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Abstract: In this paper, we consider a problem of parametric identification of a piece-wise linear
mechanical system described by ordinary differential equations. We reconstruct the phase space
of the investigated system from accelerometer data and perform parameter identification using
iteratively reweighted least squares. Two key features of our study are as follows. First, we use
a differentiated governing equation containing acceleration and velocity as the main independent
variables instead of the conventional governing equation in velocity and position. Second, we modify
the iteratively reweighted least squares method by including an auxiliary reclassification step into
it. The application of this method allows us to improve the identification accuracy through the
elimination of classification errors needed for parameter estimation of piece-wise linear differential
equations. Simulation of the Duffing-like chaotic mechanical system and experimental study of an
aluminum beam with asymmetric joint show that the proposed approach is more accurate than
state-of-the-art solutions.

Keywords: system identification; least squares; accelerometry; integration; differentiation; ordinary
differential equation; nonlinear system; piece-wise linear system

1. Introduction

A relevant simulation of nonlinear systems requires well-identified computer models.
Numerous approaches for nonlinear system identification have been proposed recently:
differential equations [1], NARMAX models [2,3], neural networks [4], spline adaptive
filters [5], deep state-space models [6], etc. Differential equations attract researchers and
engineers due to the possibility of developing accurate white-box models, often having a
well-established physical explanation. In many practical cases, the structure of governing
differential equations is known, but it is not possible to directly measure parameters of the
system such as stiffness, damping coefficients, etc. Nevertheless, it is possible to reconstruct
them from data obtained during the system functioning or from a certain test [7]. Even if a
single state variable can be measured, it is possible to reconstruct the entire dynamics of
the system using an observer and then perform the parameter estimation [8].

An accelerometer is probably the most versatile tool for recording the dynamical
response of an arbitrary mechanical system, as it is a small, light-weight device that can be
mounted on almost any part of the system. The obtained acceleration time-domain series
can then be differentiated or integrated to reconstruct other phase coordinates for further
processing [9,10]. Additional information extracted from the signal, such as frequency, can
also be used for identification purposes, providing more accurate results [11].

Even a small amount of data recorded with the accelerometer may give sufficient
information about the system. For example, the paper [12] describes parametric iden-
tification of a linear electro-mechanical positioning system using a short accelerometer
signal. A broad spread of accelerometer-based measurement toolkits, including digital
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data acquisition systems, has led to the possibility of collecting huge amounts of data
needed for more elaborate approaches such as deep learning [13]. A number of machine
learning approaches can be used for parameter identification, including various types of
regression and neural networks [14]. Although neural networks are powerful and versatile
but computationally expensive, classical regression methods such as ordinary least squares
(OLS) are fast, applicable to both linear and nonlinear systems, and highly noise-tolerant,
which makes them perfect for a variety of problems, including online motor control [15],
system identification of structured models [16], identification of low-rank systems [17],
system identification for interference mitigation [18], and lithium–ion battery parameter
estimation [19]. The least squares method is also well-established theoretically. Its con-
sistency in application to parameter identification was proven by L. Ljung in 1976 [20].
The important drawback of least squares for the system identification task is that it opti-
mizes derivative functions instead of the time-domain solution directly, which may cause
inaccuracies when the system is highly sensitive to parameters. In these cases, elaborate
direct optimization is more feasible, which may be performed using classical optimization
algorithms, but better results are achieved with special penalty functions [21], special
multi-agent, or evolutionary methods [22–24].

Ordinary least squares work well with data contaminated by Gaussian noise, but two
problems usually occur when this method is applied to parameter identification. First,
the OLS method usually provides dense regression, while sparse solutions are preferable
in system identification. This flaw can be easily overcome via `1-regularization [25].

The second problem is that the OLS method may cause significant errors in parameter
estimation in the presence of outliers or heteroskedasticity. One possible solution here is
data cleansing based on M-estimator [26]. The weighted least squares is another algorithm
that also may provide a reasonable solution. While the problem of weight estimation is
usually difficult, the iteratively reweighted least squares (IRLS) provide a straightforward
approach to avoiding this problem. For many years, this method lacked a theoretical foun-
dation, but recently I. Daubechies et al. [27] has proven that it possesses global convergence.
Moreover, C. Kümmerle et al. [28] established that it converges linearly, which means it is
practically applicable to almost any task.

