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Abstract—In this paper, we establish a many-sources large this paper establishes similar results for a classical imult
deviations principle (LDP) for the stationary workload of a  class single-server (simplex capacity region) system uade
multi-queue single-server system with simplex capacity, op- “many-sources” asymptotic regime (see [7]-[14]).

erated under a stabilizing and non-idling maximum-weight | tofi . id
scheduling policy. Assuming a many-sources sample path LDP N a many-sources asymplolic regime, one considers a

for the arrival processes, we establish an LDP for the workload S€quence of queueing systems indexed by the number of
process by employing Garcia’s extended contraction principle the (independent) sources multiplexed (or averaged) over
that is applicable to quasi-continuous mappings. The LDP result g particular queue, i.e., the arrival process to each queue
can be used to calculate asymptotic buffer overflow probabilities is the average ofl processes. The analysis focuses on
accounting for the multiplexing gain, when the arrival process : .

is an average of i.i.d. processes. We express the rate functionthe asympt(_)tlc behaV|0_r of the systems Whén_ﬂ 0.
for the stationary workloads in term of the rate functions of the ~1he motivation to consider many-sources scaling includes
finite-horizon workloads when the arrival processes have i.i.d. the following considerations: 1) practical interest inIrea
Increments. applications when there are large number of flows to each
user or node. This asymptote usually gives a more refined
. , , , approximation to the probabilistic quantities of interést

/In this paper, we consider a single-server multi-Clag§corporating the impact of the multiplexing gain [9]-[12]
discrete-time queueing system where the server is aIIdcat%]_[l?]; and 2) a cross-layer optimization for the optima

to queues according to a maximum weight scheduler, whigh aiion of the finite code blocks when the transmission
is known to be stabilizing [1]. We provide a refined analysisyannel is operated at high-SNR regime (see [18]).

of the statistical performance of this policy under stoticas Given a sample path large deviation principle for the
arrivals. In particular, withX" independent queues we seek o processes (in the space of real-valued sequendhs wi

to dgrive 'the probability of buffgr overflow. Specificallyorf the scaled uniform topology), we derive a large deviations
a given finite valueB, we consider the transient behav'orprinciple for the workload. In particular, we first show

. h p
.e., quantities suct(Wo,r > Bly) whereWor € R ot the workload is a quasi-continuous map of the arrival
is the workload (to be formally defined later) atlyr@e process. The first contribution of the paper is, thus, okthin

with “zero” initial workload at time—T" and1x € Ry i pageqd on a recent extension of the contraction principle by
the vector of allls, as well as the stationary behavior, i.e3  Garcia [19]. More precisely, we use Garcia's extended
the similar probabilistic quantities as before for the timg . taction principle together with an assumed sample path

Worklogd vector as_T oo Like many recent PAPErs ONiarge deviations principle (LDP) (see Definiti@h 2) for the
analysis of scheduling algorithms [2]-[8], our work cOmSE 54| process to establish an LDP for the workload at

logarithmic asymptotics to the probabilities by analyzag gy given timet as well as the stationary workload. The

large-deviation approximation to the problem. The presephp “rasuits (TheoremE] 1 arid 2) directly imply that the

paper is closely related to [6], where the buffer overflow, o pility of buffer overflow has an exponential tail whose

probability for the workload processes of a single-Servifacay rate is dictated by a good rate function whose form

multi-queue queueing system under max-weight policies apd yetermined by the statistics of the arrival process. This

general compact and convex capacity regions was estaly, fynction can be expressed as a solution to a finite-

lished. While [6] addresses the large-buffer scaling regimgimensjonal optimization problem which has the same flavor

*This work was supported in part by the Center for Wireless Comm@f @ deterministic optimal control problem. When the arrival

nications, UCSD and UC Discovery Grant No. Com04-10176, ARGRI  process has i.i.d. increments, we provide a simplified form
Grant No. W911NF-04-1-0224, NSF CAREER Award No. CNS-053303 for the rate function.
and AFOSR Grant No. FA9550-05-01-0430. . .

