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Abstract—The dynamics of railway vehicles have changed
from an essentially mechanical application into one that requires
knowledge of sensors, electronics and computational processing.
Industry 4.0 is a term that describes industrial activity by
intelligent systems and solutions established on the concept
of the Internet of Things (IoT). The present work illustrates
the application of a conceptual cycle of an Internet of Things
building a prototype, consisting on acquisition, processing and
communication of data in the industrial context. Specifically, the
monitoring of the dynamics of wagons using inertial sensors
and algorithms that establish the fusion of sensors. The use
of refined methods shows more reliable results in the use of
low-cost sensors. Furthermore, the implementation of wireless
communication enables the use of data in the creation of more
complex analyses that can be applied in computational and
instrumentation tools.

Index Terms—railway vehicle dynamics, internet of things,
sensor fusion, Kalman filter.

I. INTRODUCTION

In recent years, the concept of Internet of Things (IoT)
proposes a serie of innovations in several situations: for
urban applications in construction of smart cities [1], in
monitoring of human health [2], in security using tracking
by detection, and also responsible for several changes in
the industrial scenario [3]. The inclusion of IoT in industry
is considered the new industrial transformation and one of
the factors in the designated Industry 4.0. The expression
Industry 4.0 is new, and its approach started to be accepted
with increased researches and academic research on the
subject. The understanding of Industry 4.0 consists in running
virtual systems to monitor industrial processes [4], [5].

The application of IoT concept in industry is possible by
adding flexible and programmable sensors which commu-
nicate using the internet, as well as with other machines.
The railway dynamics is the study of the movements of a
vehicle and their causes. In order to understand the dynamic
behavior of the railway vehicle, it is necessary to establish
the conditions of the vehicle itself and the railway. In this
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Fig. 1. Process overview, presenting the work steps.

way, the computational and instrumentation tools help to
understand the rail-wheel interaction problem. [6].

There is mistrust and lack of incentives for initiation
projects using the concept of IoT. Due to that the industry
4.0 application process remains at an early stage, evolves
slowly and the such projects cost dearly. One extremely
importance of IoT application in industry is shown in this
work. The present article monitors the dynamics of a railroad,
an essential factor which increases the competitiveness of the
railroad, avoid accidents and minimize the mechanical wear
of railway vehicles.

The main objective of this article is the use some IoT
concepts in application of industrial components. Moreover,
presents the use of prototypes as an alternative to reduce
project costs, applying general aspects of instrumented sys-
tem [7]–[9]. Besides that, the project seeks to help in the
development of research and for educational purposes, en-
couraging the involvement of research in industry; the project
lays out an application that could be efficiently executed in
industrial processes at a low-cost.

Aiming at the best cost benefit, some related works adopts
the use of sensor fusion, using optimization algorithms. They
show the fusion of sensors for position estimation, and orien-
tation using accelerometers and gyroscopes [10]. By adopting
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algorithms such as the Kalman filter or complementary filter,
it is possible to merge the data collected by the sensors
and estimate more reliable data. In this context, a practical
example of sensors use is presented to determine the carbody
vibration of a wagon prototype in a railroad track.

The prototype is composed of sensors that measure the
carbody acceleration. The data is later processed in a micro-
controller and through wireless communication devices, they
are sent to an application that displays and analysis it to report
wagon movement irregularities on railroad. The collected and
treated inputs can be used to calculate other defects as well
as check the tracks quality [11], [12]. The project was carried
out with the association between Federal University of São
João del-Rei and the railway concessionaire MRS Logı́stica
S.A..

II. PROPOSED SYSTEM

This section presents a brief review and an description of
the technologies used in this work, evidencing as well the
electronic resources.

A. System Background

A structured monitoring system which can directly track
the activities of a carbody [13], is shown by Fig. 1 and is
divided into the following steps:

• Inertial tracking subsystem;
• Communication subsystem;
• Platform development (data visualization).
The system consists of the MPU6050 sensor based on

accelerometer and gyroscope embedded in the wagon proto-
type, which are coupled on the Arduino Nano microcontroller
platform by a conditioning circuit. The microcontroller has
the fusion processing algorithm of Kalman Filter sensors and
the conversion calculations of angles (deg). The processing
is shipped in the system, where data is sent by a wireless
device (HC06) via Bluetooth communication to an Android
application created by App Inventor. The application consists
of sampling the data and establishing notifications through the
limits set by the user. The following sections explain each
device and algorithm used, as well as procedures and results.

