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Abstract: This work presents a novel technique that integrates the methodologies of machine
learning and system identification to solve multiclass problems. Such an approach allows
to extract and select sets of representative features with reduced dimensionality, as well
as predicts categorical outputs. The efficiency of the method was tested by running case
studies investigated in machine learning, obtaining better absolute results when compared with
traditional classification algorithms.

Resumo: O presente trabalho apresenta uma nova técnica que integra as metodologias de
aprendizado de máquinas e identificação de sistemas na solução de problemas multiclasses.
A abordagem permite extrair e selecionar conjuntos de caracteŕısticas representativas com
dimensionalidade reduzida, da mesma forma que prediz sáıdas categóricas. A eficiência do
método é testada pela aplicação em estudos de casos estudados no aprendizado de máquina,
obtendo melhores resultados absolutos em comparação aos algoritmos clássicos de classificação.
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1. INTRODUCTION

The progressive development of modern technology, com-
prised of computer and internet applications, generates
large amounts of data at an unprecedented speed, such
as videos, photos, texts, voices, and data obtained from
the emergence of the Internet of Things (IoT) and cloud
computing. Data often have large attributes, presenting
sets of redundant, noisy, and irrelevant features that can
degrade the performance of machine learning algorithms,
posing a major challenge for data analysis and decision
making. Therefore, there is a need to use techniques that
allow reducing the dimensionality of data, which is a step
that helps data mining and machine learning algorithms
to be more efficient (Brunton and Kutz, 2019).

The dimensionality reduction problem can be solved us-
ing feature extraction techniques. Feature extraction deals
with the problem by generating a new reduced set of fea-
tures with k dimensions, coming from combinations of the
original set with d dimensions (Cai et al., 2018). The new
reduced dataset has high discriminatory power, which can
increase algorithm performance, reduce processing time,
and simplify results. Furthermore, in some cases, feature
extraction promotes an increase in the understanding of
the results and leads to an improvement in precision, as it
avoids excessive adjustments to the data sample.

In machine learning, conventional classifiers largely lack
processes to handle overfitting more efficiently. Therefore,
if the input variables (features) have a larger number
compared to the number of training data, in some cases
it can result in complex and ineffective models. Basically,
the generalizability of the classifier may not be enough,
being necessary to extract and select features to improve
the generalizability. In recent decades, several feature
extraction algorithms have been created and employed,
being Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) the most widely known
(Abdi and Williams, 2010).

Parameter extraction methods (Jiménez et al., 2019) assist
in data pre-processing, and are later used to increase the
performance of traditional classification algorithms such
as Support Vector Machine (SVM) (Nagata et al., 2020),
Neural Network (NN) (Naik and Kundu, 2014), Random
Forest (RF) (Zhang et al., 2003) and K-Nearest Neighbors
(KNN) (Pan et al., 2017). Classification algorithms are
widely used, however, they have some disadvantages, such
as the dependence on auxiliary extraction algorithms to
obtain satisfactory performance on certain types of data.
Furthermore, the models resulting from the classifiers gen-
erally have low interpretability, i.e., understanding the
relationship between the inputs and outputs of the pre-
dictor may not be simple. Even though classifiers are very
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efficient in solving several problems, the performance of a
classifier depends on the nature of the data to be classified
(Silva et al., 2020). Since there is no single classifier that
works best for all the problems provided.

Thus, this work proposes a hybrid algorithm that inte-
grates machine learning and system identification method-
ologies in solving multinomial classification problems. One
of the main motivations is the combination of methods
and techniques from different areas in order to improve
their performance. As a result, combinations are generated
that usually provide more efficient hybrid algorithms. The
approach allows to extract and select sets of representative
features with reduced dimensionality, in the same way as
it efficiently predicts categorical outputs. Furthermore, the
algorithm allows the inclusion of lagged terms directly and
deals with multicollinearity, resulting in more interpretable
models, something that is not achievable using other pop-
ular classification techniques.

2. NONLINEAR SYSTEM IDENTIFICATION

System Identification is an experimental approach that
aims to identify and adjust a mathematical model of
a system, based on experimental data that record the
behavior of system inputs and outputs (Billings, 2013;
Aguirre, 2007). In particular, the interest in nonlinear
system identification has received a lot of attention from
researchers since the 1950s and many relevant results have
been developed (Wei et al., 2004; Nepomuceno and Mar-
tins, 2016; Ferreira et al., 2017). A model representation
constantly employed is the NARX model (Nonlinear Au-
toRegressive with eXogenous inputs), consisting of a math-
ematical model based on differential equations. In general,
system identification consists of several steps, including
data collection and processing, choice of mathematical
representation, determination of model structure, param-
eter estimation, and model validation (Söderström and
Stoica, 1989). For nonlinear systems, there are numerous
techniques to determine the structure of the model, such
as: Clustering Algorithms (Aguirre and Jácome, 1998),
Genetic Programming (Sette and Boullart, 2001) and the
method Orthogonal Forward Regression (OFR) using the
Error Reduction Ratio (ERR) approach (Wei et al., 2004).

