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Abstract—In this paper, we establish a many-sources large
deviations principle (LDP) for the stationary workload of a
multi-queue single-server system with simplex capacity, op-
erated under a stabilizing and non-idling maximum-weight
scheduling policy. Assuming a many-sources sample path LDP
for the arrival processes, we establish an LDP for the workload
process by employing Garcia’s extended contraction principle
that is applicable to quasi-continuous mappings. The LDP result
can be used to calculate asymptotic buffer overflow probabilities
accounting for the multiplexing gain, when the arrival process
is an average of i.i.d. processes. We express the rate function
for the stationary workloads in term of the rate functions of the
finite-horizon workloads when the arrival processes have i.i.d.
increments.

I. I NTRODUCTION

In this paper, we consider a single-server multi-class
discrete-time queueing system where the server is allocated
to queues according to a maximum weight scheduler, which
is known to be stabilizing [1]. We provide a refined analysis
of the statistical performance of this policy under stochastic
arrivals. In particular, withK independent queues we seek
to derive the probability of buffer overflow. Specifically, for
a given finite valueB, we consider the transient behavior,
i.e., quantities suchP (W0,T ≥ B1K) where W0,T ∈ R

K
+

is the workload (to be formally defined later) at time0
with “zero” initial workload at time−T and 1K ∈ R

K
+ is

the vector of all1s, as well as the stationary behavior, i.e.,
the similar probabilistic quantities as before for the limiting
workload vector asT → ∞. Like many recent papers on
analysis of scheduling algorithms [2]–[8], our work considers
logarithmic asymptotics to the probabilities by analyzinga
large-deviation approximation to the problem. The present
paper is closely related to [6], where the buffer overflow
probability for the workload processes of a single-server
multi-queue queueing system under max-weight policies and
general compact and convex capacity regions was estab-
lished. While [6] addresses the large-buffer scaling regime,
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this paper establishes similar results for a classical multi-
class single-server (simplex capacity region) system under a
“many-sources” asymptotic regime (see [7]–[14]).

In a many-sources asymptotic regime, one considers a
sequence of queueing systems indexed by the number of
the (independent) sources multiplexed (or averaged) over
a particular queue, i.e., the arrival process to each queue
is the average ofL processes. The analysis focuses on
the asymptotic behavior of the systems whenL → ∞.
The motivation to consider many-sources scaling includes
the following considerations: 1) practical interest in real
applications when there are large number of flows to each
user or node. This asymptote usually gives a more refined
approximation to the probabilistic quantities of interestby
incorporating the impact of the multiplexing gain [9]–[12],
[15]–[17]; and 2) a cross-layer optimization for the optimal
duration of the finite code blocks when the transmission
channel is operated at high-SNR regime (see [18]).

Given a sample path large deviation principle for the
arrival processes (in the space of real-valued sequences with
the scaled uniform topology), we derive a large deviations
principle for the workload. In particular, we first show
that the workload is a quasi-continuous map of the arrival
process. The first contribution of the paper is, thus, obtained
based on a recent extension of the contraction principle by
J. Garcia [19]. More precisely, we use Garcia’s extended
contraction principle together with an assumed sample path
large deviations principle (LDP) (see Definition 2) for the
arrival process to establish an LDP for the workload at
any given timet as well as the stationary workload. The
LDP results (Theorems 1 and 2) directly imply that the
probability of buffer overflow has an exponential tail whose
decay rate is dictated by a good rate function whose form
is determined by the statistics of the arrival process. This
rate function can be expressed as a solution to a finite-
dimensional optimization problem which has the same flavor
of a deterministic optimal control problem. When the arrival
process has i.i.d. increments, we provide a simplified form
for the rate function.

The outline of the paper is as follows. The problem
formulation is given in Section II. Section III provides



background and preliminary results on the large deviations
principle. The main results of the paper, which are the LDPs
of the workloads, are given in Section IV. Section V gives
simplified expressions of the rate functions. We conclude in
Section VI with a discussion of future work.

II. PROBLEM FORMULATION

We consider a discrete-time queueing system withK
independent queues and one server with capacityc (bits
per timeslot). For every queuek ∈ K := {1, . . . ,K} we
assume that work (in bits) arrives into the queue given by a
sequence(Ak

t , t ∈ N) whereAk
t ∈ R+ is the work brought

in at time −t. For 0 ≤ m1 ≤ m2 integers, we define
Ak(m1,m2] :=

∑m2

t=m1+1 Ak
t as the total amount of work

to arrive for userk from timeslot−m2 and until timeslot
−m1 − 1. We also writeAk|(m1,m2] to denote the finite
sequence of arrivalsAk restricted to{−m2, . . . ,−m1 − 1}.

