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Abstract This paper addresses the problem of structure
detection for polynomial NARX models. It develops MERR,
a multiobjective extension of a methodology well-known as
the error reduction ratio (ERR). It is shown that it is possible
to choose terms which take into account dynamics of pre-
diction error and other types of affine information, such as
fixed points or static curve. Two examples are included to
illustrate the proposed methodology. A numerical example
shows that the technique is able to reconstruct the structure
of a system, known a priori. The identification of a pilot
DC–DC buck converter shows that the proposed approach is
capable to find models valid over a wide range of operation
points. In this latter example, MERR is compared with ERR
in two forms: (i) affine information is applied only in the
structure selection for MERR and (ii) affine information is
applied for structure selection for MERR and for parameter
estimation for both MERR and ERR. In both comparisons,
MERR presented nondominated solutions of Pareto set.
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1 Introduction

Despite major advances in system identification, model struc-
ture detection is still a great challenge (Baldacchino et al.
2012). An approach used to identify black-box models,
such as polynomial nonlinear auto-regressive with exoge-
nous inputs (NARX) (Leontaritis and Billings 1985), consist
in choosing a predefined number of model terms in a larger
set of candidate terms (Korenberg et al. 1988; Mendes and
Billings 2001). Once the model increases its maximum non-
linearity degree, the search space is enlarged, increasing the
complexity of structure detection. Considering a nonlinear
polynomial NARX model with 10 as its maximum degree
and input/output maximum lag, it would yield to a set of
more than 30 million candidate models in the search space.
Among them, each regressor may represent a specific sys-
tem behaviour or not, being classified either as genuine or
spurious (Aguirre and Billings 1994, 1995).

Traditionally, structure detection uses only real dynamic
data, acquired from a test station (Ljung 1987). Piroddi
and Spinelly (2003) have developed an error-based simu-
lation technique for structure detection, using dynamic data
whereas Korenberg et al. (1988) have used the prediction
error. In Baldacchino et al. (2012), a unified framework is
developed where the whole model (parameter and structure)
is obtained simultaneously, based only in dynamic data. In
this sense, with a view to data acquisition, the process has
to be excited by a persistently exciting input, which is not
always possible.

Besides, there are many systems where the dynamic data
are hampered by noise or very hard to acquire (Aguirre et
al. 2000). Furthermore, all information about the process to
be modeled may not be included in these data. Hence, it is
important to develop new techniques that include dynamic
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information and other types of information during the struc-
ture detection procedure, which is still lacking in science.

Johansen (1996) focused his research on the inclusion
of auxiliary information in the parameter estimation. Infor-
mation beyond dynamical data was used to compose the
model, giving rise to the so-called multiobjective system
identification (Nepomuceno et al. 2007; Barroso et al. 2007).
Such types of information are generally used for parameter
estimation, a step already consolidated (Zhao et al. 2011;
Wei and Billings 2009; Previdi and Lovera 2004). Struc-
ture detection techniques, just like the ones cited above, are
mostly mono-objective (Cantelmo and Piroddi 2010; Wei and
Billings 2008), considering only dynamic data to select gen-
uine regressors. The incorporation of further information in
the structure detection stage is the main aim of this work.

This paper presents the multiobjective error reduction
ratio (MERR), a multiobjective procedure for structure
detection of polynomial NARX models. The methodology
presented is an extension of the technique widely used, the
error reduction ratio (ERR) (Korenberg et al. 1988) which
considers only dynamic data to select models structures.
When more information is available rather than only dynamic
data, MERR allows an alternative way to get models struc-
tures with compromise among the objectives, i.e., regarding
several types of information about the system (input/output
dynamic data, static curve, and fixed points).

This paper is organized as follows. The first section has
introduced the subject and has presented the paper in an over-
all point of view. Section 2 presents some background con-
cepts used on this work. Section 3 shows the methodology
proposed to develop MERR and used to obtain the results,
which are shown in Sect. 4. Two examples are included to
illustrate the proposed methodology: (i) a numerical example
based on a discrete-time nonlinear SISO polynomial NARX
system and (ii) a pilot DC–DC buck converter with affine
static and nonlinear dynamic. Section 5 presents conclusions
and future research perspectives.

