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Abstract—Recent works have been claiming efficient hardware
architectures, showing a considerable endeavor to implement
chaotic maps in the digital domain. However, there is a critical
issue with the chaotic degradation in the digital environment
due to its finite numeric precision, that it is still an unsettled
topic in the research community. Additionally, less attention has
been given to synthesize a methodological approach to how to
calculate the exponential function in hardware. In this paper,
two novel hardware designs to represent the exponential chaotic
map have been suggested. We have employed a perturbation
method to avoid the chaotic degradation. 64-bit fixed-point and
32-bit floating-point formats were investigated. Moreover, an
approximation of Euler’s number by a finite series and the
Horner’s method have been undertaken to further minimize the
proposed hardware. Results show that both proposed hardware
architectures consume a fewer number of components. The
designed systems present a positive Lyapunov exponent, which
suggests a chaotic behavior. Ultimately, the NIST SP 800-22 test,
the histogram, and the autocorrelation function show that the
new hardware architectures present pseudo-random properties.

Index Terms—Exponential Chaotic Map, Chaotic Systems,
Chaos, FPGA, PRNG, Computer Arithmetic.

I. INTRODUCTION

Chaotic systems have been largely investigated since the
revolutionary Poincaré’s studies about the chaotic nature in the
movement of celestial bodies [1]. Despite the diverse models
of chaotic systems, a dynamic system must show particular
characteristics to be considered chaotic, such as positive Lya-
punov exponent, transitivity, sensitive dependence on initial
conditions, and periodic points of the chaotic function must
be dense in some metric space [2]. These characteristics make
chaotic systems attractive in many applications, such as opti-
mization problems [3], network security and communications
systems [4], and cryptography [5].

Considering the special features present in reconfigurable
hardware, as flexibility, fast processing, high parallelism and
dedicated hardware [6], many FPGA hardware architectures
have been designed to reproduce such chaotic systems [7],
[8]. However several other issues have been reported in said
systems, such as hardware efficiency [9], as well as the
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reliability of simulating chaotic systems in the digital domain.
Reports show failed attempts to reproduce chaos due to
degradation and spurious behavior caused by the way numbers
are represented digitally [10], [11].

Recently, a new paper [12] has shown a new trend about
hardware design for chaotic systems. Without disturbing the
chaotic dynamics and to use as few components to compound
the hardware as possible, the proposed work reduces the
number of mathematical operations by substituting complex
blocks of math operations for Shift Register and simple logic
gates.

Here, we have explored an FPGA implementation of a novel
hardware architecture of the exponential chaotic map. Based
on two approaches that use different numeric representation,
the 64-bit fixed-point and 32-bit floating-point, the proposed
concept was designed by approximating Euler’s number by
a finite series. The obtained polynomial representation was
simplified by means of Horner’s method. To overcome the
digital chaotic degradation, a perturbation process in the
bits of the orbit is presented. Moreover, to the best of our
knowledge, no paper adopts such an approach and minimizes
the exponential function in hardware.

Based on the previous discussion, we can summarize the
contributions of this paper to:
• A methodological design process for an implementation

of a new hardware architecture of the exponential chaotic
map, paying attention to its hardware resources and
performance.

• A discussion about the different numerical representa-
tions, observing if both representations are able to repro-
duce chaos, and maintain a competitive resource usage
when it comes to hardware implementations on FPGAs.

The remainder of this article is described as follows: Section
II presents preliminary concepts to understand the rest of this
paper. The hardware design implementation, as well as the re-
sults are described in Section III and Section IV, respectively.
Finally, Section V presents final concluding remarks.

II. PRELIMINARY CONCEPTS

A. Exponential Map
The logistic map [13] is represented by xi+1 = λxi(1− xi),

where xi ∈ [0, 1). It is a simple equation with chaotic
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complexity. Consequently, this map is vastly used in the
study of chaos. In this paper, a variation of the logistic map,
known as the exponential map is used, which is defined as:
xi+1 = λxie

−xi .

B. Horner’s Method

Horner’s method is an algorithm, proposed by William
George Horner, to evaluate a polynomial in a spe-
cific value x0 by writing the polynomial at the form
p(x) = a0 + x(a1 + x(a2 + ...+ x(ai−1 + xai)...)) and re-
cursively applying x = x0 until the final sum produced by
a0 + xi(...) is computed. Horner’s original approach solves a
polynomial evaluation using a linear number of multiplications
and additions [14].

