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Abstract

Raman spectroscopy is a promising optical diagnostic tool that can be applied to un-
stained cells in order to detect changes in molecular composition. The data collected
can be described as a chemical fingerprint of the sample under investigation. Thus it
is very popular in the recent times to use Raman spectroscopy in cytology to increase
diagnostic sensitivity and specificity for early stage cancer. In this thesis, I introduce
an automated Raman cytology system for cancer diagnostics which integrates all the
hardware and software in Micro-manager and operates them in a specific order. An
autofocus algorithm for unstained cells and a three-dimensional morphology recov-
ery algorithm are also investigated and contributed to the final automated system.
With increasing usage of Raman cytology systems, automation is a solution to limit
data variabilities which is a major problem at the moment. In addition, a higher
throughput of cellular analysis and a reduction in manpower could be expected from
the proposed automation system.
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Chapter 1

Introduction

Raman spectroscopy|l] is based on the inelastic scattering of monochromatic light,
wherein the wavelength of the scattered photons is shifted by an amount dependent
on the molecular properties of the sample[2|. Raman spectroscopy is particularly
suitable for applications in biology because water is a weak Raman scatterer|3]. The
increasing availability of high power lasers with narrow linewidth, and high quality
filters that attenuate the Rayleigh scattered light, has led to a significant increase
in the application of Raman spectroscopy in biology in recent years|4]|. For biolog-
ical samples that consist of a complex mixture of various biochemicals, the Raman
spectrum can be used for fingerprint like identification. Although the spectra ob-
tained from healthy and diseased tissue types can appear to be very similar, the use
of multivariate statistical algorithms|[5| can be applied in order to classify an un-
known sample. This requires the recording of datasets of spectra belonging to known
groups, which in turn enables the training of algorithms to achieve high diagnostic
sensitivities and specificities[6]. In recent years the method has been demonstrated to
be useful in diagnosing a range of different conditions including brain metastases|7],
prostate[8], breast|9], esophagus[10], skin[11], bladder|[12], oral[13], cervical[14]| and
lung|15] cancers.

This thesis is concerned with the application of Raman spectroscopy to cytology|[16]
i.e. to the investigation of cells and in particular for the identification of cancerous

cells. This technique involves the integration of a Raman spectrometer into a stan-
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dard clinical microscope and has become known as Raman micro-spectroscopy. The
microscope objective serves to both deliver the source laser to a microscopic point on
the sample and to collect the Raman scattered photons, while simultaneously allow-
ing the microscope to image the sample. It is possible to obtain low noise spectra
by employing a confocal aperture which serves to isolate the collected spectrum from
a specific three dimensional point on the sample. Numerous companies offer high
quality commercial Raman micro-spectrometers, such as Horiba and Renishaw, that

are routinely employed in the analysis of cells and tissue samples|17].

The most common example of diagnostic cytology is the evaluation of cervical
smears referred to as the Pap smear|18]. Cervical cytology is based on the qualitative
inspection of images obtained under a microscope and requires a trained histopath-
ogist. Recently it has been shown that confocal Raman micro-spectroscopy coupled
with principal component analysis-linear discriminant analysis (PCA-LDA) modelling
yielded a diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of
87.1%) for in-vivo discrimination of dysplastic cervix|19]. The technique can be ap-
plied to cervical cells as a straightforward adjunct to the existing pap smear test and
requires no further additional patient interaction. Bladder cytology is another area
that has been shown to benefit from Raman micro-spectroscopy. Bladder cytology,
whereby a histopathogist inspects epithelial cells shed into urine samples, can provide
80% to 90% sensitivity and 98% to 100% specificity for high grade samples|20] but
only 20%-50% sensitivity for low grade samples[21] which make up the majority of
cases. As a result, tissue biopsies are required as a standard. In the first patient
study, Raman micro-spectroscopy has been shown to successfully diagnose between
normal, low-grade and high-grade bladder cells with a sensitivity of 92% and speci-
ficity of 91%[12]|22]. This discovery may pave the way for a completely non-invasive

bladder cancer test.