TThis work was supported by SFI (Science Foundation of l@larant The outline of the paper 1s as follows. The problem

07/IN.1/1901. formulation is given in SectiodJIl. Sectiofllll provides

I. INTRODUCTION



background and preliminary results on the large deviationsFort € N, the dynamics of the workloads of quekies IC
principle. The main results of the paper, which are the LDRs

of the workloads, are given in SectignllV. Sectioh V gives WE | = [WF — Rt + Ak, ()
simplified expressions of the rate functions. We conclude in /
SectionV] with a discussion of future work. where forz € R, [z]" := max{0,z}. We assume that the

arrival vectorA; happens any time if—t, —t-+1) but cannot
be served in that timeslat

We consider a discrete-time queueing system with  |n this paper, we are interested in the asymptotic probabil-
independent queues and one server with capacifpits ities of thefinite-horizonandinfinite-horizonworkloads. The
per timeslot). For every queue € K := {1,...,K} we finite-horizon workload, denoted b, r, is the workload
assume that work (in bits) arrives into the queue given byaa time 0, assuming the initial condition at time T is
sequence Ay, ¢ € N) where A} € Ry is the work brought W, ¢ R. The indexT in Wy reminds us of this initial
in at time —t. For 0 < m; < mo integers, we define condition] The infinite-horizon workload)V, is defined as
AF(my,mo] = 3122 L AF as the total amount of work )W = W(A) := limy_. Wo,r(Alo,7)). We assume that the
to arrive for userk from timeslot —m, and until timeslot |imit exists but may be infinite. It can be shown thatis the
—my — 1. We also write A*|(,,,, ,,,) to denote the finite stationary workload when the system is stable. We will use
sequence of arrivalgl” restricted to{—ma,...,—m; — 1}. the functionGr to meanGr(A|(o,r)) = Wo,r(Alo,7]) and

We assume a maximum-weight server allocation poligfie functionG to meanG(A) = W(A). To aid in describing
where the weights are functions of the unfinished workloadsur results we further defin&. and G* in the following
and under which we are interested in the statistical propevay:
ties of the unfinished workload in queueat time t. Let Definition 1: For a functionF : X — Y andzx € X, we
W[ € R, be the unfinished workload (queue length) ofefine
queuek at the beginning of time-¢ and R} be the amount
of service allocated to queueduring time(—t, —t + 1]. Let P i={y€Y: (3r, — z) such thatF'(z,) — y}. (5)
W, := (W[, k € K) be the corresponding workload vector

and R; = (R*, k € K) be the rate vector. One can define At thatF"() is a set-valued mapping. It is single-valued at
simplex rate regiorR, x where F' is continuous (i.e.f'* = {F(x)}).
We consider a sequence of queueing systems indexed

K . . . .
R {r: (.. ) € RE Z’"k < C}’ B by L € N and will be interested in the behavior of the
k=1

Il. PROBLEM FORMULATION

gueueing systemlL as L becomes large. For each user
k € K and system indexed by, we assume a stationary
as the set of server's operating points, i, € R. At the grrival process of work brought into the system given by
beginning of timeslot-¢, the rate vector; € R is selected 3 sequenced®l := (APE ¢ € N) where AFF € R, is
by a work-conserving max-weight schedulérin response the work (in bits) brought in at time-¢ into the queue of
to the current workloadV;; that is, R, = H(W;) where yserk. The arrivals to different queues/users are mutually
the schedulerr! servesc bits from the queud™ which has jndependent. We follow the many-sources scaling regime on
the largest workloadV}* when the workload of the longestthe system with index.. The arrival process to each queue
queue is at least. In case of a tie, the scheduler chooses is assumed to be an average bfi.i.d. processes, i.e.,
the queue with the lowest index. To make the scheduler nogk,L . %2521 AR () where eachd* () is an independent

idling, we assume the scheduler splits the service when tagntically distributed copy of a stationary proceds We
unfinished workload in each queue is less thalihat is, we denote the mean arrival rate hy:= EAM = EA,. Also

assume that the scheduler assidiix) = Projs (x) when et AL .= (A*L | € K) be the sequence of arrival vectors.
x € [0,¢)X, where Proj;(b) is the projection of vectob on
the setB. Specifically, forx € RX we considerH (x) to be A, Main Results

given by Assuming that the sequence of the arrival procegs¥s}
e(x) if x¢&[0,c)X; satisfies a many-sources sample path LDP with a continuous
(x) := - i K (@) rate function (Assumptiongl 1 aid 2, respectively, given in
Projs (x) if x € [0,¢)¥. ( p , resp Y, 9

Section[Tl), the main results of the paper are the following
Above e(x) is defined as thd{-dimensional vector whose LDP’s for the finite and infinite-horizon workloads. We also
elements are zeros except for theth element which is:, provide a simplification of the rate functions when the ariv
where k* = min{k : k € argmax;cx x;}. For example, processes have i.i.d. increments.

when K = 2, the schedule in (@) becomes

e 2 1 1The initial condition is normally taken to be the zero vectot the result
(c,0), if 22 >a% 2" >c remains valid even when the initial condition is withiR. With W &
Hx)={(0.¢ if 21 < 22 22> ¢ 3) R, we always have the workload at timeT" 41 be Wr_; = [Wr —
( ) ©, _)’ o ’2 -7 ®) H(Wp)]t + Ar = Ap from the non-idling condition that we imposed on
Projg (x), if ' <c, 2% <ec. the server allocation mechanism.