2 Nonlinear System Representation

2.1 The ERR

Consider the polynomial NARX (Leontaritis and Billings
1985) model described by Eq. (1)

y(k) = F�
[
y(k − 1), . . . , y(k − ny), u(k − 1), . . . ,

u(k − nu)] , (1)

where ny and nu are the maximum lags considered for the
process and input terms, respectively. Moreover, y(k) is a
time series of the output while u(k) is a time series of the
input. F�[·] is some nonlinear function of y(k) and u(k).

In this paper F�[·] is taken to be a nonlinear polynomial of
degree � ∈ Z+. In order to estimate the parameters of such a
polynomial, Eq. (1) can be expressed as follows:

y(k) = ψT(k − 1)θ̂ + ξ(k) =
nθ∑

i=1

θ̂iψi (k − 1)+ ξ(k), (2)

where ψ(k − 1) is the vector of regressors (independent
variables) that contains linear and nonlinear combinations
of output and input terms up to and including time (k − 1),
T operator is a vector transposition, θi is i th parameter of i th
regressorψi , and nθ is the number of terms of the model. The
parameters corresponding to each term in such matrices are
the elements of the vector θ̂ . Finally, ξ(k) is the residual or
prediction error at time k which is defined as the difference
between the measured data y(k) and the one-step-ahead pre-
diction ψT(k − 1)θ̂ . An auxiliary model may be expressed
as

y(k) =
nθ∑

i=1

ĝi�i (k − 1)+ ξ(k), (3)

where ĝi is the parameter associated to the regressor �i ,
which composes the associated orthogonal model, and y(k)
is the output dynamic time series. The orthogonal model can
be obtained from the original NARX model by means of
Householder transformations.

ERR (Korenberg et al. 1988) can be obtained as an inner
product (Chen and Billings 1989). This criterion provides
indication of which terms to include in the model by ordering
all the candidate terms according to a hierarchy that depends
on the relative importance of each term. The average value
of inner product of the output data is:

〈y, y〉 =
nθ∑

i=1

ĝ2
i 〈�i ,�i 〉 + 〈ξ , ξ 〉, (4)

where 〈·, ·〉 is the inner product symbol, �i is the i−th
orthogonal regressor, and ĝi its respective parameter. y is
the dynamic output and ξ is the residue.

One of the many advantages of such algorithms is that
the ERR (Korenberg et al. 1988) can be easily obtained as
a by-product (Chen and Billings 1989). This technique is
based on one-step-ahead dynamic prediction error, linking
each search space regressor to a corresponding index. This
index quantifies the contribution of the regressor to minimize
〈ξ , ξ 〉, which is defined as:

〈ξ , ξ 〉 = 〈y, y〉 −
nθ∑

i=1

ĝ2
i 〈�i ,�i 〉. (5)

If any regressor was included in the model (nθ = 0), 〈ξ , ξ 〉
would be exactly the quadratic sum of the output and it would
decrease (g2

i 〈�T
i �i 〉) for each regressor �i included in the

model. This reduction can be normalized, considering the
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mean quadratic error, composing the ERR of the i th regres-
sor:

ERRi = ĝ2
i 〈�i ,�i 〉
〈y, y〉 . (6)

The parameters may be calculated by means of

ĝi = 〈�i , y〉
〈�i ,�i 〉 , i = 1, . . . , nθ . (7)

After the terms have been ordered by the ERR, an infor-
mation criterion can be used to help choose a good cut-off
point. This work uses the Akaike Information Criterion (AIC)
defined as follows (Akaike 1974):

AIC(nθ ) = N ln[σ 2
e (nθ )] + 2nθ , (8)

where N is the length of the data vector,σ 2
e (nθ ) is the variance

of modeling error, and nθ is the number of model parameters.

