to some of the models’ parameters resulted in 

an inconsistent response in terms of performance, which could be explained as the model 

is based only on a limited set of the life stages.   
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Figure 5.8 Local sensitivity analysis of the proposed model parameter variations +/-3 units 

from the default values (from 0 to -6 levels for RfactInf and RfactSpor). Smoothed lines were 

fitted to the pAUC response using the LOESS method for the three proposed models. 

5.4.3. The diagnostic performance of models after the parameter correction 

After reviewing the results of the sensitivity analysis, a model with corrected parameters 

was evaluated and the diagnostic is shown in Figure 5.8. The parameter correction led to 

an increase in the overall performance of all three proposed models. The two best 

performing models were R and Rsi, achieving pAUC values of 0.06 and 0.055, 

respectively. While R and Rsi achieved similar performance in the 0.9 to 1 TPR region, 

R offers higher TRR equalling to 11 to 12 day- programme in 0.8 to 0.9 TPR region. 
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However, Rmi achieved pAUC of 0.046, representing a low overall increase of 0.002 

compared to the default model run.  

 

Figure 5.9 The diagnostic performance of models included in the analysis after the parameter 

corrections. 

5.4.4. Uncertainty of the risk estimation based on the forecasted weather data   

The mean daily concordance correlation coefficients of the three weather forecast 

variables used to run the models (Figure 5.10 a) indicated that the drop in agreement starts 

after the lead day 3 and is most prominent on day 5 of the 10-day forecast. The agreement 

between the forecasted and the observed temperature was the best of the three variables, 

overall. A low RMSE peak for the predicted hourly temperature is observed in the late 

evening hours in the first 3 lead-time days, which becomes more exponentiated after day 

4 accompanied by a similar anomaly during the morning hours (Figure 8.5 a). The daily 

RMS linearly progressed over the lead time from 1.38 on the lead day 1, to 3.78 on day 

10.  Although the forecasted solar radiation shows somewhat better agreement with the 
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observed values, the predictions are of similar quality between the 2 and 5-day lead time 

(Figure 8.6).  The RMSE  of the hourly relative humidity predictions rises approximately 

twice in size during the morning hours, goes through a  certain level of correction during 

the day and then returns to a similar level as in the morning hours in the evening, after 

which it drops notably before midnight, where it stays until the morning. This pattern of 

the anomaly repeats and increases over time, with the morning anomaly being even more 

exponentiated after the 5-day lead.   

 

Figure 5.10 Daily mean concordance correlation coefficients between observed and predicted 

weather variables used for running the potato late blight risk prediction models employed in 

this evaluation; b) Spearman correlation coefficient between the ranked values of the observed 

and predicted outputs of the risk prediction models for 10-day lead time. 

The CCC of predicted versus the observed values for each lead time day is presented in 

the Figure 8.6. The MIR and IR consistently achieved a better agreement across the entire 
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lead time period than the proposed models. All of the model outputs based on the 

forecasted weather underpredicted the risk. This trend was more evident for the proposed 

models and increased with forecast lead time. The best performance between the proposed 

models was achieved by Rsi, the model based on sporulation and infection 

subcomponents which require only forecasted values of relative humidity and 

temperature.  

The gap in the predictive ability of models was reduced after the value-to-rank correction, 

with the proposed models showing an increase and “the IR based models” (IR and MIR) 

a decrease of predictive ability (Figure 5.10 b). The most notable difference is the drop 

in the accuracy of ranked predictions is based on the IR model risk estimation, due to the 

presence of a low number of risk cutoff points (3 EBH) in the high sensitivity range (see 

Figure 5.7). Unsurprisingly, the accuracy pattern follows a similar trend as the CCC of 

the forecasted weather variables (Figure 5.10 a), although predictions are less accurate, 

most notably in the first 3-lead days. Additionally, the lack of agreement is most notable 

during July across models (Figure 5.11), with the skill of predictions by the lead day 6 

not different from a random predictor (0 < r2 < 0.15). This coincides with the period when 

most of the recorded blight outbreaks in the data (see Figure 5.6). 
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Figure 5.11 Spearman correlation coefficient between the ranked values of the observed and 

predicted outputs of the risk prediction models for 10-day lead time for each month of the 

potato growing season. 

5.5. Discussion 

The PLB risk prediction models proposed here are developed using an adapted version of 

an established simple generic model and a semi-empirical model used in Ireland (See 

Bourke, 1953). We presented a complete development cycle of the new model, evaluation 

of the diagnostic performance in comparison with the simpler model; estimation of 

decision thresholds within the high sensitivity region of the diagnostic performance 

curve; and estimated the uncertainty introduced by the risk estimation using the forecasted 

weather data. Additionally, this is the first reproducible open-source example of 

development and evaluation of a crop disease risk prediction model. Such resources can 

be used for further development and ongoing re-evaluation of the proposed model of the 

PLB decision support system in the Republic of Ireland and elsewhere.  

The climatic conditions and reliance on traditional varieties with depleted PLB resistance 

on the island of Ireland do not allow for a large reduction of fungicide usage, based 

exclusively on the estimated environmental conditions for disease development. Our 

results indicate that the standard 7-day schedule can be reliably extended to an average 
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10- or 11- day schedule, based on the MIR and R models, respectively. The models 

containing an estimation of sporulation as one of the submodels (R and Rsi), achieved a 

better diagnostic performance than the model limited on the estimation of spore survival 

and infection risk (Rmi) (as seen in Figure 5.9). Essentially, the R and Rsi rely on two-

day risk estimation, compared to the Rmi, in which the sporulation conditions on the first 

night are not considered. A two-day approach has been employed explicitly in northwest 

Europe since the inception of the PLB forecasting, with Smith rules (not Hutton Criteria) 

in the UK (Dancey et al., 2017; Smith, 1956) and implicitly in the IR model (Bourke, 

1953). Another reason for that could be that the estimated solar radiation was used as 

model input, although the estimated data displayed a good agreement with the measured 

data in the Republic of Ireland. This is further substantiated by the lack of consistency 

after varying the parameters as indicated in the sensitivity analysis. However, the Rmi 

model was kept for the purpose of further evaluation and application in different 

ecosystems, where a more appropriate data set may be available.  

Our results show that the currently employed version of the IR model had the lowest 

diagnostic performance with a very high number of false-negative predictions, 

confirming findings from previous reports (e.g. Cucak et al., 2019; Dowley and Burke, 

2004; Hansen et al., 2017). The modified version of the Irish rules (Cucak et al., 2019) 

achieved performance comparable to that of the proposed models. Nonetheless, models 

proposed here offer a number of benefits over the simpler, empirical, threshold-based 

models with regards to flexibility, operational deployment and ability to integrate new 

knowledge of the pathosystem through the biologically meaningful parameters. The 

proposed models could be calibrated to accommodate frequent phenotypic fitness 

changes due to an increasing diversity of the pathogen population. In order to provide an 

adequate crop disease risk estimation, prediction models need to be based on an optimum 

compromise between the knowledge of pathogen biology and the ability of the weather 
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recording and forecasting network. Hence, the coding example including the model 

development and evaluation proposed models could be employed to follow the 

advancements in meteorology as well as accumulation of knowledge of the increasing 

pathogen phenotypic differentiation within the pathogen population.  

Applying crop disease risk prediction models on a synoptic scale requires compromises 

and simplifications of the life cycle representation. However, technological development 

and accumulating biological knowledge are not allowing us to settle down with the 

outdated (over)simplistic approaches. For example, our research indicates that while the 

initial epidemics are initiated by less aggressive older clonal population, the frequency of 

fitter strains able to overcome higher levels of the host resistance is increasing as the 

potato season progresses (Section 4.5.5). The rate of this shift in the P. infestans 

population is dependent on the environmental conditions. Although the exact mechanism 

is not modelled, integrating parameterisations for less- and more aggressive lineages 

would lead to improved risk estimation, and further fungicide usage reductions. Although 

the importance of preserving the PLB varietal resistance durability has received 

increasing emphasis in theoretical (e.g. Skelsey et al., 2007) as well as applied research 

(e. g. Kessel et al., 2018), the models proposed in this study represent the first decision 

support tool that could be used for differentiating risk of more virulent pathogen lineages.   

Our modelling framework is based on well-known facts regarding the pathosystem, 

including the idea that spores are mostly produced overnight, their viability is reduced by 

the solar radiation, and infections could start from the morning and the longer the 

conditions last during the day and the following night, the higher the risk. However, this 

is only a simplification of a complex pathosystem, “adjusted” to minimize the probability 

of the false-negative predictions of the high-risk disease in the high-risk ecosystem and 

on a synoptic level. Such simplifications inevitably lead to a loss of the model specificity 
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due to an increase in the number of true positive predictions. For example, spore 

germination and infection are impossible without the leaf wetness, which, at the same 

time, prevents the spore release from the sporulating lesions (Rotem et al., 1978). This 

was not included in the model. Hence, major biological improvements of the model 

algorithm resulted in only limited improvements of the model diagnostic performance in 

the operationally employed high sensitivity region. However, the parameter correction 

guided by a simple sensitivity analysis led to the improvement of the diagnostic 

performance. 

The increasing complexity of the risk prediction algorithms has been reported as a 

prerequisite for a successful disease risk prediction (e.g. Rossi et al., 2010b). In case of a 

crop disease requiring high fungicide treatment frequency, such as PLB, the treatment 

decision depends largely on the forecasted weather data. Our results indicate that this 

advantage could be questioned in case of zero tolerance crop disease, such as PLB. The 

risk estimation is based on the latter end of the disease cycle, 24 - 48 hours prior to 

possible infection event, leading to the necessity for a management decision, implying a 

level of reliance on the forecasted weather. Increasing the number and complexity of 

driving variables in defining the transition of life stages and quantifying the risk, needs 

to be balanced with the uncertainty of the input variables. Hence, the underlying 

uncertainty introduced with the application of the model on the synoptic level is further 

amended with the uncertainty of the weather forecast. The results presented here indicate 

that even simple modifications of the model, such as the one proposed here, results with 

a ‘complexity penalty’ within the entire range of risk estimates. However, the agreement 

between the predicted and observed risk estimation between models is not notably 

different within the operationally employed highly sensitive range, except for the IR 

model. The underperformance of the IR model is due to poor performance within the high 
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sensitivity region which caused a rank deficiency when the agreement in the high 

sensitivity region was compared.  

However, environmental risk estimation should be employed only as a decision support 

tool, rather than an executive one. A number of additional tools should be in place to 

further improve the tactical decision making in PLB management, such as reporting the 

disease outbreaks; implementation of MLG distribution map and spore sampling.  

Several underlying problems have led to the poor performance of the DSSs when 

compared to ‘safe sleep’ solutions offered by the prophylactic use of pesticides in disease 

management, especially in the case of a zero-tolerance disease, such as PLB. Issues of 

complexity, user accessibility, accuracy and robustness have been common problems 

leading to poor utilisation of promising ideas and concepts standing behind robust 

epidemiological research. The interdisciplinary nature of the path needed for delivery of 

such complex mechanism has often proven to be a stepping stone for the delivery of 

robust decision support in crop protection; often needing constant inputs and 

communication in development, delivery and evaluation of such systems between 

agronomist, agrometeorologist, software engineer, modeller and ultimately the final user 

(Magarey and Isard, 2017). The speed of development of these systems would have been 

substantially faster had there been real cooperation between countries or groups of 

researchers. In order to withstand funding reductions, it is necessary for the development 

of new DSSs that collaboration between researchers and research groups internationally 

increases significantly in the near future (Bouma, 2007). The approach presented here 

offers one pragmatic way to improve communication and collaboration channels leading 

to the further development of the discipline. In the era of re-emerging and new crop 

diseases, threatening global crop security, ever-decreasing number of new plant 
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pathologists need to use all the tools available to achieve sustainable disease management 

(Saunders et al., 2019).  