We assume a maximum-weight server allocation policy
where the weights are functions of the unfinished workloads,
and under which we are interested in the statistical proper-
ties of the unfinished workload in queuek at time t. Let
W k

t ∈ R+ be the unfinished workload (queue length) of
queuek at the beginning of time−t andRk

t be the amount
of service allocated to queuek during time(−t,−t+1]. Let
Wt := (W k

t , k ∈ K) be the corresponding workload vector
andRt := (Rk

t , k ∈ K) be the rate vector. One can define a
simplex rate regionR,

R :=

{

r = (r1, . . . , rK) ∈ R
K
+ :

K
∑

k=1

rk ≤ c

}

, (1)

as the set of server’s operating points, i.e.,Rt ∈ R. At the
beginning of timeslot−t, the rate vectorRt ∈ R is selected
by a work-conserving max-weight schedulerH in response
to the current workloadWt; that is, Rt = H(Wt) where
the schedulerH servesc bits from the queuek∗ which has
the largest workloadW k

t when the workload of the longest
queue is at leastc. In case of a tie, the scheduler chooses
the queue with the lowest index. To make the scheduler non-
idling, we assume the scheduler splits the service when the
unfinished workload in each queue is less thanc. That is, we
assume that the scheduler assignsH(x) = ProjR(x) when
x ∈ [0, c)K , where ProjB(b) is the projection of vectorb on
the setB. Specifically, forx ∈ R

K
+ we considerH(x) to be

given by

H(x) :=

{

e(x) if x 6∈ [0, c)K ;

ProjR(x) if x ∈ [0, c)K .
(2)

Above e(x) is defined as theK-dimensional vector whose
elements are zeros except for thek∗th element which isc,
where k∗ = min{k : k ∈ arg maxi∈K xi}. For example,
whenK = 2, the schedulerH in (2) becomes

H(x) =











(c, 0), if x1 ≥ x2, x1 ≥ c

(0, c), if x1 < x2, x2 ≥ c,

ProjR(x), if x1 < c, x2 < c.

(3)

For t ∈ N, the dynamics of the workloads of queuek ∈ K
is

W k
t−1 = [W k

t − Rk
t ]+ + Ak

t , (4)

where forx ∈ R, [x]+ := max{0, x}. We assume that the
arrival vectorAt happens any time in(−t,−t+1) but cannot
be served in that timeslott.

In this paper, we are interested in the asymptotic probabil-
ities of thefinite-horizonandinfinite-horizonworkloads. The
finite-horizon workload, denoted byW0,T , is the workload
at time 0, assuming the initial condition at time−T is
WT ∈ R. The indexT in W0,T reminds us of this initial
condition.1 The infinite-horizon workload,W, is defined as
W = W(A) := limT→∞ W0,T (A|(0,T ]). We assume that the
limit exists but may be infinite. It can be shown thatW is the
stationary workload when the system is stable. We will use
the functionGT to meanGT (A|(0,T ]) = W0,T (A|(0,T ]) and
the functionG to meanG(A) = W(A). To aid in describing
our results we further defineGa

T and Ga in the following
way:

Definition 1: For a functionF : X 7→ Y and x ∈ X , we
define

F x := {y ∈ Y : (∃xn → x) such thatF (xn) → y}. (5)

Note thatF (·) is a set-valued mapping. It is single-valued at
x whereF is continuous (i.e.,F x = {F (x)}).

We consider a sequence of queueing systems indexed
by L ∈ N and will be interested in the behavior of the
queueing systemL as L becomes large. For each user
k ∈ K and system indexed byL, we assume a stationary
arrival process of work brought into the system given by
a sequenceAk,L := (Ak,L

t , t ∈ N) where Ak,L
t ∈ R+ is

the work (in bits) brought in at time−t into the queue of
user k. The arrivals to different queues/users are mutually
independent. We follow the many-sources scaling regime on
the system with indexL. The arrival process to each queue
k is assumed to be an average ofL i.i.d. processes, i.e.,
Ak,L := 1

L

∑L
i=1 Ak,(i), where eachAk,(i) is an independent

identically distributed copy of a stationary processA. We
denote the mean arrival rate byµ := EAk,L

1 = EA1. Also
let AL := (Ak,L, k ∈ K) be the sequence of arrival vectors.

A. Main Results

Assuming that the sequence of the arrival processes{AL}
satisfies a many-sources sample path LDP with a continuous
rate function (Assumptions 1 and 2, respectively, given in
Section III), the main results of the paper are the following
LDP’s for the finite and infinite-horizon workloads. We also
provide a simplification of the rate functions when the arrival
processes have i.i.d. increments.

1The initial condition is normally taken to be the zero vector but the result
remains valid even when the initial condition is withinR. With WT ∈
R, we always have the workload at time−T + 1 be WT−1 = [WT −
H(WT )]+ +AT = AT from the non-idling condition that we imposed on
the server allocation mechanism.



Theorem 1:For t ∈ N, the sequence of the finite-horizon
workloads{W0,t(A

L|(0,t]) := Gt(A
L|(0,t])} satisfies an LDP

on R
K
+ with the rate functionIt, where forb ∈ R

K
+

It(b) = inf
x∈R

K×t
+ :Gx

t ∋b

I♯
t(x) (6)

Theorem 2:If Kµ < c, the sequence of infinite-horizon
workloads{W(AL) := G(AL)} satisfies an LDP onRK

+

with rate functionJ , where forb ∈ R
K
+

J(b) = inf
a∈DK

µ :Ga∋b

I♯(a). (7)

In the above results,a denotes a sequence taking values in
R

K
+ andDK

µ is a special subset of sequences taking values
in R

K
+ which will be clarified in Section III-A .