2.2 Multiobjective System Identification

Let the definition of Affine Information (Nepomuceno et al.
2007) be:

Definition 1 (Affine Information) Consider the parameter
vector θ̂ ∈ �n

θ , a vector v ∈ �N and a matrix G ∈ �N×nθ .
Both v and G are assumed to be accessible. Moreover, sup-
pose Gθ̂ constitutes an estimate of v, such that v = Gθ̂ + ε,
where ε ∈ �N is an error vector. Then [v,G] is said to be an
affine information pair of the system. ��

Taking (2) over a set of data yields

y = � θ̂ + ξ . (9)

According to the definition above, [y, �] is an affine infor-
mation pair, where y ∈ �N , � ∈ �N×nθ , and ε = ξ . The
vector θ̂ is usually estimated by minimizing convex function-
als of the form

JLS(θ̂) = ‖ ξ ‖2
2= (y −� θ̂)T(y −� θ̂), (10)

where the last functional is minimized by the least-squares
estimator. In a multiobjective approach, the problem is to
minimize

J(θ̂) =
[

J1(θ̂) . . . Jm(θ̂)

]T

, (11)

where J(·) : �n 	→ �m . The outcome is a set of solutions—
called the Pareto-set—that describes the trade-off among
these objectives, namely the minimization of each cost func-
tion. In this paper, the cost functions J1(θ̂), . . . , Jm(θ̂) take
into account auxiliary information about the system.

Generally, there is no unique solution (model) that simul-
taneously minimizes all the different cost functions J j (·).
Rather, several solutions (models) are found with the property
that the improvement of any objective necessarily implies

loss in some other objective. These are the efficient solutions
or the Pareto set solutions. Any parameter vector which is
an efficient solution will be referred to as a Pareto model.
Thus, Pareto models are “the best” in the sense that there
is no ordering among them, and that there is always some
Pareto model that is better than any non-efficient solution,
when compared in all optimization objectives. In the case of
all functionals J j being convex1, the Pareto set can be found
by defining (Chankong and Haimes 1983)

W = {w | w ∈ �m, w j ≥ 0 and
m∑

j=1

w j = 1} (12)

and solving the convex optimization problem

θ̂
∗ = arg min

θ̂

〈w, J(θ̂)〉. (13)

For each vector w, which defines a particular combination
of weights to the various cost functions involved, a solution
θ̂

∗
belonging to the Pareto set �̂

∗
is found. The entire Pareto

set is associated to the set of all realizations of w ∈ W .

Example 1 Following the Definition 1 (Nepomuceno et al.
2007), it is possible to express the following pair of affine
information. (a) Dynamic data (input/output): [y, �], where
y is the output data and � is the regressor matrix. (b) Fixed
points: [σ, S], where σ is the normalized set of cluster coeffi-
cients and S ∈ ��+1×nθ is a constant matrix, that maps para-
meters to the cluster coefficients, that is σ̂ = Sθ̂ . (c) Static
function: [ȳ, Q R], where ȳ is the steady state of output, R is
a constant matrix of ones and zeros that maps the parameter
vector to the cluster coefficients, and Q = [

q1 . . . qnsf

]
, in

which nsf different steady-state points of input and output
were considered. ��

3 The Multiobjective Error Reduction Ratio (MERR)

Using the definition of affine information, (2) can be rewritten
as

vj = G j θ̂ + ξ j (14)

where [v j ,G j ] is the j th pair of affine information and Eq.
(4) can be changed to

〈vj, vj〉 =
nθ∑

i=1

ĝ2
i 〈� j,i ,� j,i 〉 + 〈ξ j , ξ j 〉. (15)

where � j is the j th orthogonal vector of the respective affine
information and

〈ξ j , ξ j 〉 = 〈vj, vj〉 −
nθ∑

i=1

ĝ2
i 〈� j,i ,� j,i 〉. (16)

1 Notice that this is not true if any functional J j is not convex.
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Thus the ERR for i th regressor and j th affine information
is expressed as