Some of the most important issues in the development of useful crop disease forecasting 

models have been tackled here: Most of the models go through a biological evaluation, 

lacking the economic evaluation and interpretation of the decision thresholds (Magarey 

and Sutton, 2007); fail to account for and quantify the uncertainty of the risk estimation 

introduced by the weather forecast  (Gleason et al., 2008) and lack of reproducibility and 

ease of access for further development of the model and the sub-discipline, in general 

(Lamichhane et al., 2016). Reproducibility of the model development and evaluation 

platform allows it to be employed worldwide. However, we call for caution regarding the 

assumptions employed in the model development and operational application 

characteristic to the Irish potato late blight pathosystem and meteorological network 

ability.  
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6. General discussion and conclusions 

The aim of the current thesis was to evaluate the possibilities for the integration of 

alternative, environmentally friendly and economically viable options to control potato 

late blight based on the environmental risk estimation under Irish conditions. In seeking 

to achieve this aim, several steps were pursued, following principles of reproducible 

science and employing an interdisciplinary approach, that combined knowledge of plant 

pathology, plant disease epidemiology, agrometeorology and potato production systems. 

A general review of modelling principles, the diverse history and current state of potato 

late blight forecasting in Ireland and worldwide is provided in Chapter 2. The main focus 

of Chapters 3 and 4 was on the evaluation and re-calibration of the Irish Rules model, 

based on historical disease observations and extensive field evaluation, respectively. In 

Chapter 5, building on the previous evaluation of the IR model, a new model was 

proposed in order to facilitate ongoing and future development of PLB risk prediction, 

aiming to overcome a number of limitations associated with models currently employed, 

both operationally and in a research context. Additionally,, both models were assessed 

regarding the uncertainty introduced with forecasted weather used as in input for the 

disease risk prediction. Finally, the general discussion and conclusions regarding the 

work done in this thesis is presented in this chapter, including recommendations for 

modification of the current PLB forecasting system in the Republic of Ireland and 

possible future implications. Suggestions for future research directions are also outlined. 

Finally, an outlook to the disease management practice implications of this thesis is 

presented.  

6.1. Discussion 

While aspects presented in the introductory chapters and manuscripts I-III are examined 

separately, the findings of each chapter are drawn together and discussed here, including 
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linkages between them. Each of the manuscripts offers an innovative, transferable and 

reproducible methodology and presentation of results, such as: the assessment of 

diagnostic performance of the high risk crop disease model; the field evaluation 

incorporating advanced plant pathology research tools, and finally the first complete 

report covering all stages of a responsible and holistic crop disease risk forecaster 

development, respectively. Hence, it is argued that the research undertaken and reported 

in this thesis represents a significant and new contribution to knowledge beyond the 

targeted ecosystem, presented as a coherent body of work. 

There is no single simple solution to the global late blight management problem (outlined 

in Chapter 1). Recent migrations of P. infestans population have led to the situation where 

both mating types (A1 and A2) are present worldwide and opportunities exist for sexual 

reproduction and recombination. This has led to an increase in diversity, resulting in 

occurrence of new strains and the establishment of new populations exhibiting higher 

levels of aggressiveness and virulence and fungicide resistance. Although physically 

isolated, these changes in P. infestans population have not bypassed the Republic of 

Ireland. Hence, potato production today is heavily reliant on managing PLB based on the 

prophylactic and protective use of fungicides. Although fungicides are an effective 

disease control tool, their efficacy is compromised by adverse environmental effects and 

by the emergence of insensitive or resistant strains. Such an approach is not only 

expensive, but inconsistent with current efforts to reduce the negative impacts of the 

global food production system. Integrated management of potato late blight is a suite of 

tools designed to improve the disease management in an environmentally friendly 

manner. While host resistance is seen as the most cost-effective and eco-friendly form of 

management, new varieties with increased levels of PLB resistance coming out of 

breeding programs have not yet found their way to the market. Potato production in the 

Republic of Ireland, and globally, is reliant on well-known traditional varieties with low 
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levels of PLB resistance. There is hope that the application of genetic engineering 

technologies will lead to the improvement of current varieties. However, these efforts are 

still within the research domain due to perceived human health concerns.  

Hence, sensible, short- and long- term approaches to effectively managing the potato late 

blight problem requires the global research community to develop and improve integrated 

potato late blight management strategies. One of the most important IPM tools for the 

reduction of the environmental impact of potato production, besides sanitation measures, 

host resistance and fungicide protection is PLB risk forecasting (Schepers, 2009; Cooke, 

2011). A wider adoption of PLB risk forecasting could have several benefits both for 

growers and consumers, such as optimised disease control, as well as providing a 

justification for fungicide use and lead to improvements of the overall economics of 

production. Additionally, combined with other IPM measures, such as the use of resistant 

varieties and improved sanitation measures, risk forecasting would greatly improve the 

sustainability of potato production as recommended in the European Community 

Directive 128/2009 on the Sustainable Use of Pesticides (European Commission, 2009). 

However, crop disease DSSs are often poorly constructed, misunderstood and misused; 

due to a lack of a comprehensive technical or knowledge base during their development, 

combined with overenthusiastic expectations and poor sustainability plans ( Gent et al., 

2013; Rossi et al., 2012; Shtienberg, 2013). Due to the increased awareness of these issues 

and risks associated with highly conducive blight environment, such as in the Republic 

of Ireland, the approach taken in this research was to tackle these issues through the use 

of sensible biological and statistical evaluation techniques leading to the re-calibration of 

the currently used model; thereby, reducing the risk of false negative predictions; 

informing a potential end-user regarding the benefits of the use of resistant varieties under 

current Irish P. infestans population rather than determining the exact thresholds due to 

awareness of the downfalls of territorial models (Chapter 2); providing the new modelling 
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platform to facilitate enhancements of the risk estimation; and finally, providing the entire 

workflow in a robust, accessible and reproducible manner through a single programming 

language ensuring the sustainability, and subsequent development, of the approach.  

An overview of PLB risk prediction modelling approaches and the history of PLB DSSs 

presented in Chapter 2 reveals insights into the manner and approaches taken in the 

development of potato late blight crop disease models and DSSs, as well as highlighting 

potential pathways for future developments and improvements. Numerous risk prediction 

models that inform DSSs worldwide remain diverse in terms of their complexity and 

structure, as well as the DSSs themselves. The models applied on the territorial scale are 

typically less complex and considered inherently less accurate compared to the more 

complex models applied on the microscale, which feature inherently more accurate 

estimates. However, territorial models are still appealing for several reasons, such as: 

simplicity of implementation and accessibility to a regular user and ready availability of 

the required input weather data. Importantly, their simplicity is of benefit due to the lower 

demands for precision from the weather data produced by numerical weather prediction 

models (see Chapter 5). Additionally, increasing the complexity of a model additionally 

increases the uncertainty of the risk estimation and demands more frequent updates.  

Hence, the approach taken in this thesis was to evaluate the Irish Rules model, a well-

known and long-established PLB risk prediction model in the Republic of Ireland. The 

IR model has been used for the purpose of potato late blight forecasting for 70 years in 

the Republic of Ireland; it is well known to Irish producers and it is based on fundamental 

knowledge of PLB epidemiology. However, evolving P. infestans population active over 

wider environmental conditions and changing demands of potato production have 

imposed a need to re-evaluation the model, as well as its decision thresholds.  



 

170 

6.1.1. The modified IR (MIR) model 

The Irish Rules model was revolutionary in its approach to quantify the risk of disease 

development (as outlined in Chapters 2 and 3). However, the model was based on the 

needs of potato production and the epidemiological patterns of the 1950s. At the time, the 

expectations from crop disease management programme were lower; Large (1959) stated 

that a good commercial fungicide programme could be expected to prolong the haulm 

growth for two weeks until the end of August, during blight years, leading to an average 

15% yield increase. Such expectations are marginal in contemporary potato production. 

The validity of the Irish Rules was first questioned under field conditions in the 1990s 

(e.g. Dowley et al., 2004; Leonard et al., 1999), around the time when the Smith Period 

(Smith, 1956) from the UK was reported to be increasingly inaccurate due to the 

complicated interactions between the pathogen, environment and the unknown growth 

parameters of the newer genotypes (Taylor et al., 2003). These reports are dated before 

the genotype 13A2 or 6A1 were detected within the population. Prior to the establishment 

of these new genotypes, missing a few critical periods may not have carried such high 

risk and potential for negative consequences as it does nowadays, when failure to predict 

critical periods may lead to severe blight pressure for the grower (Flier et al., 2002). 

Changes in production patterns and the epidemiology of the disease highlighted the need 

to initially evaluate the Irish Rules model and subsequently re-calibrate the model, to 

ensure that the model continues to reflect the changes.   

Following the evaluation of the IR model, presented in Chapter 4, modifications to the 

existing thresholds were proposed which led to a significant improvement in the overall 

diagnostic performance of the modified model, most notably in the high sensitivity region 

of the ROC curve, which corresponds to the operational range of the model. The analysis 

of the data from Oak Park indicated that the operational range of 0-11 EBH corresponds 

to a 0.8-1.0 sensitivity range. The same method used in this analysis could not be 
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undertaken for the data set from Northern Ireland, due to a lack of information regarding 

the presence of host foliage. Consequently, an adapted version of the evaluation 

methodology, presented in Chapter 3, was developed in order to analyse the wider data 

set and the results of this analysis, which are presented in Chapter 5. While the specificity 

of the model was calculated using the available data for the host presence in Chapter 3, 

the specificity of the model for the wider data set presented in Chapter 5 was calculated 

as a proportion, indicating a reduction in the number of treatments following the standard 

7-day interval practice. Importantly, both analyses are in agreement regarding the overall 

conclusion that the original thresholds employed in the IR model were not fit for purpose 

due to large proportion of false negative predictions; these were significantly decreased 

with the new model thresholds (see Figure 3.6 and Figure 5.9). Although the results using 

these different methods could not be directly compared due to these methodological 

differences, both indicate a similar operational range of the model within the high 

sensitivity region (specificity 0.8-1), 0-11 EBH for the initial evaluation presented in 

Chapter 4 and 0-8 EBH for the analysis presented in Chapter 6. The difference is also 

potentially caused by the lack of smoothness of the diagnostic curve in the Chapter 4 

analysis, due to a low number of data points associated with only ten years of the disease 

data.   

Subsequent to the evaluation of the model using the historical data, a field trial was 

established to evaluate the relative performance of the model under field conditions, and 

the results are presented in Chapter 5. This study was implemented in a manner different 

to a classical DSS evaluation, particularly with regards to the treatment schedule. Due to 

the high perceived risk posed by possible disease outbreaks, PLB management is heavily 

reliant on the frequent use of pesticides, typically on 7-day intervals in western Europe 

(Cooke et al., 2011), including the Republic of Ireland. Hence, the research outcomes 

were oriented towards informing the adjustment of the standard grower’s practice, rather 
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than imposing a completely new, or untested, management strategy. Additionally, the 

evaluation of the environmental risk estimation was complemented with the evaluation 

of the role of varietal resistance and the effect on the local P. infestans population. Results 

presented indicate that the MIR model provides both satisfactory disease control as well 

as achieving higher environmental standards, resulting in more economical disease 

management. Such encouraging results require further investigation, largely on the 

possibilities for the reduction of, not only the dose, but also treatment frequency. For 

example, if a treatment costs 100 Euro per ha (including PPP, human hour and 

amortisation) and if we consider that 10000 ha are currently planted with potato, a saving 

of 1 million Euro could be obtained, on average. These reductions have even bigger 

savings, keeping in mind the environmental benefit. Additionally, the model was 

successful in identifying periods of extreme risk, when the use of fungicides is necessary 

and justified, and could potentially save the production.   

As outlined in Chapter 2, there are numerous components of the PLB pathosystem that 

need to be considered when making a decision regarding an appropriate PLB management 

strategy, such as: potato variety and pathogen population and presence; as well as the 

impact of human interventions, such as selection and implementation of the agrotechnical 

operations. Integration of these segments into non-commercial, wide-use, and usually 

government owned PLB DSSs is challenging (e.g.  Chapter 2). Although such systems 

exist, such as BlightPro (e.g. Small et al., 2015a), their long term reliability is 

questionable due to issues of maintenance and lack of updating varietal resistance and 

fungicide efficacy information. For example, the evolving pathogen population has been 

known to be able to quickly degrade the resistance rating of a potato cultivar (Lees et al., 

2012), potentially leading to very costly disease management errors. Although the results 

presented in Chapter 5 are in agreement with previous findings, indicating that the Irish 

population remains simple (Kildea et al., 2010; Stellingwerf et al., 2018), the newer 
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populations, which consist of genotypes 6A1 and 13A2, are exhibiting increased levels 

of aggressiveness compared to the older 8A1 genotype populations. However, these 

genotypes have been relatively recently established under Irish conditions and any DSS 

proposed prior to their establishment requires re-evaluation. A lack of any long term 

sustainability plan, when DSSs are proposed is a serious and reoccurring limitation of 

these systems in crop protection and the more complex the system is, the greater the need 

for constant validation and updating (Shtienberg, 2013). This problem is better managed 

by personalised commercial DSS such as “Agrovision” (previously known as Prophy, see 

Nugteren, 2004) which are built on constantly generated and updated databases and have 

the possibility for manual data entry by a producer.  