Nevertheless, the problem of parameter identification in nonlinear mechanical systems
from accelerometer data still has several pitfalls. One of the significant difficulties is that
the accelerometer output is the second derivative of position, while equations of system
dynamics usually involve only position and velocity as independent variables. Double
integration of the accelerometer signal usually leads to significant position errors, which
cannot be efficiently eliminated using standard detrending techniques [9]. A feasible posi-
tion improvement for the linear systems may be provided with the extended Kalman filter,
which can also be used for unknown parameter estimation [29]; however, its consistency in
a nonlinear case or with non-Gaussian noise is not guaranteed [30].

The study reported in this paper addresses a practical problem of parameter iden-
tification. The first idea behind our approach is the application of the IRLS method to
differentiated equations of motion in velocity and acceleration instead of conventional
equations in position and velocity. While this approach does not eliminate the need for
double integration to obtain the position, it makes it possible to reduce identification errors
significantly without a priori knowledge of the noise properties.

The second idea is using the modified IRLS method, which can correct errors caused
by inaccurate double integration of acceleration. We investigate the identification pro-
cedure for mechanical system case with piece-wise linear stiffness function as the most
common type of mechanical nonlinearity, which may occur in case of a backlash [31,32] or
structural asymmetry [33]. Meanwhile, the proposed method is suitable for all other types
of nonlinearities, which can be handled by the least squares method [1,10].

With these two ideas, the main contribution of the research is establishing a noise-
tolerant identification method, suitable for a wide range of applications, when the entire
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amount of phase space variables is not observed. This method is especially applicable to
the identification problems utilizing the accelerometer data series.

The outline of the paper is as follows. In Section 2 the problem of system identification
via least squares is briefly discussed, the theory of the IRLS method is given, and the
differentiated equations of motion are derived for systems with piece-wise linear stiffness.
In Section 3 we apply the proposed technique to a mechanical system based on a piece-wise
linear modification of the Duffing equations and estimate stiffness in a chaotic oscillations
mode. Section 4 addresses the use of the proposed technique for estimating the nonlinear
stiffness of an aluminum beam obtained on the experimental stand. Finally, Section 5 gives
some conclusions and discussion.

2. Identification of Mechanical Systems Using Least Squares

In this section, the mathematical background of the least squares method and its
modifications in application to system identification is given. Special attention is paid to a
particular case of mechanical systems with piece-wise linear stiffness.

2.1. Least Squares for ODE Reconstruction

Let us consider the dynamical system described by the ordinary differential equation
(ODE), where a state vector derivative is a function of time t, the state vector x, and a vector
of unknown parameters h:

ẋ(t) = f(t, x, h). (1)

Let the system have m dimensions, and let one make n observations, after which a set
of system states X = {x1, x2, . . . , xn} and corresponding derivatives Y = {ẋ1, ẋ2, . . . , ẋn}
related to time moments t = {t1, t2, . . . tn} can be obtained. The system identification
problem has an algebraic solution if

f(t, x, h) =



L

∑
i=1

h1iτi(t, x)

L

∑
i=1

h2iτi(t, x)

...
L

∑
i=1

hmiτi(t, x)


. (2)

Here τi(t, x) are arbitrary real functions of vector x entries, e.g., monomials such as x1x2x4
3

or trigonometric functions such as sin(x2), and L is their quantity. This allows representing
each dimension of the function f(t, x, h) as a weighted sum of some known entries where
weights are unknown.

From a set X = {x1, x2, . . . , xn} a matrix of entries τi(t, x) can be composed:

E =


τ1(t1, x1) τ2(t1, x1) . . . τL(t1, x1)
τ1(t2, x2) τ2(t1, x2) . . . τL(t1, x2)

...
...

. . .
...

τ1(tn, xn) τ2(tn, xn) . . . τL(tn, xn)

. (3)

Write down Y as a matrix:

Y =


ẋ1(t1) ẋ2(t1) . . . ẋm(t1)
ẋ1(t2) ẋ2(t2) . . . ẋm(t2)

...
...

. . .
...

ẋ1(tn) ẋ2(tn) . . . ẋm(tn)

, (4)
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and let its k-th column be denoted as

yk =


ẋk(t1)
ẋk(t2)

...
ẋk(tn)

. (5)

From the equation of dynamics (1) the identity follows:

yk = Ehk,

where hk = (hk1, hk2, . . . hkL)
> constitute all coefficients by τi(t, x) in k-th dimension of

f(t, x, h).
In real world measurements, all observations are contaminated with noise zk:

yk = Ehk + zk. (6)

Nevertheless, a large number of observations allow finding the coefficients hk via
minimizing the squared error:

hk = arg min
h
||yk − Eh||2, (7)

or, in another notation,

hk = arg min
h

n

∑
i=1
|ẋk(ti)− Eih|2.

