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A B S T R A C T

Interval arithmetic has been widely used for power systems analysis considering uncertainties associated with
load and generation data. However, little work can be found within the context of three-phase distribution
systems due to their peculiarities such as radial topology and unbalanced loads. In this paper, a novel
methodology is proposed for determining interval results of a power system load flow for three-phase
unbalanced distribution networks based on the Three-Phase Current Injection Method (TPCIM) in which state
variables are considered in rectangular coordinates. In the proposed approach, active and reactive powers
at each load bus are modelled as interval values to represent their inherent uncertainties and the Krawczyk
operator is applied into the power flow equations in order to provide reliable interval three-phase results.
Additionally, the use of interval extensions and an angular rotation technique are proposed to overcome
overestimation problems associated with the interval solutions. Computational simulations are carried out
using IEEE 13, 33 and 69-bus test systems. The main contribution of this work is the proposition of two
methods based on traditional interval arithmetic to reduce the diameter of the solution and achieve similar
results when compared with Affine Arithmetic and Monte Carlo Simulations. Additionally, the computational
time associated with the algorithm is extremely advantageous. The method is useful for power distribution
systems operation and planning studies, representing a viable and useful tool for calculating the impact of
uncertain input data on the power flow results.
1. Introduction

Due to ever increasing use of renewable energy resources based on
green technologies, such as solar and wind farms, uncertainties asso-
ciated with generation have been increased enormously. Additionally,
new types of loads such as electric vehicles and power electronic de-
vices, are also being inserted into power systems rising the uncertainties
over the energy demand values [1–3]. Within this challenging scenario,
new developments based on the traditional power flow equations must
be investigated and proposed for reliable power systems operation and
planning.

Distribution systems are generally associated with inherent charac-
teristics such as radial or weakly-meshed topology and overhead lines
with shorter distances when compared to transmission systems. More-
over, differently from the high voltage networks, some distribution
feeders are not monitored in real time due to a few number of installed
measurement units allocated along the systems [4]. Additionally, daily
load variations and the insertion of intermittent distributed generation
rise the uncertainty levels associated with active and reactive powers.
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To tackle this important issue, probabilistic methods are often used
within this context [5–7], being the Monte Carlo Simulations (MCS)
one of the most widely known methods for computing the stochasticity
of the variables associated to power flow solutions. One of the biggest
disadvantages is the associated computational time to determine satis-
factory results which are generally defined as an interval number with
lower and upper bounds according to the uncertainty level of the input
variables. Even using supercomputers, the time spent in the analysis of
uncertainties in power flow with MCS can be high, being proportional
to the amount of pre-determined simulations and the complexity of
the electrical system. In this context, fuzzy-based methods are also
proposed to incorporate uncertain parameters as input data for power
flow algorithms [8–10].

Interval power flows are commonly used in the literature in order
to obtain interval results for voltage magnitudes and angles assuming
uncertainties over demand and generation data [11–13]. Despite the
lower computational burden, one of the major challenge is to determine
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interval results which accommodate the ones obtained by MCS, mean-
ing that the interval solutions must be larger than the ones obtained
by MCS. On the other hand, overestimation must be avoided in order
not to obtain extremely larger intervals compromising the accuracy of
the results. There are several interval approaches proposed to reduce
overestimation caused by the traditional interval load flow algorithms,
such as the application of Affine Arithmetic [14] and the use of Taylor
series [15].

Krawczyk operator is used in some references based on the ap-
plication of the interval and Affine Arithmetic (AA) into the Current
Injection Method (CIM) presented in [16]. Based on this reference, [17]
proposes the incorporation of traditional interval arithmetic in the
solution of single-phase power flow using CIM. Ref. [18] proposes the
incorporation of AA in the formulation of single-phase power flow using
the CIM and an interval power flow is proposed in [19] based on
the CIM for evaluating symmetrical and asymmetrical faults. In these
methodologies, the load flow solution is obtained using rectangular
coordinates as state variables to be determined iteratively by Newton–
Raphson and only single-phase systems with meshed topology are used
in the case studies.

An interval load flow based on the three-phase implementation
of backward/forward sweep method is presented in [20–22]. Results
accommodate the MCS being suitable for applications considering un-
certain variables in power systems. However, based on the literature
review, there is no paper considering the Three-Phase Current Injection
Method (TPCIM) in order to represent distribution systems with radial
topology including intrinsic characteristics such as uncertain input
data, mutual impedances and unbalanced loads.

In this paper, the TPCIM equations are used to determine the
power flow solution of unbalanced distribution networks. Assuming
uncertainties over active and reactive powers, the Krawczyk operator
is used to determine intervals for voltage magnitudes and angles at
each system bus. Uncertainties are modelled using interval arithmetic.
Comparative analysis using different evaluation indices are performed
for each case study being the simulations carried out using IEEE 13, 33
and 69-bus test systems. Results are compared with MCS to demonstrate
the viability and efficiency of the proposed method.

The main contributions of this paper include the following: (i)
a novel methodology is proposed to determine three-phase voltage
intervals using the Three-Phase Current Injection Method (TPCIM);
(ii) three-phase voltage phasors are obtained with reduced intervals
using interval extensions concept and angular rotation techniques; (iii)
interval results can be obtained in an advantageous computational time
when compared with Monte Carlo simulations.

This paper is divided into five main sections including this introduc-
tory one. In the second section, the proposed methodology is presented
including a brief review of interval arithmetic, the deterministic TPCIM
equations and the application of Krawczyk operator into the power flow
equations. In the third one, results of the computational simulations are
presented and discussed. Finally, conclusions are highlighted in the last
section.

2. Proposed methodology

The proposed methodology is described in this section, including the
representation of uncertain variables using interval arithmetic, the de-
terministic TPCIM equations and the application of Krawczyk operator
into the power flow equations to determine three-phase results.

2.1. Interval arithmetic

From a simple numerical model, each variable in the real numbers
domain can be represented by numerical intervals, being possible to
2

perform addition, subtraction, multiplication and division operations in
such a way that each computed interval contains the unknown value
of the associated variable.

According to Refs. [23] and [24], an interval 𝑋 can be defined as a
closed and limited set of real numbers, 𝑥 ∈ R, according to Eq. (1) in
which 𝑥 and 𝑥 are the lower and upper bounds of the interval variable,
respectively.

𝑋 = [𝑥, 𝑥] = {𝑥 ∶ 𝑥 ≤ 𝑥 ≤ 𝑥} (1)

The size 𝜔(𝑋) and midpoint, 𝑚(𝑋) of a given interval are defined
by Eqs. (2) e (3), respectively.

𝜔(𝑋) = 𝑥 − 𝑥 (2)

𝑚(𝑋) =
𝑥 + 𝑥
2

(3)

The intersection between two intervals 𝑋 and 𝑌 is empty if 𝑦 < 𝑥 or
𝑥 < 𝑦 being denoted by 𝑋 ∩ 𝑌 = ∅. Otherwise, the intersection between

and 𝑌 is the interval obtained by Eq. (4).

𝑋 ∩ 𝑌 = [𝑚𝑎𝑥{𝑥, 𝑦}, 𝑚𝑖𝑛{𝑥, 𝑦}] (4)

The basic interval operations associated with addition, subtraction
and multiplication are respectively defined by Eq. (5), (6), (7) and (8)
where 𝑆 = {𝑥 ⋅ 𝑥, 𝑥 ⋅ 𝑦, 𝑥 ⋅ 𝑦, 𝑥 ⋅ 𝑦}.

𝑋 + 𝑌 =
[

𝑥 + 𝑦, 𝑥 + 𝑦
]

(5)

𝑋 − 𝑌 =
[

𝑥 − 𝑦, 𝑥 − 𝑦
]

(6)

𝑋 ⋅ 𝑌 = [𝑚𝑖𝑛{𝑆}, 𝑚𝑎𝑥{𝑆}] (7)

𝑋
𝑌

= 𝑋 ⋅
1
𝑌

(8)

According to [25], it is also possible to affirm that the size of the
intersection between two intervals 𝑋 and 𝑌 is, at most, the smallest of
the intervals as described by Eq. (9).

𝜔(𝑋 ∩ 𝑌 ) ≤ 𝑚𝑖𝑛{𝜔(𝑋), 𝜔(𝑌 )} (9)

Other basic operations are detailed in Ref. [23,24].