III. B ACKGROUND AND ASSUMPTIONS

A. Topology for Sample Paths

Since a large deviations principle is defined with topo-
logical entities and since we will deal with continuity and
convergence of the workload mappings, we need to precisely
specify the topology for the space of the arrival sample paths.
We use the scaled uniform topology as in [13] for our anal-
ysis. LetD denote the space of sample paths (non-negative
discrete-time functions), i.e.,D := {x : N 7→ R+}, and let
DK be theK cartesian product ofD. Let || · ||u be the scaled

uniform norm onD, i.e., ||x||u := supt∈N

∣

∣

∣

x(0,t]
t

∣

∣

∣
for all

x ∈ D while for all a = (ak, k ∈ K) ∈ DK , whereak ∈ D,
the scaled uniform norm ofa is ||a||u := maxk∈K ||ak||u.
Define a subspaceDµ of D which contains all the arrival
paths whose average arrival rate is equal to the expected rate
µ, i.e.,Dµ :=

{

x ∈ D : limt→∞
x(0,t]

t
= µ

}

andDK
µ the K

products ofDµ. Again, we equipDµ andDK
µ with the scaled

uniform topology. For metric spaces likeRn
+, n ∈ N, we use

the square uniform topology with the square metricρ [20],
whereρ(x,y) := maxi∈{1,...,n} |xi − yi|.

B. Large Deviations Principle

The following definition of a large deviations principle
is taken from [13]. For an excellent full introduction to
the theory, definitions, and tools, see [21] and for queueing
applications, see [14].

Definition 2 (Large deviations principle):A sequence of
random variablesXL in a Hausdorff spaceX with σ-algebra
B is said to satisfy a large deviations principle (LDP) with
good rate functionI if, for any B ∈ B,

− inf
x∈Bo

I(x) ≤ lim inf
L→∞

1

L
log P (XL ∈ B)

≤ lim sup
L→∞

1

L
log P (XL ∈ B) ≤ − inf

x∈B̄
I(x),

(8)

where Bo and B̄ are the interior and the closure ofB,
respectively, and the rate functionI : X 7→ R+ ∪ {∞}
has compact level sets, where the level sets are defined as
{x : I(x) ≤ α}, for α ∈ R.

If XL is a mapping fromN to R describing sample path
of a random sequence, the LDP is referred to as asample
path LDP.

We are interested in finding an LDP for the sequence of
the workloadsW(AL) and W0,T (AL|(0,T ]), assuming the
following sample path LDP of the arrival processesAL.

C. Sample Path LDP of Arrival Processes

The following sample path LDP for the sequence of arrival
processesAL is the starting point of our analysis.

Assumption 1 (Many-sources sample path LDP):The se-
quence{AL} satisfies a sample path LDP inDK

µ equipped
with the scaled uniform topology with rate functionI♯, where
the rate functionI♯ is given as

I♯(a) := sup
t∈N

I♯
t(a|(0,t]) = lim

t→∞
I♯

t(a|(0,t]) (9)

for a ∈ DK
µ , where forx = (xk ∈ R

t
+, k ∈ K) ∈ R

Kt
+ ,

I♯
t(x) :=

K
∑

k=1

Λ∗
t (x

k), (10)

and Λ∗
t is the convex conjugate or Fenchel-Legendre trans-

form of Λt:

Λ∗
t (y) := sup

θ∈Rt

θ · y − Λt(θ), for y ∈ R
t, (11)

Λt(θ) := log E exp
(

θ · A|(0,t]

)

, for θ ∈ R
t. (12)

Remark 1:Assumption 1 implies that the sequence{AL}
also satisfies an LDP onDK equipped with the scaled
uniform topology, with rate functionI♯ where I♯(a) = ∞
for a ∈ DK/DK

µ [14]. It is shown in [14, Lemma 7.8] that
under Assumption 1,Λ∗

t (·) is non-negative,Λ∗
t is convex,

andΛ∗
t (µ1t) = 0, where1n is the vector of all ones inRn.

Hence,I♯
t(µ1Kt) = 0 andI♯

t is convex.
In this paper, we also assume the following continuity

condition on the rate functionI♯ in (9):
Assumption 2:I♯ is continuous on its effective domain

defined as{x ∈ DK : I♯(x) < ∞}.
Remark 2:As shown in [13] and [14], the above many-

sources sample path LDP (Assumption 1) holds when the
underlying arrival processA satisfies mild regularity con-
ditions. This implies that several standard stationary pro-
cesses used for traffic modeling, such as i.i.d. increment
processes, Markov-modulated, a general class of Gaussian,
and fractional Brownian processes (for long-range dependent
or heavy-tailed traffic), satisfy Assumptions 1 and 2.