This problem is referred to as ordinary least squares (OLS) and the solution of (7) is
well-known:

hk = (E>E)−1(E>yk). (8)

If it is required to set as many entries of hk to zero as possible (obtain a sparse solution
of the identification problem) we need using `1-regularization:

hk = arg min
h

(
1
2
‖yk − Eh‖2 + λ|h|

)
, (9)

where |h| = ∑L
i=1 |hi| denotes `1 norm of h and λ is the regularization parameter. This

problem has no solution in algebraic operations and needs numerical optimization.
The OLS and `1-regularized least squares are applicable if the noise is Gaussian and

homoscedastic, i.e., its variance is independent of the observation. When the noise zk is
heteroscedastic, weighted least squares should be used. In this method weights wi = 1/σ2

i
are multiplied by each squared error, where σ2

i is variance of the i-th measurement:

hk = arg min
h

( n

∑
i=1

wi‖yki − Eih‖2
)

.

The weighted least squares can also be used with `1-regularization. In practice,
variance might not be known exactly. Moreover, the real noise may be non-Gaussian,
and the observations may contain many outliers. In this case, the iteratively reweighted
least squares (IRLS) method should be applied. Algorithm 1 outlines this method.

Inputs of the IRLS method are tolerance tol needed to stop the search when improve-
ments become negligible and a regularization parameter δ needed to avoid division by
zero in points where the error |yki − Eihj| becomes zero. The parameter δ is used as the
minimal absolute value of the denominator, and limits the highest value of wi with 1/δ.



Mathematics 2021, 9, 2999 5 of 19

Algorithm 1: Iteratively reweighted least squares (IRLS) with `1-regularization
Input: tol, δ.
Output: hk.
Initialization:
w0

i ← 1, i = [1..n] ,
h0 ← 0,
j← 0
while ‖hj+1 − hj‖ > tol do

hj ← arg min
h

( n

∑
i=1

wi‖yki − Eih‖2 + λ|h|
)

,

wi ←
1

max
(
δ, |yki − Eihj|

) , i = [1..n],

j← j + 1,
end
hk ← hj.

2.2. Mechanical System Identification

Let a mechanical system state be described by a vector of coordinates x and a vector of
velocities ẋ. When the system is stationary and linear, the equation of dynamics is written as

Mẍ + 2Cẋ + Kx = f(t),

where M stands for a matrix of inertia, C stands for a damping matrix, K is a stiffness
matrix, and f(t) is external driving force.

In many practical cases, matrices of inertia and damping are linear, but K depends on
x; therefore, we should investigate the following case:

Mẍ + 2Cẋ + F(x) = f(t). (10)

A piece-wise linear F(x) can be described as

F(x) =


K1(x− x01) (x ∈ X1),
K2(x− x02) (x ∈ X2),
...
Kp(x− x0p) (x ∈ Xp),

(11)

where Xj is a certain region in the phase space, Kj is a matrix and x0j is a certain term.
Let a function µj(x) return 1 if x ∈ Xj, and 0 otherwise. The functions µj may be

obtained analytically or via support vector machine technique or logistic classification.
Then, the Equation (10) reads:

Mẍ + 2Cẋ +
p

∑
i=j

Kjµj(x)(x− x0j) = f(t). (12)

Let us write this equation as the first order ODE, assuming that M is non-degenerate:
ẋ = v,

v̇ = −2M−1Cv−M−1
p

∑
j=1

Kjµj(x)(x− x0j) + M−1f(t).
(13)

Speaking of identification, the first equation in (13) is trivial, and the second can
be treated as a special case of a general equation of dynamics. Suppose that the term
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g(t) = M−1f(t) and the acceleration a = v̇ are known. When we have n observations on
the system state, we can use the identity

ai − g(ti)︸ ︷︷ ︸
yi

= Avi +
p

∑
j=1

Bjµi(xi)(xi − x0j), i = [1..n], (14)

for reconstructing the unknown matrices A = −2M−1C and Bj = −M−1Kj via least
squares from time series {ai}, {vi}, {xi}, {ti}.

When we have only time series for {ai} and {ti} and should reconstruct two others,
we perform double integration due to relation

{ai}
∫
−→ {vi}

∫
−→ {xi}.