Theorem 1:Fort € N, the sequence of the finite-horizon If X% is a mapping fromN to R describing sample path
workloads{Wy (A% |(0.4) := Gi(A¥|(0,4)} satisfies an LDP of a random sequence, the LDP is referred to asample
on RE with the rate function/;, where forb € R¥ path LDP.
B ) " 6 We are interested in finding an LDP for the sequence of
Li(b) = xeRflgf;G?BbI () ©) the workloadsW(A%) and Wo,r(A"|(o,7)), assuming the

o ~ following sample path LDP of the arrival processs.
Theorem 2:If Ku < ¢, the sequence of infinite-horizon

workloads {W(AL) := G(AL)} satisfies an LDP oY C. Sample Path LDP of Arrival Processes

with rate function, where forb € R’ The following sample path LDP for the sequence of arrival
. L is the starting point of our analysis.
_ ¢ T, 7 processes4l is t
J(b) aED;fr:lGaab (a) (") Assumption 1 (Many-sources sample path LDPhe se-

I S K .
In the above results; denotes a sequence taking values iﬂqtf]ntf]e{A ]I> Zatls.];'es atsanlwple piLh LtDPf mﬂt. ;P?wflped
RX and fo is a special subset of sequences taking valuﬁgé € scaled uniform topology with rate function, where

. ﬁ - .
in RX which will be clarified in Sectiofi TI=A . @ rate function’ is given as
ll. BACKGROUND AND ASSUMPTIONS I*(a) := iggﬂt(“‘w) = Jim I*(al0.) ©

A. Topology for Sample Paths for a € DX, where forx = (x* € RY |k € K) € REY,
Since a large deviations principle is defined with topo- ! X«

logical entities and since we will deal with continuity and 78 o A (ck

convergence of the workload mappings, we need to precisely t(x) = Z (%),

specify the topology for the space of the arrival sample gath ) ) k=1

We use the scaled uniform topology as in [13] for our ana®nd A7 is the convex conjugate or Fenchel-Legendre trans-

ysis. LetD denote the space of sample paths (non—negatitﬂ!m of A

discrete-time functions), i.eD := {z : N — R}, and let Af(y) == sup -y — A(6), fory € R, (11)

DX be theK cartesian product ap. Let ||-||,, be the scaled 9eR?
uniform norm onD, i.e., ||z|[, = sup;cy ””(O’t]) for all A(0) :=log Eexp (0 Alo,) » forg e R". (12)

(10)

t

= € D while for all a = (a*, k € K) € D¥, wherea* < D, Remark 1: Assumptior[ 1L implies that the sequencé’}
the scaled uniform norm of is [[a[|, := maxkec||a”|[«- also satisfies an LDP omX equipped with the scaled
Define a subspac®,, of D which contains all the arrival yniform topology, with rate functiol® where I*(a) = oo
paths whose average arrival rate is equal to the expected fat < DK/Df [14]. It is shown in [14, Lemma 7.8] that
w,i.e., D, = {x €D :limy_.o ”(g’t] = p¢ andDf the K under Assumptiofi]1A;(-) is non-negativeA; is convex,
products ofD,,.. Again, we equiD,, and DX with the scaled andA;(u1;) =0, wherel,, is the vector of all ones iR".
uniform topology. For metric spaces li!, n € N, we use Hence,I*i(ulx:) = 0 and I*, is convex.

the square uniform topology with the square mepif20], ~ In this paper, we also assume the following continuity
wherep(x,y) := max;e(1,..n} |2 — Yil- condition on the rate functiod in (9):

o o Assumption 2:7% is continuous on its effective domain
B. Large Deviations Principle defined as{xz € DK . Iﬁ(x) < oo}