ERRi, j = ĝ2
i 〈� j,i ,� j,i 〉

〈v j , v j 〉 . (17)

Then the m affine information pairs can be simultaneously
taken into account to yield the multiobjective ERR, named
as MERR for the i th regressor. Using the weighted sum of m
affine information pairs yield:

MERRi = ĝ2
i

m∑

j=1

w j
〈� j,i ,� j,i 〉

〈v j , v j 〉 . (18)

Similarly, the parameters may be expressed as

ĝi =
m∑

j=1

w j
〈� j,i , v j 〉

〈� j,i ,� j,i 〉 , i = 1, . . . , nθ . (19)

Considering just the incorporation of dynamic data in the
Eq. (18), MERR becomes exactly the traditional ERR. In this
case, the problem would have only one weight (w1 = 1),
associated to the dynamic residue variance.

When there is not enough information embedded in
dynamic data for obtaining a representative model, affine
information may be incorporated in the structure detection
procedure by means of the presented technique. In addi-
tion, these kinds of information can be available either by
means of real data or theoretically. Information, such as sta-
tic curve, dynamic behavior, fixed points, and static gain, can
be inserted using MERR technique, once such type of infor-
mation can be written using the prediction error formulation,
in function of the model parameters.

The inclusion of each regressor is done sequentially by
means of a forward algorithm. First of all, the regres-
sor with maximum MERR composes the model with one
regressor. Afterwards, MERR is calculated for the remain-
ing non-included regressors, without the regressor previously
selected. The regressor with maximum MERR is included in
the model. This procedure is repeated until the desired model
size, i.e., the desired number of regressors is obtained.

Example 2 Taking (18) for two affine information: dynamic
data and fixed point [v1,G1] = [y, �] and [v2,G2] = [σ, S],
it yields

MERRi = ĝ2
i

2∑

j=1

w j
〈� j,i ,� j,i 〉

〈v j , v j 〉

= ĝ2
i

(
w1

〈�1,i ,�1,i 〉
〈y, y〉 + w2

〈�2,i ,�2,i 〉
〈σ, σ 〉

)
, (20)

where �1,i and �2,i are the orthogonal regressors for� and
S, respectively. ��

Example 3 Taking (18) for three affine information: dynamic
data, static function, and fixed point [v1,G1] = [y, �],
[v2,G2] = [ȳ, Q R] and [v3,G3] = [σ, S], it yields

MERRi = ĝ2
i

3∑

j=1

w j
〈� j,i ,� j,i 〉

〈v j , v j 〉

= ĝ2
i

(
w1

〈�1,i ,�1,i 〉
〈y, y〉 + w2

〈�2,i ,�2,i 〉
〈ȳ, ȳ〉 + w3

〈�3,i ,�3,i 〉
〈σ, σ 〉

)
,

(21)

where �1,i , �2,i , and �3,i are the orthogonal regressors for
�, Q R, and S, respectively. ��

3.1 MERR Analysis

Since MERR is a multiobjective problem solved by the
weighted sum approach, the ERR can be directly derived,
using only dynamic data (in this case, w1 = 1). On the other
hand, varying the weights associated to each objective (affine
residues variance of each information), models belonging to
the Pareto set can be obtained. Clearly, each solution of the
Pareto optimal curve may have a different structure. Non-
optimal solutions may be generated and these solutions do
not compose the Pareto optimal set, once they do not repre-
sent the system as well as other solutions.

The use of auxiliary information by means of the presented
approach helps one find a model structure which is more com-
patible with represent specific types of system informations.
In some cases, using only dynamic data is not enough to
achieve a reliable model. Furthermore, some systems may
have several limitations on dynamic data acquisition or even
a low signal to noise ratio. These kinds of problems can be
minimized using the MERR approach.