This approach may cause some problems with state space reconstruction in practical
applications:

1. Integration of noisy signal introduces a trend, which is challenging to eliminate,
and the more integrations are performed, the more complicated problem is.

2. Integration of noisy signal tends to smooth the signal, masking high-speed, high-
frequency processes with the noise, leading to decreasing the signal-to-noise ratio of these
components in the entire signal.

The latter circumstance leads to underestimation of the matrices A and, especially, Bj.

Proposition 1. For practical purposes, in the case of a noisy signal, both sides of the Equation (14)
may be differentiated, and unknown matrices may be found from the obtained relation more precisely.

The following relation is underlying the Proposition 1:

{ji}
d
dt←− {ai}

∫
−→ {vi},

where j denotes jerk. As stated by the Proposition 1, the Equation (14) turns into:

ji − ġ(ti)︸ ︷︷ ︸
y′i

= Aai +
p

∑
j=1

Bj
d
dt

(
µj(xi)(xi − x0j)

)
, i = [1..n]. (15)

Derivative of µj(x(t)) equals to:

d
dt

µj(x(t)) =

{
0, (x ∈ Xj),
±∞ (x ∈ Bj),

where Bj denotes the border of Xj. In practice, one may treat the probability of xi being on
the border infinitesimally small, so (15) can be rewritten as

ji − ġ(ti)︸ ︷︷ ︸
y′i

= Aai +
p

∑
j=1

Bjµj(xi)vi, i = [1..n]. (16)

The relation (16) is further used for estimating A and Bj. The following advantages
over using (14) for identification can be achieved:

1. Only single integration and single differentiation are performed for obtaining
independent variables, and double integration is needed for obtaining only values of µj(x).
Therefore, numerical errors due to these operations are minimal.

2. High-frequency signal component suppression after integration and high-frequency
noise amplification after differentiation are minimal.
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These two advantages lead to more precise parameter estimation. Nevertheless, rig-
orous theoretical proof of the Proposition 1 meets sufficient difficulties since it involves
several unknown parameters such as noise, parameters of motion, type of numerical
method used for integration and differentiation, and parameters of numerical noise intro-
duced by the computer. These circumstances force us to study the practical advantage of
the proposed approach via numerical simulation and experiment.

Further, we utilize the abbreviation DIA (double integration approach) in relation
to the Equation (14) and IDA (integrate-and-differentiate approach) in relation to the
Equation (16).

Algorithm 2 outlines system identification via DIA.

Algorithm 2: DIA for parametric identification of piece-wise linear mechani-
cal system

Input: {xi}, {vi}, {ai}, {ti}
Output: h.
Initialization:
1. Set incidence vectors

Ij =


µj(x1)
µj(x2)

...
µj(xn)


n×1

, j = [1..p],

2. Find

X =


x>1
x>2
...

x>n


n×m

, V =


v>1
v>2
...

v>n


n×m

, X0 j =


x>0j
x>0j
...

x>0j


n×m

, j = [1..p],

3. Calculate

E =

(
V, I1 ◦ (X− X01), I2 ◦ (X− X02) . . . , Ip ◦ (X− X0p)

)
n×mp

,

where ◦ denotes element-wise product,
4. yi = ai − g(ti).
for k = [1..m] do

Find via IRLS:

hk = arg min
h

( n

∑
i=1

wi‖yki − Eih‖2 + λ|h|
)

,

where

hk =
(

Ak, B1k, B2k, . . . , Bpk

)>
.

end

The IDA is described with Algorithm 3. It is rather similar to Algorithm 2 with another
definition of the matrix E and using the modification of the IRLS: IRLS with swapping.
The motivation and description of this modification are as follows.
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Algorithm 3: IDA for parametric identification of piece-wise linear mechani-
cal system

Input: {xi}, {vi}, {ai}, {ji}, {ti}
Output: h.
Initialization:
1. Set incidence vectors

Ij =


µj(x1)
µj(x2)

...
µj(xn)


n×1

, j = [1..p],

2. Find

D =


a>1
a>2
...

a>n


n×m

, V =


v>1
v>2
...

v>n


n×m

,

3. yi = ji − ġ(ti).
for k = [1..m] do

w0
i ← 1, i = [1..n] ,

h0 ← 0,
l ← 0
while ‖hl+1 − hl‖ > tol do

1. Calculate E =

(
D, I1 ◦V, I2 ◦V . . . , Ip ◦V

)
n×mp

,

2. Perform weighted least squares

hl
k ← arg min

h

( n

∑
i=1

wi‖yki − Eih‖2 + λ|h|
)