D. Garcia’s Extended Contraction Principle

The contraction principle (see [21, p. 126]) says that if we
have an LDP for a sequence of random variables, we can
effortlessly obtain LDP’s for a whole other class of random
sequences that are obtained via continuous transformations.
However, due to the inherent discontinuity in the max-
weight scheduling function, the usual contraction principle
fails to provide sufficient structure. Instead, we will utilize
the following powerful extension of the contraction principle



for quasi-continuous transformations on metric spaces, given
by Garcia [19]. First, let us provide the definition of quasi-
continuity on metric spaces:

Fact 1: [19, Theorem 3.2] IfX ,Y are complete metric
spaces, a functionF : X 7→ Y is quasi-continuous if and only
if for eachx ∈ X , there is a sequence{xn} such thatxn →
x, F (xn) → F (x), and such that for alln, F is continuous
at xn.

Remark 3:Obviously, every continuous function is quasi-
continuous. A step functionF : R 7→ R, where F (x) =
0 for x < 0, F (x) = 1 for x ≥ 0, is quasi-continuous.
But if F (0) = 1/2, then F is not quasi-continuous. From
this example, we can infer that our scheduling functionH is
quasi-continuous.

Remark 4:An interesting property is that ifF is a con-
tinuous function andG is a quasi-continuous function, then
F ◦G is quasi-continuous butG◦F is not necessarily quasi-
continuous [19].

Fact 2 (Garcia’s Extended Contraction Principle):

AssumeΩ
XL

→ X
F
→ Y, X ,Y are metric spaces, and{XL}

satisfies a large deviation principle with good rate function
I♯. If at every x with I♯(x) < ∞, F is quasi-continuous
and I♯ is continuous, then{F (XL)} satisfies the LDP with
rate function given by

I(y) = inf
{

I♯(x) : y ∈ F x
}

. (13)

Hence, given Assumption 2, the LDP’s for the sequences
of finite- and infinite-horizon workloads would follow as a
direct consequence of the quasi-continuity of the mappings
Gt and G. The quasi-continuity of the workload mappings
is inherited from the quasi-continuity of the schedulerH.

IV. A NALYSIS: LDP’S FORWORKLOADS

In this section, we present the main result of the paper:
LDP’s for the sequences of the finite- and infinite-horizon
workloads. We first establish an LDP for the sequence of the
finite-horizon workloads.

A. LDP for Finite-Horizon Workloads

In this section, fort ∈ N, we establish an LDP for finite-
horizon workloads{WL

0,t := Gt(A
L|(0,t])}. The approach is

to first show that the mappingGt : R
K×t
+ 7→ R

K
+ is quasi-

continuous, then use Garcia’s extended contraction principle
to obtain an LDP for the finite-horizon workloads from the
LDP assumption for{AL|(0,t]}.

Lemma 1:For t ∈ N, Gt is quasi-continuous onRK×t
+

with respect to the uniform topology.
Proof: See Appendix. The idea of the proof relies

on the quasi-continuity of the schedulerH and the linear
dependence of the workloadWs at time−s on As+1 for all
s ∈ (0, t − 1].

Now, as already discussed, the proof of Theorem 1 is
complete. We refer to the corresponding rate function,It,
as the finite-horizon rate function. Next, we discuss the LDP
for the infinite-horizon workloads.

B. LDP for Infinite-Horizon Workloads

In this section, we establish an LDP of the sequence
of the infinite-horizon workloads{WL = G(AL)} where
AL ∈ DK . Similar to the last section, we first show that the
mappingG is quasi-continuous onDK

µ when Kµ < c, and
then use Garcia’s extended contraction principle to establish
the desired LDP.

Lemma 2: If Kµ < c, the mappingG is quasi-continuous
on DK

µ with respect to the scaled uniform topology.
Proof: See Appendix. The main idea is to use the fact

that the sum (over all queues) workload process behaves like
that of a single queue.

Again, the above lemma and Garcia’s extended contraction
principle to the sequence of{AL} immediately give the
LDP for the sequence of the infinite-horizon workload in
Theorem 2. Recall that the setDK

µ contains all arrival sample
pathsa such thatI♯(a) < ∞ and E[ak

t ] = µ for all k ∈ K
and t ∈ N.

Let us now consider the problem of calculating the rate
function. Eqn. (7) suggests that the rate functionJ , where
J(b) = infa∈DK

µ :Ga∋b I♯(a), could be interpreted as the
minimum-cost solution among all pathsa ∈ DK

µ such
that b ∈ Ga, where the cost of the patha is I♯(a) and
convex. Hence, the problem of finding the rate functions is a
deterministic optimal control problem like those in [4], [6].

The expressions for the rate functionsIt andJ in (6) and
(7) are of little use in their current forms, as their computation
is far from straight forward. In the next section, we simplify
the rate functions when the arrival processes are limited to
having i.i.d. increments.