Since the Pareto optimal set was already obtained, the
decision problem comes up. This is not a trivial problem and
there are also some techniques available for that. Nepomu-
ceno et al. (2007) present a decision technique based on the
minimization of the norm of a vector composed by the nor-
malized objectives, while the reference Barroso et al. (2007)
uses minimal correlation criterion. In the present work, all
the models obtained will be analyzed and validated either
using the known structure (numerical example) or by means
of the normalized root mean squared error (RMSE) index,
defined as:

RMSE =
√∑N

k=1[v(k)− Gθ̂(k)]2

√∑N
k=1[v(k)− v̄]2

, (22)

where Gθ̂ is the estimative of v(k), whose average is v̄. This
index measures the error coherently with the data used to
validate the model and should be calculated by the use of a
specific validation dataset. Models are considered representa-
tive when this index is lesser than one, meaning that the error
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is, on average, lesser than the error given by the mean of the
time series. Finally, the multiobjective feature of the MERR
has to be highlighted, since the structure detection techniques
are mostly mono-objective. These techniques are not able to
quantify the contribution of each regressor, explaining dif-
ferent system characteristics.

All simulations were performed on Matlab®, by means
of an Asus® laptop, using 4 Gb of RAM, Intel® core i3
at 2.27 GHz, running Windows 7 ® Home Premium. 2 was
used as the maximum order for input and output regressors,
as well as the maximum nonlinearity degree of each model.

4 Application Examples

4.1 Numerical Example

Consider the following polynomial NARX system, presented
originally by the reference Bonin et al. (2010):

y(k) = 0.5y(k − 1)+ 0.8u(k − 2)+ u(k − 1)2

− 0.05y(k − 2)2 + 0.5 + e(k), (23)

The input u is given by a linear combination of an auto-
regressive regressor and a white Gaussian noise with mean
zero and variance one, composing a low-pass filter:

u(k) = 0.5u(k − 1)+ ℵ(k), (24)

where ℵ(·) is the white Gaussian noise.
This kind of excitation may confuse the identification

algorithm in the estimation process, once the difference
between regressors like y(t) and y(t − 1) is considerably
reduced Bonin et al. (2010). The noise added is also white
and Gaussian with mean zero and variance 0.05.

The static data used for identification were generated by
applying term clustering theory on the Eq. (23). The model
is composed by constant, linear in u and y, and quadratic in
u and y clusters.

MERR was applied to identify this system, considering
[y, �] and [ȳ, Q R] as affine information pairs (dynamic
and static data). Weights w1 = [0.1; 0.35; 0.7; 0.9; 1] and
w2 = [0.9; 0.65; 0.3; 0.1; 0] were used for dynamic and sta-
tic information pairs, respectively. These weights were cho-
sen aiming a good diversity of the Pareto set. Observe that, for
w1 = 1, MERR is equivalent to ERR. From now, the models
will be indexed as MERRz , where z is the zth column of the
weights vectors.

Besides, according to the AIC, 7 regressors would have
to be inserted in the model to identify this system. Although
this is not true (the model structure is already known and it
has five regressors), MERR will be calculated for a model
with seven regressors.

In order to avoid bias in the parameter estimation proce-
dure, parameters were estimated through the use of extended
least squares, composing a NARMAX structure. However,
the presented technique can be applied either for NARX or
NARMAX structures or even to other linear in parameters
representation.

The Table 1 shows the results obtained when MERR was
applied to the numerical system proposed, and the parame-
ters associated to each regressor. Considering five regressors
obtained in the first five iterations (i = 1, · · · , 5 on the Table
1), MERR was able to reconstruct the original system using
either dynamic or dynamic and static data (MERR3, MERR4

and MERR5).
To check out the proposed technique in different noise

realizations, the model MERR3 was simulated, considering
100 noise realizations. Table 2 presents the results obtained.
In all simulations 7 was considered the model length and
the mean and standard deviation of MERR obtained for each
noise realization were calculated. Further, in all simulation
(as can be noticed by the third column) the genuine regressors
were chosen by the MERR. This means that, for this case,
MERR is useful not just to a specific noise realization.