2.2. The proposed Interval Three-Phase Current Injection Method

The proposed Interval Three-Phase Current Injection Method (IT-
PCIM) is developed based on the deterministic results of the Three-
Phase Current Injection Method (TPCIM) [26], formulated in terms of
nodal voltages in rectangular coordinates. The main advantages of the
usage of the TPCIM include fast convergence process and robustness to
calculate electrical variables in three-phase power distribution systems
considering unbalanced loads and mutual impedances. Additionally,
the elements out of the diagonal of the Jacobian matrix remains con-
stant during the iterative process for determining the solution via
Newton–Raphson being the method described in detail in this work in
Appendix A.

Load uncertainties associated with active and reactive powers are
modelled in ITPCIM as presented in Eqs. (10) and (11), respectively.

𝑃 𝑠,𝑖
𝐷𝑘

= [𝑃 𝑠,𝑑
𝐷𝑘

⋅ (1 − 𝛼𝑠𝑃𝑘 ), 𝑃
𝑠,𝑑
𝐷𝑘

⋅ (1 + 𝛼𝑠𝑃𝑘 )], 𝛼𝑠𝑃𝑘 ∈ {0, 1} (10)

𝑠,𝑖
𝐷𝑘

= [𝑄𝑠,𝑑
𝐷𝑘

⋅ (1 − 𝛼𝑠𝑄𝑘
), 𝑄𝑠,𝑑

𝐷𝑘
⋅ (1 + 𝛼𝑠𝑄𝑘

)], 𝛼𝑠𝑄𝑘
∈ {0, 1} (11)

where 𝑃 𝑠,𝑖
𝐷𝑘

and 𝑄𝑠,𝑖
𝐷𝑘

are the intervals associated with active and reactive
owers demanded at bus 𝑘 for a given phase 𝑠, respectively. The 𝛼𝑠𝑃𝑘

and 𝛼𝑠𝑄𝑘
factors denote the corresponding active and reactive load

percentage uncertainties.
Other variables with an associated level of uncertainty can be
analogously described.
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The initialisation of the interval voltage profile is defined by the
mean of the interval radius of these voltages which is calculated
by Eq. (12):
[

𝛥𝐕𝑠,𝑖
𝑟𝑒

𝛥𝐕𝑠,𝑖
𝑖𝑚

]

=
(

𝐉𝑑
)−1

[

𝛥𝐈𝑠,𝑖𝑖𝑚
𝛥𝐈𝑠,𝑖𝑟𝑒

]

(12)

where 𝐉𝑑 is the Jacobian matrix associated with the deterministic
power flow. The vectors 𝛥𝐈𝑠,𝑖𝑟𝑒 and 𝛥𝐈𝑠,𝑖𝑖𝑚 are composed of real and
imaginary components of interval current residuals at each phase 𝑠 as
described by Eqs. (13) and (14), respectively:

𝛥𝐼𝑠,𝑖𝑟𝑒𝑘
= 𝐼𝑠,𝑑𝑟𝑒𝑘

−
(𝑃 𝑠,𝑖

𝐺𝑘
− 𝑃 𝑠,𝑖

𝐷𝑘
) ⋅ 𝑉 𝑠,𝑑

𝑟𝑒𝑘 + (𝑄𝑠,𝑖
𝐺𝑘

−𝑄𝑠,𝑖
𝐷𝑘

) ⋅ 𝑉 𝑠,𝑑
𝑖𝑚𝑘

(𝑉 𝑠,𝑑
𝑘 )2

(13)

𝛥𝐼𝑠,𝑖𝑖𝑚𝑘
= 𝐼𝑠,𝑑𝑖𝑚𝑘

−
(𝑃 𝑠,𝑖

𝐺𝑘
− 𝑃 𝑠,𝑖

𝐷𝑘
) ⋅ 𝑉 𝑠,𝑑

𝑖𝑚𝑘
+ (𝑄𝑠,𝑖

𝐺𝑘
−𝑄𝑠,𝑖

𝐷𝑘
) ⋅ 𝑉 𝑠,𝑑

𝑟𝑒𝑘

(𝑉 𝑠,𝑑
𝑘 )2

(14)

where 𝑉 𝑠,𝑑
𝑘 = 𝑉 𝑠,𝑑

𝑟𝑒𝑘 + 𝑗𝑉 𝑠,𝑑
𝑖𝑚𝑘

and 𝐼𝑠,𝑑𝑘 = 𝐼𝑠,𝑑𝑟𝑒𝑘 + 𝑗𝐼𝑠,𝑑𝑖𝑚𝑘
are the voltage and

current injected at bus 𝑘 for a given phase 𝑠; 𝑃 𝑠,𝑖
𝐺𝑘

and 𝑄𝑠,𝑖
𝐺𝑘

are the active
nd reactive power generation at bus 𝑘.

From the voltage interval radius presented in Eq. (12), the real and
maginary parts of the voltage intervals can be initialised as presented
y Eqs. (15) and (16), respectively:

𝑠,𝑖
𝑟𝑒𝑘

= 𝑉 𝑠,𝑑
𝑟𝑒𝑘

+ 𝛥𝑉 𝑎𝑏𝑐,𝑖
𝑟𝑒𝑘 (15)

𝑉 𝑠,𝑖
𝑖𝑚𝑘

= 𝑉 𝑠,𝑑
𝑖𝑚𝑘

+ 𝛥𝑉 𝑎𝑏𝑐,𝑖
𝑖𝑚𝑘

(16)

here 𝛥𝑉 𝑎𝑏𝑐,𝑖
𝑟𝑒𝑘 and 𝛥𝑉 𝑎𝑏𝑐,𝑖

𝑖𝑚𝑘
represent the mean value of the interval

radius obtained for a bus 𝑘 for the three phases being the real and
imaginary parts presented by Eqs. (17) and (18) respectively. This
feature ensures the initialisation of the voltages for a given bus 𝑘 with
intervals of same width for the three phases.

𝛥𝑉 𝑎𝑏𝑐,𝑖
𝑟𝑒𝑘 =

𝑉 𝑎,𝑖
𝑟𝑒𝑘 + 𝑉 𝑏,𝑖

𝑟𝑒𝑘 + 𝑉 𝑐,𝑖
𝑟𝑒𝑘

3
(17)

𝛥𝑉 𝑎𝑏𝑐,𝑖
𝑖𝑚𝑘

=
𝑉 𝑎,𝑖
𝑖𝑚𝑘

+ 𝑉 𝑏,𝑖
𝑖𝑚𝑘

+ 𝑉 𝑐,𝑖
𝑖𝑚𝑘

3
(18)

Based on these deterministic results provided by the traditional
TPCIM, the iterative Krawczyk methodology is used in order to de-
termine the three phase interval solution. Within the context of the
interval arithmetic, the Krawczyk operator allows to determine the
solution not being necessary to calculate the inverse of the Jacobian
matrix which would result in oversized intervals. For a given iteration ℎ
of the Krawczyk method, the operator is applied according to Eq. (19):

𝐾
(

𝐱(ℎ),𝐗(ℎ)) = 𝐱(ℎ) − 𝐂𝑓
(

𝐱(ℎ)
)

+
[

𝐈 − 𝐂𝐉
(

𝐗(ℎ))] (𝐗(ℎ) − 𝐱(ℎ)
)

(19)

where 𝐱(ℎ), 𝐗(ℎ) and 𝑓 (𝐱(ℎ)) are determined by Eqs. (20), (21) and (22),
respectively. 𝐉(𝐗) is the Jacobian matrix calculated for the interval
vector 𝐗, 𝐂 is a preconditioning matrix given by the inverse of the
midpoint of 𝐉(𝐗) and 𝐈 is the identity matrix.

𝐱(ℎ) =
[

𝐕𝑠,𝑑
𝑟𝑒

𝐕𝑠,𝑑
𝑖𝑚

]

(20)

𝐗(ℎ) =
[

𝐕𝑠,𝑖
𝑟𝑒

𝐕𝑠,𝑖
𝑖𝑚

]

(21)

(𝐱(ℎ)) =
[

𝛥𝐈𝑠,𝑖𝑟𝑒
𝛥𝐈𝑠,𝑖𝑖𝑚

]

(22)

The solution of the nonlinear system is achieved by the intersection
etween the interval sets 𝐗(ℎ) and 𝐾

(

𝐱(ℎ),𝐗(ℎ)) as presented in Eq. (23).
he iterative process converges when the difference between the radius
f all elements of 𝐗 at iterations ℎ and ℎ + 1 is less than a specified
olerance 𝜏, which is generally 10−6.
(ℎ+1) = 𝐗(ℎ) ∩𝐾

(

𝐱(ℎ),𝐗(ℎ)) (23)
3

able 1
xample of the use of interval extensions.
Variables Value 𝐹1 𝐹2 𝐹1 ∩ 𝐹2

𝑃 𝑠𝑐ℎ,𝑎𝑖
𝑘 [0.4,0.5]

[0.1407,1.0563] [0.1407,1.2026] [0.1407,1.0563]
𝑄𝑠𝑐ℎ,𝑎𝑖

𝑘 [0,0.2]

𝑉 𝑎,𝑖
𝑟𝑒𝑘

[0.9,1.1]

𝑉 𝑎,𝑖
𝑖𝑚𝑘

[−0.2,0.2]

2.2.1. Use of interval extensions
For a given function 𝑓 defined for a real variable 𝑥, a interval

xtension of 𝑓 is an interval function 𝐹 defined for an interval variable
, such that for real arguments 𝐹 (𝑋) = 𝑓 (𝑥).