Hence, considering the territorial application of the IR model, no risk adjustment was 

recommended as an outcome of this thesis, but the system is calibrated to minimise the 

risk of the disease outbreak. Successful application of DSSs in crop protection depends 

on intensive communication between meteorologists, field crop advisors, researchers and 

end-users (Magarey et al., 2017) which should be an immediate priority in the operational 

application of the Irish potato late blight warning service.  

6.1.2. The new model  

The MIR model has shown its potential as an accurate tool for predicting the disease 

outbreaks (e.g. Chapters 4 and 5). Due to its simplicity, it places lower demands on the 

accuracy of the weather forecast (as seen in Chapter 6) and is easy to understand and 

implement. However, during the implementation of this research, potential issues limiting 

future improvements in the MIR became apparent, suggesting room for further 

improvements. For example, the crude threshold base of the model was a key limiting 

factor, most notably highlighted in Chapter 4, where an increase in the temperature 

threshold could not be recommended although the analysis indicated low pathogen 
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activity below 12 °C. Growth of P. infestans will still occur even below 10 °C  (Crosier, 

1934) with the majority of the 11 UK genotypes tested by Chapman (2012) being able to 

infect at 8 °C, although at a very low percentage. Another problem is a lack of an upper 

temperature threshold in the MIR model. Although current temperatures during the potato 

growing season are predominantly within the temperature range of P. infestans under 

current Irish conditions, this may no longer hold in future due to climate change (Garrett 

et al., 2011). Besides these potential issues, possibilities also exist for the improvement 

of prediction in terms of accuracy of risk estimation, presented in Chapter 5. For example, 

continued improvements in the weather network and numerical weather prediction, 

evolving pathogen population as well as the knowledge of the new rising strains and 

constantly increasing the risk of potato production demand improvements in the tools for 

management of the disease. Additionally, the quantitative nature of the model enables 

easier selection and adjustment of operational thresholds and determination of risk 

categories.   

6.2. Recommendations on the operational application of the MIR model 

Based on the results of the work presented in this thesis, the recommendations for the 

operational application of the MIR model output are as follows:  

•  Risk classification into five categories: very low, low, medium, high and very high, 

reflective of respective risk accumulations of effective blight hours (EBH): 0-3, 4-6, 

7-9, 10-12 and > 12.  

• Information delivery: Blight warnings in Ireland are currently issued several days 

in advance (as seen in Chapter 2), while it was shown (Chapter 5) that the agreement 

of the model estimates using observed and forecasted data drops drastically after lead 

time of four days. Hence, the error probability of model output based on forecasted 

data should be incorporated into the visualisation of model outputs (e.g. shading or 
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“alpha” of graphs applied to corresponding lead times) and considered in the practical 

application of the model outputs, most importantly when issuing blight warnings.  

• Information accessibility: Blight maps and meteograms used internally by Met 

Éireann for specific locations should be available publicly following examples from 

other DSS (e.g. Dancey et al., 2017; Hansen et al., 2017; Small et al., 2015). While 

these outputs are currently not publicly available due to justified concerns regarding 

the interpretation of model outputs, their availability to the public would improve the 

timelines required for disease management activity, whether deciding on a dose, 

interval or active ingredient for a fungicide treatment, implementing scouting 

activity, and similar.   

However, it should be clearly indicated how the risk should be interpreted. Here, the 

general guidelines are provided but varietal resistance, phenological stage of plant and 

inoculum pressure (e.g. Chapter 1, 2 and 5) represent an important factor in the translation 

of risk into advice or an operational decision.  

Further advice on the interpretation of the MIR risk outputs 

The previously determined minimum of three disease cycles (Muller et al., 1953) and 

maximum of five generations for the initiation of epidemics (Bourke, 1953b) is still valid 

based on the analysis of the available data. This period was proposed as an initial, 

exponential stage (Muller et al., 1953) of sigmoid-shaped disease progress curve, 

describing compound-interest polycyclic disease progression (van der Plank, 1968). 

Hence, the probability of disease outbreak in the field depends on the conditions for the 

multiplication of pathogen population, proximity of the inoculum source and 

phenological stage of the crop, with the risk of the disease outbreak being low until crops 

start closing their canopy.  
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The current calibration of the model and recommended operational thresholds is suitable 

for typical potato late blight risk under Irish weather conditions. However, there are 

differences between, as well as within, seasons. Results indicate that the interval between 

treatments can be extended during dry summers, such as the one in 2018 (see Chapter 5). 

Following the same population dynamics principle elaborated in the previous section, the 

pathogen population undergoes a severe reduction during periods of dry weather and 

needs a few reproduction cycles to reach the stage of high inoculum pressure. Conversely, 

under typical Irish conditions, uninterrupted disease cycles occur during spring and 

summer, and the inoculum pressure culminates typically during July when most of the 

disease outbreaks are reported (Figure 5.6 and (Dowley et al., 2008)). If these conditions 

continue during August, allowing uninterrupted disease cycles, that year can have 

pandemic proportions; such conditions were observed in 2019 (e.g. Chapter 5). Similar 

observations are reported by Keane (1982) who states that an epidemic year is 

characterized with 2 or 3 risk periods within 14 days, as indicated by the default, and 

more conservative, IR model. 

6.3. Future (and current) priorities for research and practical application of PLB 

DSS in the Republic of Ireland 

There are numerous ways for improving the management of PLB based on the 

environmental risk estimation. While some of methods described below are still 

expensive and/or limited to research purposes, there are accessible ways to improve the 

content of information regarding the possibility of disease outbreak and guide appropriate 

management decisions. 
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6.3.1. Improving the disease risk estimation 

Extending the knowledge of PLB epidemiology 

The P. infestans inoculum causing primary infections originate from potato tubers 

infected in the previous season (Zaag, 1956), oospores (Andersson et al., 1998) or 

alternative hosts (Flier et al., 2003). While the conditions for oospore infections have not 

been confirmed in western Europe (Cooke et al., 2011), the role of alternative hosts 

remains unclear (Flier et al., 2003); it is assumed that the primary infections 

predominantly originate from the infected tubers (Schepers et al., 2009). Furthermore, 

due to strict seed quality control and five-year crop rotation, it could be assumed that the 

primary P. infestans inoculum originates from outside of the crop, from the tubers 

infected in previous seasons, surviving either as volunteers left in the field after harvest 

or in waste piles. Mild Irish winters provide an increased possibility for the inter-season 

survival of tubers infected by P. infestans. Quantifying the survival of both infected and 

non-infected tubers, which can play an important role in primary disease cycles, would 

be beneficial for the purpose of forecasting the initial outbreak in the field. Additionally, 

such research could provide insights into the dynamics of the population structure 

between seasons and help elucidate the persistence of the 8A1 genotype under Irish 

conditions, despite incursions by other genotypes.  

Another research necessity, related to the new P. infestans population in Ireland, is to 

understand the phenotypic characteristics of established genotypes in relation to the 

environment, specifically temperature, moisture and solar radiation. There is a lack of 

knowledge regarding the suboptimal temperature effect on new pathogen lineages, either 

in terms of latent growth or re-infection of the new tissue. Such information could provide 

pointers regarding these characteristics and gaps in knowledge regarding new strains, will 

be available from currently implemented evaluations in Europe (Andrivon et al., 2017). 
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Such information would help better parametrisation and further development of the new 

model proposed in this thesis (Chapter 5).  

Application of molecular tools 

Information regarding the pathogen population, crucial for selecting an appropriate 

management tactic (Carlisle et al., 2001; Cooke et al., 2012; Stellingwerf et al., 2018), 

was discussed in more detail in Chapter 5. The importance of such information was 

clearly identified after 2009, which was a severe ‘blight’ year worldwide (Cooke et al., 

2011; Fry et al., 2013), and served as a reminder of the devastating power of PLB. This 

led to extensive research efforts to find alternative strategies for disease management. 

Fungicide resistance and aggressiveness differences between P. infestans clonal lineages 

have led to increased efforts for establishing tools for rapid determination of the structure 

of the pathogen population over time (during a season) and space (different locations) 

(Fry et al., 2013). Polymerase chain reaction (PCR) based microsatellite markers are a 

relatively fast and widely used molecular characterisation method to separate multilocus 

genotypes of the pathogen (Lees et al., 2006). Microsatellite markers could be used on 

small samples, with the results obtained within 24 h, making them an irreplaceable tool 

for predicting the traits of the pathogen in any given sample (Fry et al., 2013). Besides its 

crucial importance for informing the management tactics due to fungicide insensitivity of 

some pathogen lineages, the clear pattern of change in the structure of P. infestans 

population (as seen in Figure 4.6) can be further used for dynamic in-season calibration 

of the new model proposed in Chapter 5 of this thesis.  

6.3.2. Practical model application 

Field evaluation 

The initial evaluation of the MIR model under field conditions was implemented with a 

degree of caution. The results of the trials (as presented in Chapter 4) and the fungicide 

trials implemented in the 2019 season (results not shown here) offers the potential to 
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safely increase the intervals between fungicide applications. Hence, further field trials 

evaluating the incorporation of environmental risk-adjusted selection of active 

ingredients, dose and interval for fungicide application would likely yield further 

improvements in the proposed strategies.  

Monitoring inoculum 

Risk prediction models used in practice are often based only on the estimation of 

environmental conditions for infection (Magarey et al., 2007), and the ones employed in 

PLB DSSs are no exception (Schepers et al., 1995). Complementing the environmental 

risk estimation with other tools from the IPM toolbox leads to improved risk estimation 

and more informed advice to the end-user (Rossi et al., 2012). For example, the fungicide 

treatments to control PLB are often recommended when the pathogen inoculum is not 

present (Taylor et al., 2003). Tools, such as Burkhard spore traps, have been used to 

record the initial occurrence and monitor the seasonal intensity of pathogen inoculum 

(Agrios, 2006). Although they have a slow turnaround-time of 7-days, they have been 

reported as a reliable tool for the detection of incoming pathogen inoculum and a 

counterweight to model risk estimation for timing fungicide treatments (Fall et al., 2015). 

A solution for the high-maintenance and low speed of manual spore samplers is on the 

horizon with the development of rapid low-cost biosensors which could be deployed in 

the field. Such biosensors could aid early detection and biological recognition of air-borne 

P. infestans sporangia but cannot differentiate between viable and non-viable inoculum, 

which is where the models estimating the survival could compensate for this shortcoming 

(Skelsey et al., 2017).  

Disease outbreaks 

At present, the accessibility of smartphone technology is almost universal and costs of 

transmission are low; this presents numerous opportunities to improve the quantity of 
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information available to end-user when deciding on crop management tactics (Fabregas 

et al., 2019). Reporting of disease outbreaks complemented with environmental risk 

calculation could be readily converted into maps on the distribution of risk. These maps 

could provide simplistic spatial and temporal representations of risk distribution; make 

DSS outputs easier to understand for system users and perhaps initiate the need for the 

system in non-users. Improvements of the timeliness, cost-effectiveness and accessibility 

could help wider use and reliance on the DSS.  

Remote sensing 

Recent technological and scientific developments led to the introduction of non-

destructive, sensor-based methods for crop disease detection as part of an international 

movement towards precision agriculture practices (Mahlein et al., 2018). Blight in 

potatoes is a zero-tolerance disease and the early detection of the disease outbreak is 

crucial for integrated pest management measures (Schepers et al., 2009). Visual 

assessments by humans in production fields, as well as assessments of disease progress 

in research fields, are time-consuming. Hyperspectral sensors and imaging techniques 

have shown an enormous potential to tackle this issue (Mahlein et al., 2018). Problems 

with such techniques are lack of differentiation between biotic and abiotic caused stress 

and unified spectral image of the diseased plant across different phenological stages 

(Madden et al., 2007). However, recent in-vitro research on the spectral response of 

different potato cultivars (Gold et al., 2019) as well as the clonal lineage discrimination 

in latent phases of the infection (Gold et al., 2019) shows promise.  