,

wi ←
1

max
(
δ, |yki − Eihl

k|
) , i = [1..n],

3. Calculate possible values of yk for each Bjk
ỹkj ← Dk Ak + BjkV, j = [1..p]

4. Find errors between actual and possible values of yk, estimate variances:

rj ← (yk − ỹkj), σj =
∑n

i=1 rji

∑n
i=1 Iji − 1

,

5. For each pair (q, s) ∈ [1..p]
for i = [1..n] do

if (r2
ksi + tol · σ2

s )
1
2 < rkqi then

Iqi ← 0,
Isi ← 1.

end
end
6. l ← l + 1,

end

hk ← hl , where hk =
(

Ak, B1k, B2k, . . . , Bpk

)>
.

end

In a realistic scenario, there is some significant errors in xi, so that the values of
µj(xi) are incorrect in some cases; thus, the vectors Ij are determined with errors. In order
to correct this error, we include a swapping step needed to correspond the vectors vi
multiplied by Ij to correct stiffness matrices Bj.
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Suppose, it was determined initially that xi ∈ Xq, but the particular value yik is better
predicted if xi ∈ Xs. Then, we should swap the values in the incidence vectors:

Iqi ← 0, Isi ← 1.

Suppose σ2
s is the variance of prediction when xi ∈ Xs. Let r2

kqi be the squared error

of estimating yki obtained when xi ∈ Xq and let r2
ksi be the squared error of estimating yki

obtained when xi ∈ Xs. To avoid overtraining of the model, we must perform swapping
only if √

r2
ksi + tol · σ2

s < rkqi, (17)

where tol is the tolerance parameter.
The IRLS with swapping is outlined in Algorithm 3 in detail.
The proposed approach can be applied to the general form of the mechanical system,

which equation after differentiating of (10) reads:

Mx(3) + 2Cẍ +

(
∂K(x)

∂x
ẋ
)
(x− x0j) + K(x)ẋ = ḟ(t).

Nevertheless, the special case of K(x) written as (11) is very common and makes the
problem formulation easier, so we focused on it directly.

3. Study of Chaotic Mechanical System with Backlash
3.1. Lin-Ewins Mechanical Oscillator

Chaotic vibration in mechanical constructions has gained special attention since
the early 1990s, when several simple chaotic systems have been discovered, including a
double pendulum [34] and an oscillator with backlash [35], based on the Duffing equation.
The latter work is of particular interest since it introduces a system described by the
equation of type (10). In this work, R. Lin and D. Ewins proposed a nonlinear mechanical
system with backlash, which is shown in Figure 1.

x
0

m
c c

k1 k1

k  − k1 2k  − k1 2

x
0

x0

Figure 1. Chaotic mechanical system with backlash. The following parameters of the system were
proposed by R. Lin and D. Ewins resulting in a chaotic behavior of the system under periodic
excitation: c = 4 N · s/m, x0 = 5 · 10−3 m, k2 = 40, 000 N/m, k1 = 0 N/m.

The system consists of a mass m suspended between two symmetric springs with stiff-
ness k1 and dampers with damping coefficients equal to c. There are two additional springs
with stiffness k2 − k1 with a backlash x0 between the mass and the springs. The overall
force caused by springs for the parameter values x0 = 5 · 10−3 m, k2 = 40, 000 N/m and
k1 = 0 N/m is shown in Figure 2, corresponding to the case when there are only two
springs with backlash.
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Figure 2. Nonlinear force-displacement dependency.

The equation of motion of this mechanical system excited by a sinusoidal force is
as follows:

mẍ + 2cẋ + F(x) = A cos ωt, (18)

where F(x) is a piece-wise linear function:

F(x) = k2µ1(x)(x + x0) + k1µ2(x)x + k2µ3(x)(x− x0), (19)

where

µ1(x) =

{
1 (x ≤ −x0)

0 (x > −x0)
µ3(x) =

{
1 (x ≥ x0)

0 (x < x0)
, µ2(x) = 1− µ1(x)− µ3(x). (20)

The direct application of Equation (20) may cause malfunction of some ODE solvers
because of discontinuous functions. In order to avoid inaccuracies during numerical
simulation, we used the following sigmoidal approximations of µ1(x) and µ3(x):

µ1(x) =
1

1 + e−s(−x−x0)
, µ3(x) =

1
1 + e−s(x−x0)

, (21)

where s = 104 is the parameter controlling the slope of the sigmoid near x0 and −x0.
The following parameters of the system were used for the study: c = 4 N · s/m,

x0 = 5 · 10−3 m, k2 = 40, 000 N/m, k1 = 0 N/m, A = 100 N, m = 1 kg, ω = 40 rad/s.
We use ode45 MATLAB solver with x(0) = (0, 0)>, and a constant stepsize h = 10−3 s.
With these parameters, the system demonstrates a chaotic behavior, as shown in Figure 3.