V. I.I.D. I NCREMENTS: SIMPLIFIED RATE FUNCTIONS

In this section, we give a calculation of the finite-horizon
and infinite-horizon rate functions in the case when the
arrivals have i.i.d. increments. In this case, the cost of a
sample patha ∈ DK , which isI♯(a), is additive and the total
cost of any arrival sample path is the sum of the cost over
all timeslots and queues. This property helps us to simplify
the calculation of the rate functions.

Consider the underlying arrival processA to be a process
with i.i.d. increments, e.g., a compound Poisson arrival
process with exponential packet length (see [18]). For these
i.i.d. increment arrival processes, it is easy to show that for
x ∈ R

t
+, Λ∗

t (x) =
∑t

i=1 Λ∗(xi), whereΛ∗ is the Fenchel-
Legendre transform ofΛ and Λ(θ) = log E exp(θA1) [14].
Hence, for a finite vectora = (ak

i , k ∈ K, i ∈ (0, t]) ∈ R
K×t
+ ,

the costI♯
t(a) in (10) can be written as

I♯
t(a) =

t
∑

i=1

XA(ai), (14)

where we defineXA(x) :=
∑K

k=1 Λ∗(xk), for x ∈ R
K
+ , as

the per-timeslot cost of aK-dimensional sample path. Next,
we simplify the rate functions for the infinite-horizon and
finite-horizon workloads, respectively.



A. Infinite-Horizon Rate Function

The following lemma expresses the infinite-horizon rate
functionJ as the infimum of the finite-horizon rate functions
It over all timet.

Lemma 3:For i.i.d. increment arrivals andKµ < c, the
infinite-horizon rate functionJ is simplified as

J(b) = inf
t≥1

It(b). (15)

Proof: The cost of a sample path over time is the sum
of the cost of arrivals in all timeslots. As in the proof of
Lemma 2, fora ∈ DK

µ whereKµ < c, we can findt := s∗(a)
such thatWt(a) ∈ R. Hence, fora such thatb ∈ Ga, one
can reduce the cost of the path by settingav = µ for all v > t
while keepingGa ∋ b. This is becauseXA(µ1K) = 0 and
implies thatI♯(a) = I♯

t(a|(0,t]). On the other hand, since

Wt(a) ∈ R, we can writeb ∈ G
a|(0,t]

t . All of these imply
that

J(b) = inf
a∈DK

µ :Ga∋b

I♯(a)

= inf
t≥1

inf
x∈RKt

+ :Gx

t ∋b

I♯
t(x) = inf

t≥1
It(b),

by the definition ofIt(b) in (6).
With this simplification available, we now look at the

finite-horizon rate functionIt in more details.

B. Finite-Horizon Rate Function

In this subsection, we provide a further simplified expres-
sion of the finite-horizon rate functionIt.

Lemma 4:For t ∈ N, the finite-horizon rate functionIt is
simplified as

It(b) = min
u∈(0,t]

inf
x∈A(u,b)

I♯
u(x) (16)

for b ∈ R
K
+ , where

A(u,b) := {a ∈ R
K×u
+ : b ∈ Ga

u,

Gu−v(a|(v,u]) 6∈ R,∀v ∈ [1, u − 1]}. (17)

Proof: This follows the idea from the proof of Lemma 3.
Let t ∈ N. For a ∈ R

K×t
+ such thatb ∈ Ga

t , we let u =
min

{

t,min{s ∈ [1, t − 1] : Ws = Gt−s(a|(s,t]) ∈ R}
}

. In
other words,−u is the last time the workload vector is inside
the capacity regionR before time0. By definition of It, we
already know that the workload vector starts initially inside
R at time−t. With this definition ofu, we haveWv 6∈ R for
all v ∈ [1, u − 1]. We can find another path̃a ∈ R

Kt
+ with a

reduced cost while keeping the workloads at time−u + 1 to
0 (i.e., Wu−1 to W0) intact by setting̃av = µ1K ,∀v ∈ (u, t]
and ãv = av otherwise. SinceXA(µ1K) = 0, we have
I♯

t(a) ≥ I♯
t(ã) = I♯

u(a|(0,u]) and yetb ∈ G
ã|(0,u]
u = Gã

t .
Since by definitionWv = Gu−v(a|(v,u]) for v ∈ [1, u − 1],

we have

It(b) = inf
x∈RKt

+ :Gx

t ∋b

I♯
t(x)

= min
u∈(0,t]

inf
x∈RKu

+ :b∈Gx,Gu−v(x|(v,u]) 6∈R
I♯

u(x)

= min
u∈(0,t]

inf
x∈A(u,b)

I♯
u(x),

whereA(u,b) is defined as in (17).
Remark 5:The above lemma reduces the set of feasible

sample paths to the setA(u,b) for u ∈ (0, t]. It is interesting
to note the property of the sample paths in this set. For any
x ∈ A(u,b), we haveŴ0(x) = x̂(0, u] − c(u − 1) = b̂,
recalling that thê· notation is the sum over queues. There
is no wastage of service capacity over theu − 1 timeslots
because∀v ∈ [1, u − 1], Wv = Gu−v(x|(v,u]) 6∈ R and
henceŴv > c. That is, any sample pathx ∈ A(u,b) has
its sum of the arrivals over time(0, u] and queues equal to
x̂(0, u] = b̂ + c(u − 1).