C. Maclaurin Series and Horner’s evaluation of the result

The Maclaurin series of a certain function can be
described as an evaluation of the Taylor series repre-
sented by f(x) =

∑∞
k=0 f

(k)(a) (x−a)
k

k! , when a = 0.
Hence, the exponential function used in the exponen-
tial map could be approximated by the polynomial
e−x = 1− x+ x2

2! −
x3

3! +
x4

4! −
x5

5! + · · · ∀x ∈ R. Thus, it is
possible to approximate the exponential function using only
sums and multiplications.

For example, writing the polynomial approximation of
e−xn for the first n = 4 terms, one would find:
e−xn=4 = 1− x+ x2

2! −
x3

3! +
x4

4! . By means of Horner’s rule, it
was possible to rewrite this function as follows:

e−xn=4 = x

(
x

(
x

(
x

4!
− 1

3!

)
+

1

2!

)
− 1

)
+ 1, (1)

We can evaluate (1) for x = x0 using a recurrence approach,
such as:

b1 = a4x0 + a3, b2 = b1x0 + a2,

b3 = b2x0 + a1, b4 = b3x0 + a0.
(2)

Here, a4 = 1
4! , a3 = −1

3! , a2 = 1
2! , a1 = −1 and

a0 = 1. Each new b term calculated is used to compute its
next value. Thus, when b4 is calculated, the evaluation of e−x4

is completed.
When extending this result for e−x0

n , with n ∈ Z∗+. It is
possible to write the following recurrence equation:

bi = bi−1x0 + an−i, (3)

where n ∈ Z∗+ and b1 = anx0 + an−1. Thus, for n = 4, the
value of b1 would be b1 = a4x0 + a3.

In (3), it is important to state that all values of a are given
by the Maclaurin series of e−x0

n , truncated in the nth position.
Thus, they are previously known and only the b values must
be calculated in order to evaluate this function.

(A)

(B)

(C)

Fig. 1. Proposed hardware architectures for the following cases: (A) Exponen-
tial calculation, x0 is the block input, while b is its output. (B) The complete
map design in floating-point arithmetic. (C) The complete map design in
fixed-point arithmetic. For all three figures, black lines represent the flow of
floating-point numbers or fixed-point numbers, green lines represent one-bit
clock signals, blue lines represent delayed one-bit signals and orange lines
represent one-bit control signals. Furthermore, the symbol “&” represents
concatenation operation, the same notation used in the VHDL hardware
description language.

III. HARDWARE IMPLEMENTATION

The calculation of the exponential function is based on (3),
derived in section II. We have reached a desired outcome
for NIST test suite and Lyapunov exponent using n = 20.
After 20 iterations, b = b20 and the exponential approximation
by Horner’s method is completed (see Fig. 1-A). To better
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understand the process to get to b20, the control signals are
analyzed first, then the delay signals, and finally, the clock
signals. In the first clock cycle, the Select signal (S) will be
‘0’, meaning that a20 will be selected in the Multiplexer. In
this way, it will calculate b1, then the control signal called
“Enable” coming from the Register to the Multiplexer will
shift the S value from ‘0’ to ‘1’, meaning that our recurrence
equation has started.

Following this, the delay block has two functions. First, it
guarantees that the clock signal will be delayed when it gets to
the Shift Register, which was used to store the pre-computed
values of a. In this way, the delay block synchronizes the sum
operation that happens right after the multiplication. Its second
function is to delay, in the same proportion, the clock signal
that reaches the Counter. After 20 clock cycles, the calculation
will be stopped, meaning that the evaluation is over and the
Register contains the value of b = b20. The clock signals,
represented by the green lines, were set in the simulation to
meet the specifications of the low-cost FPGA Artix 7 family.

Besides the procedure for calculating the exponential func-
tion, a perturbation method is provided to keep chaotic behav-
ior longer. It is necessary due to the finite numerical repre-
sentation of the digital domain, introduced by both numerical
representations used. The chosen method is similar to other
perturbation approaches found in the literature, especially in
the article [15]. The perturbation scheme used included the
addition of a bit-to-bit XOR operation between the 20 least
significant bits of the map’s mantissa and the LSFR register
for the floating-point approach. For the fixed-point approach,
all bits were disturbed.

The exponential chaotic map using floating-point is shown
in Fig. 1-B, while Fig. 1-C shows the approach for fixed-point
implementation. It is important to mention that for the fixed-
point approach, a constant value of λ = 17.4 was chosen
and, in order to multiply a number for 17.4 on the proposed
hardware architecture, the authors combined a shift left logical
operation of 4 positions (multiplying by 16). To compensate,
the second multiplier block had one of its input values fixed
at 17.4/16 = 1.0875, as Fig. 1-C shows.