Figure 3. Phase space of the Lin-Ewins chaotic system: (a) the x-ẋ phase space projection; (b) ẋ-ẍ
phase space projection.

Figure 4 presents time series for successive derivatives of the displacement x up to the
jerk x(3).
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Rewrite the system (18) in a form of the first-order ODE:ẋ = v,

v̇ = −2cv
m
− F(x)

m
+

A
m

cos(ωt).
(22)

The second equation of the system (22) can be used for the system identification.

Figure 4. Time series for the Lin-Ewins chaotic system.

3.2. Identification of Nonlinear Stiffness in Lin-Ewins Oscillator

Let the accelerometer be mounted on a mass m, and its signal {ai} is sampled over
time series {ti}. Let the driving force A cos(ωt) be known exactly, as well as the mass m
and damping coefficient c, and the series for speed {vi} and displacement {xi} are obtained
by integration. Rewrite the second equation of (22) in a form appropriate for parametric
identification via least squares, corresponding to DIA:

ai +
2cvi
m
− A

m
cos(ωti)︸ ︷︷ ︸

yi

= − F(xi)

m
. (23)

Differentiating both sides of this equation, one can obtain a form appropriate for
parametric identification via least squares, corresponding to IDA:

ji +
2cai
m

+
Aω

m
sin(ωti)︸ ︷︷ ︸

yi

= −G(xi)

m
, (24)

where the series for jerk {ji} can be obtained by differentiation, and

G(xi) = k2µ1(xi)vi + k1µ2(xi)vi + k2µ3(xi)vi.

We perform the comparison of identification approaches in two situations. First, we
assume there is no noise in the time series for {ai}, and then, we add a Gaussian noise
showing that in both cases, the IDA performs better than DIA.
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3.2.1. Noiseless Case

To implement the identification via DIA, we twice integrate time series of {ai} for
obtaining {vi} and {xi} and then perform Algorithm 2.

For identification via IDA we integrate time series of {ai} for obtaining {vi} and
{xi} and differentiate it for obtaining {ji} and then perform Algorithm 3. The simulation
included 2 · 104 points corresponding to 20 s of simulation with sampling frequency
f = 1 kHz.

The comparison of system identification approaches is given in Figure 5.

Figure 5. Results of the Lin-Ewin system identification with DIA and IDA: (a) data are divided into three subsets Data
1, Data 2, and Data 3 containing xi corresponding to µi(xi) = 1. The subsets Data 1 and Data 3 are colored blue; Data
2 is colored red; (b) data are divided into two subsets Data 1 corresponding to µ1(xi) = 1 or µ3(xi) = 1, and Data 2
corresponding to µ2(xi) = 1. Both results are shown in the panel (c) and look rather similar, while the accuracy of finding k1

is slightly better in case of IDA, and k2 in both cases is very close to zero.

3.2.2. Case of Additive Gaussian Noise

Accelerometer typical errors include the presence of additive white Gaussian noise
and zero point drift, which is especially inherent to widely spread piezoelectric accelerom-
eters [36]. These errors can be modeled with the following equation:

ai = a(ti) + σzi + a0,

where ai is the sample obtained from the accelerometer, a(ti) is the true acceleration, zi is a
standard normal random variable, σ is standard deviation and a0 is zero point drift. In our
experiment, we set the following values: σ = 10 m/s2, a0 = 5 m/s2, which is about 5% and
2.5% of the acceleration amplitude, respectively. In order to eliminate possible trends in
{vi} and {xi} we split the time series into 20 fragments and integrate them independently
from zero and then filter them with an ideal notch filter with band 0–2 Hz, and then
eliminate linear trends.

The comparison of system identification approaches is given in Figure 6. It is clearly
seen that the DIA failed to find the value of k1 with enough accuracy, while the IDA
performed rather well. The overall results are given in Table 1.