In addition, an immediate implication of Lemma 4 is that
we can rewriteJ in (7) as

J(b) = inf
t≥1

It(b)

= inf
t≥1

min
u∈(0,t]

inf
x∈A(u,b)

I♯
u(x)

= inf
t≥1

inf
x∈A(t,b)

I♯
t(x). (18)

If we denotet∗ as the optimizer of the last equation, thent∗

is called thecritical timescale(see [13]). It can be interpreted
that t∗ is the length of time which the buffers are most likely
to take to fill from “empty” level (more precisely, anywhere
within R) to a given levelb.

Note that for fixedu ∈ N, infx∈A(u,b) I♯
u(x) is a opti-

mization problem, with a convex cost functionI♯
u(·) and

a set of mixed discrete and continuous feasible solutions
A(u,b). This problem is difficult to solve analytically. How-
ever, in [22] we employ the additivity and convexity of the
rate functionI♯

t to further provide some simplified bounds
of the rate functions.

VI. CONCLUSION

In this paper, we have established a many-sources LDP
for the stationary (infinite-horizon) workload for multi-queue
single-server system with simplex capacity, operated under
the maximum-weight scheduling with the arrival processes
assumed to satisfy a many-sources sample path LDP. To
extend the LDP of the arrival processes to the LDP of the
workloads, we employed Garcia’s extended contraction prin-
ciple, which applies to quasi-continuous mappings. Along
the way, we also establish an LDP for the finite-horizon
workload. We gave the associated rate functions and the
expression of the infinite-horizon rate function in term of the
finite-horizon ones, when the arrivals processes have i.i.d.
increments.

Note that the quasi-continuity of the finite-horizon work-
load mapping and hence the LDP for the sequence of finite-
horizon workload processes is valid even when the rate region



is MAC or any convex and compact set. The main difficulty
in establishing LDP for the infinite-horizon workload is in
showing the quasi-continuity of the infinite-horizon workload
mapping. This is an interesting area of future research.

APPENDIX

Here we prove Lemmas 1 and 2. We first show the proof
of Lemma 1 which uses the following fact:

Fact 3: AssumeX
F,G
→ Y, X ,Y are metric spaces, and

x ∈ X . If F is quasi-continuous atx andG is continuous at
x, thenF + G is quasi-continuous atx.

Lemma 1:For t ∈ N, Gt is quasi-continuous onRK×t
+

with respect to the uniform topology.
Proof: Using our queueing equation we first observe the

following recursive relation betweenGt and Gt−1 for any
t ∈ {2, 3, . . .} andx = x(0,t] ∈ R

K×t
+ :

Gt(x(0,t]) = [Gt−1(x(1,t])−H(Gt−1(x(1,t]))]
+ +x1, (19)

where we used the fact thatW0(x(0,t]) = Gt(x(0,t]), and
W1(x(1,t]) = Gt−1(x(1,t]) when the initial backlog at time
−t is small, i.e.,Wt ∈ R.

Equation (19) says thatGt(x(0,t]) depends linearly on
x1. This implies the following simple but consequential
observations:

Observation 1:If Gt is strictly quasi-continuous at
x(0,t], then it is strictly quasi-continuous at̃x(0,t] :=
(x̃1,x2, . . . ,xt) for any x̃1 ∈ R

K
+ . If Gt is continuous at

x(0,t], then it is also continuous at̃x(0,t].
Observation 2:If Gt(x

n
(0,t]) → Gt(x(0,t]) for a sequence

{xn
(0,t]} such thatxn

(0,t] → x(0,t], then for any sequence
{x̃n

(0,t] = (x̃n
1 ,xn

2 , . . . ,xn
t )} where x̃n

1 → x1, we also have
Gt(x̃

n
(0,t]) → Gt(x(0,t]).

Using the recursive relation in (19), we prove this lemma
by induction ont ∈ N. For t = 1, G1(a1) = a1, henceG1

is continuous onRK
+ . Assuming thatGt is quasi-continuous

on R
Kt
+ , we want to show thatGt+1 is quasi-continuous on

R
K(t+1)
+ . Using the fact that the[·]+ function is continuous,

Remark 4, and Fact 3, it suffices to show that the function
Ft := Gt −H ◦Gt, is quasi-continuous onRKt

+ to show that
Gt+1 is quasi-continuous. In particular, for any arrival sample
patha = a(0,t] ∈ R

K×t
+ , we need to show thatFt is quasi-

continuous ata(0,t] with respect to the uniform topology.
It suffices to show that it is possible to select a sequence
ân → a for which

Gt(â
n
(0,t]) → Gt(a(0,t]), (20)