The following definition of a large deviations principle Remark 2:As shown in [13] and [14], the above many-
is taken from [13]. For an excellent full introduction tosources sample path LDP (Assumptidn 1) holds when the
the theory, definitions, and tools, see [21] and for queueinmderlying arrival processi satisfies mild regularity con-
applications, see [14]. ditions. This implies that several standard stationary- pro
Definition 2 (Large deviations principle)A sequence of cesses used for traffic modeling, such as i.i.d. increment
random variables” in a Hausdorff spac&’ with o-algebra processes, Markov-modulated, a general class of Gaussian,
B is said to satisfy a large deviations principle (LDP) wittand fractional Brownian processes (for long-range dep&nde

good rate functior if, for any B € 5, or heavy-tailed traffic), satisfy Assumptiohk 1 did 2.
— inff; I(z) < hLm inf % log P(X" € B) D. Garcia's Extended Contraction Principle
rxeB° — 00

1 The contraction principle (see [21, p. 126]) says that if we
<limsup — log P(X* € B) < — inf I(x), have an LDP for a sequence of random variables, we can
L—oo L eeB 8 effortlessly obtain LDP’s for a whole other class of random
®) sequences that are obtained via continuous transfornsation
where B° and B are the interior and the closure @, However, due to the inherent discontinuity in the max-
respectively, and the rate functioh: X — R, U {oco} weight scheduling function, the usual contraction priteip
has compact level sets, where the level sets are definedfals to provide sufficient structure. Instead, we will izd
{z:1(zx) <a}, fora e R. the following powerful extension of the contraction priplei



for quasi-continuous transformations on metric spacegngi B. LDP for Infinite-Horizon Workloads

by G_argia [19]. Fir_st, let us provide the definition of quasi- |, this section, we establish an LDP of the sequence

continuity on metric spaces: _of the infinite-horizon workload§ W% = G(A¥)} where
Fact 1: [19, Theorem 3.2] IfX, ) are complete metric 4z ¢ pK_ similar to the last section, we first show that the

spaces, a functioh' : X — ) is quasi-continuous if and only mappingC is quasi-continuous oﬂDf when K < ¢, and

if for eachz € &, there is a sequender, } such thatr, —  hen yse Garcia’s extended contraction principle to eistabl
z, F(z,) — F(z), and such that for alh, F' is continuous ¢« desired LDP.

at . ) i L . Lemma 2:1f Ku < ¢, the mapping= is quasi-continuous
Remark 3:Obviously, every continuous function is quasiy, pi with respect to the scaled uniform topology.

. . . o 0 )
continuous. A step functiod” : R — R, where F(z) = Proof: See Appendix. The main idea is to use the fact
0 for z < 0, F(z) = 1 for z > 0, is quasi-continuoUs. 4 the sum (over all queues) workload process behaves like
But if '(0) = 1/2, then F" is not quasi-continuous. From, . o 4 single queue -
this gxample, we can infer that our scheduling functidris Again, the above lemma and Garcia’s extended contraction
quasrcor:(tm.uousl. . is that if” i principle to the sequence ofA”} immediately give the

Remark 4:An interesting property is that if” Is a con- | pp f6r the sequence of the infinite-horizon workload in

tinuous function and~ is a quasi-continuous function, thenTheorer‘rDZ Recall that the SPl,f contains all arrival sample
F oG is quasi-continuous buf o F' is not necessarily quasi- pathsa such thatl#(a) < co and E[a¥] = 4 for all & € K
continuous [19]. andt e N t

Fact 2 (()Bﬁrma’s Extended Contraction Principle): Let us now consider the problem of calculating the rate
F . L . .
Assume() = X — ), X, ) are metric spaces, and¥ "~} function. Eqn. [¥) suggests that the rate functibnwhere
satisfies a large deviation principle with good rate funttioj(b) = inf,cpx.qasp I%(a), could be interpreted as the
I*. If at every z with I*(z) < oo, F is quasi-continuous minimum-cost solution among all paths € DX such
and I* is continuous, thed F/(X ")} satisfies the LDP with hat b < G where the cost of the path is I*(a) and
rate function given by convex. Hence, the problem of finding the rate functions is a
I(y) = inf {Iﬁ(x) Ly e Fz} (13) deterministic optimal control problem like thosg in [4]].[6
The expressions for the rate functiohsand J in (@) and
Hence, given Assumptidd 2, the LDP’s for the sequencg®) are of little use in their current forms, as their compiota
of finite- and infinite-horizon workloads would follow as ais far from straight forward. In the next section, we simplif
direct consequence of the quasi-continuity of the mappingse rate functions when the arrival processes are limited to
G and G. The quasi-continuity of the workload mappingsaving i.i.d. increments.