Table 1. Comparison of stiffness identification in the Lin-Ewins system.

Approach Estimated k1 Relative Error of k1 Estimated k2

DIA, without noise 39,880.6 0.0030 2.4 · 10−12

IDA,without noise 39,962.3 0.0009 −1.1 · 10−10

DIA, with noise 5963.9 0.85 −5.5 · 10−12

IDA, with noise 37,952.6 0.05 −4.3 · 10−10
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The relative error in Table 1 was calculated as

relerr =
k̂1 − k1

k1
,

where k̂1 is the estimated value of k1 with its actual value k1 = 40, 000.
In all cases, k1 was found much more accurate via IDA, and the error of estimation of

k2 was below the accepted numerical error.

Figure 6. Results of the Lin-Ewin system identification with DIA and IDA with additive Gaussian noise. The legend is
similar to Figure 5: (a) DIA; (b) IDA; both results are shown in (c). DIA failed in estimating k1 and IDA was still fruitful,
while k2 in both cases was estimated properly.

4. Experimental Study of Nonlinear Vibration of an Aluminum Beam

Aluminum extruded profile is often used for building frames, racks, enclosures in
many industrial applications. It has a large variety of shapes and allows creating sophisti-
cated constructions using various connection elements. A majority of profile manufacturers
follow Bosh Rexroth standard [37] and therefore are compatible with each other. In our
study, we investigate free vibrations of a vertical 20 × 20 mm beam made of aluminum
profile mounted on a 20 × 40 mm fixed aluminum profile with one L-shape inner bracket
made of silumin. This joint has sufficiently different stiffness for positive and negative beam
tilt direction due to different stress distribution in detail. Figure 7 shows the experimental
setup and its schematics.

1

k1
k2

cc

J

3

2

(  )a (  )b (  )c

θ

Figure 7. Panel (a) shows a photo of an experimental setup, panel (b) shows a drawing of the setup,
where 1 is a vertical vibrating beam, 2 is an inner bracket and 3 is an accelerometer. Panel (c) shows
the system schematics. The denoted angle in the panel corresponds to a positive direction of the
beam tilt.
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The equation of motion of this mechanical system is as follows:

Jθ̈ + σθ̇ + F(θ) = 0, (25)

where σ = 2c is a total damping coefficient and F(θ) is a piece-wise linear function:

F(θ) = k1µ1(θ)θ + k2µ2(θ)θ, (26)

where

µ1(θ) =

{
1 (θ ≥ 0)
0 (θ < 0)

, µ2(θ) =

{
1 (θ > 0)
0 (θ ≤ 0)

.

The parameters of the setup were as follows: beam length L = 0.38 m, mass of the
accelerometer with a mounting clamp m1 = 0.05 kg, distance between top of the beam and
the accelerometer h = 0.01 m, mass of the beam m2 = 0.160 kg, from where the center of
inertia is estimated as

Lc = (m1(L− h) + m2L/2)/(m1 + m2) = 0.2329 m,

and moment of inertia is

J = (m1 + m2)L2
c = 1.139 · 10−2 kg ·m2.

The linear damping parameter of the system can be easily found from the rate of
vibration amplitude decay over time and was estimated as σ = 0.045 N · sec/rad. Stiffness
identification is much more challenging.

The system (25) in a form appropriate for stiffness identification via DIA reads:

θ̈ +
σ

J
θ̇︸ ︷︷ ︸

y

= − k1

J
µ1(θ)θ −

k2

J
µ2(θ)θ.

Identification via IDA uses the following equation:

θ(3) +
σ

J
θ̈︸ ︷︷ ︸

y

= − k1

J
µ1(θ)θ̇ −

k2

J
µ2(θ)θ̇. (27)

In our study, we used IMV VP-4200 piezoelectric accelerometer connected to NI PXI
system for data acquisition. The sampling frequency was 1000 Hz. We recorded 10 time
series up to 1 s length, thus obtaining 5375 points of data. We used the differentiation
method of order 4 based on central differences and the integration method of accuracy
order 3 based on Simpson’s rule for obtaining a derivative and integrals of the acceleration.
The following relation was used for calculating angular acceleration from linear one:

θ̈ =
ẍ
L

,

where ẍ is linear acceleration measured with the accelerometer.
The results of stiffness identification are shown in Figure 8. The obtained values for k1

and k2 are summarized in Table 2.