As stated in Eq. (9), the use of the intersection of interval extension
olutions can be used as a tool to reduce the size of the interval obtained
s a solution of a given function. Thus, interval extensions are applied
o the partial derivative equations of the interval Jacobian matrix,
etailed in Appendix A.

For instance, the term of the interval Jacobian matrix related to
he partial derivative of the real component of the current injection
n the phase 𝑎 for a bus 𝑘 with respect to the real voltage component
ssociated with the same phase for the same bus can be described by
he Eqs. (24) and (25) in which 𝐹1 and 𝐹2 represent the corresponding
nterval extensions.

1 =
𝜕𝐼𝑎,𝑖𝑟𝑒𝑘

𝜕𝑉 𝑎,𝑖
𝑟𝑒𝑘

=
𝑃 𝑠𝑐ℎ,𝑎𝑖
𝑘 ⋅

[

(

𝑉 𝑎,𝑖
𝑟𝑒𝑘

)2 −
(

𝑉 𝑎,𝑖
𝑖𝑚𝑘

)2
]

+ 2 ⋅ 𝑉 𝑎,𝑖
𝑟𝑒𝑘 ⋅ 𝑉

𝑎,𝑖
𝑖𝑚𝑘

⋅𝑄𝑠𝑐ℎ,𝑎𝑖
𝑘

(

𝑉 𝑎,𝑖
𝑘

)4
(24)

𝐹2 =
𝜕𝐼𝑎,𝑖𝑟𝑒𝑘

𝜕𝑉 𝑎,𝑖
𝑟𝑒𝑘

=
𝑃 𝑠𝑐ℎ,𝑎𝑖
𝑘 ⋅

[

(

𝑉 𝑎,𝑖
𝑟𝑒𝑘

)

⋅
(

𝑉 𝑎,𝑖
𝑟𝑒𝑘

)

−
(

𝑉 𝑎,𝑖
𝑖𝑚𝑘

)(

𝑉 𝑎,𝑖
𝑖𝑚𝑘

)]

+ 2 ⋅ 𝑉 𝑎,𝑖
𝑟𝑒𝑘 ⋅ 𝑉

𝑎,𝑖
𝑖𝑚𝑘

⋅𝑄𝑠𝑐ℎ,𝑎𝑖
𝑘

(

𝑉 𝑎,𝑖
𝑘

)2
⋅
(

𝑉 𝑎,𝑖
𝑘

)2

(25)

In order to prove the importance of the use of the interval exten-
sions concept to obtain reduced intervals, Table 1 presents random
values for the variables associated with the active/reactive powers
and real/imaginary parts of the voltage magnitudes at a given bus 𝑘
(𝑃 𝑠𝑐ℎ,𝑎𝑖

𝑘 , 𝑄𝑠𝑐ℎ,𝑎𝑖
𝑘 , 𝑉 𝑎,𝑖

𝑟𝑒𝑘 , 𝑉
𝑎,𝑖
𝑖𝑚𝑘

, respectively). It can be noted that, based on
simple interval values, the calculation of 𝐹1 and 𝐹2 result in different
intervals. Note that, when the intersection of these results is considered,
at least, the interval solution with the smallest width is obtained as a
consequence.

Although the use of interval extensions is traditional in the interval
arithmetic context according to [23], this concept is being used in this
paper in order to effectively reduce the intervals associated with the
solution obtained using a Three-Phase Current Injection Method for
determining the load flow in unbalanced distribution systems.

2.2.2. Use of angular rotation
In the application of Krawczyk operator in the three-phase load

flow it is observed that there are differences in the resulting intervals,
mainly between phase A and the others. One of the possible reasons
for these differences is the angular position of the voltages obtained
with deterministic flow, mainly due to the fact that the voltages in
phases B and C would, in general, be displaced by about 120◦ and 240◦

respectively, making the rectangular forms of these voltages have the
absolute values of the real and imaginary terms very close. For example,
two complex numbers with unitary magnitude, respectively displaced
on the Cartesian plane of 120◦ and 240◦, would be −0.5 + 𝑗0.87 and
−0.5 − 𝑗0.87 in rectangular form.

In order to reduce the interference of software issues related to
the treatment of complex interval variables, a strategy is developed
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Fig. 1. Flowchart of the proposed methodology.

o obtain different solutions rotating the voltage phasors by the same
ngular displacement in the three phases. Thus, with each displacement
f the phasors, the magnitude and the angular difference between the
oltages in the three phases would remain, causing no characteristic to
e altered in the power flow problem.

After completing 360 degrees executing the desired number of rota-
ions by some angular displacement 𝜔𝑅, the interval voltages obtained
t each angular displacement must be intersected. It is important to
ention that the resulting voltages at the end of each step must be

otated back to the starting position to obtain its angles. The resulting
nterval is expected to contain the true solution and be at least the
idth of the smallest intersected interval.

.2.3. Solution methodology
A flowchart of the proposed methodology is presented in Fig. 1

ivided into blocks to be explained in detail.

• Block-1: This block indicates the initialisation of the algorithm.
The nominal loads, impedances of the distribution lines, DG
data are considered as variables to be used in a deterministic
load flow program. Initial values associated with the three-phase
voltage phasors are 1 0◦, 1 120◦, 1 −120◦ for phases A, B and C,
respectively;

• Block-2: Based on the input data and initial values determined
as previously mentioned, three-phase voltages are calculated ac-
cording to the Three-Phase Current Injection method;

• Block-3: The interval limits are determined for the active and
reactive loads by Eqs. (10) and (11) respectively. Additionally, if
uncertain data associated with generation are considered for the
computational simulations, they can be determined analogously;

• Block-4: The current mismatches are calculated as presented in
Eqs. (13) and (14);
4

• Block-5: This block indicates the initialisation of the interval
voltages, which are according to Eqs. (15) and (16);

• Block-6: In this block, the Krawczyk operator is applied according
to Eq. (19) and the convergence is verified for a predefined
tolerance value, 𝜏;

• Block-7: If the convergence 𝜏 = 10−6 is not achieved in a single
iteration, the Krawczyk operator is applied again into the power
flow equations iteratively until the tolerance is satisfied;

• Block-8: The three-phase voltage intervals are obtained, as indi-
cated by Eq. (23) considering the three voltage phasors, separated
by 120 degrees;

• Block-9: Once the voltage angles for each one of the three phases
will be modified according to the procedure described in Sec-
tion 2.2.2, it is necessary to verify if the angular rotation is
less than 360 degrees. Note that the complete solution is only
determined after the angular displacement completes 360 degrees
in a trigonometric cycle;

• Block-10: This block indicates the application of the angular
rotation methodology in which the voltage angles are modified
considering ±120◦ increments in the initial values adopted for the
load flow program analysis;

• Block-11: This block indicates the calculation of the intersection
of the voltage intervals obtained at each rotation in order to
ensure that the interval solution associated with the smallest
width are obtained;

• Block-12: This block indicates the end of the algorithm.

3. Results and discussion

In this section, the applicability of the complete interval method-
ology developed in the work is carried out. This analysis is based
on the comparison of the interval voltages obtained with ITPCIM
and the ranges of possible values obtained with MCS. Therefore, it is
expected that the intervals resulting from the developed methodology
encompass these values obtained with the probabilistic method. After
that, evaluations of the proposed improvements are made with the use
of interval extensions and the angular rotation technique. The results
show that the widths of ITPCIM solutions are much tighter with these
improvements. The interval voltages resulting from the application of
ITPCIM will be evaluated in three different unbalanced distribution
systems and a case study considering the insertion of distributed gener-
ation (DG) will be analysed. All assessments will be carried out based
on pre-established indexes in the literature. It is important to mention
that 100,000 trials are performed in each MCS application. For the MC
simulations, an uniform probability density function is associated with
the uncertain variables.