Once the exponential function is done, calculating the result
for the current iteration of the map, the “Enable Map” signal,
taken from the Counter shown in Fig. 1-A, will enable Register
1 to record the results of the calculation and, also, will set
the output of a Flip Flop D (represented as “FF D”) to
‘1’. Therefore, after the first calculation of the exponential
approximation, the “FF D” will change the S value in the
Multiplexer to always choose the previous iteration of the map,
respecting the map’s recurrence equation: xn+1 = λxne

−xn .
Moreover, in Fig. 1-B and Fig. 1-C, two delay blocks

are presented, which will work to maintain the operations in
synchronization. The one called “Delay” is calculated based
on how many clock cycles the exponential will take to give
the correct value, and the other called “Delay Map” will keep
up with how many clock cycles the whole approach takes.
After calculating 100000 values of xn+1, the counter will stop
Register 2, and no more values of xn+1 will be computed. For

this reason, our approach will produce the 100000 first values
of the sequence.

Finally, for the floating-point approach, all the bits from
the internal LSFR flip flops are concatenated. Then, the XOR
operation is performed between these 20 concatenated bits
and the last 20 bits of the chaotic map’s answer. After
this, another concatenation must occur to give 32-bit single-
precision answers. Meanwhile, in the fixed-point, it is possible
to disturb all bits.

The main difference between fixed and floating-point ap-
proaches is that the fixed-point is going to use 63 bits for
the fractional part, while using only one bit for the integer
part. Therefore, the disturbance method will be applied in all
bits without divergent behavior on this approach. While the
floating-point generates values from an interval of [0,7), the
fixed-point generates values from [0,2), since only one bit was
used for the integer part on the latter.

IV. RESULTS

Adopting the low-cost FPGA Artix 7 XC7A100T-1CSG324C
and the hardware description language VHDL with the Xilinx
Vivado 2017.4 tool, the two schemes, shown in Fig. 1-B
and in Fig. 1-C, were implemented. Table I exhibits the
resource consumption for both implementations. It is possible
to observe that both architectures consume fewer components
than the ones available on the FPGA, as well as present low
power consumption.

To prove that both hardware architectures present chaotic
properties, the Lyapunov exponent, based on Wolf’s method
[16], was calculated. Applying λ = 17.4 and x0 = 0.31, two
sequences of the exponent were calculated using all bits of
the orbits for both numerical representations. Note that both
sequences present a positive exponent, indicating chaotic series
(see Table I).

TABLE I
RESOURCE CONSUMPTION FOR BOTH HARDWARE ARCHITECTURES. NOTE
THAT ALTHOUGH FLOATING-POINT ARITHMETIC IS MORE COMPLEX THAN

FIXED-POINT ARITHMETIC, ITS HARDWARE PRESENTED A LOWER
CONSUMPTION OF COMPONENTS AND A MUCH HIGHER FREQUENCY OF

OPERATION.

Resources 32-bit floating-point 64-bit fixed-point
LUT 915 (1.44%) 1466 (2.31%)
LUTRAM 23 (0.12%) 66 (0.35%)
FF 1101 (0.87%) 1256 (0.99%)
DSP 6 (2.50%) 48 (20%)
Power 96 mW 90 mW
Frequency 121.95MHz 43.47MHz
Lyapunov Exponent 0.7576 2.2733

Fig. 2 shows three sequences of the Poincaré map. The
sequences in (A) and (C) use all the bits for the floating-point
and for the fixed-point approaches, respectively. Furthermore,
using floating-point arithmetic, the sequence in (B) considered
only the 20 least significant bits of the map. The orbit using
all the 32 bits of the floating-point map preserves the shape of
the Poincaré map, which is commonly found in the literature.
However, due to the perturbation method in all of the bits
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in the other two sequences, the shape of the Poincaré map
is not rebuilt. Nevertheless, the system still presents chaotic
behavior.

(I) (II) (III)

(A)

(B)

(C)

Fig. 2. Results of the proposed hardware architectures. Line (A) shows the
achieved results for the 32-bit floating-point. Line (B) exhibits the results
considering only the 20 least significant bits for the 32-bit floating-point
approach. Line (C) shows the results considering the fixed-point approach.
The Poincaré map, the histogram, and the autocorrelation function, for each
sequence, are shown in columns (I), (II), and (III), respectively. In all tests,
we have considered λ = 17.4 and x0 = 0.31.