6.4. Final conclusions 

The goal of this thesis was to revise the potato late blight decision support system based 

on environmental risk estimation, in the Republic of Ireland. This goal was achieved 

through the combination of epidemiological modelling and field and laboratory 
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experimentation.  The Irish Rules model, which has been used operationally since the 

1950s was evaluated, modified and tested in the field, yielding positive results. The 

modified IR model and the new risk prediction model, as well as providing a clear 

methodology for their ongoing evaluation was proposed and was provided as a 

completely reproducible open source tool to facilitate the future improvement of models 

and decision thresholds. Accessibility to such methods and tools is becoming increasingly 

important, due to a need to monitor frequently evolving P. infestans populations which 

lead to emergence of new lineages characterised with new traits and different 

environmental requirements. Such information could be used to inform environmental 

risk prediction and management tactics. It has been shown that varietal resistance has 

shown great potential, but it needs to be protected because even simple P. infestans 

populations, such as in Ireland, can deplete the genetic resistance potential.  

It seems likely that with an increased ability to measure and forecast the weather, 

increased knowledge of pathogen population and ability to monitor its structure, will 

inevitably lead to increased use of DSSs in potato late blight management. Collectively, 

the results of this thesis contribute towards the development of more effective and eco-

friendly integrated management of potato late blight disease in the Republic of Ireland, 

and elsewhere.   

The new modelling platform was proposed that could help improve the accuracy of risk 

estimation. However, each new crop disease model needs an extensive evaluation before 

it is employed in practice (Magarey et al., 2007; Rossi et al., 2010a). Hence, we do not 

recommend the instant application or operational use of the new models but instead 

propose a gradual transition. Initially, the model should be tested under field conditions 

and used side by side with the MIR model operationally.  
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8. Appendix 1: Supplementary Information  

8.1. Supplementary material for Chapter 4 

Table 8.1 List of frequently used abbreviations along with their full forms. 

Abbreviation Full Form 

GLMM Generalized linear mixed model 

IPM Integrated pest management 

PLB Potato late blight 

rAUDPC Relative area under the disease progress curve 

BQ British Queen 

KE King Edward 

RO Roster 

SE Setanta 

CL Clone form Teagasc breeding programme 

SM Sarpo Mira 

IRp Irish Rules programme 

MIRp Modified Irish Rules programme 

BMp Blight Management programme 

EBH Effective blight hours 

 

Table 8.2 Dates of the agronomic operations. 

Year Planting Disease 

Outbreak 

Desiccation Harvest Grading 

2016 02/06 25/07 30/09 13/10 06/12 

2017 17/05 03/07 28/09 15/10 07/12 

2018 07/06 20/08 28/09 13/10 10/01/19 

2019 22/05 26/07 20/09 16/10 15/12 

 

Table 8.3 Dose model A used in Blight Management. The recommended dose depends on the 

local infection pressure for late blight and the proximity of the location where the late blight is 

recorded. 

Model A 

 

Infection 

Pressure 

Stage 1 

No outbreak 

in the 

country 

Stage 2  

An 

outbreak 

in the 

country 

Stage 3 

Outbreak in 

region 

(25-50 km) 

Stage 4 

Outbreak in 

the field plot 

Stage 5  

Late blight 

not active 

> 60 Very 

High 

50 50 75 100 100 

40-60 High 50 50 50 100 100 

20-39 Moderate 0 0 50 75 50 

1-19 Low 0 0 50 50 50 

0 No Risk  0 0 50 50 50 
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Table 8.4 Dates, fungicides and the dose applied over the course of the study.   

Year Active 

Substance 

Date Control Full 

Dose 

Half 

Dose 

Irish 

Rules 

Blight 

Manag

ement 

Modified 

Irish 

Rules 

2016 Ranman 7/11/2016 0 100 50 100 - - 

Revus 7/19/2016 0 100 50 0 - - 

Revus 7/27/2016 0 100 50 0 - - 

Ranman  8/4/2016 0 100 50 0 - - 

Ranman  8/12/2016 0 100 50 0 - - 

Shirlan 8/20/2016 0 100 50 0 - - 

 Shirlan 8/28/2016 0 100 50 0 - - 

Shirlan 9/5/2016 0 100 50 0 - - 

2017 Revus 6/23/2017 0 100 50 100 100 100 

Revus 7/3/2017 0 100 50 0 100 25 

Ranman 7/10/2017 0 100 50 0 100 25 

Ranman 7/18/2017 0 100 50 0 75 50 

Revus 7/25/2017 0 100 50 0 50 25 

Revus 8/1/2017 0 100 50 0 75 50 

Ranman 8/8/2017 0 100 50 0 75 25 

Infinito 8/16/2017 0 100 50 0 100 75 

Infinito 8/24/2017 0 100 50 0 100 25 

Shirlan 8/31/2017 0 100 50 100 100 100 

Shirlan 9/7/2017 0 100 50 0 75 0 

Infinito 9/14/2017 0 100 50 0 100 50 

2018 Infinito 8/2/2018 0 100 50 0 50 25 

Revus 8/9/2018 0 100 50 0 50 25 

Revus 8/16/2018 0 100 50 0 50 25 

Ranman 8/23/2018 0 100 50 0 75 50 

Ranman 8/30/2018 0 100 50 0 100 50 

Infinito 9/6/2018 0 100 50 0 100 100 

Infinito 9/13/2018 0 100 50 0 50 25 

Ranman 9/20/2018 0 100 50 0 50 25 

2019 Revus 7/18/2019 0 100 50 0 50 25 

Revus 7/26/2019 0 100 50 0 50 0 

Ranman 8/1/2019 0 100 50 0 75 25 

Ranman 8/8/2019 0 100 50 0 100 25 

Revus 8/15/2019 0 100 50 100 75 100 

Revus 8/22/2019 0 100 50 0 100 50 

Ranman 8/29/2019 0 100 50 0 100 50 

Ranman 9/5/2019 0 100 50 0 100 25 
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Table 8.5 Sampling dates and number of samples per sampling. 

2016 2017 2018 2019 

10/6/2016 158 7/14/2017 5 8/20/2018 3 8/14/2019 250 

  7/20/2017 3 8/28/2018 7 8/27/2019 198 

  7/3/2017 12 9/24/2018 165   

  7/31/2017 38 9/5/2018 31   

  8/10/2017 154     

  8/23/2017 138     

  9/13/2017 125     

 

Table 8.6 Counts of genotyped isolates per year, programme and variety, over the course of 

study. 

Year Prog. KE BQ RO SE CL SM 

2016  0 16 0 0 16 8 6 

100 9 0 0 10 7 5 

50 16 0 0 8 6 1 

IR 16 0 0 16 9 9 

2017 0 66 17 23 33 14 0 

100 36 1 0 5 1 0 

50 53 0 5 1 0 2 

IR 54 11 19 15 3 0 

BM 56 0 1 0 0 0 

MIR 50 3 6 0 0 0 

2018 0 31 8 19 10 2 0 

100 10 0 1 2 3 0 

50 13 0 4 0 0 0 

IR 36 10 7 7 0 0 

BM 24 1 4 0 0 0 

MIR 9 3 2 0 0 0 

2019  0 54 12 17 19 9 1 

100 26 4 6 6 1 0 

50 33 10 5 6 0 0 

IR 52 15 13 7 2 0 

BM 46 7 9 8 2 1 

MIR 44 12 13 5 3 0 
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Table 8.7 The number and the proportion of samples assigned to specific MLGs for each 

sampling date were calculated for complete collection 2017 – 2019 

 

Year 

 

Date 

All samples Subset 

No. 

of 

Samp

les 

8A1 

(%) 

13A2 

(%) 

6A1 

(%) 

13A2

+6A1 

(%) 

No. 

of 

Samp

les 

8A1 

(%) 

13A2 

(%) 

6A1 

(%) 

13A2

+6A1 

(%) 

2017 7/3 12 100 0 0 0 0 0 0 0 0 

7/14 5 100 0 0 0 0 0 0 0 0 

7/20 3 100 0 0 0 2 100 0 0 0 

7/31 38 84.2 0 15.8 15.8 22 86.4 0 13.6 13.6 

8/10 154 66.9 1.9 31.2 33.1 93 71 0 29 29 

8/23 138 54.3 0 45.7 45.7 60 61.7 0 38.3 38.3 

9/13 125 12.8 13.6 73.6 87.2 13 7.7 0 92.3 92.3 

2018 8/20 3 100 0 0 0 3 100 0 0 0 

8/28 7 100 0 0 0 5 100 0 0 0 

9/5 31 96.8 0 3.2 3.2 22 100 0 0 0 

9/24 165 88.5 1.2 10.3 11.5 81 82.7 1.2 16 17.2 

2019 

 

8/14 250 80.8 10.4 8.8 19.2 113 90.3 8 1.8 9.8 

8/27 198 19.2 44.9 35.9 80.8 50 36 24 40 64 
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Figure 8.1 Daily weather conditions (average temperature and relative humidity, total rain, 10 

day-rolling mean temperature), disease outbreak and the last assessment periods, and 

conducive days for the disease outbreak, over the course of the study, from 2016 to 2019, 

inclusively. Days were considered conducive if a minimum of conditions for blight 

development were recorded (minimum daily temperature ≥ 10 °C, average daily relative 

humidity ≥ 80% and total daily precipitation ≥ 0.2). 
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Figure 8.2 Disease progress curves representing means over replicates for all cultivar (different 

curves), programme (vertical facets) and year (horizontal facets) combinations from the field 

trial at Oak Park.   
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8.2. Supplementary material for Chapter 5 

 

Figure 8.3 Weather stations selected for the model diagnostic performance evaluation. 
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Table 8.8 Sensitivity analysis parameter values. 

 Levels 

Parameter -3 -2 -1 0 1 2 3 

TminInf 3 4 5 6 7 8 9 

ToptInf 9 10 11 12 13 14 15 

TmaxInf 23 24 25 26 27 28 29 

ShapeInf 1 5 10 15 20 25 30 

TminInfDir 3 4 5 6 7 8 9 

ToptInfDir 20 21 22 23 24 25 26 

TmaxInfDir 23 24 25 26 27 28 29 

RfactInfDir 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

ShapeInfDir 0.01 0.1 0.25 0.5 0.75 1 2 

RhminInf 83 84 85 86 87 88 89 

RhoptInf 92 93 94 95 96 97 98 

B0 0.01 0.37 1.37 2.37 3.37 4.37 5.37 

B1 0.15 0.25 0.35 0.45 0.55 0.65 0.75 

TminSpor 3 4 5 6 7 8 9 

ToptSpor 17 18 19 20 21 22 23 

TmaxSpor 23 24 25 26 27 28 29 

ShapeSpor 0.5 1 1.5 2 4 8 12 

n0Spor 6.05* 10-7 6.05* 10-6 6.05* 10-5 0.000605 0.00605 0.0605 0.605 

rSpor 1.1 1.3 1.5 1.73 2 2.3 2.7 

spor_dur 4 6 8 10 12 14 16 

hr_before_spor 2 3 4 5 6 7 8 

hr_after_spor 2 3 4 5 6 7 8 

hr_after_inf 2 3 4 5 6 7 8 

    Levels    

 -6 -5 -4 -3 -2 -1 0 

RfactInf 0.4 0.5 0.6 0.7 0.8 0.9 1 

RfactSpor 0.4 0.5 0.6 0.7 0.8 0.9 1 
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Figure 8.4 Local sensitivity analysis of the proposed model parameter variations +/-3 levels 

from the default values (from 0 to -6 levels for RfactInf and RfactSpor). Smoothed lines were 

fitted to the maximum achieved true positive rate (TPR) response using the LO 
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Figure 8.5 Root mean square errors of the 2 m HRES of: a) air temperature and b) relative 

humidity depending on the lead time. 
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Figure 8.6 Concordance correlation coefficients and 95% confidence intervals between 

observed and predicted outputs of the risk prediction models over the 10-day lead time. Grey 

dashed line represents the line of perfect agreement and the black line the calculated 
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Abstract: Potato late blight caused by Phytophthora infestans is one of the most important plant diseases
known, requiring high pesticide inputs to prevent disease occurrence. The disease development
is highly dependent on weather conditions, and as such, several forecasting schemes have been
developed worldwide which seek to reduce the inputs required to control the disease. The Irish Rules,
developed in the 1950s and calibrated to accommodate the meteorological network, the characteristics
of potato production and the P. infestans population at the time, is still operationally utilized by the
national meteorological agency, Met Éireann. However, numerous changes in the composition and
dynamics of the pathosystem and the risks of production/economic consequences associated with
potato late blight outbreaks have occurred since the inception of the Irish Rules model. Additionally,
model and decision thresholds appear to have been selected ad hoc and without a clear criteria.
We developed a systematic methodology to evaluate the model using the empirical receiver operating
curve (ROC) analysis and the response surface methodology for the interpretation of the results.
The methodology, written in the R language, is provided as an open, accessible and reproducible
platform to facilitate the ongoing seasonal re-evaluation of the Irish Rules and corresponding decision
thresholds. Following this initial analysis, based on the available data, we recommend the reduction
of the thresholds for relative humidity and an initial period duration from 90% and 12 h to 88% and
10 h, respectively. Contrary to recent reports, we found that the risk of blight epidemics remains low at
temperatures below 12 ◦C. With the availability of more comprehensive outbreak data and with greater
insight into the founder population to confirm our findings as robust, the temperature threshold
in the model could potentially be increased from 10 ◦C to 12 ◦C, providing more opportunities
for reductions of pesticide usage. We propose a dynamic operational decision threshold between
four and 11 effective blight hours (EBH) set according to frequency of the disease outbreaks in the
region of interest. Although the risk estimation according to the new model calibrations is higher,
estimated chemical inputs, on average, are lower than the usual grower’s practice. Importantly,
the research outlined here provides a robust and reproducible methodological approach to evaluate a
semi-empirical plant disease forecasting model.