is inherited from the quasi-continuity of the schedukér
V. |.I.D. INCREMENTS SIMPLIFIED RATE FUNCTIONS

IV. ANALYSIS: LDP’'s FORWORKLOADS . : . . - .
In this section, we give a calculation of the finite-horizon

In this section, we present the main result of the papeind infinite-horizon rate functions in the case when the
LDP’s for the sequences of the finite- and infinite-horizogrrivals have i.i.d. increments. In this case, the cost of a

workloads. We first establish an LDP for the sequence of tRgmple pattu € DX, which isI%(a), is additive and the total
finite-horizon workloads. cost of any arrival sample path is the sum of the cost over
A. LDP for Finite-Horizon Workloads all tlmeslot§ and queues. This property helps us to simplify
) ) i ~ the calculation of the rate functions.
In this section, fortLe N, we esitabllsh an LDP for finite-  consider the underlying arrival processto be a process
horizon workloads{ Wy, := G:(A |(0’f<})}{ The approach is yith iid. increments, e.g., a compound Poisson arrival
to first show that the mapping,; : RY*‘ — R is quasi- process with exponential packet length (see [18]). Forethes

continuous, then use Garcia's extended contraction pici i j.d. increment arrival processes, it is easy to show tbat f
to obtain an LDP for the finite-horizon workloads from the; ¢ Rt | A*(x) = 22—1 A*(x;), where A* is the Fenchel-

i

LDP assumption f0|{AL|(0,t]}- _ . Legendre transform o\ and A(f) = log E exp(6A;) [14].
Lemma 1:For ¢ € N, G, is quasi-continuous oY Hence, for a finite vectas = (a¥, k € K, i € (0,1]) € RE*Y,
with respect to the uniform topology. the cost[ﬁt(a) in (I0) can be written as

Proof: See Appendix. The idea of the proof relies
on the quasi-continuity of the scheduléf and the linear
dependence of the worklodd’; at time —s on A, for all
s e (0,t—1]. [ |

Now, as already discussed, the proof of Theofem 1 vehere we definet4(x) := Z,ﬁ{:l A*(z*), for x € RE, as
complete. We refer to the corresponding rate functifn, the per-timeslot cost of & -dimensional sample path. Next,
as the finite-horizon rate function. Next, we discuss the LDRe simplify the rate functions for the infinite-horizon and
for the infinite-horizon workloads. finite-horizon workloads, respectively.

Ify(a) = > X% (ay), (14)
i=1



A. Infinite-Horizon Rate Function we have

The following lemma expresses the infinite-horizon rate  I;(b) = inf I*y(x)

function J as the infimum of the finite-horizon rate functions *xERELGESD

I; over all timet. = min oo inf I*, (x)
Lemma 3:For i.i.d. increment arrivals and’;; < ¢, the ue(01] xEREMDEC G (X|(v,u)) R

P . L e — ; inf Iﬁu
infinite-horizon rate functiory is simplified as Juin -t (x),
J(b) = inf I,(b). (15) WwhereA(u, b) is defined as in[{17). [ ]
t>1 Remark 5:The above lemma reduces the set of feasible

Proof: The cost of a sample path over time is the sur%ample paths to the séfu, b) for u € (0, . Itis interesting

of the cost of arrivals in all timeslots. As in the proof ofto note the property of the sample paths in this set. For any

Lemmd2, fora € D/ whereK . < ¢, we can findt := s*(a) x < If.&(u’l;])’ Whe AhaveWO(x.) :h X(0,u —c(u —1) = bh
such thatW,(a) € R. Hence, fora such thatb € G*, one recalling that the: notation is the sum over queues. There
can reduce the cost of the path by setiing= s for all v > ¢ iS no wastage of service capacity over the- 1 timeslots
while keepingG® > b. This is becaus&t“(ulx) = 0 and becausevv (L, u . U, Wy = Guo(X|wu) ¢ R and
implies that*(a) = I*(al(o,). On the other hand, since_henceW“ - Th_at IS, any gample patk € A(u,b) has

} alous ) its sum of the arrivals over timg0, u| and queues equal to
Wi(a) € R, we can writeb € G, ". All of these imply %(0,u] = b + ¢(u— 1).
that In addition, an immediate implication of Lemrhh 4 is that
we can rewrite] in () as