B. MPU6050 Module

MPU6050 equipment incorporate a 3-axis gyroscope, and
a 3-axis accelerometer in the equivalent component with
a Digital Motion Processor, representing measuring values
angle and acceleration values in the three orthogonal direc-
tions. The module is an Inertial Measurement Unit (IMU)
that has six 16-bit digital-analogue converters and has the
option to change the sampling rate of the gyro accelerometer.
The sensors are Micro Electro Mechanical System (MEMS),
where the gyroscope quantifies the angular velocity and the
accelerometer measures acceleration of the carbody.

C. Arduino Nano Platform

The Arduino Nano is a board with a tiny size compared
to other boards on the market. It is based on the ATmega328
and, in general, has the same functionalities as other Arduino
platforms. The Nano can be powered via Mini-B USB con-
nection, unregulated external 6−20 V power supply (pin 30)
or 5V regulated external power supply (pin 27). The power

source is automatically selected for highest voltage source. Its
small size and processing are essential for embedded projects.

D. Bluetooth Module HC-06

Bluetooth technology is widely used. In IoT is another
simple and inexpensive way to send and receive information
remotely. The Bluetooth module HC-06 is used for wireless
communication between devices. In the present work, the
data is received or acquired by the module and transferred to
the Arduino Nano via serial communication. The following
wireless module clarify an essential part in the application of
the IoT concept, representing the analysis and visualization
of data obtained from the sensors through supervisory.

E. MIT App Inventor

App Inventor for Android is an open source Web appli-
cation initially provided by Google and now maintained by
the Massachusetts Institute of Technology (MIT). The inter-
face allows programming software applications for Android
operating system. A graphical block interface is used and
simplifies programming and use of its functions. The App
Inventor builds on by the theories of constructionist learning,
which makes it possible to modify and add new features
quickly.

F. Wagon Oscillations

The traffic of railway vehicles in a permanent way (rails)
does not exhibit simple characteristics, instead it runs a
variety of oscillations. This type of effect can undermine the
operation of their mechanical parts, related to their damping,
service life and the unbalance on the railroad, which can
cause accidents.

A railroad car has six degrees of freedom, three transla-
tional and the other three rotational. The axes are considered
as follows:

• X-axis: Along the permanent path (longitudinal move-
ments);

• Y-axis: Transversal to the permanent path (lateral move-
ments);

• Z-axis: In the vertical direction (vertical movements).

Fig. 2. Modes of oscillation in the vertical (Bounce) and rotational (Pitch)
in the X-axis and Z-axis.

Hence, the wagon has six degrees of freedom, or modes
of oscillation, which are shown in Fig. 2, 3 and 4. In
addition to structure oscillations, the other components of the
vehicle also suffer oscillations. Wheelset and consequently
the trucks suffer several oscillations due to the irregularities
effects on wheel and rails [14]. The combined oscillation of
Roll and Yaw when they happen in a violent way generate
a phenomenon called hunting. In general, there are two
categories of oscillations:
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Fig. 3. Modes of oscillation in the rotational (Roll) in the Y-axis and Z-axis.

Fig. 4. Modes of lateral (Sway) and rotational (Yaw) oscillation in the
X-axis and Y-axis.

• Self-excited: Due to taper (imperfections) of wheel;
• Non-self-excited: Due to rail irregularities, traction elas-

ticity characteristics, vehicle suspension characteristics
and load arrangement in vehicle.

III. DEVELOPMENT AND ANALYSIS

A. Estimation of Pitch and Roll
Through the accelerometer included in the MPU6050 mod-

ule the obtaining the inclination angles is possible. The sensor
readings should be converted to unity in g (9.8m/s2) and
applied in the appropriate equations. The process of obtaining
and converting the accelerometer readings depends on the
characteristics of the hardware used. The MPU6050 has a
resolution of 16 bits and range of (±2g,±4g,±8g,±16g).

Generally, the formula used to calculate the acceleration
readings using the resolution and range values is described
as follows:

GAccel = RawAccel

(
Range

2Resolution−1

)
. (1)

Calculated the correct acceleration components, we can
determine the pitch and roll movements using the following
equations:

pitch = arctan

(
Gy√

G2
x +G2

z

)
, (2)

roll = arctan

(
−Gx
Gz

)
. (3)

The calculated values are integrated to the algorithm of
the Kalman Filter, and together with the values obtained from
the gyroscope, a better estimation is reached. Using statistical
interactions of sensor contributions, it is possible to measure
a specific effect with more reliability.

B. Implementing the Kalman Filter

The Kalman filter is a widely known algorithm due to the
many applications in technology. Commonly used in guiding,
navigating and controlling vehicles, this recursive algorithm
can be implemented in real time using the current mea-
surement, the previously calculated state, and an uncertainty
matrix [15].