2.1 NARX Representation

The NARX representation is a discrete-time model that
explain the output value y(k) as a function of previous
values of the output and input signals:

y(k) = f l(y(k − 1), · · · ,y(k − ny),

u(k − 1), · · · ,u(k − nu)) + e(k),
(1)

where f l represents a nonlinear function of the model
with nonlinearity degree l ∈ N, y(k) ∈ R is the output
of the system, and u(k) ∈ R is the input to the system
in discrete time k = 1, 2, . . . , N ; N is the number of
observations, e(k) ∈ R represents the uncertainties and
possible noise in discrete time k, ny ∈ N and nu ∈ N
describes the maximum lags for the output and input
sequences, respectively. Most approaches assume that the
function f l can be approximated by a linear combination

of a predefined set of functions φi(ϕ(k)), so that Equation
(1) can be expressed in the following parametric form:

y(k) =
m∑
i=1

θiφi(ϕ(k)) + e(k), (2)

where θi are the coefficients to be estimated, φi(ϕ(k)) are
the predefined functions that depend on the regression
vector:

ϕ(k) = [y(k − 1), · · · ,y(k − ny),

u(k − 1), · · · ,u(k − nu)]T,
(3)

where ϕ(k) represents the previous outputs and inputs,
and m is the number of functions in the set. One of the
most used NARX models is the polynomial representation,
where Equation (2) can be denoted as follows:

y(k) = θ0 +
n∑

i1=1

θi1xi1(k) +
n∑

i1=1

n∑
i2=i1

θi1i2xi1(k)xi2(k)+

n∑
i1=1

· · ·
n∑

il=il−1
θi1i2···ilxi1(k)xi2(k) · · ·xil(k) + e(k), (4)

considering n = ny + nu,

xi(k) =

{
y(k − i), 1 ≤ i ≤ ny,
u(k − i+ ny), ny + 1 ≤ i ≤ n, (5)

being l the nonlinearity degree. The NARX model of order
l means that the order of each term in the model is not
greater than l. The total number of potential terms in a
polynomial NARX model is given by:

M =
(n+ l)!

n! · l!
. (6)

Finally, NARX models can be used to describe a wide
variety of systems, simply obtaining analytical information
about dynamic models. Another advantage is parsimony,
meaning that a wide range of behaviors can be concisely
represented using just a few terms from the vast search
space formed by candidate regressors, as well as a small
data set is needed to estimate a model, which can be
crucial in applications where it is difficult to acquire a large
amount of data.

2.2 Orthogonal Forward Regression

In general, the determination of the model structure and
parameter estimation are performed together. One of
the most popular algorithms for performing the two-step
NARX modeling is the Orthogonal Forward Regression
(OFR) algorithm (Billings, 2013) . The algorithm trans-
forms a set of candidate terms into orthogonal vectors and
classifies them based on their contribution to the output
data, identifying and fitting a deterministic and parsi-
monious NARX model that can be expressed in a form
of generalized linear regression. The original Orthogonal
Forward Regression algorithm uses the Error Reduction
Rate (ERR) as a dependency metric. The criterion asso-
ciates to each candidate term an index corresponding to
the contribution in explaining the variance of the system
output data. The error reduction rate is defined as the
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Pearson correlation coefficient C(x,y) between two associ-
ated vectors x and y:

C(x,y) =
(xT y)2

(xTx)(yty)
. (7)

3. LOGISTIC-NARX MULTINOMIAL
CLASSIFICATION

Classification problems occur in the most diverse areas of
knowledge, such as finance, healthcare, and engineering,
where the goal is to identify a model that is capable
of classifying observations or measurements into different
categories or classes. A widely used approach is logistic re-
gression, which uses concepts of statistics and probability
to categorize variables by classes. In the logistic regression
method, the predicted values are probabilities, so they are
restricted to values between 0 and 1, and use the logistic
function defined as:

f(x) =
1

1 + exp (−x)
, (8)

which x ∈ R and f(x) is restricted to the range between
0 and 1. A problem found in logistic regression is multi-
collinearity, in which independent variables have exact or
approximately exact linear relationships. If the variables
are highly correlated, inferences based on the regression
model may be erroneous or unreliable.