Jb)= _inf  I*(a)
a€D[f:G*3b J(b) — H>1£ It(b)
= inf inf I*,(x) = inf I,(b), =
t21 xeRK":G¥ob i>1 = inf min inf I, (x)
t>1ue(0,t] x€A(u,b)
by the definition ofZ;(b) in (@). ] = ir>1fl inf I¥(x). (18)
With this simplification available, we now look at the = X.EM.t’b) )

finite-horizon rate functior, in more details. If we denotet* as the optimizer of the last equation, then

is called thecritical timescale(see [13]). It can be interpreted
thatt* is the length of time which the buffers are most likely
to take to fill from “empty” level (more precisely, anywhere
In this subsection, we provide a further simplified expresvithin R) to a given levelb.

B. Finite-Horizon Rate Function

sion of the finite-horizon rate functiofy. Note that for fixedu € N, infeepup) I*u(x) is a opti-
Lemma 4:Fort € N, the finite-horizon rate functiofi, is mization problem, with a convex cost functidfi,(-) and
simplified as a set of mixed discrete and continuous feasible solutions
A(u,b). This problem is difficult to solve analytically. How-
I;(b) = min inf I%,(x) (16) ever, in [22] we employ the additivity and convexity of the

ue0.t] x€h(wb) rate functionZ®; to further provide some simplified bounds

forb € Rf , where of the rate functions.

VI. CONCLUSION

A(u,b) = {a eRE" : b € G, In this paper, we have established a many-sources LDP
Gu—v(a|(v,u) € R,Vv € [L,u —1]}. (17) for the stationary (infinite-horizon) workload for multisgue
single-server system with simplex capacity, operated unde
Proof: This follows the idea from the proof of Lemri& 3.the maximum-weight scheduling with the arrival processes
Let ¢ € N. Fora € R such thatb € Gf, we letu = assumed to satisfy a many-sources sample path LDP. To
min {t,min{s € [1,t — 1] : W, = G;_s(als4) €R}}. In  extend the LDP of the arrival processes to the LDP of the
other WOI'dS,—’LL is the last time the workload vector is inSiquorkk)ads’ we emp|0yed Garcia’s extended contraction- prin
the capacity regiorR before time0. By definition of I;, we  ciple, which applies to quasi-continuous mappings. Along
already know that the workload vector starts initially @i the way, we also establish an LDP for the finite-horizon
R at time—¢. With this definition ofu, we haveW,, ¢ R for workload. We gave the associated rate functions and the
all v € [1,u — 1]. We can find another path € RI* with @  expression of the infinite-horizon rate function in term foé t
reduced cost while keeping the workloads at time@+ 1 t0 finite-horizon ones, when the arrivals processes have i.i.d
0 (i.e., W,,—1 to Wp) intact by settingz, = ulx,Vv € (u,t]  increments.
and @, = a, otherwise. Since¥*(ulx) = 0, we have  Note that the quasi-continuity of the finite-horizon work-
I*i(a) > I*(a) = I*4(al(,) and yetb € Glow G?. load mapping and hence the LDP for the sequence of finite-
Since by definitionlV, = G, (al(s,) for v € [1,u — 1], horizon workload processes is valid even when the rate megio



is MAC or any convex and compact set. The main difficultfrom this sequenc¢a707t]}. We proceed by considering the

in establishing LDP for the infinite-horizon workload is infollowing two cases, depending on the valueagf

showing the quasi-continuity of the infinite-horizon waratl Case 1:a; > 0, i.e., every component of the; € R is
mapping. This is an interesting area of future research. positive. Lete > 0 be the smallest component af. Since
H(-) is quasi-continuous, it is possible to choose a sequence

) of (workload) vectors{w™} such thatw™ — G;(a(), and
Here we prove Lemmdd 1 afdl 2. We first show the progf is continuous ato™ for all 7. Now, we define

of Lemmall which uses the following fact:

APPENDIX

Fact 3: Assumex =5 ), X,) are metric spaces, and  aj :=w" — [Ft_l(a?17t])]+ (22)
reX.If Fis quasi-continuous at andG is continuous at = w" — Gy(afy ) + af (23)
z, thenF' + G is quasi-continuous at.

Lemmall:For t € N, G, is quasi-continuous o’ * = (w" — Gi(ap,y)) + (Gt(a(o,t]) - Gt(a?o,t]))

with respect to the uniform topology.