H ◦ Gt(â
n
(0,t]) → H ◦ Gt(a(0,t]), (21)

such that bothGt(·) andH ◦ Gt(·) are continuous at every
ân

(0,t].
We show this by first noting that the induction hy-

pothesis, i.e., quasi-continuity ofGt, and the definition of
quasi-continuity ensure that there exists a sequence{an

(0,t]}
such thatan

(0,t] → a, in the uniform topology, such that
Gt(a

n
(0,t]) → Gt(a(0,t]), and Gt(·) is continuous atan

(0,t]

for all n. We will construct the desired sequence{ân
(0,t]}

from this sequence{an
(0,t]}. We proceed by considering the

following two cases, depending on the value ofa1.
Case 1:a1 > 0, i.e., every component of thea1 ∈ R

K is
positive. Letǫ > 0 be the smallest component ofa1. Since
H(·) is quasi-continuous, it is possible to choose a sequence
of (workload) vectors{wn} such thatwn → Gt(a(0,t]), and
H is continuous atwn for all n. Now, we define

ãn
1 := wn − [Ft−1(a

n
(1,t])]

+ (22)

= wn − Gt(a
n
(0,t]) + an

1 (23)

=
(

wn − Gt(a(0,t])
)

+
(

Gt(a(0,t]) − Gt(a
n
(0,t])

)

+ (an
1 − a1) + a1. (24)

It is clear from the last equality that̃an
1 → a1 with respect

to uniform topology. We need to ensure thatãn
1 ≥ 0 since

negative quantities are involved in the definition. We do this
by using the facts that every component ofa1 ∈ R

K is greater
or equal toǫ > 0, and thatwn → Gt(a(0,t]), Gt(a

n
(0,t]) →

Gt(a(0,t]), andan
1 → a1. These facts imply that there exists

annǫ such that for alln > nǫ we have||wn − Gt(a(0,t])|| <
ǫ/3, ||Gt(a(0,t]) − Gt(a

n
(0,t])|| < ǫ/3 and ||an

1 − a1|| < ǫ/3
(with theL1 norm) which then together with (24) imply that,
for the sequencẽam+nǫ

1 , we always have non-negativity of
all components. Hence, we construct a new sequence{ân

(0,t]}

whereân
1 = ãn+nǫ

1 and ân
(1,t] = an+nǫ

(1,t] .
This new sequencêan

(0,t] is the sequence we are after
because using the induction hypothesis together with Obser-
vations 1 and 2, we have thatGt(â

n) → Gt(a), and Gt is
continuous at̂an for all n. Furthermore, by construction

Gt(â
n) = ân

1 + [Ft−1(â
n
(1,t])]

+

= ãn+nǫ

1 + [Ft−1(a
n+nǫ

(1,t] )]+

= wn+nǫ . (25)

Hence, we have shown that there exists a sequenceân
(0,t]

satisfying (20) and (21). In addition, the continuity ofH ◦Gt

at ân
(0,t] for all n is a direct consequence of continuity ofGt

at ân
(0,t] and continuity ofH at wn+nǫ , which is equal to

Gt(â
n), for all n.

Case 2:a1 ≥ 0. Without loss of generality by permuting
the user labels, we can assume that the firstk components of
a1 are0 while the rest of theK−k components are positive.
Now the sequenceam

1 with 1/m in the first k components
and the non-zero values ofa1 in the remaining coefficients
converges toa1 such that for everym every component of
am

1 is positive. We construct a sequence{am
(0,t]} with this

am
1 and am

(1,t] = a(1,t]. For ease of exposition we denote
the vector with1/m in the first k positions and0s in the
remaining K − k positions by [1/m]k. It is obvious that
Gt(a

m
(0,t]) → Gt(a(0,t]) since

Gt(a
m
(0,t]) = am

1 + [Ft−1(a
m
(1,t])]

+

= am
1 + [Ft−1(a(1,t])]

+ = [1/m]k + Gt(a(0,t]).



WhenGt(a(0,t]) 6∈ [0, C)K , for m large enough,2 we have

H ◦ Gt(a
m
(0,t]) = e

(

Gt(a
m
(0,t])

)

= e
(

Gt(a(0,t])
)

= H ◦ Gt(a(0,t]),

where the functione is defined in the definition ofH in
(2). On the other hand, ifGt(a(0,t]) ∈ [0, C)K , then the
continuity of ProjR(·) yieldsH◦Gt(a

m
(0,t]) → H◦Gt(a(0,t]).

Since for eachm we have thatam
1 has all elements strictly

positive, we can use the similar construction as in Case 1 but
with am

(0,t] in place ofa(0,t]. In particular, for eachm, we can
now generate a sequence{ãm,n

(0,t]} such thatãm,n
1 → am

1 as
n → +∞, ãm,n

(1,t] = an
(1,t], and by using Observations 1 and 2,

the following hold

Gt(ã
m,n

(0,t]) → Gt(a
m
(0,t]), (26)

H ◦ Gt(ã
m,n

(0,t]) → H ◦ Gt(a
m
(0,t]), (27)

with both Gt(·) andH ◦Gt(·) being continuous at̃am,n

(0,t] for
all n.