In this work, a hybrid multinomial classification method
is presented, which allows the extraction and selection of
features during the process. One of the advantages of using
NARX modeling methodologies is the orthogonalization
procedures, which address the multicollinearity problem
by verifying the correlations between the predictor vari-
ables. The method is based on the Orthogonal Forward
Regression (Ayala Solares et al., 2019) algorithm that
selects the terms and combines the logistic function with
the NARX representation to obtain a probability model:

p(x) =
1

1 + exp
[∑M

m=1 θmφm (ϕ(k))
] . (9)

The multiclass problems are usually more complex than
the binary classification, due to their decision boundaries.
Direct extension of the binary algorithm to a multiclass
version is not always possible or easy to accomplish. There-
fore, the forms most explored by the scientific community
are based on the binarization of multiclass problems. One
of the most employed decomposition methods is One-
Versus-All (OVA), which makes use of C binary classifiers
to solve a classification problem involving C classes. For
the v-th binary classifier, a distinction is made between
the class wv and the other classes. In this way, a x pattern
is classified by the following decision rule:

x ∈ wv ⇔ arg max
1≤v≤C

fv(x), (10)

defining fv as the result given by the model referring to
the class v, meaning the probability between 0 and 1 of
belonging to the v-th class with respect to an instance x.
Then, it is verified which class is most likely given as a
result in Equation (10).

Algorithm 1 Logistic-NARX Multinomial

1: Input: {y(k), k = 1, . . . , N}, M = {φi, i = 1, . . . ,m} ,
l, ny, nu, k

2: Output: α = {αi, i = 1, . . . , k}, θ = {θi, i = 1, . . . ,k}
3: for i = 1 : m do
4: wi ← φi

‖φi‖2
5: ri ← Logistic regression accuracy in wi and y

6: j ← arg max
1≤i≤m

{r(wi,y)}
7: q1 ← wj
8: α1 ← φj
9: Train logistic model with α1 and y

10: Compute cross-validation
11: Remove φj from M
12: for s = 2 : k do
13: for i = 1 : m do

14: w
(s)
i ← Orthogonalize φi in [q

1
, . . . ,q

(s−1)
]

15: if wT
i wi < 10−10 then

16: Remove φi from M
17: Next iteration
18: ri ← Logistic regression accuracy in wi and y
19: j ← max

1≤i≤m−s+1
{r(i)(wi,y)}

20: qs ← wj
21: αs ← φj
22: Remove φj from M
23: α← [α1, . . . ,α(s)

]

24: Train logistic model with α and y
25: Compute cross-validation

26: α← [α1, . . . ,α(k)
] . matrix of selected terms

27: θ ← [θ1, . . . ,θ(k)
] . estimated coefficients vector

To combine the methodologies of NARX models and multi-
nomial classification, some aspects of the Orthogonal For-
ward Regression algorithm were adapted. The OFR algo-
rithm relies on the error reduction rate given by Equation
(7) to determine the contribution of each candidate term.
However, this metric is no longer useful as the output is
a categorical variable due to the multiclass addressed. To
solve this problem, a simple logistic model using maximum
likelihood estimate (MLE) is used. Basically, the accuracy
of the prediction of the categorical variable resulting from
the logistic model based on continuous variables is calcu-
lated. Since the resulting predictor has a high degree of
accuracy, it can be concluded that the two variables are
correlated. To calculate the accuracy, the K-Fold Cross
Validation was used, in order to assess the generalizability
of the model.

In Algorithm 1, line (1) represents the inputs composed
by the vector y(k) of classes (labels), the matrix M con-
stitutes the regressors formed by combinations of feature
vectors, k is the maximum number of selected terms and

Table 1. Summary of the datasets.

Dataset Classes Features Samples

Iris 3 4 150

Wine 3 13 178

Glass 6 9 214

Wave 3 40 5000
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Figure 1. Relation between average accuracy and the
number of selected terms associated with Iris data.
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Figure 2. Relation between average accuracy and the
number of selected terms associated with Wine data.

(l, ny, nu) are the parameters of the NARX model (Equa-
tion 1). Lines (3-8) aim to select the candidate terms φi
with greater discriminatory power, based on the prediction
accuracy of the logistic model. In lines (9-10) the logistic
model is trained using the selected regressors α and the
class vector y(k), calculating the cross-validation of the
classification. The selected terms are transformed at each
step into a new group of orthogonal bases in lines (14-18),
using the Gram-Schmidt Orthogonalization procedures.
The process is repeated on lines (12-25) until it reaches
the specified maximum number of model terms selection
k. Finally, in lines (26-27) the matrix of selected terms
α and the vector of coefficients θ of the estimated model
are obtained. Since the number of terms in the model is
not known in advance, the parameter k can be selected
heuristically, executing the Algorithm 1 and checking the
resulting accuracy curve.