It consists of a recursive algorithm using a series of mea-
sures over time, which in this context, measures derived from
the accelerometer and gyroscope. Measurements have noises
that contribute over time to measurement errors. Therefore,
the Kalman filter is intended to estimate the states of the
measurement system, based on current and previous states,
which tend to be accurate than just simple measurements. In
this case, the accelerometer presents noises when it is used to
measure gravitational acceleration and the gyroscope displays
data that fluctuates over time.

The filter consists basically of two steps, prediction and
correction, based on recursive techniques of the system rep-
resented in state spaces, being an estimation of the dynamics
of the system [16]. During the first step, a prediction about
the dynamics of the model is performed and in the second
step a correction, acting on the covariance of the error. In
this sense, the Kalman filter functions are an estimator and
state optimizer xk with a measurement of zk.

xk = Fxk−1 +Buk + wk, (4)

where F is the state transition model, applied in the previous
state xk−1, B is the control inputs model applied to the
control input vector uk. The matrices F and B are obtained
from the constructive properties of the accelerometer and can
also be obtained with information from the manufacturer.

xk =

[
θ

θ̇b

]
k

. (5)

In (5) the filter output will be the angle θ representing the
actual output, but also the drift (slip) θ̇ calculated in degrees
per second and based on accelerometer measurements and
gyroscope. The flow is the amount of gyro deviation, meaning
that it is possible to obtain the real rate by subtracting the
gyro measurement trend. Thus, the input is a real variable
also given in degrees per second, represented by:

uk = θ̇k. (6)

The F matrix is the state transition model that is applied
in the previous state xk−1. In this case, the matrix F can be
defined as:

F =

[
1 −∆t
0 1

]
. (7)

The B matrix is called the control input model, where it
is defined as follows:

B =

[
∆t
0

]
. (8)

Equation (8) is confirmed since the angle θ is obtained
when the rate θ̇ is multiplied by the time rate of ∆t, and since
it is not possible to calculate the deviation directly based on
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the rate θ̇, we will define the second line of the matrix B as
0. In (9), wk is the noise process, represented by the Gaussian
distribution with zero mean and covariance Q in time k:

wk ∼ N(0, Qk), (9)

where Qk is the covariance matrix of the noise process. In
this case Qk is the covariance matrix of the estimate of the
state of the accelerometer and the drift of the gyroscope.
The estimated drift and accelerometer values are considered
independent, then, it is precisely equal to the variance of the
accelerometer and drift estimation. The final matrix is defined
as:

Qk =

[
Qθ 0
0 Qθ̇b

]
∆t. (10)

The covariance matrix Qk depends on the current time
k, so the accelerometer variation Qθ and the drift variance
Qθ̇b is multiplied by the time rate ∆t. Then it is informed
that the noise process is larger because the last state update
occurs. It is interesting to note that if you set higher values,
in other words, add more noise in the state estimate, and if
the angles start to deviate, you need to increase the value of
Qθ̇b . On the other hand, if the estimate tends to be slow, the
confidence in the angle estimation is large and the Qθ value
should decrease, making the system more weighted.

The definition of the observation or measurement param-
eters zk of the true state xk is given by:

zk = Hxk + vk, (11)

where the H matrix is called the observation model and
is used to map the true state space in the observed space
since the true state cannot be observed. On the point of the
measurement is only the measure of the accelerometer, the
matrix H is given by:

H =

[
1
0

]
. (12)

The measurement noise should be defined by the Gaussian
distribution, with zero mean and covariance R:

vk ∼ N(0, R). (13)

The R is not an array, the measurement noise is equal to
the measurement variance since the covariance of the same
variable is equal to the deviation, we can define R as:

R = E
[
vk vk

T
]

= var(vk). (14)

Assuming that the measurement noise is the same and does
not depend on the time k we have the following equation:

var(vk) = var(v). (15)

The Fig. 5 is a schematic representation of the recursive
steps of the Kalman filter. In the prediction algorithm, it
is displayed the prediction x̂−k and the matrix P−

k , which
are computed representing the prediction at the later time
instant, but before incorporating the zk measurement. The
prediction is obtained by incorporating the control signal uk.

Fig. 5. Implementation of the recursive Kalman filter algorithm.

The mean is updated using the deterministic version of the
state transition function, with the mean of the x̂k−1 replaced
by the state value xk−1.

The prediction is subsequently corrected into the desired
prediction as it is incorporated the measurement zk. The
variable Kk is called the Kalman gain, which specifies how
much the measurement will be incorporated into the new
state estimate. The correction step handles the mean by
proportionally adjusting the Kalman gain Kk, the deviation
of the current measurement zk, and the prediction of the
measurement according to the probability of the measure-
ment. Finally, the new covariance of the next prediction is
calculated according to information of the gain resulting from
the measure.