Now we define the sequenceâm
(0,t] = ã

m,m

(0,t] as the sequence
we are after. By construction, we havêam

(0,t] → a(0,t] and
both Gt(·) and H ◦ Gt(·) continuous at allâm

(0,t]. Since
Gt(a

m
(0,t]) → Gt(a(0,t]) andH ◦Gt(a

m
(0,t]) → H ◦Gt(a(0,t]),

it follows from (26) and (27) thatGt(â
m
(0,t]) → Gt(a(0,t])

andH ◦ Gt(â
m
(0,t]) → H ◦ Gt(a(0,t]).

Next, we prove Lemma 2:
Lemma 2:If Kµ < c, the mappingG is quasi-continuous

on DK
µ with respect to the scaled uniform topology.
Proof: The proof follows the concept in [13]. LetKµ <

c andA ∈ DK
µ . Consider any sequence{An} such thatAn →

A. The main step of the proof is based on the following claim:
Claim 1: There exists as∗ = s∗(A) < ∞ and n′

0 such
that, whenn > n′

0, the workloads at time−s∗ of the arrival
sample pathsAn and A stay within the rate regionR, i.e.,
Ws∗(An) ∈ R andWs∗(A) ∈ R.

With this claim and by the definition ofGs∗ , the workloads
at time zero forAn andA areG(An) = Gs∗(An|(0,s∗]) and
G(A) = Gs∗(A|(0,s∗]), respectively, whenn > n′

0. In other
words, we have transformed the infinite-horizon workload
into the finite-horizon workload whose mapping is already
known to be quasi-continuous by Lemma 1. The proof is
now complete sinceGs∗ is quasi-continuous onRK×s∗

+ and
An|(0,s∗] → A|(0,s∗].

What is left is to show Claim 1. To do this, we look at the
sum arrival processes and the sum workload processes and
follow the proof in [13], [14] for the (aggregate) single-queue
scenario. Given the definition ofH and the simplex capacity
regionR, the queue dynamics for the sum workload is that
of a single queue whose arrivals are the sum of the arrivals,
i.e.,

Ŵt−1 = [Ŵt − c]+ + Ât, (28)

2E.g., m being greater than the reciprocal of the maximum positive
component ofGt(a(0,t]).

where we define the hat (·̂) notation to mean the sum over all
users, i.e.Ât =

∑K
k=1 Ak

t and Ŵt =
∑K

k=1 W k
t . Recursion

of the queue dynamics (28) and lettingT → ∞ where
WT ∈ R, gives the standard expression for the stationary
sum workload [14]:

Ŵ0(A) = sup
t∈N

Â(0, t] − c(t − 1). (29)

To prove the claim we use the fact that the rate regionR
is simplex, henceŴs ≤ c ⇔ Ws ∈ R. That is, it suffices to
show that there are an′

0 and a finites such that, forn ≥ n′
0,

Ŵs(A) ≤ c andŴs(A
n) ≤ c.

Since An → A under the scaled uniform topology,
for any given ǫ > 0, there exists an0 such that for
n ≥ n0, maxk∈K supt∈N |A

n,k(0,t]
t

− Ak(0,t]
t

| < ǫ. Hence,

supt |
Ân(0,t]

t
− Â(0,t]

t
| < Kǫ. SinceA ∈ DK

µ , there is at0 <

∞ such that fort > t0 andk ∈ K, Ak(0,t]
t

≤ µ+ǫ. Therefore,

it follows that Â(0,t]
t

≤ Kµ + Kǫ for t > t0. SinceKµ < c,
we chooseǫ = (c − Kµ)/4K. We now have that for all

n ≥ n0 andt ≥ t0, Ân(0,t]
t

< K(µ+2ǫ) = (c+Kµ)/2 < c,

and we also have thatÂ(0,t]
t

≤ K(µ+ǫ) = (c+3Kµ)/4 < c.
In other words, for alln ≥ n0, the workload at time zero is
a function of only the arrivals within time(0, t0] and hence,

Ŵ0(A) = sup
1≤t≤t0

Â(0, t] − c(t − 1),

Ŵ0(A
n) = sup

1≤t≤t0

Ân(0, t] − c(t − 1).

Let s ≤ t0 and sn ≤ t0 be the minimum values of
the optimizing t’s in the above equations, respectively. It
can be shown as in [14, Lemma 5.4] that̂Ws(A) ≤ c
and Ŵsn(An) ≤ c (and in addition,Ŵv(A) > c and
Ŵvn(An) > c for all v ∈ (0, s) andvn ∈ (0, sn)).

Next we show that there existsn1 such that forn ≥ n1,
sn = s. This is not difficult because it is known that̂W0

is continuous onDKµ [13, Lemma 13]. SinceÂn → Â on
DKµ, we haveŴ0(A

n) → Ŵ0(A) andsn → s. Sincesn, s ∈
N, there exists an1 such thatsn = s for n ≥ n1. The claim
is now proved by takingn′

0 = max(n1, n0).
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