4. RESULTS

In this section, simulations are carried out to evaluate
the dimensionality reduction capacity and classification
accuracy of the proposed method, with tests being carried
out in traditional databases in the literature. Furthermore,
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Figure 3. Relation between average accuracy and the
number of selected terms associated with Glass data.
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Figure 4. Relation between average accuracy and the
number of selected terms associated with Wave data.

the effectiveness of the new methodology in comparison to
popular classification methods will be analyzed.

In order to analyze the performance of the algorithm, four
multivariate data sets available in the UCI Machine Learn-
ing 1 were selected, which are often studied in machine
learning. The choice of data sets was based on the range
of diversity, considering the number of features, samples,
classes, and nature of the data. The Iris dataset is a classic
example from the literature, which has simple discrimina-
tion. Wine data has more features for analysis and has
imbalanced classes. The Glass problem is composed of
6 classes and their sets have minority classes and data
constituted as outliers. Finally, Wave sets have a large
number of features and samples composed of noise. A
summary of the datasets is shown in Table 1.

The algorithms were implemented in Matlab and exe-
cuted using a machine with Intel Core i5-7300HQ, CPU
2.5 GHz and 8 Gb RAM. In all methods presented, the
same datasets of training (80%) and validation (20%)
were applied, employing the 5-fold cross-validation. The
features of the data sets were normalized to zero mean
and standard deviation equal to 1, being the only prepro-

1 Repository of Iris, Wine, Glass and Wave datasets (UCI Machine
Learning Repository): https://archive.ics.uci.edu/ml.
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Table 2. Selected model terms and score values for each dataset.

Iris Wine Glass Wave

Terms Score Terms Score Terms Score Terms Score

u3(k − 1) 0.9533 Constant 0.7759 Constant 0.7287 Constant 0.7690

Constant 0.7714 u7(k − 1) 0.7695 u4(k − 1) 0.5183 u7(k − 1) 0.5632

u4(k − 1)u4(k − 1) 0.6067 u10(k − 1)u13(k − 1) 0.6680 u3(k − 1)u7(k − 1) 0.5434 u11(k − 1) 0.5386

u3(k − 1)u3(k − 1) 0.4933 u13(k − 1) 0.6527 u3(k − 1)u3(k − 1) 0.4814 u8(k − 1)u11(k − 1) 0.4518

u2(k − 1)u4(k − 1) 0.4733 u7(k − 1)u11(k − 1) 0.5189 u4(k − 1)u6(k − 1) 0.4773 u12(k − 1)u16(k − 1) 0.4264

u1(k − 1)u4(k − 1) 0.4067 - - u3(k − 1)u4(k − 1) 0.4399 u10(k − 1) 0.4266

- - - - - - u15(k − 1)u16(k − 1) 0.4286

- - - - - - u16(k − 1) 0.4142

- - - - - - u5(k − 1)u10(k − 1) 0.4052

- - - - - - u16(k − 1) 0.4014

cessing performed. In the classification using the proposed
method, the following parameters were considered: degree
of nonlinearity l = 2, maximum lags nu = ny = 2 and
maximum number of selected terms k = 10. For compari-
son purposes, the parameters inserted in the classification
methods were chosen based on tests with the databases,
selecting the configurations with greater accuracy using
5-fold cross-validation. The configuration used in each
dataset is presented below:

• Iris - (RF) with division criterion Gini’s diversity
index and maximum number of decision divisions
equal to 5, (SVM) with Polynomial kernel and order
2 and (KNN) with metric Minkowski distance using
exponent equal to 3 and number of nearest neighbors
equal to 10;
• Wine - (RF) with division criterion Gini’s diver-

sity index and maximum decision divisions equal to
20, (SVM) with Polynomial kernel and order 2 and
(KNN) with metric Euclidean distance and number
of nearest neighbors equal to 10;
• Glass - (RF) with division criterion Gini’s diver-

sity index and maximum decision divisions equal to
100, (SVM) with Polynomial kernel and order 3 and
(KNN) with metric Euclidean distance and number
of nearest neighbors equal to 10;
• Wave - (RF) with division criterion Gini’s diversity

index and maximum decision divisions equal to 20,
(SVM) with Gaussian kernel and (KNN) with metric
Euclidean distance and nearest neighbors equal to 10.