Keywords: Phytophthora infestans; potato late blight; plant disease forecasting; decision support
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1. Introduction

Potato late blight (PLB) caused by Phytophthora infestans (Mont.) de Bary [1] is amongst the
most destructive diseases of potato crops [2]; due to its fast reproductive cycle and aggressiveness,
if left untreated, it can rapidly lead to the total destruction of the crop, either in the field or in
storage, following harvest [3]. In Ireland, historical outbreaks of potato blight have had a significant
cultural and economic impacts, and are partly attributed to mass starvation and the subsequent
migration of large portions of the population fleeing from famine during the 1840s [4]. In Ireland
alone, an estimated €5 million is spent annually on fungicides to control PLB, whilst globally the cost
of control and losses are estimated to exceed €1 billion annually [5]. Although P. infestans can form
overwinter oospores, under Irish conditions that is not believed to occur (Louise Cooke, personal
communication), and typically the pathogen overwinters in infected tubers (in dumps, volunteers or
infected seeds) [6]. The rate of late blight epidemic progression is highly dependent on the weather,
with temperature, relative humidity and precipitation being the most important variables, the latter two
closely being related [7]. Prolonged periods of humid and cool weather provide conditions favorable
for pathogen sporulation [8]; short-lived sporangia subsequently spread through a mixture of rain
splash and wind dispersal [9]. The disease impacts yield both indirectly and directly; indirectly, by
reducing photosynthetic surface, and directly, when zoospores washed from foliage infect tubers in the
ground [6].

Since the late 1970s, increasing globalization has resulted in the worldwide migrations of pathogen
genotypes of both mating types, leading to the displacement of dominant, older clonal lineages or
genotypes commonly referred to as US-1 [10]; this has facilitated the development and spread of new
lineages, some of which demonstrate an increased aggressiveness [11]. This rise of new genotypes
has introduced changes in the ecology of P. infestans [12–15]. The increasing genetic variability of
P. infestans is likely reducing the durability of late blight resistance based on R gene stacks [16,17].
Although the structure of the Irish P. infestans population shows little genetic variation, it is dominated
by a few clonal genotypes comprised of the more aggressive EU_13_A2 and EU_6_A1 strains [18,19].
New genotypes have established in Ireland and have been reported in higher frequencies in recent
years [20–22]. In addition, the majority of potato production in Ireland is based on more susceptible
potato cultivars, guided by market demand [23]. Population diversification, coupled with the influence
of climate change [24], has led to increased difficulties controlling PLB [25,26]. Presently, due to the
high risk of PLB epidemics in high-input agriculture, associated with increased aggressiveness of the
pathogen, intensive fungicide regimes are routinely used; in Western Europe this equates to more than
10 applications per season [5,27], while in some countries crops can receive as many as 20 fungicide
applications [28]. The need to develop late blight forecasting models for use as decision support tools
has been long acknowledged as one of few integrated pest management (IPM) approaches available for
PLB management, motivated by both environmental and economic factors [29–31]. In response to the
environmental challenges posed from increased pesticide usage, the European Community Directive
128/2009 on the Sustainable Use of Pesticides provides strict guidelines for the sustainable use of
plant protection products in order to reduce risks to human health and the environment [32]. Reliable
disease forecasting offers the potential to reduce yield losses and crop inputs during unfavorable
blight weather conditions, while also supporting an ex post facto justification for the use of plant
protection products [3,31] in compliance with national and international regulations. Kessel et al. [33]
have shown the necessity for environmental risk prediction to guide low input chemical protection
to prevent the resistance breakdown of currently resistant potato cultivars. Forecasting systems that
involve numerous alerts have been shown to be useful in that regard, when applied on a pathosystem
involving a valuable crop and rapid disease [34].

At their core, crop disease forecasting systems employ algorithms, either mechanistic (fundamental)
or empirically based, to predict disease cycles. Mechanistic based models are developed from laboratory
experiments in controlled environment chambers, greenhouses or fields, and describe one or more
segments of the host-parasite relationship as influenced by the environment [34]. Initially, the
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development of such models centered around the use of weather events to predict the development
and onset of epidemics, and were mainly empirical in nature [35], based on the duration of weather
events beyond a crude weather threshold (e.g., [36,37]) and phenological stage [38]. More recently,
the use of mechanistic approaches have increasingly been employed in an effort to encompass more
complex components of PLB epidemics, along with crop growth, chemical protection and cultural
practices [11,33]. Due to its historical and relative economic importance, Ireland has a long history in
the development of forecasting systems for use in PLB management.

Austin Bourke, one of potato late blight forecasting pioneers, developed the PLB model referred
to as the ‘Irish Rules’ (IR). This model sought to include knowledge of the disease life cycle as opposed
to being an entirely empirical approach [39]. For example, the selection of suitable weather criteria was
determined from previously published laboratory experiments [8], rather than a retrospective analysis
of historical weather during blight outbreaks, such as in the development of the ‘Dutch rules’ [36] and
‘English rules’ [40]. Bourke [41] found that the frequency of warnings produced by these latter models
was too high under Irish conditions, and consequently, the IR were devised as an intermediate solution
between empirical and process-based approaches [7,42], the aim of which was to increase the accuracy
of disease life cycle interpretation.

The first attempt to undertake an evaluation of the IR dates back to the 1970s, when Frost [43] found
no significant relationship between disease outbreaks at a site located in the south east of the country,
Oak Park, Co. Carlow (now a Teagasc research center), and risk accumulation derived from weather
data from two nearest synoptic weather stations, Mullingar and Kilkenny. Following re-analysis of this
work, Keane [44], who included two additional surrounding weather stations, reported that IR were
able to predict those outbreaks, although the exact evaluation methodology is not well documented.
Reported field evaluations of the IRperformance have shown that the control according to the model
outputs results in a significant reduction in fungicide usage, but with unsatisfactory disease control
compared to the Negfry Decision Support System (DSS) [45] or routine fungicide protection [46].
More recently, as part of a pan-European initiative, a theoretical comparison of the risk accumulation
between several European PLB risk prediction models has shown that the IR model simulates the
lowest estimate of risk, due to its strict criteria [47].

The uptake and use of DSS in blight forecasting worldwide is limited largely due to the level of
risk associated with a costly disease outbreak [31,48,49]. Risk adverse farmers use DSS to support an
increased number of chemical treatments [34], which is often the case in Ireland. The main incentive for
producers to use plant disease risk prediction in recent times is to increase economic benefit through
cost reduction, and to comply with pesticide use policies required by supermarket chains [3,48]. Irish
producers use, but do not necessarily rely on, operational blight warnings, hence it is now timely to
review the IR and undertake an evaluation with a view toward refining the rules in light of recent
changes in disease and plant ecology.

The aim of this study was, therefore, to provide a comprehensive, systematic and transparent
method to facilitate an ongoing evaluation of the IR model, and its operational application, in the
context of changes in the disease epidemiology and increasing regulation (market/policy). The impact
of the proposed modifications on the potential number of treatments and fungicide usage is also
determined and presented. Additionally, this research provides the first completely reproducible
report in the area of plant disease forecasting, with a view to inspire and enable researchers elsewhere
to modify, adapt and use the proposed methods and the code outlined here.

2. Data and Methods

The paper is structured as follows; initially we provide an overview of the site and available
biological and weather data. The Irish Rules model is described, after which we present the evaluation
of the model’s parameter thresholds, currently employed operationally. Proposed model modifications
and identified decision thresholds are further assessed by a comparison of treatment frequency and
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dose reduction. A schematic of the workflow is outlined in Figure 1. The list of frequently used
abbreviations is presented in Table 1.Agronomy 2019, 9, x FOR PEER REVIEW 4 of 25 
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Table 1. List of frequently used abbreviations in the manuscript along with their full forms.

Abbreviations Full Form

IPM Integrated Pest Management
DSS Decision Support System
PLB Potato late blight
IR Irish Rules

RHt Relative humidity threshold
Tt Temperature threshold

SDt Sporulation duration threshold
LWt Leaf wetness threshold
EBH Effective blight hours
ROC Receiver operating characteristic

AUROC Area under the ROC curve
FP False positive
TP True positive
FN False negative
TN True negative
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2.1. Site Description

Oak Park, Co. Carlow, Ireland (latitude: 52.8560 and longitude: −6.9121), a Teagasc (Irish
agricultural advisory body) research center, is located in the south east of Ireland. Soils are composed
of light limestone gravelly soils and heavy textured soils derived from limestone till.

Typical weather conditions calculated over the growing period (April to October) for the period
2007 to 2016 indicate that average daily relative humidity values were typically high throughout
the potato growing season, which is a characteristic of Irish conditions more generally. The mean
temperature over the period was 13 ◦C, relative humidity was 80.2% and average sum of precipitation
was 398.31 mm. The night time temperatures during the early part of the potato growing season were
low, with averages of 6.6 ◦C in April and 9.2 ◦C May.

2.2. Data

2.2.1. Biological Data

Planting dates and primary disease outbreak data were acquired from the Teagasc breeding
program field trial records for the period 2007 to 2016. The breeding program trials consisted of
25–60 potato varieties in all years, representing all levels of susceptibility to potato late blight. Trials
were laid out in randomized complete block design, with six blocks and plots of 20 plants. The seeds
were propagated in accordance with the seed certification scheme of the Irish Department of Agriculture,
Food and the Marine (DAFM) to ensure no latently infected tubers; the P. infestans inoculum originated
from natural sources. Crop rotation was undertaken on a five-year cycle. Plots did not receive any
fungicide treatments. All plots were visually inspected for disease occurrence on a weekly basis, from
crop emergence, and generally more frequently during periods of humid weather. That data provided
the information about the disease outbreaks used in the model analysis and evaluation outlined herein.

Planting dates in the biological data are somewhat later compared to the usual agricultural practice
in Ireland, which is suitable for the analysis because the healthy green tissue is present throughout
summer. Outbreak dates vary from 26th of June to 23rd of August.

2.2.2. Weather Data

Hourly weather data for the historical period under investigation, was acquired from the Met
Éireann synoptic weather station at Oak Park. The weather variables obtained include the hourly air
temperature (°C) and relative humidity (%) at 2m and the total hourly precipitation (mm). The trial
sites were within a radius of 500 m of the weather station in all years and were located on flat ground
with no physical barriers in between them.

Availability of good quality weather and biological data is crucial for successful calibration
and evaluation of plant disease forecasting models [50]. Quality control of the available weather
data and appropriate imputation of missing values is often disregarded in agriculture, which could
lead to imprecise or incorrect results [47,51]. Post-processing of the weather data undertaken as
part of this study included checking for duplicate entries and recording values outside of ’expected’
ranges, determined using histograms. The data had only 6 missing values for both precipitation
and temperature, and 7 missing values for relative humidity, over the period of interest. These
short intervals of consecutive hours of missing data for temperature and relative humidity were
imputed by spline interpolation using the Forsythe, Malcolm and Moler method [52], as suggested by
Shah et al. [53].