To analyse the applicability of ITPCIM and compare the proposed
improvements, IEEE 69-bus distribution system is used as case study.
Fig. 2 presents the single line diagram of this test system. This 12.66
kV network is composed of 68 load buses and the substation is the bus
69. More details about load and line data can be obtained in [27]. In
order to consider an unbalanced case study, the nominal load data is
multiplied by a factor equal to 1.0, 0.8 and 1.2 for phases A, B and C,
respectively.

Computational simulations were conducted using theMatlab R2018a
toolbox Intlab [28], which is a useful instrument to deal with real and
complex interval scalars, vectors and matrices. A given tolerance of
𝜏 = 1 × 10−6 is used for the computational simulations in this paper
and the Krawczyk operator is applied three times, since an angular
displacement of 𝛥𝜔𝑅 = 120◦ is adopted. All calculations were performed

in a Intel Core i7-5500 @ 2.41GHz processor.
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Fig. 2. IEEE 69-bus test system.
Fig. 3. Interval voltage magnitudes obtained with ITPCIM (red) and MCS (blue) in IEEE 69-bus distribution system for a 5% load uncertainty. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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3.1. Applicability of ITPCIM

To check the applicability of the developed interval methodology,
the results obtained with the application of ITPCIM are compared
with the ranges of values obtained with the MCS probabilistic method.
Figs. 3 and 4 show, respectively, the magnitude and angle intervals
of the three-phase voltages in each bus for the IEEE 69-bus system
considering a 5% load uncertainty. The red curves represent the limits
of the intervals obtained with IPTCIM and the blue curves represent the
limits obtained with MCS.

As can be noted in Figs. 3 and 4, the intervals obtained with the
developed methodology encompass the possible results obtained with
MCS, suggesting that the ITPCIM method is applicable in the calcula-
tion of the three-phase interval power flow. A quantitative analysis of
the results will be made next with a comparison between those interval
representations and the verification of the effectiveness of the proposed
improvements.

3.2. Comparative analysis

The objective of this section is to compare the voltages obtained
in the three-phase interval power flow calculation considering the
proposed improvements treating the variables in interval and affine
form.

To compare the interval results, the evaluation indexes presented
5

in [29] are used. Basically, those indexes determine the minimum, c
maximum and average percentage of agreement between an output
obtained with the interval methodology and the true interval solution,
represented by the limits obtained by MCS. Therefore, these evaluation
indexes 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 and 𝐴 described by Eqs. (26), (27) and (28) take
nto account the amount of an interval variable that involves the true
olution of that variable.

min = min

(

𝜔(𝑋𝑀𝐶
𝑘 )

𝜔(𝑋𝐼
𝑘 )

)

⋅ 100% (26)

max = max

(

𝜔(𝑋𝑀𝐶
𝑘 )

𝜔(𝑋𝐼
𝑘 )

)

⋅ 100% (27)

=
∑𝑛

𝑘=1 𝜔(𝑋
𝑀𝐶
𝑘 )

∑𝑛
𝑘=1 𝜔(𝑋

𝐼
𝑘 )

⋅ 100% (28)

here 𝜔(𝑋𝑀𝐶
𝑘 ) is the width of possible values obtained with MCS for

ome variable at bus 𝑘 and 𝜔(𝑋𝐼
𝑘 ) is the width of this interval variable

t bus 𝑘 obtained with the application of some interval methodology.
he closer to 100%, the greater the range that encompasses the true
olution of this variable.

In addition to the representation using conventional interval arith-
etic (IA), the representation of interval variables in the affine form

s also used. Affine Arithmetic (AA), which is described in Appendix B
as the advantage of dealing with the dependency problem in interval
alculations and this feature can avoid overestimating results in many

ases.
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Fig. 4. Interval voltage angles obtained with ITPCIM (red) and MCS (blue) in IEEE 69-bus distribution system for a 5% load uncertainty. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Evaluation indexes considering voltage magnitudes in each phase in IEEE 69-bus distribution system with level of uncertainty
of 5%.
Method Phase A Phase B Phase C

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴

IA 16.91% 37.37% 26.87% 12.93% 28.54% 20.64% 19.09% 39.64% 28.14%
AA 34.58% 75.57% 50.87% 18.92% 41.73% 30.15% 27.99% 57.71% 41.15%

IA𝐼𝐸 34.45% 75.56% 50.66% 18.86% 41.42% 30.03% 27.99% 57.71% 41.15%
AA𝐼𝐸 34.56% 75.57% 50.82% 18.91% 41.67% 30.13% 27.99% 57.71% 41.15%

ITPCIM𝐼𝐴 34.45% 75.56% 50.66% 31.92% 65.99% 47.50% 39.25% 78.53% 57.09%
ITPCIM𝐴𝐴 34.56% 75.57% 50.82% 31.99% 66.00% 47.63% 39.38% 78.54% 57.10%
Table 3
Evaluation indexes considering voltage angles in each phase in IEEE 69-bus distribution system with level of uncertainty of
5%.
Method Phase A Phase B Phase C

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴

IA 37.86% 75.43% 49.52% 20.64% 43.49% 27.18% 24.55% 58.70% 34.24%
AA 38.04% 75.45% 49.82% 20.74% 43.50% 27.31% 24.55% 58.70% 34.24%

IA𝐼𝐸 37.92% 75.44% 49.62% 20.66% 43.49% 27.21% 24.55% 58.70% 34.24%
AA𝐼𝐸 38.02% 75.45% 49.77% 20.72% 43.50% 27.29% 24.55% 58.70% 34.24%

ITPCIM𝐼𝐴 37.92% 75.44% 49.62% 20.66% 43.49% 27.21% 24.55% 58.70% 34.24%
ITPCIM𝐴𝐴 38.02% 75.45% 49.77% 20.72% 43.50% 27.29% 24.55% 58.70% 34.24%
The results of IEEE 69-bus distribution system considering different
nterval approaches are shown in Table 2. In this table, IA and AA
escribe the results considering variables represented in interval arith-
etic or affine arithmetic forms without applying any proposed im-
rovement; IA𝐼𝐸 and AA𝐼𝐸 represent the use of the interval extension
echnique for these same interval representation forms; and ITPCIM𝐼𝐴

and ITPCIM𝐴𝐴 describe the use of all proposed improvements, consid-
ering IA and AA, respectively. Table 3 presents the evaluation index for
the voltage angles. For all cases, the uncertainty level is 5%.

A simple analysis of Table 2 shows that as the proposed improve-
ments are applied, there is a gradual improvement in the results. It is
possible to observe a growth of the 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 and 𝐴 indexes in the
three phases with the application of ITPCIM, considering both interval
and affine representation forms, which shows that the results obtained
6

with the application of the proposed methodology are closer to the true
solution. Furthermore, Table 2 shows that the simple application of in-
terval extensions in the IA representations considerably improves 𝐴𝑚𝑖𝑛,
𝐴𝑚𝑎𝑥 and 𝐴, which are very close to the indexes obtained considering
affine representation form.

It can also be seen in Table 2 that considering both the interval
extensions and the angular rotation techniques in the application of
ITPCIM, it is possible to observe a greater proximity of the indexes
between the three phases. Although the indexes obtained with the
use of interval extensions remain unchanged with the application of
ITPCIM in phase A, there is a significant improvement in the results of
phases B and C.

Table 3 shows that there is no change in the indexes obtained for
voltage angles, regardless of the improvement applied or the form of
interval representation used. For this reason, next evaluations will not

be made based on this variable.
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Table 4
Average time spent in IEEE 69-bus load flow calculation considering level of uncertainty
of 5%.

Method Average Time (s) Standard Deviation (s)

MCS 2322.13 7.13

IA 9.06 0.04
AA 967,71 27.92

IA𝐼𝐸 27.79 0.27
AA𝐼𝐸 701.08 15.11

ITPCIM𝐼𝐴 40.01 0.59
ITPCIM𝐴𝐴 1808.09 21.01

As mentioned in Section 2.2.3, 𝜔𝑅 = 120◦ in the application of
the angular rotation technique. It is observed that for the values of
𝜔𝑅 equal to 120◦, 60◦ or 30◦ the solutions do not present significant
changes. Furthermore, the results considering 𝜔𝑅 = 180◦ are practically
dentical to the results when the technique is not applied. Therefore,
o avoid unnecessary computational effort and guarantee good results,
𝑅 = 120◦ is indicated.

Table 4 shows the mean and standard deviation values related to
he computational time in seconds spent in MCS and the calculation of
hree-phase interval load flow considering the application of proposed
mprovements and the IA and AA forms of representation. The power
low of the IEEE 69-bus distribution system was calculated 10 times
ith each approach considering a 5% load uncertainty level.