Figure 1 represents the application of the algorithm to the
Iris dataset. The results suggest that the selection of 2
terms is sufficient to represent the classifier model, obtain-
ing an average accuracy of 0.94. Furthermore, selecting
more terms did not significantly increase the accuracy. On
the other hand, in Figure 2 that represents the results
applied to the Wine data, the selection of terms gradually
increased the accuracy. Therefore, 5 terms were chosen
to represent the classifier model, resulting in an average
accuracy of 0.91. In Figure 3 it is possible to observe 2
local maximums in 4 and 10 terms, showing that in some
cases the increase in the number of terms can result in
an accuracy decrease. The simulation associated with the
Wave data resulted in increased accuracy in the addition

of new terms (see Figure 4), indicating that the maximum
selection of k = 10 can be further increased for greater ac-
curacy. In summary, the method was successful in selecting
the features, ranking the most relevant in the classification
process.

Table 2 represents the selected terms and their importance
score for the classifier model using the proposed method.
The values found explain the curves obtained in relation
between accuracy ratio and the number of terms, since
the growth rate is higher in the insertion of the most
significant terms and degrades in the inclusion of the
least significant terms (see Figure 3). The comparison
between the average and maximum accuracy between the
classification methods is shown in Table 3. The method
obtained higher average accuracy in the tests of the sets of
Iris and Wine. While the KNN and SVM methods achieved
better results in the Glass and Wave sets respectively.
However, the proposed method obtained better results
compared to the RF and SVM methods in the Glass set,
as well as surpassing the RF and KNN methods in the
Wave sets. Another important aspect is that the method
in the Wave sets used only 10 terms or features compared
to the others that used 40. The purpose of the comparison
is to reveal that the method competes with other classical
algorithms, making it an alternative that can obtain gains
in certain data sets.

Table 3. Comparison between average and
maximum accuracy resulting from cross-

validation.

Iris Wine Glass Wave

NARX
x 0.9800 0.9382 0.6682 0.8148

max 1.0000 1.0000 0.7907 0.8228

RF
x 0.9467 0.8427 0.6449 0.7448

max 0.9680 0.9189 0.7209 0.7538

SVM
x 0.9533 0.9213 0.6682 0.8650

max 1.0000 0.9730 0.7727 0.8749

KNN
x 0.9533 0.8652 0.7150 0.7944

max 1.0000 0.9412 0.7674 0.8208
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Table 4. Performance of the proposed method
in feature extraction.

Dataset
Features Reduction

(%)

Accuracy

Data Model x max

Iris 4 2 50.00 0.9467 0.9667

Wine 13 5 61.53 0.9158 0.9444

Glass 9 4 55.55 0.6445 0.7381

Wave 40 10 75.00 0.8148 0.8228

The performance of the proposed method in feature ex-
traction, together with the dimensionality reduction capa-
bility, is summarized in Table 4. The algorithm proposed in
the tests significantly reduced the size of the data, resulting
in average accuracy similar to those obtained by the other
methods (see Table 3). In emphasis, the Wine test reduced
the dimension by 61.53%, maintaining an average accuracy
of 0.9158 and resulting in greater accuracy than those
found in RF and KNN in Table 3. Likewise, in the Wave
data there was a reduction of 75% and an average accuracy
of 0.8148, consisting of better results compared to the RF
and KNN techniques.

5. CONCLUSION

In this work, a hybrid technique was proposed that in-
corporates system identification and machine learning
methodologies in the prediction of categorical variables.
The presented algorithm performs the extraction and se-
lection of features, ordering the most significant terms
to compose a multiclass classification model. The model
obtained is relatively simple and intuitive to interpret,
providing insights with reduced dimensionality that clearly
explain the incremental impact of a predictor variable on
the response variable. The results show that the method
excels in maximum accuracy by 3 of the applied case
studies. In terms of average accuracy, the method obtained
better results in 2 case studies. However, the proposed
technique reduced the dimensionality of the data in the
analyzed sets by more than 50%, keeping the accuracy
equivalent to the other approached techniques. In general,
the method is an interesting alternative for extraction and
classification, and can achieve significant gains in certain
datasets. The results are promising and in future propos-
als we want to evaluate the method in comparison with
other extraction and feature selection techniques. Another
approach is to use heuristic methods in the term selection
process, to obtain optimal values for the number of terms
in the model concerning the average accuracy.

ACKNOWLEDGEMENTS

We thank CAPES, CNPq, INERGE, FAPEMIG and Fed-
eral University of Juiz de Fora (UFJF) for the support.

REFERENCES

Abdi, H. and Williams, L.J. (2010). Principal component
analysis. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 2(4), 433–459.

Aguirre, L. (2007). Introdução à identificação de sistemas
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