The use of a low-pass filter as an input hindered the iden-
tification process. The AIC has suggested 7 regressors as
an estimative of the model’s length. However, the MERR is
robust enough to quantify genuine regressors with a higher
ratio. Furthermore, the presented approach quantifies regres-
sors like u(k −1) and y(k −2) as good candidates. Consider-
ing dynamic data, these regressors are not important. How-
ever, their clusters (clusters linear in u and y) are important
to represent the static behavior and, once the MERR consid-
ers static information, these regressors could be a genuine
candidate. It is important to notice that as weight of static
information increases, the percentage of MERR for y(k − 1)
increases. This effect is due to the fact that static information
is less susceptible to noise.

4.2 The Pilot DC–DC Buck Converter

In order to compare the proposed technique MERR with the
classic ERR, two studies were undertaken. First, MERR is
compared with classic ERR, both with parameters estimated
via mono-objective extended least squares. After that, the
MERR is compared with ERR, when the parameters were
estimated using auxiliary information for both of them. This
second comparison aims at verifying if there is a gain of
quality only from the structure selection.

4.2.1 MERR Versus Classic ERR with Mono-objective
Parameter Estimative (ELS)

A pilot DC–DC buck converter (Aguirre et al. 2000) was
modeled in which its real dynamic data and theoretical static
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Table 1 MERR—numerical
example

The letter p stands for the
iteration in which the regressor
was selected by the technique.
The variable θ̂ is the estimated
parameter associated to each
regressor. Underlined regressors
are not genuine

System MERR1 (p) MERR2 (p) MERR3 (p) MERR4 (p) MERR5 (p)
[θ̂] [θ̂] [θ̂] [θ̂] [θ̂]

0.5y(k − 1) 97.98 (1) 80.30 (1) 55.22 (1) 46.78 (1) 25.72 (3)

[0.4790] [0.4962] [0.4932] [0.4932] [0.5098]

0.8u(k − 2) 0.265 (2) 0.346 (7) 3.053 (4) 4.510 (4) 5.234 (4)

[0.8936] [0.7904] [0.8007] [0.8007] [0.8436]

u(k − 1)2 0.085 (7) 4.749 (2) 17.63 (2) 20.76 (2) 44.85 (1)

[0.2121] [0.9962] [0.9960] [0.9960] [1.0185]

−0.05y(k − 2)2 – – 18.91 (3) 24.22 (3) 20.65 (2)

0 0 [−0.0491] [−0.0491] [−0.0490]

0.5 0.053 (6) 2.918 (4) 2.050 (5) 1.386 (5) 1.128 (5)

[1.3504] [0.5446] [0.5355] [0.5355] [0.5199]

y(k − 2) 0.124 (4) – 0.155 (7) 0.028 (7) –

[0.0427] 0 [0.0089] [0.0089] 0

u(k − 1) – 1.591 (6) 0.812 (6) 0.066 (6) –

0 [0.0099] [0.0118] [0.0118] 0

u(k − 2)u(k − 1) – – – – 0.022 (6)

0 0 0 0 [−0.0573]

u(k − 2)y(k − 1) – – – – 0.017 (7)

0 0 0 0 [−0.0084]

u(k − 2)2 0.300 (3) 4.945 (3) – – –

[−0.0444] [−0.0489] 0 0 0

u(k − 2)y(k − 2) 0.165 (5) 0.879 (5) – – –

[−0.0395] [0.0037] 0 0 0

Table 2 Model MERR3 obtained for 100 noise realizations

MERR (mean and
standard deviation)

Times included as a genuine
regressor by the MERR3

y(k − 1) 0.300 ± 0.200 100

u(k − 2) 0.028 ± 0.005 100

u(k − 1)2 0.552 ± 0.200 100

y(k − 2)2 0.058 ± 0.020 100

C 0.042 ± 0.100 100

The third column means that the genuine regressors were chosen for all
simulations

data ([y, �] and [ȳ, Q R] as affine information pairs) were
used.