It can be observed that, in general, the representation of the interval
ariables in the IA form requires significantly lower computational
ost than MCS and AA form. Furthermore, to obtain practically the
ame results, the application of ITPCIM considering the AA form of
epresentation takes on average about 45 times more seconds than IA
orm. When compared with MCS, ITPCIM𝐼𝐴 takes about 58 times less
econds. A point related to the AA representation is that the use of
nterval extensions (represented by AA𝐼𝐸) makes the interval load flow
onverge with less iterations to obtain practically the same results.

The proximity of the results obtained with ITPCIM𝐴𝐴 and ITPCIM𝐼𝐴
resented in Table 2 associated with the significant difference in com-
utational cost shown in Table 4 are determining factors to establish
hat the results presented in next evaluations will only take into ac-
ount the application of the developed methodology considering IA
epresentation, being represented by ITPCIM.

.3. ITPCIM analysis

The application of ITPCIM is evaluated considering different levels
f load variation from three different unbalanced three-phase distri-
ution systems: IEEE 69-bus, described in [27]; IEEE 13-bus, specified
n [30]; and IEEE 33-bus, minutely detailed in [31].

Table 5 presents a complete analysis of the behaviour of the voltage
agnitude indexes 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 and 𝐴 for those three distribution sys-

ems with the application of ITPCIM considering load variations. The
nalysis is done for the three phases and the considered levels of load
ncertainty are 5%, 7%, 10% and 15%.

The fact that the same evaluation index does not show significant
ariation with the increase in the load uncertainty level indicates that
he intervals obtained with the ITPCIM vary practically in the same
roportion to the true solution, which suggests that the increase in
he uncertainty level on load did not result in overestimation in the
agnitudes of the obtained interval voltages for any of the studied

ystems.
Although the results presented in Table 5 are interesting to evaluate

he behaviour of ITPCIM in view of the variation in load, it is not
ossible to precisely quantify the width of the intervals obtained with
TPCIM. For that, it is possible to do the voltage sensitivity analysis,
stablished in [18] and described by Eq. (29), which relates the width
f the resulting voltage interval in a bus 𝑘 with its deterministic value,
7

btained without load variation. In addition, the voltage sensitivity
ndicates which buses in the system are most sensitive to the variations
n which they are subjected.

%,𝑠
𝑉𝑘

=
𝜔(𝑉 𝑖,𝑠

𝑘 )

𝑉 𝑑,𝑠
𝑘

⋅ 100% (29)

Based on Eq. (29), the greater the percentage voltage sensitivity
𝑆%,𝑠
𝑉𝑘

, the greater the width of the interval in relation to the determinis-
tic variable it represents. Therefore it is interesting that 𝑆%,𝑠

𝑉𝑘
be as small

as possible.
Fig. 5 shows the three-phase percentage voltage sensitivity between

intervals obtained with the application of conventional interval arith-
metic and ITPCIM in three different distribution systems considering
a 5% variation in demand. The continuous lines denoted by 𝑆%,𝑠

𝑉𝐼𝐴
represent the application of conventional interval arithmetic while the
dotted lines represent voltage sensitivity using ITPCIM and it is denoted
by 𝑆%,𝑠

𝑉𝐼𝑇𝑃𝐶𝐼𝑀
, where 𝑠 = 𝐴,𝐵, 𝐶.

As presented in Fig. 5, there is a decrease in the percentage voltage
sensitivity with the application of ITPCIM in the three studied distri-
bution systems. For certain phases of some systems, this reduction is
greater than 50%, indicating that the width of the interval has been
reduced by half in most cases with the application of the proposed
improvements.

Therefore, the analysis of Fig. 5 and Table 2 suggests that the use
of interval extensions and the application of angular rotation technique
not only reduce the width of the intervals, but also increase the portion
of the interval that corresponds to the true solution.

The percentage sensitivity related to the angle of the voltage is not
calculated in this work because Eq. (29) does not apply properly for
phasors located very close to zero degrees, which is the case of most
voltages in phase A.

For a more complete analysis, Table 6 shows the maximum (𝑆%
𝑉𝑚𝑎𝑥

)
and average values (𝑆𝑉𝑎𝑣𝑔 ) of percentage voltage sensitivity for the same
systems studied in Table 5, considering the three phases and the same
levels of load uncertainty.

Through the analysis of Table 6 it is possible to see in all the studied
systems that as the level of load uncertainty grows, there is also an
increase in the width of the voltage intervals and, consequently, in
the percentage voltage sensitivity. Also, it is important to mention that
Table 5 indicates that the increase in the width of the voltage intervals
followed, in general, the growth in the range determined by the limits
obtained with MCS.

Finally, the 𝑆𝑉𝑎𝑣𝑔 index shows which distribution systems have bus
subject to the bigger voltage variation of a given phase caused by
load changes. Therefore, a simple analysis of Table 6 indicates that the
voltages in IEEE 13-bus system are more subject to variation from load
uncertainty than IEEE 33 and 69-bus systems.

3.4. Case study with distributed generation (DG)

This case study aims to analyse the impact of DG penetration on
ITPCIM implementation. For this, DG units are considered in buses 26
and 54, located at the end of two branches of distribution system IEEE
69-bus (Fig. 2). The three-phase active power generation of a DG unit
is considered equal to the active demand per phase of the bus on which
the unit is located.

The results obtained with the application of ITPCIM are also com-
pared with the ranges of values obtained with the MCS to check the
applicability of the methodology developed in the case of DG units
penetration. Figs. 6 and 7 show, respectively, the magnitude and angle
intervals of the three-phase voltages in each bus for the IEEE 69-bus
system considering a 5% load and generation uncertainty. The red
curves represent the limits of the intervals obtained with IPTCIM and
the blue curves represent the limits obtained with MCS.

As can be seen in Figs. 6 and 7, the intervals obtained with ITPCIM

encompass the possible results obtained with MCS, suggesting that
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Table 5
Evaluation indexes considering voltage magnitude in each phase in distribution systems.
System Uncertainty Phase A Phase B Phase C

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴

IEEE 13-bus

5% 50.34% 54.48% 51.10% 39.46% 40.84% 40.00% 48.76% 51.78% 49.50%
7% 50.69% 55.23% 51.59% 40.58% 42.14% 41.25% 48.76% 51.86% 49.39%
10% 48.93% 53.28% 49.95% 38.88% 40.86% 39.62% 47.96% 51.22% 48.78%
15% 52.00% 56.68% 53.10% 44.58% 46.58% 45.43% 52.44% 54.95% 53.17%

IEEE 33-bus

5% 41.56% 88.91% 53.41% 36.49% 43.30% 39.12% 37.02% 50.71% 44.55%
7% 42.36% 86.75% 54.40% 33.81% 42.98% 38.18% 33.83% 50.85% 43.68%
10% 44.42% 86.55% 53.32% 32.76% 40.77% 36.20% 35.59% 54.65% 46.81%
15% 43.57% 86.21% 53.51% 30.63% 40.07% 35.18% 33.62% 52.17% 44.78%

IEEE 69-bus

5% 34.45% 75.56% 50.66% 31.92% 65.99% 47.50% 39.25% 78.53% 57.09%
7% 34.14% 72.31% 50.18% 34.41% 68.28% 46.59% 36.73% 76.45% 57.29%
10% 35.09% 70.40% 50.48% 33.02% 69.08% 46.91% 37.26% 77.67% 57.43%
15% 34.88% 71.35% 50.20% 33.44% 67.10% 46.26% 36.62% 76.44% 57.69%
Fig. 5. Percentage voltage sensitivity 𝑆%,𝑠
𝑉𝑘

obtained with conventional interval arithmetic (continuous lines) and ITPCIM (dotted lines) in three different distribution systems for a
% load uncertainty.
able 6
oltage sensitivity in distribution systems with different levels of uncertainty.
System Uncertainty Phase A Phase B Phase C

𝑆%
𝑉𝑚𝑎𝑥

𝑆𝑉𝑎𝑣𝑔
𝑆%
𝑉𝑚𝑎𝑥

𝑆𝑉𝑎𝑣𝑔
𝑆%
𝑉𝑚𝑎𝑥

𝑆𝑉𝑎𝑣𝑔

IEEE 13-bus

5% 3.37% 2.51% 3.06% 2.35% 3.31% 2.49%
7% 4.72% 3.51% 4.28% 3.29% 4.64% 3.49%
10% 6.73% 5.02% 6.11% 4.70% 6.62% 4.98%
15% 10.09% 7.52% 9.16% 7.05% 9.91% 7.46%

IEEE 33-bus

5% 2.08% 1.04% 1.47% 0.84% 1.93% 1.02%
7% 2.91% 1.45% 2.11% 1.20% 2.71% 1.43%
10% 4.16% 2.08% 3.13% 1.78% 3.88% 2.04%
15% 6.25% 3.13% 5.04% 2.86% 5.84% 3.07%

IEEE 69-bus

5% 0.72% 0.20% 0.59% 0.17% 0.75% 0.21%
7% 1.02% 0.29% 0.83% 0.24% 1.05% 0.30%
10% 1.46% 0.41% 1.19% 0.34% 1.50% 0.42%
15% 2.20% 0.62% 1.80% 0.51% 2.25% 0.64%

the developed methodology is applicable in the calculation of the
three-phase interval power flow considering DG penetration.