Table 2. Comparison of stiffness identification in the vibrating beam.

Approach Estimated k1 Estimated k2

DIA 233.5 181.6
IDA 608.3 123.2
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One can see that in comparison to IDA, DIA underestimates k1 and overestimated k2,
which corresponds to dynamics closer to harmonic oscillations rather than nonlinear behavior.

Figure 8. Results of the nonlinear beam identification with DIA and IDA. In both cases, Data 1 corresponds to negative tilt
angle θ, Data 2 corresponds to positive tilt angle θ. Panel (a) illustrates results of DIA, panel (b) illustrates results of IDA,
both results are shown in the panel (c). Being compared with IDA, DIA underestimates k1 and overestimated k2, which
corresponds to dynamics closer to harmonic oscillations rather then nonlinear ones.

The time domain signals for the tilt angle θ shown in Figure 9. This simulation was
performed by ode45 MATLAB solver with fixed stepsize h = 10−3 s.

In our simulations, we used the sigmoidal approximations similar to (21) for µ1(θ)
and µ2(θ) to avoid inaccuracies caused by discontinuities in F(θ):

µ1(θ) =
1

1 + e−sθ
, µ2(θ) =

1
1 + esθ

,

where s = 104.
From Figure 9, the advantage of IDA over DIA is obvious, especially in reconstructing

third angle derivative θ(3), where the shape is reproduced in the model obtained via IDA
rather realistically, unlike in the model obtained via DIA.

One can clearly see that there is a notable advantage of IDA over DIA in Figure 10.
While some specific features are not reproduced in the model, such as a slight asymmetry
of a trajectory shape (compare the left column with two others), the overall shape is
reconstructed much more accurate with IDA than with DIA. Comparison of power spectra
of acceleration signal obtained in experiment and simulations in models identified with
IDA and DIA is given in Figure 11.

From Figure 11, it is also clearly seen that while both approaches allow reproducing
the first harmonic rather precisely, the other harmonics are almost absent in the signal from
the model identified with DIA.
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Figure 9. Fragment of time-domain signals representing various derivatives of angular displacement
θ with comparison between real signals and two models obtained with the described identifica-
tion approaches.

Figure 10. Phase space of nonlinear beam in two planes: θ̇-θ̈ and θ̈-θ(3) .
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Figure 11. Power spectra of the measured signal (blue) and simulated signals in models obtained via
IDA (red) and DIA (yellow).

5. Conclusions and Discussion

In this study, we considered the problem of nonlinear mechanical system identification
in the form of piece-wise linear ODE from accelerometer data using a variant of the
iteratively reweighted least squares method. Two aspects of the identification process were
highlighted in detail.

First, we demonstrated by simulation and experimental means that using noisy accel-
eration series may sufficiently decrease the accuracy of the parameter identification. Thus,
we propose using a differentiated governing equation containing acceleration and velocity
as independent variables, and position as an auxiliary variable needed for data classifica-
tion. We call an approach based on the conventional governing equation in velocity and
position a double integration approach (DIA), and the proposed approach is called the
integrate-and-differentiate approach (IDA).

Second, we proposed a modification of the iteratively reweighted least squares method
for using with IDA. Our modification includes an auxiliary reclassification step, and the
modified method is called iteratively reweighted least squares with swapping. Apply-
ing this method allows improving identification accuracy through eliminating errors in
classification needed for parameter estimation of piece-wise linear ODEs.

There is a number of practical applications of the proposed approach. Accurate
mathematical models given as differential equations are needed in various scientific and
engineering areas, having many advantages over the other models. Special attention is paid
to them in applications of nonlinear science. For instance, electronic chaotic system design
and investigation require high-precision modeling, for which parameter identification
can be performed [38,39]. Digital chaotic systems are often used for data encryption,
and system identification can be used for a cryptographic attack against a chaotic encryption
method [40]. Recent experimental studies of chaos in mechanics confirmed theoretical
predictions made several decades ago. For example, a chaotic system resembling the
Lin-Ewins oscillator was investigated by R.J. Chang and Y.-C. Wang in 2020 [41]. These are
only a few illustrations of why system identification, and particularly, the identification of
mechanical systems from accelerometer data, is of great importance.
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Abbreviations
The following abbreviations are used in this manuscript:

ODE Ordinary Differential Equation
OLS Ordinary Least Squares
IRLS Iteratively Reweighted Least Squares
DIA Double Integration Approach
IDA Integrate-and-Differentiate Approach
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