From the previously discussed equations, we can estimate
the contribution of the values obtained by the gyroscope
and accelerometer. The values calculated by the Kalman
algorithm show a pitch and roll representation using sensor
fusion.

C. Remote User Interface

The application was developed to show the data collected
by the sensors and processed by the microcontroller. In this
way, it is possible to sample the data in a fast and straightfor-
ward way [17]. The created interface allows you to change the
parameters related to the established limits, which notify the
data that do not match the limits entered in the application.
The interface was created in App Inventor [18], software
intended for the construction of Android applications. A
simple and intuitive software based on the development of
blocks, enabling reconfigurable programming and a structure
for easy adaptation and implementation of new functions.

The Fig. 6 shows the visual interface, where Labels are
used to display the text on the screen, Button indicating
the user response actions and TextBox to store and edit
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variables. There are also hidden elements as the Notifier (an
alert element to the screen), TinyDB (responsable to store
the data in the application) and BluetoothClient (component
responsible for the transmission of data via Bluetooth).

Fig. 6. Android application for monitoring and notification with microcon-
troller.

The application and its elements are created to establish a
connection of the Android devices with the microcontrolled
platform, where sound alerts are created when the limits
are exceeded by the data acquired by the microcontroller.
In addition, other elements have been created, such as the
graphical elements to check the bluetooth connection and
application startup. Finally, for communication between the
Arduino and the mobile device a data protocol has been
created.

IV. RESULTS

Implementing the prototype and its acquisition, processing,
and communication components, the prototype was shipped
in small wagon coupled to a locomotive. The test consists of
analyzing the dynamics of the movement of the locomotive
and wagon assembly in a section of track with irregularities.
The system illustrates the operation of the sensors and
their processing using the Kalman filter. It also presents the
deviations that can occur in any inertial measurement and
how the introduced algorithm can work around the problem.

Fig. 7. Data acquired from sensor without filtering.

The Fig. 7 shows the data derived from the sensors with
simple processing, it is shown that the data have a large

Fig. 8. Data acquired using Kalman filter.

amount of error. The irregularities are accumulated by the
measurement errors of sensors, and some samples diverge
from the limits with increasing errors. However, 8 shows
results of estimation using the Kalman Filter, it is visualized
that errors are reduced and the dynamic characteristics in
time are maintained, enabling the data application for more
accurate analyzes.

Fig. 9. Comparison of data obtained by normal method and Kalman filter.

For more accurate data analysis, Fig. 9 establishes a
comparison between data processed with and without the
application of Kalman filter. The filtered data preserves the
trend and eliminates errors derived from the sensors. By
the typical method, data exhibit several irregularities that
do not represent the dynamics of the system, which some
cases escape entirely and amplify the errors. In some cases,
which requires analysis for notification, simple data can
lead to false alerts. In cases of statistical analysis to obtain
other characteristics as in case of analysis of pathways and
imperfections, the data that exhibit oscillatory high amplitude
values can deceive and disrupt the estimation of parameters.

The disturbances showed in the Fig. 9 and the values
obtained with filtering can help to analyze effects outside
those measured by sensors directly, such as structure defects
and fast dynamics. In other cases, the disturbance presented
may represent the numerous common effects of vehicle
dynamics, which may indirectly influence the measurements
made by the prototype. The kinematic oscillations with
correct procedures can measure disturbances in the route
by riding, which is the oscillations propagation not damped
by the damping system of the wagon. Moreover, measured
oscillations can aid in planning and safety decisions.

The Fig. 10 and 11 are images of the set used for
dynamics tests, such as rails, locomotive, and prototype of the
instrumented wagon. The goal is to illustrate the IoT project,
electronic processes and algorithms which refine the results
and can be easily used in real scale.
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Fig. 10. Locomotive set and prototype of instrumented wagon.

Fig. 11. Description of components of railway wagon prototype.

V. CONCLUSION

This paper exemplifies some applications of concepts in
electronics, statistics, and computation that can be applied to
problems in the industry. The work provides an intelligent,
accessible and low-cost prototype, allowing the dissemination
of the IoT concept in railway industry. In fact, the analysis of
railway dynamics is essential to ensure economic demands,
for example, influenced by accidents and equipment life.

The software used in this project is free and simple to
manipulate, allowing modifications and additions of new
functions, such as the modification of processing algorithm
parameters and a graphical interface of the application to
allow system adaptations.

Furthermore, it describes some requirements for imple-
mentation in an industrial railway - which is to obtain the
dynamics of railway wagons that can be used for the analysis
of operational irregularities and analysis of factors such as rail
paths and operation of wagon components. The system was
tested in a small prototype, which was able to exemplify the
dynamics found in these types of systems and how wireless
communication can aid in obtaining data from distant and
moving systems.
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