Proof: Using our queueing equation we first observe the
following recursive relation betwee@; and G;—, for any |t is clear from the last equality that? — a; with respect
te{2,3,...} andx = x4 € RE*": to uniform topology. We need to ensure thgt > 0 since

Gi(x(0.) = [Gi1(x.p) — H(Gi—1 (x))] T +x1, (19) negat_ive quantities are involved in the definitilo(n_. We de thi
by using the facts that every componenhgfe R* is greater
where we used the fact thay(x(o,) = Gi(X(,q). and or equal toe > 0, and thatw” — Gy(ag.), Gi(aly ) —
Wi(x(1,g) = Gi-1(x,) when the initial backlog at time ,(a, ), anday — a,. These facts imply that there exists
—t is small, i.e.,W; € R. _ ann, such that for alln > n, we have||w" — Gy(a( )|l <
Equation [(ID) says that:(x(,) depends linearly on (/3 G, (aq,) — Gi(afy )|l < ¢/3 and|[a} —ai|| < €/3
X1. Thls_ implies the following simple but Consequentla{with the L, norm) which then together with(R4) imply that,
observations: _ . _ _ for the sequenca)" ™", we always have non-negativity of
Observation 1:If G is strictly quasi-continuous at g components. Hence, we construct a new Sequéﬁ%%]}

+ (a —a;) +a;. (24)

X(0,, then it is strictly quasi-continuous ak , A _ xntne A _ ntn.
(0.4] 2 o ) (0,1] wherea = a7 ™" anday, , = a’|".
(x1,%2,...,x;) for any x; € RZ. If G, is continuous at . S
This new sequenca, , is the sequence we are after

X (0,1, then it is also continuous & .

Observation 2:If Gt(x% t]) . Gi(x(.) for a sequence because using the induction hypothesis together with Gbser

vations[1 and2, we have thét,(a") — G.(a), and G, is

n n
{’fglo,t]} Suf:: trl"’ltx(ovt]nH X(Ovt]’}:en for any sequence ... 0us at for all n. Furthermore, by construction
{X{0,q = (X1,x3,...,x}")} wherex} — x;, we also have

GiXo ) = Gelxon). _ Gi(a") = &} + [Froa (afy, )1
Using the recursive relation ifi (IL9), we prove this lemma — e+

by induction ont € N. For¢ = 1, G1(a;) = a;, henceG, — 4 + [Ft—l(a(Lt] )]

is continuous orRX. Assuming thatG, is quasi-continuous = ", (25)

on Rfft, we want to show thar;,; is quasi-continuous on . A

RX+Y Using the fact that thé]* function is continuous, Hence, we have shown that there exists a sequefice

Remark(®, and Fa€fl 3, it suffices to show that the functiciRtisying [20) and.(21). In addition, the continuity Hfo G,

Fy := G, — HoG,, is quasi-continuous oRX" to show that ataf, ,, for all n Is a _dlrect consequence of COI_T[II’IUIty@ﬁ

Gy41 is quasi-continuous. In particular, for any arrival samplat f; ,; and continuity of & at w"*"<, which is equal to

patha = a4 € RE*, we need to show thak; is quasi- G:(a"), for all n.

continuous ata(; with respect to the uniform topology. Case 2:a; > 0. Without loss of generality by permuting

It suffices to show that it is possible to select a sequentiée user labels, we can assume that the firsomponents of

a"™ — a for which a; are( while the rest of thé< — k components are positive.

R Now the sequenca’* with 1/m in the firstk components

Gt(a?oﬁt]) — Gi(a,1), (20) and the non-zero values af; in the remaining coefficients

HoGy(aly ) — HoGilagp,), (21) converges ta; such that for everyn every component of

aj" is positive. We construct a sequenga(; ,} with this

ay" andafj , = a( 4. For ease of exposition we denote

af - ot : . . :
(07t . . . . -
V\)e show this by first noting that the induction hy_the vector withl/m in the first £ positions and0s in the

pothesis, i.e., quasi-continuity af,;, and the definition of rgmarlnmngKGT k positions by[1/m]y. It is obvious that

quasi-continuity ensure that there exists a sequea¢e, } 1(afg) — Gilap,) since

such thata’ ,, — a, in the uniform topology, such that
(0t m — qm m +

Gi(ay ) — Gi(ap,), and Gy(-) is continuous ataf, , Gil(apy) =ar" + [Ft_1(a(1,t])]+

for all n. We will construct the desired sequen¢a, ,;} =ay" + [Fi—1(an,)]" = [1/m]r + Gi(ap,y)-

such that both,(-) and H o G,(-) are continuous at every



WhenGi(a,y) & [0,C)K, for m large enougﬁ,we have

H o Gy(afy ) = e (Gilay )
= e (Gi(agp,y)) = H o Gyla,y),

where the functiore is defined in the definition off in
@). On the other hand, it¥;(a() € [0,C)*, then the
continuity of Proj; (-) yields HoG(afg 1) — HoGi(a,)-