2.2.3. The IR Model and Its Operational Use

According to original Irish Rules [41], illustrated in Figure 2, periods with temperatures ≥ 10 °C
and relative humidity ≥ 90% provide the necessary environmental conditions considered conducive
for potato late blight. These periods are further split into:
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• Sporulation period—the initial stage considered necessary for the formation of sporangia is set to
a minimum of 12 consecutive hours;

• Infection period—starts after the 12 hour sporulation period is completed. If the surface of
the plant is not wet at the beginning of the infection period, effective blight hours (EBH) begin
accumulating from the 16th hour (12 h sporulation period + 4 h = 16 h); when the surface of the
plant is wet at the beginning of the infection period, the effective blight hours’ (EBH) accumulation
is reduced by a period of 4 h (16 h − 4 h = 12 h). The leaf (surface) wetness (LWt) is considered
present if there was a considerable amount of precipitation (≥ 0.1 mm) during the time window
of 3 h before and 3 h after the 12th consecutive hour of sporulation. The infection period lasts
until conditions (temperatures ≥ 10 °C and relative humidity ≥ 90%) are not broken for more than
5 consecutive hours, required for spore survival.

Hours fulfilling these criteria are termed effective blight hours (EBH). The risk of potato late blight
outbreak estimation is based on the longevity of the infection period, expressed as a sum of the EBH.
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warning considered and red when the warnings are issued without delay.

Currently, the warning system is used operationally by the national meteorological service, Met
Éireann. The IR are utilized in their original form to support the blight warning service with issuing
spray advice [44,46]. The decision on issuing a blight warning and its termination is determined by
the meteorological officer on duty after visual inspection of the IR model outputs based on a 10-day
numerical weather prediction (NWP) model forecast from the European Centre for Medium-range
Weather Forecasts (ECMWF). Warnings are disseminated through the Met Éireann web portal, radio
and television weather broadcasts and mobile application. Operationally, a decision threshold to issue
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a blight warning is considered for an accumulation of 12 EBH. Additionally, if a continuous spell of
mild, humid and damp weather lasting 24 h or more is expected, a blight warning may be considered,
even if it does not explicitly meet the warning criteria. Blight warnings are typically issued 2 to 6 days
in advance and include information about areas likely affected, duration of the spell and opportunities
for spraying, where possible. The decision threshold of 12 EBH was established from operational
experience since the 1950s (for example, between 1950 and 2000, a network of blight scouts reported on
regional blight outbreaks and the progress of epidemics) although it was not systemically documented.
Currently, the May 1st is the ‘Zero date’. a date threshold after which warnings are considered valid.

2.3. Evaluation Procedure

2.3.1. Model Thresholds under Evaluation

The IR is a set of processes mimicking the ‘behavior’ of a mechanistic model. The transition between
these processes is determined by an empirically derived set of thresholds, which ultimately influence
the risk estimation expressed as the duration of an infection period. Four of these primary thresholds
were subjected to a sensitivity analysis. The environmental thresholds for relative humidity (RHt),
temperature (Tt) and the duration of period considered as necessary for the inoculum production—the
sporulation duration threshold (SDt), were varied from −3 to +3 units of their respective default values
(Table 2). To assess the leaf surface wetness indicator, the default estimation using rain (>0.1 mm) was
compared to using the combined rain and relative humidity thresholds as indicators (Rain > 0.1 mm
and RH ≥ 90). The model was run using all combinations of model variable thresholds. Outputs were
then combined with the hourly weather data for further analysis.

Table 2. Model variable threshold variations evaluated in the analysis.

Range Relative Humidity (%)
(RHt) Temperature (°C) (Tt) Sporulation Duration (hours)

(SDt)

+3 93 13 15

+2 92 12 14

+1 91 11 13

Existing 90 10 12

−1 89 9 11

−2 88 8 10

−3 87 7 9

2.3.2. Analysis of Diagnostic Performance

The period considered in the sensitivity analysis was from planting date to the recorded disease
outbreak in each season, which was further split in two segments (Figure 3):

- No infection period: Considered the period when the healthy (susceptible) host was present,
but no infections were observed. This period lasted from emergence, which was estimated to
start three weeks after planting, to 14 days prior to the first observation of the disease in the
field. Specificity or true negative rate was measured during this period. It was considered that
each warning during this period activated a chemical treatment which provided protection for
the subsequent period of 7 days, and was considered as a false positive (FP). True negatives
(TN) were calculated as a proportion of the remaining period, when fungicide protection was
not recommended.

- Warning period: Considered a period when infections occurred and was assigned a 10-day time
window, starting 14 days and ending 4 days prior to the disease being observed in the field. A risk
warning of disease outbreak 10 days ahead has been reported as an optimum warning time [54],
and a period of four days was considered to be a minimum incubation period. Sensitivity or
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true positive rate was assessed during ‘warning period’. Warning periods where the value of the
warning threshold was reached and would trigger a fungicide treatment, is considered as a true
positive (TP) and if the warning was not issued false negatives (FN).
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Contingency tables were created with sensitivity and specificity values from a confusion matrix
(as shown in Table 3) for each evaluated disease warning decision threshold for all model outputs.
The range of decision thresholds used as cut-off points, or the level of risk leading to treatment, was
from 1 to 18 EBH.

Table 3. Confusion matrix used for calculating the cutoff points for contingency tables.

Disease Forecast
Disease Observed

Yes No

Yes TP
Warning period

FP
No infection period

No FN
Warning period

TN
No infection period

Measures of
the performance

Sensitivity
TP/(TP + FN)

Specificity
TN/(TN + FP)

2.3.3. Receiver Operating Characteristic (ROC) Curves

The performance of each model was assessed using receiver operating characteristic curves (ROC).
An ROC curve is a graphical technique for assessing model predictive ability through the relationship
of specificity and sensitivity [56,57]. Empirical ROC curves were constructed with cut-off points for
different thresholds on a discrete scale. Specificity (i.e., 1-specificity) on the x-axis and the sensitivity
on the y-axis was plotted for each cut-off point. The accuracy of the model was evaluated based on
the area under the ROC curve (AUROC), serving as a single measure of the discriminatory ability of
the model [58,59]. The area under the curve (AUROC) was calculated for model outputs using the
trapezoidal rule [59]. In general, an AUROC of 0.5 suggests no discrimination (i.e., the model is no
better than a random predictor); as the value of AUROC approaches 1, the better the predictive value
of the model are [60].

2.4. Statistical Analysis

2.4.1. Evaluation of Leaf Wetness Estimation

In order to evaluate the LWt estimation, two indicators are evaluated; values of hourly rain
(rain > 0.1 mm) and rain and humidity (rain ≥ 0.1 mm and RH ≥ 90%). The model runs were split
in two groups, with each run having a measure of the LWt indicator in each group. The difference
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between paired samples was calculated; and normality of the sample distribution was visualized
using a histogram and density plot, and assessed with the Shapiro–Wilk test. Where samples did
not conform to a normal distribution, a non-parametric paired two-sample Wilcoxon rank sum test
was carried out to assess the difference between groups. Model outputs with higher performing LWt
indicators were kept for further analysis.

2.4.2. Evaluation of Main Variable Thresholds

Boxplots were used for the initial visualization of change in model accuracy, with a change in each
factor level of a single variable. A polynomial surface, using locally estimated scatterplot smoothing
(LOESS), was fitted to the AUROC data using each variable as a predictor and all possible interactions,
to model the trend of AUROC response with change for each variable threshold individually.

An orthogonal polynomial regression model was used to study the sensitivity of the AUROC
with the change in the model variable thresholds and their interactions. Polynomial response models
have shown to be useful for summarizing relationships [61]. The response surface methodology [62]
consists of a group of mathematical and statistical procedures used for approximating the functional
relationship between a selection of control variables which have an influence on the response
variable [63]. The polynomial models were fitted sequentially, starting from first order and adding
higher degree terms up to the fourth order. Model fits were assessed with their respective R2-value
and an R2 adjusted-value, a Shapiro–Wilk test of residuals and examination of the fitted surface,
until overfitting was indicated on the response surface plane. Additionally, the non-parametric local
regression (LOESS) was used to obtain predicted values for the four-dimensional response surface,
using RHt, Tt and SDt, and all three and two-way interactions as the predictors. The extent of
agreement was then compared between polynomial regressions and the LOESS regression to aid
in choosing the degree of the polynomial regression, measured using the concordance correlation
coefficient [64]. The lowest-degree polynomial that accomplished the required degree of approximation
was subsequently adopted. The higher degree polynomial models offer increased flexibility in
the response surface, but they need to be fitted with caution due to the potential to ‘overfit’ these
models [61].

The fitted polynomial equation was then expressed in the form of three-dimensional (3D) surface
plots, in order to visualize the interaction between the changes in thresholds (Table 2) and the response
variable. The graphical representation provides a method to visualize the relationship between
the response and experimental levels of each variable, and the types of interactions between the
test variables.

Due to awareness of constraints of the limited data set, we relied on current knowledge of PLB
disease epidemiology as a guide for interpretation of the results. Hence, a suite of model versions was
selected based on the results of the sensitivity analysis, which were subjected to further examination
based on the position and grouping of the cut-off points in the ROC space. Defining an optimal
decision threshold is not a trivial task [56]. The high cost of false negatives (FN) associated with
potential onset of PLB epidemics [14,65] predetermines that the decision threshold should lie closer to
the upper right-hand corner of the ROC curve, in order to minimize the associated risk of the disease
development [66].

2.5. Treatment Frequency and Dose Reduction

The crop risk prediction model is useful only if it provides the same level of protection as the
standard practice, while reducing necessary costs and labor [32,34]. In this theoretical study, we do
not account for the differences in the active ingredient or the type of the fungicide, but merely try
to associate a reasonable estimation of possible reductions in the number of treatments or/and dose
reduction with predictive power at predefined decision thresholds. After defining the ‘optimum’ sets
of model thresholds, it was necessary to compare the number of treatments and the pesticide usage
recommended by the model versions compared to standard growers’ practice. This was done in order
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to determine if the recommended model parametrizations are economically and environmentally
viable. Currently, spray intervals range from 5 to 7 days under Irish conditions, which are the intervals
we accounted for in this study. We evaluated three model parametrizations—the IR with the default
parameters (Section 2.2.3, The IR Model and Its Operational Use), and two improved parametrizations
as identified in the subsequent analysis.

We assume that planting starts the day after the daily average soil temperature is greater than
8 ◦C for three consecutive days after the 1 April. This is a common practice in Ireland, in line
with recommendations from the national advisory body, Teagasc. Farmers typically start fungicide
treatments as soon as the emergence progresses over 50% and continues until the potatoes’ above-ground
potato haulm completely die off, typically three weeks after desiccation. Here, we assume that the
growing season lasts 120 days. However, the pesticide protection continues during these three weeks,
until the potato above-ground potato haulm is desiccated.

The difference between standard growers’ practice and model versions is evaluated in two ways:

1. Reduction in the number of treatments, split into:

• Model guided: A fungicide treatment is applied every time the warning threshold is reached
with a minimum period of 5 days prior to following treatment, and;

• Model and calendar guided: A minimum of 5 and maximum of 10 days between treatments.

The sum of recommended treatments is calculated for all decision thresholds and seasons.
The resulting summaries are presented visually as point graphs. A LOESS curve was fitted to estimate
the minimum decision threshold where the protection according to the model is for fewer treatments
then the usual 5 or 7-day practice.

2. Dose reduction based on 7-day calendar treatment. Currently, Irish growers do not rely on the
operational warnings issued by the Met Éireann, but do increase the dose or use stronger, often
less environmentally friendly, formulations during those periods identified as at risk. Possible
dose reductions are calculated for the usual 7-day calendar treatment. The dose reductions are
based on the maximum risk calculated by the model during the 7-day period between treatments.
The maximum dose is applied if the risk is over 12 EBH, which is the current warning decision
threshold in Ireland.