In order to acquire dynamic data, the system was excited
by a pseudo-random binary signal. This input excites the local
non-linearities of the system, which is expected to be in the
data. The static information pair was obtained theoretically
and the input/output relation can be written as:

ȳ = 4

3
vd − vd

3
ū (25)

where vd = 24 V, ū and ȳ are the input and output operating
in steady state. 84 static and dynamic points were used for
identification.

The models were obtained usingw1 = [0.1; 0.3; 0.7; 0.9;
1] and w2 = [0.9; 0.7; 0.3; 0.1; 0] for dynamic and static
data, respectively. In order to simplify, the models will be
called MERRz , where z is the zth column of the vector wr ,
r = 1, 2. The structures obtained for z = 1, 2 were the
same. However, it should be emphasized that the regressors
for these models do not necessarily have the same MERR,
since the technique uses different weights on each objective.
Thereby, a set of four (4) different models was obtained.
The AIC was used to establish how many regressors should
be included in the model, resulting in 9 regressors. Table 3
exhibits the regressors obtained for the models and its respec-
tive parameters and the value of the MERR, considering para-
meters estimated via ELS. The (p) index is the iteration in
which the regressor was chosen by the MERR. Figs. 1 and
2 show the system and models static and dynamic behav-
ior, respectively. Clearly, the objectives considered are con-
flicting. However, models with static improvement could be
obtained, with some or even without any penalty considering
its dynamic (MERR4 model). There are, therefore, important
information in static data, which are relevant for obtaining
global models, considering different characteristics of sys-
tem, such as its static and dynamic. This ratifies the require-
ment of including more than one affine information pairs in
the structure detection procedure. To conclude, it has to be
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Table 3 MERR—DC–DC
Buck converter

The letter p stands for the
iteration in which the regressor
was selected by the technique.
The variable θ̂ is the estimated
parameter associated to each
regressor

Models’ regressors MERR1 (p) MERR2 (p) MERR3 (p) MERR4 (p) MERR5 (p)
[θ̂] [θ̂] [θ̂ ] [θ̂] [θ̂]

u(k − 1) 0.000036 (3) 0.000856 (3) 0.009267 (7) 0.017904 (4) 0.000596 (9)

[−2.1340] [−2.1340] [−0.7677] [−5.6780] [3.2458]

u(k − 2) 0.000001 (5) 0.000010 (5) – 0.000103 (5) –

[−2.8396] [−2.8396] [0] [9.3834] [0]

y(k − 1) 99.85087 (1) 99.82074 (1) 99.89977 (1) 99.91307 (1) 99.91860 (1)

[1.6168] [1.6168] [−0.4849] [−0.0396] [−0.6867]

y(k − 2) 0.148949 (2) 0.174741 (2) 0.064284 (2) 0.042932 (2) 0.040465 (2)

[−1.1554] [−1.1554] [0.1546] [−1.0472] [−0.3253]

u(k − 1)2 – – 0.001337 (3) 0.000291 (9) 0.014101 (4)

[0] [0] [−3.0944] [−0.8788] [−2.8685]

u(k − 2)2 – – 0.005358 (4) 0.000057 (6) –

[0] [0] [0.3150] [−2.0131] [0]

u(k − 2)u(k − 1) – – 0.001061 (5) – –

[0] [0] [1.2441] [0] [0]

y(k − 1)2 0.000003 (8) 0.000076 (8) – – 0.005679 (3)

[−0.0863] [−0.0863] [0] [0] [−0.0081]

y(k − 2)2 0.000001 (6) 0.000008 (6) – 0.000315 (8) 0.000065 (5)

[−0.0744] [−0.0744] [0] [0.0152] [−0.0404]

y(k − 2)y(k − 1) 0.000001 (7) 0.000037 (7) – – 0.001073 (6)

[0.1519] [0.1519] [0] [0] [0.0593]

u(k − 1)y(k − 1) – – 0.000115 (8) 0.001063 (7) 0.000605 (8)