For a more complete analysis of cases with DG penetration in IEEE
69-bus, the evaluation index 𝐴 and the voltage perceptual sensitivity
8

𝑆%,𝑠
𝑉𝑘

are calculated and shown in Tables 7 and 8. The analyses are per-
formed for the three phases and the considered levels of uncertainty are
the same as those already explored in this work. However, uncertainty
now affects both demand and generation.

The analysis of Table 7 shows that once again the same evalua-
tion index does not undergo significant variation with the increase in
the load and generation uncertainty levels, which indicates that the
intervals obtained with the ITPCIM for the IEEE 69-bus vary prac-
tically at the same proportion to the true solution, suggesting that
the increase in the uncertainty level of load and generation did not
result in overestimation in the magnitudes of the obtained interval
voltages. Furthermore, it can be noted that the indexes calculated with
DG penetration have magnitudes close to those showed in Eq. (28),
calculated disregarding the insertion of DG units.

The percentage voltage sensitivity levels indicated by Table 8 follow
the same pattern as when DG units are not considered. It is possible
to see in that as the level of load and generation uncertainty grows,
there is also an increase in the width of the voltage intervals and,
consequently, in the percentage voltage sensitivity.
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Fig. 6. Interval voltage magnitudes obtained with ITPCIM (red) and MCS (blue) in modified IEEE 69-bus distribution system for a 5% load uncertainty. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Interval voltage angles obtained with ITPCIM (red) and MCS (blue) in modified IEEE 69-bus distribution system for a 5% load and generation uncertainty. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 7
Evaluation indexes considering voltage magnitude in each phase at IEEE 69-bus with DG units allocated at buses 26 and 54.
Uncertainty Phase A Phase B Phase C

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴 𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝐴

5% 36.68% 73.12% 50.57% 34.95% 67.13% 48.24% 37.58% 76.75% 56.85%
7% 35.86% 72.12% 49.77% 32.38% 69.13% 46.69% 35.36% 75.95% 55.16%
10% 34.50% 72.61% 49.51% 32.35% 66.90% 46.21% 38.95% 74.91% 55.83%
15% 34.61% 70.42% 49.48% 34.24% 73.62% 47.67% 37.91% 76.95% 56.02%
Fig. 8 shows that applying the indicated improvements with ITPCIM
n IEEE 69-bus also considerably reduces the percentage voltage sen-
itivity, indicating a considerable decrease in the width of obtained
nterval voltages.
9

It is important to mention that DG penetrations were tested for
different locations and amounts of active power generation not only
in the IEEE 69-bus but also in the other distribution systems studied in
this paper. In all evaluations, the implementation of the ITPCIM method
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Table 8
Voltage sensitivity in IEEE 69-bus considering DG units allocated at buses 26 and 54
for different levels of uncertainty.

Uncertainty Phase A Phase B Phase C

𝑆%
𝑉𝑚𝑎𝑥

𝑆𝑉𝑎𝑣𝑔
𝑆%
𝑉𝑚𝑎𝑥

𝑆𝑉𝑎𝑣𝑔
𝑆%
𝑉𝑚𝑎𝑥

𝑆𝑉𝑎𝑣𝑔

5% 0.74% 0.21% 0.60% 0.17% 0.76% 0.21%
7% 1.04% 0.29% 0.85% 0.24% 1.07% 0.30%
10% 1.49% 0.42% 1.22% 0.35% 1.53% 0.43%
15% 2.24% 0.63% 1.84% 0.52% 2.29% 0.64%

Fig. 8. Percentage voltage sensitivity 𝑆%,𝑠
𝑉𝑘

obtained with conventional interval arith-
metic (continuous lines) and ITPCIM (dotted lines) in IEEE 69-bus considering GD units
penetration at buses 26 and 54 for a 5% uncertainty in load and generation.

Table 9
Correlation analysis.

Uncertainty Phase A Phase B Phase C

𝑟𝑙 𝑟𝑢 𝑟𝑙 𝑟𝑢 𝑟𝑙 𝑟𝑢
5% 0.9964 0.9935 0.9905 0.9742 0.9976 0.9969
7% 0.9965 0.9922 0.9919 0.9660 0.9976 0.9967
10% 0.9968 0.9900 0.9931 0.9414 0.9977 0.9961
15% 0.9968 0.9816 0.9951 0.9818 0.9972 0.9943

is relevant and there is no significant disparity in the obtained results.
Due to limited space, these analyses were not included in this section.

A correlation analysis is proposed considering the results obtained
using Eq. (30) in which 𝑁 is the total number of buses of the system,
𝑙 is the lower bound of the voltages obtained using Monte Carlo
imulations and 𝑉𝑙 are the corresponding values determined by the
roposed method. Their corresponding average values are denoted by
and 𝑉 , respectively.

𝑙 =
∑𝑁

𝑙=1(𝑉𝑙 − 𝑉 )(𝑉𝑖 − 𝑉 )
√

∑𝑁
𝑙=1(𝑉𝑙 − 𝑉 )

∑𝑁
𝑙=1(𝑉𝑙 − 𝑉 )

(30)

Analogously, the results can be evaluated for the upper bounds of
he interval values, according to Eq. (31):

𝑢 =
∑𝑁

𝑢=1(𝑉𝑢 − 𝑉 )(𝑉𝑢 − 𝑉 )
√

∑𝑁
𝑢=1(𝑉𝑢 − 𝑉 )

∑𝑁
𝑢=1(𝑉𝑢 − 𝑉 )

(31)

Table 9 presents the correlation analysis for all the system phases
or the case study. It can be noted that the results obtained using
he proposed method and the MC simulations are similar, being their
orrelation close to the unitary value.

.5. Frequency droop equations

In [32], the frequency droop equations are introduced into the three
hase current injection method assuming the system frequency in Hz
Hertz) as a state variable to be calculated. In this case, Eq. (32) is
sed for determining the droop characteristics of the generation units
n which 𝑃 𝑠 is the active power output of the generator, 𝑃 𝑠 is the
10

𝑘,𝑔 𝑘,0
Fig. 9. IEEE 69-bus considering frequency droop control.

corresponding nominal value associated with the nominal frequency
(𝑓0) and the 𝑓 is the frequency value in Hertz to be determined by
the algorithm.

𝑃 𝑠
𝑘,𝑔 = 𝑃 𝑠

𝑘,0 +𝐾𝑓 (𝑓 − 𝑓0) (32)

Note that the droop constant 𝐾𝑓 is often referred to as the inverse of
the generation unit statism and is generally less than 5% in the system
base according to [32–34]. This constant may be associated mainly for
rotating electrical machines and for Voltage Source Inverters (VSI) used
for the connection of DG units into to distribution networks. The fre-
quency variations are more expressive within microgrids environment
due to the possibility of islanded operation [34]. However, it can be
easily incorporated to the set of equations associated with the current
injection method as described in [32] in order to calculate the system
frequency.

It is important to notice that voltage control and frequency droop
equations can be considered directly in the formation of the Jacobian
matrix of the current injection method, as described in equations
(A.15)-(A.19) in Appendix A, according to the original Ref. [32] in
which this important contribution is presented. The proposed method
consists on the application of the Krawczyk operator into the Jacobian
matrix, being possible to obtain the results in this case.

New simulations are conducted in order to demonstrate the ef-
ficiency of the proposed method in this situation being the 69-bus
test system used for the computational simulations of the case study
described in Section 3.4. with the introduction of DG (Distributed
Generation) units. The 𝐾𝑓 droop constants of the generation units are
set equal to 50 kW/Hz as adopted in [34] for the 69-bus test system.

Assuming an uncertainty of 5% associated with both load and
generation data, the voltage sensitivities are given in percentage values
in Fig. 9. Note that the values are similar to the ones obtained in the
previous simulations and case studies.