2.6. Software Used for the Analysis and the Reproducibility

This analysis has been implemented in R, a freely available statistical programming language [67].
A portion of the data was imported using readxl [68]. Packages used for data munging: tidyverse [69],
zoo [70], data.table [71] and pracma [72]. Packages used for visualisations: ggplot2 [73], cowplot [74],
ggrepel [75], rsm [76] and ggthemes [77]. Univariate series imputation was implemented using
functions from package imputeTS [78]. Package zoo [70] was used for processing dates. Formatting of
tables was done with pander [79]. Packages rmarkdown [80] and knitr [81] were used for creating a
reproducible compendium. Package here [82] was used to ensure reproducibility on different platforms.
Programming functions from R.utils [83], string manipulation with mgsub [84] and statistical tests and
visualizations: rcompanion [85].

The full analysis can be reproduced using code and data archived at https://mladencucak.github.
io/AnalysisPLBIreland/.

3. Results

3.1. Evaluation Leaf Wetness Estimation

A Wilcoxon signed rank test showed that there was a significant difference (p < 0.001) between
AUROC values for the models. Using the combined estimators RH ≥ 90% and rain > 0.1 mm as
indicators for leaf wetness, were significantly higher than using only rain > 0.1 mm. The median

https://mladencucak.github.io/AnalysisPLBIreland/
https://mladencucak.github.io/AnalysisPLBIreland/
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AUROC for the method based on rain and RH thresholds was 0.735 compared to 0.695 for the method
only using rain indicator (Figure 4).
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Figure 4. Group median difference between models with leaf wetness estimation using rain (>0.1 mm)
or the combined rain and relative humidity (rain > 0.1 mm and RH ≥ 90%) as an estimator.

3.2. Evaluation of Main Variable Thresholds

Scatterplots with LOESS smoothing and boxplots indicated a non-linear relationship with change
in each factor level. The AUROC was found to increase when the thresholds for relative humidity and
sporulation duration were reduced. Conversely, an increase in the temperature threshold resulted in
an improvement in the predictive power of IR. For all variables, levels of predictor variables showing
an increase in AUROC also show higher levels of dispersion, indicating the necessity to investigate
the interactions.

A statistically significant cubic polynomial model (F3,323 = 105.9, p < 0.0001) was fitted to the
AUROC data with the proportion of variance explained by the model of 0.8617 and 0.8535 for R2 and
adjusted R2 values, respectively (Table 4). Diagnostic plots of residuals versus order of the data and
histogram indicated no violation of the normality assumption. The forth order polynomial model
showed only a slight increase in the R2 and adjusted R2 values, while the Shapiro–Wilks test indicated
a lack of normality in the distribution of the residuals. Visual assessment of the response surface
plotted with the 4th order model indicated a potential overfitting problem. Linear and quadratic fits
had lower R2 and adjusted R2 values and were considered unsuitable. In addition, the predictions
from the third-order polynomial model agreed the most with the local non parametric regression
(concordance correlation coefficient [64] of 0.9896 (95% CI: 0.9876; 0.9913)), hence this model was
deemed to adequately reproduce the behavior of the response surface.

Table 4. The table of fit statistics for polynomial models from first to fourth order fitted to area under
the receiver operating curve (AUROC) data.

Order No. of
Parameters

Degrees of
Freedom R2 Adj.

R2
F

Statistic
p

Value
Shapiro

-Wilk Test
Shapiro –

Wilk p-Value

1 4 339 0.637 0.634 198.68 <0.001 0.993 0.137
2 10 333 0.758 0.751 115.98 <0.001 0.997 0.813
3 20 323 0.861 0.853 105.89 <0.001 0.996 0.610
4 35 308 0.881 0.868 67.12 <0.001 0.990 0.030
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The 3D response surface for the AUROC against any two independent variables while keeping
the third independent variable at −3, 0 and +3 levels, respectively, is presented in Figure 5. In total,
nine 3D response surfaces were obtained by considering all possible variable combinations.Agronomy 2019, 9, x FOR PEER REVIEW 13 of 25 
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Figure 5. 3D surface for interaction effect of two variables with third variable fixed on a specific level.
3D surface plots represent interaction between: Tt and RHt, with SDt of 7 (a), 10 (b) and 13 h (c); SDt
and Tt, with RHt fixed at 87% (d), 90% (e), and 93% (f); and SDt with RHt, with Tt of 7 ◦C (g), 10 ◦C (h),
and 13 ◦C (i).

Figure 5a–c depicts the interaction between RHt and Tt, keeping SDt at its −3, 0 and +3 levels.
Figure 5a shows that AUROC increased with increasing Tt, up to 12 ◦C, and reduced RHt to 88% when
SDt was set at 9 h. If SDt is kept at the threshold of 12 h, a decrease in the AUROC is evident (Figure 5b),
while an increase in SDt to 15 h results in a significant reduction in model accuracy (Figure 5c).

It can be observed from Figure 5d–f, that the accuracy of the model increases with an increase
in Tt and a reduction in SDt. The area of AUROC of above 0.85 is achieved with the reduction of
sporulation period for 2 h and an increase of the temperature threshold of 2 ◦C. This effect on the
AUROC is reduced below 0.85 with SDt at the default threshold (12 h); while increasing SDt results in
a large reduction of the AUROC, to the level of an unacceptable prediction model.
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Figure 5g–i shows the interaction between RHt and SDt, keeping Tt at its −3, 0 and +3 levels.
Increasing Tt positively influences the model accuracy. Over the range of the Tt factor levels, the
area with the highest AUROC values is 0.79 by 0.83 by 0.87, associated with a temperature threshold
reduced to 7 ◦C, the default threshold and the one increased to 13 ◦C.

Overall, results indicate that reducing RHt to 88% and SDt to 10 h and increasing Tt to 12 ◦C
results in the largest improvements in the overall predictive performance of the model (Figure 5a,b,i).
Variations in Tt do not have the same magnitude effect on the model accuracy, as the manipulations of
RHt and SDt do.

Figure 6a–c depicts the ROC curves for the individual, selected model variable thresholds for
RHt (88%), SDt (10 h) and Tt (12 ◦C ), respectively. Adjusted RHt and SDt provides improvement
in terms of model specificity, with the grouping of cut-off points moving upwards in the ROC plane
and having no associated FN; overall accuracy displays some improvement. Overall, adjusting RHt
(Figure 5b) resulted in the greatest improvement in the model accuracy, with sensitivity of 0.8 and high
corresponding decision threshold scale of 3–9 EBH. Practically, this means that the risk accumulation
of up to 9 EBH was necessary for the onset of the disease in eight (out of 10) years. Adjusting Tt only
influenced the model performance with the sensitivity similar to the default model variable thresholds,
having two FN predictions, indicating that the change in Tt had the least impact on the improvement
in model performance (Figure 5c).Agronomy 2019, 9, x FOR PEER REVIEW 14 of 25 
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3.3. Treatment Frequency and Dose Reduction 

Figure 6. ROC curves for the model parameterizations according to the results of the sensitivity
analysis. The IR model parameterizations with the change in a single model variable threshold: relative
humidity (a), sporulation duration (b) and the sporulation duration (c), followed by the default (d),
optimized (e) and low risk (f) model parametrization.

The performance of the IR model with default variable thresholds is presented in Figure 6d. ROCs
for the existing IR variable thresholds revealed a lack of specificity, with no risk accumulation in two
years, while the current operational blight warning threshold was reached in only four out of ten years.
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A model with variable thresholds recommended by the analysis of the response surface (SDt = 10 h,
RHt = 88% and Tt = 12 ◦C), hereafter referred to as the optimized model (Figure 6e), shows improved
performance, with no FP. The disease outbreak was correctly indicated in all years of the study, although
the sensitivity dropped significantly in six years (corresponding to decision thresholds higher than
5 EBH), indicating that the maximum acceptable decision threshold for this model variation is 4 EBH,
corresponding to sensitivity of 0.9.

An additional model variation was chosen for further analysis, hereafter referred to as the low
risk model, with optimized SDt (10 h) and RHt (88%); Tt kept at the original, default threshold of
10 ◦C (Figure 6f). This was guided by the limited impact of changing the temperature threshold on
the specificity of the model (Figure 6c), limitations related to the size of the biological data set used
in the evaluation, a lack of knowledge of the pathogen founder population and the risk associated
with possible disease outbreak. The ROC curve for this model showed improvement in the sensitivity
of the model, with eight years having up to 11 EBH accumulations. While a drop is evident in the
AUROC value due to loss in specificity, the grouping of decision threshold points higher in the ROC
plane allows consideration for another decision threshold as high as 11 EBH with a Sensitivity of 0.8.

3.3. Treatment Frequency and Dose Reduction

Assuming the usual calendar spray practice was followed during the period investigated,
the number of treatments calculated for the seven and five-day calendar spray programs were 15 and
22, respectively. The decrease in the number of recommended treatments with the increasing decision
threshold approximated with the LOESS curve is presented in Figure 7. All model versions provide a
reduction in the number of treatments compared to the standard five-day calendar treatment.
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Figure 7. Difference between the model guided and the standard grower practice number of treatments
over the range of decision thresholds. Figures (a–c) depict the sums of guided model; (d–f) the model
and calendar guided number of treatments per year. The dots represent the number of treatments
per corresponding warning threshold in each year. LOESS curve represents the average potential
benefit from the use of the model. The 5 and 7-day lines represent number of treatments per estimated
crop season. If the fitted smoothed line is above the estimated calendar frequency line, the model
recommends more treatments than the usual standard calendar program, on average.
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The number of treatments according to the default parametrization of IR is lower than the calendar
practice across the range of decision thresholds (Figure 7a,d). In the case of the optimized model, the
LOESS curve does not intersect any of the growers practice lines, indicating that the average number of
treatments recommended by the model is lower than any grower practice schedule across the range of
decision thresholds (Figure 7b,d). Given that the optimum decision threshold should not be lower than
4 EBH, the optimized model still provides an opportunity for a reduction in the number of treatments
in all but one year and as low as five per season when compared to the seven-day program.

The number of treatments advised by the low risk model when the decision threshold set to 3 EBH
(lowest observed risk accumulation prior to the disease outbreak) is lower than the 7-day treatment
interval on average. However, this is not the case in years such as 2012 or 2007, when the number of
treatments with a decision threshold of 7 EBH is close to the seven-day treatment frequency. However,
the possibility to set higher decision threshold provides more opportunities for reducing the number
of treatments, in the range from 5 to 11 EBH, with an average ranging from 12 to as low as six for the
five-day strategy, and 13 to 10 for the five to ten day strategy.

The cumulative proportion of the total fungicide applied using model guided strategy and the
number of treatments is compared to the 7-day calendar practice in Figure 8. All model versions
provide reductions in both the total dose and the number of treatments applied. The reductions are
lowest for the year 2012 which was one of the most severe ‘blight years’ on record [86]. Overall,
the highest mean dose reduction is achieved by the default IR (0.248), followed by optimized IR (0.33);
the lowest mean dose reduction is expectedly associated with the low risk IR (0.436).
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Figure 8. Dose reduction and number of treatments recommended per year by the IR: optimized model
and low risk model. Facets marked with the year on top represent summaries for individual years
while the last facet represents the averages and variance across all years. In the facets for the individual
years, the height of bars represents the proportion of the dose applied per model compared to the total
dose, while numbers at the top of the bars represent the total number of treatments recommended by
the model in each year. In the overall summary (facet on the far right), height of the bar represents the
mean dose reduction, the number above the bar is the mean number of treatments during the year and
the error bar represents standard deviation.
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4. Discussion

We presented an evaluation of the operational algorithm for potato late blight risk forecasting in
Ireland. To evaluate the selected algorithm, a sensitivity analysis of the threshold values associated
with the most important variables were assessed using empirical ROC curves derived from 10 years
of historical weather and disease observation data. Guided by the results of the sensitivity analysis,
current epidemiological knowledge and PLB risk awareness, we identified two improved sets of model
parameters and a range of operational thresholds. Finally, three disease control strategies, two based
on these improved model thresholds and currently using model parametrization, are compared to
standard growers’ practice.

Crossovers between empirical and mechanistic models are a common approach in crop disease
forecasting [42]; the IR model is one example. Mechanistic algorithms are a function-based estimation
of conditions for the development and completion of several (or a single) segments of disease
development, while in the IR, these segments are limited to a threshold-based prediction of their
completion. The threshold selection is often based on estimates by the model developer and may
not be an accurate representation of the complex nature of biological processes [87]. Such algorithms
have their appeal in their simplicity, although biological processes, such as the developments of
disease epidemics, do not have a binary state but are a part of a complex system that encompasses soft
transitions between minimum, optimum and maximum states [88]. The semi mechanistic form of the
IR adopted at the time for operational use in Ireland, required a number of simplifying assumptions.
These favored more “conservative” variable thresholds, to reduce the frequency of warnings. Our
results indicate that the previously defined default thresholds of the Irish Rules are no longer fit for
risk prediction in the new PLB pathosystem, and are based on the available data.