All the three previous sequences were tested in the NIST
SP 800-22 test suite. The SP 800-22 consists of a collection
of 15 tests to evaluate the randomness of both true-random
numbers and pseudo-random numbers [17], [18]. In each test,
a P − value is provided and if P − value ≥ α, where α
means significance level, the sequence has passed the test.
For α = 0.01 and sequences with bit stream length of
1000000 bits, the results obtained from the proposed hardware
architectures are shown in Table II. It is noticeable from the
results in Table II, that the proposed chaotic map passed in all
tests in (B) and in (C), indicating that these sequences have a
good pseudo-randomness. It is clear that in (A) it failed most
of the tests where it got P − values equal to zero. This is
an interesting result, as it suggests some advantage of fixed-
point representation over floating-point. In fact, the sequence
generated in (A) does not have a considerable variation of
values on the exponent bitstring.

Uniform histograms and autocorrelation functions similar
to a delta function are expected for suitable pseudo-random
sequences. Fig. 2 also shows the histogram and the autocorre-
lation function. For the exponential map using floating-point
and considering all the 32 bits, the histogram is non-uniform.
However, the histograms of the hardware-based proposed
chaotic map using floating-point, considering only the least
significant 20 bits, and the hardware scheme using fixed-point
present histogram-shapes close to the uniform distribution.
Also, note that all the sequences show no apparent correlation
between samples.

Finally, it is possible to compare this work with other
state-of-the-art implementations available in the literature.

TABLE II
P − value RESULTS AFTER RUNNING THE SP 800-22 TEST SUITE: (A)

FLOATING-POINT CONSIDERING ALL 32 BITS; (B) FLOATING-POINT
CONSIDERING THE 20 LEAST SIGNIFICANT BITS; (C) 64 BITS

FIXED-POINT. IN ALL TESTS, WE HAVE USED λ = 17.4, x0 = 0.31 AND A
SEQUENCE WITH BIT STREAM LENGTH OF 1000000 BITS.

Test (A) (B) (C)
Frequency 0.000000 0.228590 0.888660
Block Frequency (m = 128) 0.000000 0.518118 0.256523
Cusum-Forward 0.000000 0.372855 0.972191
Cusum-Reverse 0.000000 0.334489 0.891349
Runs 0.000000 0.298084 0.752017
Long Runs of Ones 0.048229 0.520249 0.707144
Rank 0.000000 0.341610 0.419146
Spectral DFT 0.000000 0.992678 0.388356
Non-overlapping Templates (m = 9, B = 000000001) 0.000000 0.116838 0.497266
Overlapping Templates (m = 9) 0.000000 0.166615 0.419389
Universal 0.000000 0.111677 0.604572
Approximate Entropy (m = 10) 0.000000 0.937093 0.394210
Random Excursions (x = +1) 0.000000 0.475778 0.260944
Random Excursions Variant (x = −1) 0.000000 0.437545 0.835268
Linear Complexity (M = 500) 0.639876 0.308306 0.955737
Serial (m = 16, ∇Ψ2

m) 0.473209 0.234743 0.734313

Unfortunately, no fair comparisons can be made, because to
the best of our knowledge, this paper is the first to present an
implementation of the exponential chaotic map using Horner’s
rule and LSFR registers. However, it is possible to compare it
(in terms of frequency and logic usage) to other chaotic maps
in the literature. Table III compares this paper with the litera-
ture. It is possible to realize that our approach is competitive
than the logistic and Chebyshev maps. Nonetheless, the maps
presented in Table III may have very different dynamics, and
because some maps have simpler functions to compute than
others, it is expected that their resource consumption is lower.

TABLE III
COMPARISON BETWEEN DISTINCT HARDWARE APPROACHES.

Map Reference Logic Elements / LUT Max. frequency (MHz)
Exponential 32-bits This Paper 915 121.95
Exponential 64-bits This Paper 1466 43.47
Bernoulli (LSFR) [15] 199 404.37
Tent (LSFR) [15] 219 206.10
Baker’s (LSFR) [15] 199 500.00
Chebyshev (LSFRs) [15] 2525 43.47
TRNG [15] 311 254.97
Logistic [15] 2634 42.01
CSS-2 [19] 549 –

V. CONCLUSION

In this paper, we have described two hardware architec-
tures based on an exponential chaotic map. Applying the
approximation of Euler’s number by a Maclaurin series and
using Horner’s method, we have efficiently implemented the
exponential chaotic map on a low-cost FPGA. Our approach
took 20 clock cycles to evaluate the exponential function.
Results also show that the proposed designs consume few
logical resources, demand low power consumption, show a
high frequency of operation, and display chaotic dynamics
with positive Lyapunov exponents. Finally, both the chaotic
map with floating-point or fixed-point present significant pseu-
dorandom properties, with uniform histogram, autocorrelation
function similar to white Gaussian noise and pass all proposed
SP 800-22 NIST tests.
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