Once the frequency value was considered as an additional variable
to be calculated, it is important to present their values for different
uncertainty percentage levels. In Table 10, the upper and lower limits
of the frequency in Hertz are presented for different uncertainty values
considering the results obtained from the Monte Carlo simulations and
the proposed method in which the Krawczyk operator is applied into
the Jacobian matrix.

It can be noted that similar results are obtained when compared
to the traditional MC simulations, proving the efficiency and viability
of the proposed method. The frequency variations are not expressive
due to the connection of the substation (main energy source) to the
distribution network as discussed in [34].

4. Conclusions

This paper presented a novel methodology for determining interval
results of three-phase unbalanced power systems using the Three-

Phase Current Injection Method (TPCIM) equations in which the state
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Table 10
Interval analysis for frequency variation considering different uncertainty values.

Uncertainty Monte Carlo Proposed method

𝑓𝑙 𝑓𝑢 𝑓𝑙 𝑓𝑢
5% 59.9999 60.0001 59.9999 60.0001
7% 59.9999 60.0001 59.9999 60.0001
10% 59.9998 60.0002 59.9998 60.0002
15% 59.9997 60.0003 59.9997 60.0004

variables are considered in rectangular coordinates assuming intrinsic
characteristics of distribution feeders such as radial topology, mutual
impedances and unbalanced loads.

Based on the interval arithmetic, uncertainties are associated to
active/reactive power injections at each system bus in order to evaluate
their impact on the voltage magnitudes and angles.

In order to avoid Jacobian matrix inversion, the Krawczyk operator
is applied into the power flow equations in order to obtain accurate
interval solutions which can be compared to Monte Carlo simulations.

To validate the proposed methodology, different case studies are
evaluated considering 13, 33 and 69 bus test systems. Results are
compared with Monte Carlo solution and Affine Arithmetic results
based on sensitivity analysis. Based on the simulations, it is possible
to demonstrate that Monte Carlo solutions are accommodated between
the limits obtained using the proposed method.

The analysis of presented results suggests that the use of interval
extensions and the application of angular rotation technique not only
reduce the width of the intervals, but also increase the portion of the
interval that corresponds to the true solution.

Additionally, droop control and correlation analysis were performed
in order to validate the proposed method to be used in distribution
networks.

The method is useful for power distribution systems operation and
planning studies, representing a viable and useful tool for calculating
the impact of uncertain input data on the power flow results. Similar so-
lutions are obtained when compared with Affine Arithmetic and Monte
Carlo Simulations. Additionally, the computational time associated to
the algorithm is extremely advantageous.

CRediT authorship contribution statement

Heitor M. Rodrigues Junior: Conceptualisation, Data curation,
Writing - review & editing, Software, Visualisation. Igor D. Melo:
Conceptualisation, Supervision, Methodology, Software, Writing - re-
view & editing. Erivelton G. Nepomuceno: Supervision, Methodology,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001.

The authors would also like to thank UFJF (Universidade Federal de
Juiz de Fora) and PPEE (Programa de Pós Graduação em Engenharia
11

Elétrica). t
Appendix A. Three-phase current injection method

The three-phase current injection method (TPCIM) is presented
in [26]. It represents a novel formulation for the traditional power
flow algorithm in which active and reactive powers are calculated
as function of voltage magnitudes and angles in polar coordinates.
TPCIM is formulated based on equations of calculated current injections
expressed in terms of bus voltages in rectangular coordinates (real and
imaginary parts).

Based on Eq. (A.1), it is possible to split the nodal current �̇�𝑠𝑘 into
real and imaginary parts as presented by Eqs. (A.2) and (A.3):

�̇�𝑠𝑘 =
(𝑃 𝑠𝑐ℎ

𝑘 )𝑠 − 𝑗(𝑄𝑠𝑐ℎ
𝑘 )𝑠

(𝑉 𝑠
𝑘 )

∗ (A.1)

𝑠
𝑟𝑒𝑘

=
𝑃 𝑠𝑐ℎ,𝑠
𝑘 𝑉 𝑠

𝑟𝑒𝑘
+𝑄𝑠𝑐ℎ,𝑠

𝑘 𝑉 𝑠
𝑖𝑚𝑘

(𝑉 𝑠
𝑟𝑒𝑘

)2 + (𝑉 𝑠
𝑖𝑚𝑘

)2
(A.2)

𝐼𝑠𝑖𝑚𝑘
=

𝑃 𝑠𝑐ℎ,𝑠
𝑘 𝑉 𝑠

𝑖𝑚𝑘
−𝑄𝑠𝑐ℎ,𝑠

𝑘 𝑉 𝑠
𝑟𝑒𝑘

(𝑉 𝑠
𝑟𝑒𝑘

)2 + (𝑉 𝑠
𝑖𝑚𝑘

)2
(A.3)

It is also possible to calculate the current injection vector 𝑰𝒂𝒃𝒄

according to the system (A.4) in which 𝒀 𝒂𝒃𝒄 is the admittance matrix
ncorporating the admittances of the network and 𝑽 𝒂𝒃𝒄 is the voltage

vector.

𝑰𝒂𝒃𝒄 = 𝒀 𝒂𝒃𝒄𝑽 𝒂𝒃𝒄 (A.4)

It is possible to write the equation in rectangular coordinates (di-
vided into real and imaginary parts) as presented by Eq. (A.5) and the
matrix system (A.6) to be solved by direct method.

𝑰𝒓𝒆
𝒂𝒃𝒄 + 𝑗𝑰 𝒊𝒎

𝒂𝒃𝒄 = (𝑮𝒂𝒃𝒄 + 𝑗𝑩𝒂𝒃𝒄 )(𝑽 𝒓𝒆
𝒂𝒃𝒄 + 𝑗𝑽 𝒊𝒎

𝒂𝒃𝒄 ) (A.5)

[

𝑰 𝒊𝒎
𝒂𝒃𝒄

𝑰𝒓𝒆
𝒂𝒃𝒄

]

=
[

𝑩𝒂𝒃𝒄 𝑮𝒂𝒃𝒄

𝑮𝒂𝒃𝒄 −𝑩𝒂𝒃𝒄

]

[

𝑽 𝒓𝒆
𝒂𝒃𝒄

𝑽 𝒊𝒎
𝒂𝒃𝒄

]

(A.6)

It is possible to calculate real and imaginary parts of the nodal
njected current as respectively presented by (A.7) and (A.8).
𝑠
𝑟𝑒𝑘

=
∑

𝑚𝜖𝛺𝑘

∑

𝑡𝜖𝜑𝑝

(𝐺𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑟𝑒𝑚

− 𝐵𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑖𝑚𝑚

) (A.7)

𝑠
𝑖𝑚𝑘

=
∑

𝑚𝜖𝛺𝑘

∑

𝑡𝜖𝜑𝑝

(𝐺𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑖𝑚𝑖

+ 𝐵𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑟𝑒𝑚

) (A.8)

here 𝑠, 𝑡 ∈ 𝜑𝑝 and 𝜑𝑝 = {𝑎, 𝑏, 𝑐}. The index 𝛺𝑘 represents the set of
uses directly connected to bus 𝑘.

The difference between the calculated real and imaginary currents
nd their corresponding scheduled values in (A.2) and (A.3) must be
qual to zero, as expressed by (A.9), (A.10), (A.11) and (A.12).