This study is in agreement with older reports stating that blight epidemics in Ireland are not
initiated before the second half of June [27] due to low night temperatures [89]. Average minimum
daily temperature in Oak Park was low in April and May, 4.5 ◦C and 7.2 ◦C respectively, providing a
potential explanation for the low pathogen activity during this period. Lower temperatures in the
early stages of potato development can provide a certain level of protection until the plants reach a
level of maturity where they are more resistant to attack [90]. This has been challenged in recent times
due to the rise in aggressiveness of newer pathogen strains active over a wider range of environmental
controls [12,28,86]. The Irish Rules model uses a hypothetical lower temperature threshold of 10 °C
without an upper boundary, consistent with a number of early prediction models employed in Northern
Europe [37,40,91–93]. Our results indicate that the development of P. infestans under typical Irish
weather conditions is low if the temperature is less than 12 °C. However, considering a relatively
small gain in overall model accuracy, a more comprehensive evaluation would be necessary prior to
recommending increasing the current temperature threshold. Previous research from areas with a
diverse pathogen population cautions that blight epidemics will progress even if temperatures are
lower than 10 °C, under extended humid periods, although the rate of this progress is low [94,95].
Additional years of data and knowledge of the founder population would be required to ensure that
this is a robust conclusion, suitable for deployment on an operational basis.

Evidence exists for reducing the relative humidity threshold and duration of initial sporulation
period. The diagnostic performance of the optimized model versions with these factors provides a
‘safer sleep’ for the farmer. Our results are in agreement with the report from Fennoscandia rejecting a
relative humidity threshold of 90% as a development threshold [96]. This threshold has been adjusted
in a number of models used throughout Europe; i.e, the French model, Milsol, uses a threshold of
86% (Gaucher, personal communication) and the Danish Blight management uses a threshold of 88%
(Hansen, personal communication). There are a number of reasons to opt for lower risk when deciding
on which reported relative humidity threshold should be considered blight favorable, such as accuracy
of measurements, distance between weather data source and the production area, topography of
the area, physiological and phenological differences in crop haulm density and shaded areas of the
production fields [49,97,98].



Agronomy 2019, 9, 515 17 of 24

Leaf wetness estimation is one of the key parameters in agricultural meteorology controlling
pathogen infection and determining disease development rates [99,100]. In agricultural field conditions,
leaf wetness may result from rain, fog, irrigation or distillation from the soil [101]; our results indicate
that a simple use of a precipitation threshold is not an appropriate estimator of leaf wetness in this
context and should be supplemented with an additional estimator based on a simple empirical model
for RH. Due to lack of in field measurements, we used a ‘reverse’ approach to test the validity of
proposed estimation method by comparing the leaf wetness estimation to the disease occurrence [102].
This estimation method has been successfully employed in a number of DSS worldwide [99,103].

A low risk of three and four EBH was predicted by both the optimized and low risk models,
prior to the disease onset during two of 10 years studied, 2011 and 2014. Possible reasons for this
are the proximity and strength of the inoculum source or the aggressiveness of the pathogen lineage
initiating the epidemics. The specific P. infestans lineages that initiated the epidemics in our data is not
known, but we can hypothesize that these infections were initiated by the more aggressive strains.
Additionally, epidemics in both years were initiated later in the season, on July 28th and August 1st,
possibly coinciding with a shift in the structure of pathogen population, increasing the probability that
the infections were initiated by a more aggressive strain. Limited findings from our monitoring of
the founder population at Oak Park, from 2016 to 2018, show that the epidemics are predominantly
initiated by the older clonal EU_8_A1 genotype, while the population structure changes in favor of
new genotypes EU_6_A1 and EU_13_A2 over the course of the season. This is in agreement with
recent experimental evidence regarding the establishment of the new P. infestans genotypes under Irish
conditions [20–22] exhibiting an increase in aggressiveness [12–15,17]. Hence, we can recommend
4 EBH as the minimum decision threshold to be considered under conditions of high disease pressure
or if the outbreak of aggressive strain of the pathogen is reported.

The optimized model offers significant potential to increase the model specificity and
consequentially, reduction in the number of required treatments, compared to the low risk model
in the high sensitivity range of the ROC curve, between 0.9 and one. The difference between the
optimized and low risk model, calling for caution, is the grouping of the cut-off points corresponding
to the decision thresholds above 5 EBH. A number of decision thresholds for the low risk model are
closer to the higher sensitivity area (5–11 EBH at 0.8 sensitivity) compared to the optimized model
(all cut-off points higher than 5 EBH correspond to 0.6 sensitivity). Thus, determining a higher
decision threshold, which requires less treatments, is possible for the low risk model at 0.8 sensitivity,
although defining an exact threshold is difficult since values from 5 to 11 EBH correspond to the same
sensitivity value. In the case of small sample sizes, the crude empirical estimate has the disadvantage
of providing the same sensitivity values for different specificity values. The robust methodology
and highly reproducible coding example allow for the regular updating and evaluation of the model,
leading to clearer definitions of the risk and/or benefit associated with each decision threshold as the
new data becomes available.

We have shown that on average, the use of risk prediction models offers a possibility for reducing
fungicide inputs compared to standard Irish growers’ practice. Possible reductions in the dose and the
number of treatments exhibit variation across the period studied. This reflects the nature of agricultural
production and further empowers the need for IPM approach to defining the treatment intervals. While
spray intervals should be longer than seven days, most of the time these intervals could be justifiably
reduced during parts of the ‘blight year.’ Currently, operational decision thresholds for issuing blight
warnings are not clearly defined and based on experience. Here we provide an estimation of risk
associated with decision thresholds in the higher sensitivity range. The accumulation of EBH needed
to issue the warning at sensitivity levels of 0.9 and one is the same for both the optimized and low
risk models, with the optimized model providing greater opportunities for reducing the number of
fungicide treatments and/or the dose. However, an important advantage of the low risk model is
related to the sensitivity, 0.8, providing more certainty in model outputs if the warning is considered
at a higher decision threshold, from 5 to 11 EBH. Such situations may be considered when other
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factors necessary for the disease development are estimated lower, such as earlier part of season, more
resistant varieties or low number of reported disease outbreaks in region. The adoption of decision
support systems and utilization into everyday practice could have numerous benefits for growers,
such as optimization, as well as, justification of fungicide inputs [54]. Our findings indicate that the
original Irish Rules model parameters need to be altered for two model variables, which inevitably
will result in an increase in the frequency of warnings. Optimization of the control program does not
necessarily mean reduction in the number of treatments, and an effective forecasting scheme could
advise at least as many fungicide treatments as the standard growers practice during seasons with
blight favorable conditions [104], which often occur with typical weather conditions experienced in
Ireland. The decision on the level of risk acceptable by a grower is a complex one, made according
to price of treatment, value of production, legislative restrictions [96] and the need for reduction to
prevent the development of fungicide resistance [33]. Hence, here we do not make a recommendation
for the exact decision threshold but elaborate on possible reductions and varying levels of risk deemed
acceptable by a producer. Met Éireann issues regional warnings and these warnings, and the quality
of these warnings, could be improved with information regarding the disease outbreaks and rapid
identification of the pathogen lineage, due to reasons outlined above.

Decision support at the synoptic level is not a silver bullet to provide an ultimate solution
for optimal environmentally friendly disease control, but merely another tool to get closer to it.
Unfortunately, if it is not utilized as such, and in an inappropriate manner it can lead to an opposite
effect. Plant disease models are often parochial in nature, evaluated by researchers who developed
them, and are often used without calibration when employed in agroecosystems different from those
they were developed for [31,105]. The interdisciplinary nature of the work related to decision support
in crop protection, requiring skills and knowledge in informatics, mathematics, meteorology, agronomy
and biology are often a limiting factor for the sustainable development of this branch of plant disease
epidemiology [49]. One possible way to overcome some of the obstacles is acceptance of open and
reproducible methods. The importance and need for open-science in the field of phytopathology
has been reported as a way include recruitment of experts from different fields, the application
of cutting-edge methods and timely replication of data analyses to increase the robustness of the
findings [106]. Some of the relevant examples are coming from other fields of research, related to
potato late blight. The development of our understanding and knowledge of P. infestans population
diversity has been empowered with POPPR, a widely used R package for enabling easier genetic
analysis of clonal populations [107]. Moreover, Sparks et. al. [108] evaluated the possible implications
of the climate change on potato late blight in the future. These do not have only a scientific value,
but represent a significant contribution to the education of a new generation of phytopathologists,
who will need to be equipped with such knowledge and skillsets to be able to keep up with the ‘fight’
against ever-evolving plant pathogens.

Easily accessible tools are necessary for validation and calibration of risk models using historical
data prior to field evaluation in other climatic regions or re-evaluation in the in the original ecosystem,
which could potentially save a considerable amount of time and money and lead to more sustainable
use of decision support in plant protection. To the best of our knowledge, this is the first completely
reproducible evaluation of a crop disease risk prediction model, implemented in a single computing
environment, within a freely accessible software language. Such work, it is hoped, will empower the
sustainable development of potato late blight and crop disease forecasting in general.

5. Conclusions

The results have shown the there is a need to revisit the parameters of the Irish Rules model,
proposed for the different ecosystem and operational abilities at the time, and the operational use of the
model. On the basis of the work presented here, we recommend the reduction of variable thresholds
for relative humidity from 90% to 88% and sporulation duration from 12 to 10 h; and adopting an
additional leaf wetness indicator, incorporating both precipitation (≥0.1 mm) and relative humidity
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(≥90%). Our analysis indicated that very little blight development was occurring at temperatures lower
than 12 ◦C; however, we do not recommend this increase operationally due to the lack of certainty
associated with the small data sample size and the high risk related to possible disease outbreaks and
wider decision threshold range in the high sensitivity area of the ROC space for the low risk model.
However, the thresholds identified here should be continuously evaluated after each growing season,
facilitated here by the development of the methodology and associated model evaluation code. Our
recommendation for the operational application of the model is to use the range of 4 to 11 EBH and
set the threshold dynamically during the season based on the reports of the frequency of the disease
outbreaks in the region of interest. Future development of the Irish PLB warning system should include
rapid in-season identification of pathogen genotype distribution to be used as a guide for selection of
the decision threshold.

Representation of the complex aetiology of P. infestans is omitted or generalized with synoptic
empirical prediction algorithms, and other components of this pathosystem, such as pesticide
protection status, crop resistance [7], quality of meteorological network coverage and distances between
production field and weather stations [54], crop phenological stage [6] and pathogen genotype [11,28].
Understanding complexities of the agroecological system under investigation is crucial for interpreting
results of the analysis we have implemented. Small data sets may carry high variability due to a
limited number of observations [57]. Hence, we add a note of caution when employing the model
proposed here.

The exact methodology used in the development of early models, such as the IR, is not always clear,
but the assumption is that they were a product of empirical, often trial and error based methodologies
and weather data available at the time (Yuen and Mila, 2015). Hence, the recommendation for future
development is to explore the possibility of redesigning currently employed models to facilitate the
transition from the threshold based binary estimation of stages of host parasite interaction, to a more
realistic one, based on a functional relationship between host, parasite and the environment. Future
work on development of risk prediction algorithms, should also take into consideration additional
uncertainty introduced by forecasted weather data, avoiding the usual practice in crop disease
modelling where models are developed with observed weather data and applied on forecasted weather
with no evaluation of the impact of weather-forecast uncertainty on model predictions [49]. Approaches
in IPM cannot be limited to a single discipline’s efforts. The vast amount of data available nowadays
that are currently under-utilized provides a number of opportunities for smarter farming [109]

The challenge still remains in front of the end user to adequately employ information provided
in the decision-making process with an awareness or knowledge of characteristics of variety grown,
growth stage, control measures used, risk from surrounding areas, accessibility of active ingredients, etc.
The often hard-earned confidence by the final user could be maintained through constant evaluation of
the system and adequate education regarding the appropriate use of decision support tools.
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