[0] [0] [0.7952] [0.5945] [0.6153]

u(k − 2)y(k − 2) 0.000002 (9) 0.000045 (9) 0.000323 (9) – –

[0.2078] [0.2078] [−0.3438] [0] [0]

C 0.000063 (4) 0.001604 (4) 0.000807 (6) 0.002313 (3) 0.000218 (7)

[13.9972] [13.9972] [14.0006] [14.0005] [14.0007]
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Fig. 1 Static curve. The continuous line represents the system, triangle
the model obtained w1 = 1, open circle is the static curve of the model
obtained when w1 = 0.9, dot shows the static curve of the model
obtained by w1 = 0.7 and asterisks is the model chosen when w1 =
0.35. Parameter estimated using ELS
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Fig. 2 Dynamic time series. The continuous line represents the system,
triangle is the free prediction of the model obtainedw1 = 1, open circle
exhibits the model obtained when w1 = 0.9, dot shows the behavior of
the model obtained byw1 = 0.7 and asterisks shows the model chosen
when w1 = 0.35. Parameter estimated using ELS
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Table 4 Models validation

MERR1,2 MERR3 MERR4 MERR5

RMSE1 0.4802 (0.5105) 0.3545 (0.4849) 0.2935 (0.4853) 0.3004 (0.4853)

RMSE2 0.4930 (0.0053) 1.1493 (0.0040) 1.4959 (0.0045) 1.5824 (0.0050)

The sub-index 1 stands for dynamic whereas the sub-index 2 stands for static

highlighted that MERR presents an efficient solutions curve,
which allows an amount of optimal structures to represent
the system, considering different operation points. This is
considerably important when using the model in a specific
identification purpose and also in other applications, such as
in model-based control.

4.2.2 MERR Versus ERR with Auxiliary Information
in the Parameter Estimation

Once the structure was obtained, the parameters are now esti-
mated using both static and dynamic data, comparing the
models performance. The decision-maker used for parameter
estimation was the minimal correlation criterion (Barroso et
al. 2007) and the results are presented in Table 4, in parenthe-
sis. Outside of the parenthesis, the RMSE static and dynamic
obtained when the parameters was estimated via ELS are
presented. Although the static behavior is improved when
parameters were estimated through the use of a multiobjec-
tive approach, the dynamic error also increases. This means
that, in an optimization point of view, these techniques obtain
models that map different regions of the Pareto set, ratifying
the performance of the technique proposed in this paper. In
both comparisons, the MERR presented nondominated solu-
tions of Pareto set. The model MERR5 is the model obtained
via ERR, when w1 = 1 and w2 = 0.

5 Conclusions

This paper presented and developed the MERR, a technique
used for structure detection in polynomial NARX models.
In general, techniques for structure detection are mono-
objective and they just take into account dynamic data. In
fact, further information are important to be considered in a
structure detection procedure.

A set of stable efficient models was obtained through the
use of MERR, with a relevant representativity of the sys-
tem. A substantial improvement on the system’s static curve
was also observed, given by the obtained models. Further-
more, such models showed up to be global and representa-
tive, once other information about the system can be consid-
ered for structure detection. It is worth to state that the use

of affine information only on parameter estimation increases
substantially the quality of models, as one can see in Table 4.
Although, solutions produced by MERR are nondominated in
this case, which clarified the limit of using affine information
only in parameter estimation. Structure selection with affine
information has been shown to be an efficient tool to find out
the best structure as shown in Sect. 4.1, even in the presence
of noisy. Moreover, although the present methodology has
been described only for Polynomial NARX, MERR may be
extended for other representations such as Volterra series and
forward neural networks (Aguirre et a. 2001).

As a future research topic, one expects to make an adapta-
tion on the AIC index, aiming at incorporating other informa-
tion about the system, besides dynamical data. Moreover, the
MERR will be tested using a multiobjective problem, where
more than two kinds of information about the system will
be incorporated in the model. Finally, the decision problem
will be approached in order to provide, following a suitable
criterion, one or more models to the user.
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