Since for eachn we have thaa]* has all elements strictly
positive, we can use the similar construction as in Case 1 k%%t

with a?g_t] in place ofa 4. In particular, for eachn, we can

now generate a sequen@é%:g} such thata!"" — a7* as

where we define the hai) (notation to mean the sum over all
users, i.ed;, = S0, AF andW, = Y1 | WF. Recursion
of the queue dynamicd_(P8) and letting — oo where
Wr € R, gives the standard expression for the stationary
sum workload [14]:

Wo(A) = sup A(0,t] — ¢(t — 1). (29)

teN
To prove the claim we use the fact that the rate redin
is simplex, hencdV, < ¢ < W, € R. That is, it suffices to
ow that there are &), and a finites such that, fom > n(,
W,(A) < candW,(A") < c.

Since A — A under the scaled uniform topology,

n — 400, a(y = a() 4, and by using Observatioh$ 1 did 2o any givene > 0, there exists ano such that for

the following hold

Guamn)  — Gulals ). (26)
Ho Gt(ézg::]) — Ho Gt (a?&t]), (27)

with both G;(-) and H o G¢(+) being continuous aﬁ%:g
all n.

Now we define the sequenagy , = a ;'
we are after. By construction, we haﬁ%t] — a(p,) and
both G.(-) and H o Gy(-) continuous at alla ,. Since
Gt(a’{g’t]) — Gt (a(oyt]) andHOGt (a%,t]) — HOGt (a(o_’t]>,
it follows from (28) and [(2F7) thaGt(é(%’t]) — Gi(ap,y)
and H o Gt(é?&t]) — Ho Gt(a(o)t]). |

Next, we prove Lemmf]2:

for

LemmdR:If Ku < ¢, the mappingZ is quasi-continuous

on fo with respect to the scaled uniform topology.
Proof: The proof follows the concept in [13]. Lé{ p <
candA € Df. Consider any sequendel” } such thatd™ —

as the sequence

n,k k
n > ng, MaxXiek supteN|A t(o’t] 4 go,t]| < e. Hence,

sup, |M - @| < Ke. SinceA € DI, there is & <

oo such that for > tg andk € K, % < p+e. Therefore,
it follows that @ < Kp+ Kefort > ty. SinceKp < c,

we choosee = (¢ — Ku)/4K. We now have that for all

n > ng andt > t, % < K(p+2€e)=(c+Kp)/2 <c,

and we also have thﬁ% < K(u+e) = (c+3Kp)/4 < c.
In other words, for alln > ng, the workload at time zero is
a function of only the arrivals within timé0, t,] and hence,

Wo(4) =

sup A(0,1] — e(t — 1),
1<t<to

Wo(A™) = sup A™(0,t] —c(t —1).
1<t<tg
Let s < ¢y and s" < t; be the minimum values of
the optimizingt's in the above equations, respectively. It
can be shown as in [14, Lemma 5.A:] thef;(A) < ¢

A. The main step of the proof is based on the following clainand Wy (A") < ¢ (and in addition, W,(4) > ¢ and

Claim 1: There exists &* = s*(4) < oo andny, such
that, whenn > ny, the workloads at time-s* of the arrival
sample pathsA™ and A stay within the rate regiomR, i.e.,
W (A") € R and W+ (A) € R.

With this claim and by the definition af -, the workloads
at time zero forA™ and A are G(A") = G- (A™(0,s+1) and
G(A) = G4 (A(0,s+1), respectively, whem > ng. In other

Wyn(A™) > c for all v € (0,s) andv™ € (0, s™)).

Next we show that there exisis; such that forn > nq,
s" = s. This is not difficult because it is known that,
is continuous orDy, [13, Lemma 13]. Sincel” — A on
Dy, We havelly (A™) — Wo(A) ands™ — s. Sinces”, s €
N, there exists a; such thats™ = s for n > n;. The claim
is now proved by takingy, = max(n,ng). [ |

words, we have transformed the infinite-horizon workload
into the finite-horizon workload whose mapping is already REFERENCES
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