𝐼𝑠𝑟𝑒𝑘 = 0 (A.9)

𝐼𝑠𝑖𝑚𝑘
= 0 (A.10)

𝑃 𝑠𝑐ℎ,𝑠
𝑘 𝑉 𝑠

𝑟𝑒𝑘
+𝑄𝑠𝑐ℎ,𝑠

𝑘 𝑉 𝑠
𝑖𝑚𝑘

(𝑉 𝑠
𝑟𝑒𝑘

)2 + (𝑉 𝑠
𝑖𝑚𝑘

)2
−

∑

𝑚𝜖𝛺𝑘

∑

𝑡𝜖𝜑𝑝

(𝐺𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑟𝑒𝑚

− 𝐵𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑖𝑚𝑚

) = 0 (A.11)

𝑃 𝑠𝑐ℎ,𝑠
𝑘 𝑉 𝑠

𝑖𝑚𝑘
−𝑄𝑠𝑐ℎ,𝑠

𝑘 𝑉 𝑠
𝑟𝑒𝑘

(𝑉 𝑠
𝑟𝑒𝑘

)2 + (𝑉 𝑠
𝑖𝑚𝑘

)2
−

∑

𝑚𝜖𝛺𝑘

∑

𝑡𝜖𝜑𝑝

(𝐺𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑖𝑚𝑖

+ 𝐵𝑠𝑡
𝑘𝑚𝑉

𝑡
𝑟𝑒𝑚

) = 0 (A.12)

Once the system contains non linear equations, the solution is ob-

ained iteratively by Newton–Raphson method as presented by (A.13):
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𝛥𝑰𝒂
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𝛥𝑰𝒃
𝒊𝒎

𝛥𝑰𝒄
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𝛥𝑰𝒂
𝒓𝒆

𝛥𝑰𝒃
𝒓𝒆

𝛥𝑰𝒄
𝒓𝒆

⎤

⎥

⎥

⎥

⎥

⎥

⎥
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𝜕𝑽 𝒄
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𝒊𝒎

𝜕𝑽 𝒄
𝒊𝒎

𝜕𝑰𝒃
𝒊𝒎

𝜕𝑽 𝒂
𝒓𝒆

𝜕𝑰𝒃
𝒊𝒎

𝜕𝑽 𝒃
𝒓𝒆

𝜕𝑰𝒃
𝒊𝒎

𝜕𝑽 𝒄
𝒓𝒆

𝜕𝑰𝒃
𝒊𝒎

𝜕𝑽 𝒂
𝒊𝒎

𝜕𝑰𝒃
𝒊𝒎

𝜕𝑽 𝒃
𝒊𝒎

𝜕𝑰𝒃
𝒊𝒎

𝜕𝑽 𝒄
𝒊𝒎

𝜕𝑰𝒄
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𝜕𝑽 𝒂
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𝜕𝑰𝒄
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𝜕𝑽 𝒃
𝒓𝒆

𝜕𝑰𝒄
𝒊𝒎

𝜕𝑽 𝒄
𝒓𝒆

𝜕𝑰𝒄
𝒊𝒎

𝜕𝑽 𝒂
𝒊𝒎
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𝜕𝑰𝒂
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𝒓𝒆

𝜕𝑰𝒂
𝒓𝒆

𝜕𝑽 𝒄
𝒓𝒆

𝜕𝑰𝒂
𝒓𝒆

𝜕𝑽 𝒂
𝒊𝒎

𝜕𝑰𝒂
𝒓𝒆

𝜕𝑽 𝒃
𝒊𝒎

𝜕𝑰𝒂
𝒓𝒆

𝜕𝑽 𝒄
𝒊𝒎

𝜕𝑰𝒃
𝒓𝒆

𝜕𝑽 𝒂
𝒓𝒆

𝜕𝑰𝒃
𝒓𝒆

𝜕𝑽 𝒃
𝒓𝒆

𝜕𝑰𝒃
𝒓𝒆

𝜕𝑽 𝒄
𝒓𝒆

𝜕𝑰𝒃
𝒓𝒆

𝜕𝑽 𝒂
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(A.13)

In compact form, the matrix system represented in (A.13) can be
ewritten as presented in (A.14) in which the Jacobian matrix, 𝐽𝑎𝑐𝑜𝑏
ontains all the partial derivatives associated with the problem.

⎡

⎢

⎢

⎢

⎣

𝛥𝑰𝒂𝒃𝒄
𝒊𝒎

𝛥𝑰𝒂𝒃𝒄
𝒓𝒆

⎤

⎥

⎥

⎥

⎦

= −
[

𝐽𝑎𝑐𝑜𝑏
]

⎡

⎢

⎢

⎢

⎣

𝛥𝑽 𝒂𝒃𝒄
𝒓𝒆

𝛥𝑽 𝒂𝒃𝒄
𝒊𝒎

⎤

⎥

⎥

⎥

⎦

(A.14)

As described in [26], voltage control can be incorporated to the set
f TPCIM equations in order to determine the reactive power output
rom generation buses to control the voltage magnitude at a given bus
′ of the network, according to system represented in (A.15) where
𝑸𝒂𝒃𝒄

𝒌′ is associated with the three-phase reactive power calculated to
ontrol the voltage magnitude, denoted by 𝑉 𝑎𝑏𝑐

𝑘′ .
Additionally, the droop control characteristics associated with pri-

ary frequency control, as determined by Eq. (32) can be easily in-
orporated to the set of equations according to [32]. In this case,
he frequency 𝑓 is added as variable to be determined by the load
low being associated with the reference angle 𝜃𝑟𝑒𝑓 which is generally

adopted as zero. Note that, in this formulation, any load bus can
be adopted as angular reference for the system, being a particular
contribution from the original methodology proposed in [32].

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑰𝒂𝒃𝒄
𝒊𝒎

𝛥𝑰𝒂𝒃𝒄
𝒓𝒆

𝛥𝑽 𝒂𝒃𝒄
𝒌′

𝛥𝜽𝒓𝒆𝒇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= −
[

𝐽 ′
𝑎𝑐𝑜𝑏

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑽 𝒂𝒃𝒄
𝒓𝒆

𝛥𝑽 𝒂𝒃𝒄
𝒊𝒎

𝛥𝑸𝒂𝒃𝒄
𝒌′

𝛥𝒇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.15)

The solution is obtained by Newton–Raphson iterative method being
he solution updated at each iteration ℎ as described in Eq. (A.16),

(A.17), (A.18) and (A.19):
(

𝑽 𝒂𝒃𝒄
𝒓𝒆𝒌

)(ℎ+1)
=
(

𝑽 𝒂𝒃𝒄
𝒓𝒆𝒌

)(ℎ)
+
(

𝛥𝑽 𝒂𝒃𝒄
𝒓𝒆𝒌

)(ℎ)
(A.16)

(

𝑽 𝒂𝒃𝒄
𝒊𝒎𝒌

)(ℎ+1)
=
(

𝑽 𝒂𝒃𝒄
𝒊𝒎𝒌

)(ℎ)
+
(

𝛥𝑽 𝒂𝒃𝒄
𝒊𝒎𝒌

)(ℎ)
(A.17)

(

𝑸𝒂𝒃𝒄
𝒌′

)(ℎ+1)
=
(

𝑸𝒂𝒃𝒄
𝒌′

)(ℎ)
+
(

𝛥𝑸𝒂𝒃𝒄
𝒌′

)(ℎ)
(A.18)

(ℎ+1) (ℎ) (ℎ)
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𝒇 = 𝒇 + 𝜟𝒇 (A.19)
Appendix B. Affine arithmetic

Affine Arithmetic (AA) is a model for self-validated numerical com-
putation that is similar to standard Interval Arithmetic, with the ad-
vantage that AA deals with the dependency problem in interval calcu-
lations. Thereby, AA tracks first-order correlations between input and
computed quantities. In many cases, this feature can avoid overestimat-
ing results [35].

In AA, a partially unknown quantity 𝑥 is represented by an affine
form �̂� which is described by the following first degree polynomial:

̂ = 𝑥0 + 𝑥1𝜖1 + 𝑥2𝜖2 +⋯ + +𝑥𝑛𝜖𝑛 (B.1)

where 𝑥0 is defined as the central value of �̂� and 𝑥𝑖 are real coefficients
that represent partial deviations which depicts the magnitude of the
corresponding uncertainty. The noise variables 𝜖𝑖 ∈ [−1, 1] represent
independent components of the total quantity uncertainty 𝑥.

In AA, the same noise variable can contribute to the uncertainty of
two or more computed quantities. Thus, if two affine forms �̂� and �̂�
share the same noise symbol 𝜖𝑖, there is a partial dependency between
the quantities 𝑥 and 𝑦. The coefficients 𝑥𝑖 and 𝑦𝑖 define the direction of
this correlation.

Let 𝑧 = 𝑓 (𝑥, 𝑦) be a general operation. If 𝑓 represents an affine
operation, then �̂� can be written as an affine combination of the noises
𝜖𝑖. Thus, given two affine forms �̂� and �̂� and three real numbers 𝛼, 𝛽
and 𝛾, we have

𝛼�̂� + 𝛽�̂� + 𝛾 = (𝛼𝑥0 + 𝛽𝑦0 + 𝛾) + (𝛼𝑥1 + 𝛽𝑦1)𝜖1 +⋯ + (𝛼𝑥𝑛 + 𝛽𝑦𝑛)𝜖𝑛 (B.2)

Otherwise, if 𝑓 represents a non-affine operation �̂� cannot be strictly
expressed as an affine combination of the noise symbols 𝜖𝑖. Accord-
ing [36], this cases require that good affine approximation to exact
solution must be used and an extra term to limit the error of this
approach must be inserted.
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