Clearly, Raman micro-spectroscopy applied to cells (or Raman cytology for short)
has potential to become a standard clinical diagnostic tool. However, some problems
exist with the implementation of the technique in a clinical environment. Firstly, the

cells cannot be stained before recording the spectrum because the additional chemicals
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corrupt the recorded spectrum and may give rise to either fluorescence or photo-
damage, which makes imaging difficult. The optimum location from which to obtain
a Raman spectrum is the cell nucleus, but the location of the nucleus of an unstained
cell is often challenging to identify. Once identified, the cell nucleus is aligned with the
laser spot using a manually controlled translation stage and a spectrum is recorded for
approximately 30 seconds. In many cases, improper alignment of the cell in one of the
three dimensions results in a spectrum of poor quality and the cell must be realigned
and the spectrum rerecorded. This is then repeated for a large number of cells and
even for one patient sample, the overall process can be tedious and time consuming.
The correct use of the system requires training and experience and the results obtained
can vary from user to user due to slight variability in experimental procedures which
reduces the reliability of the method. Standardisation of the approach is necessary
in terms of equipment, consumables and methodologies if it is ever to be adopted a

standard everyday clinical tool.

One significant step towards standardisation of Raman cytology is the automation
of the overall process, and it is this subject that is addressed in this thesis. The obvious
benefits of automation include reduced manual workload, faster turnover, and more
reproducible and reliable results. However, an core challenge in full automation of
Raman cytology is accurately targeting the unstained cell nucleus and getting the
nucleus in-focus. Recently, an image processing method was outlined[23] that can
identify the nucleus in an unstained cell using a segmentation algorithm based on
fuzzy logic and it was proposed that this algorithm could potentially be utilised to
develop an automated Raman cytology system. In this thesis, an automated Raman
cytology system based on an novel image processing algorithm is proposed that can
quickly identify the nucleus of an unstained cell. This is realised by recording images
of slightly out of focus planes in which the nucleus effectively behaves like a small
lens to produce a tightly focused bright spot which indicate the location of nucleus.
Another sophisticated nucleus targeting algorithm is also investigated in this thesis
for the purpose of accurately targeting, which is termed unstained cell morphology

recovery algorithm. The cell morphology is achieved by applying a new autofocus
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algorithm for unstained cell recording by bright-field microscope on different parts of
the image.

The main contribution of this thesis is the development of a fully automatic Raman
cytology. This proposing method is built around Micro-manager|24|, an open source
software package for the control of microscope related hardware. A large area of a
slide is scanned, and candidate cells are identified using image processing algorithms;
these cells are ordered according to a quality metric applied to the images of the bright
spots. Following this, the selected cells are sequentially aligned in three dimensions
with the laser spot and spectra are recorded. A clear description of the process is
provided such that it may be implemented by anyone using a commercial Raman
micro-spectrometer or a custom built set-up. All of the software employed to control
the various hardware in the system (digital camera, translations stage, filter wheel,
spectrograph, microscope lamp, spectrograph and cooled CCD) is open source and
freely available. The method outlined in this thesis may pave the way for fully
automated Raman diagnostics that can be used for mass screening of oral, cervical
and bladder cancer.

The breakdown of this thesis is as follow; In Chapter 2, 15 autofocus metrics are
investigated for unstained cells recorded by brightfield microscopy. The main differ-
ence in the behaviour of autofocus metrics applied to opaque objects and unstained
transparent cells are emphasized and illustrated. The optimum metrics are identified
in this chapter and are applied in the following chapters in order to find the focal
plane of a region or the global image. In Chapter 3, the best performing metrics
selected from chapter 2 are further investigated for different parts of the cell image
in order to recover a depth map of the cell and in this way estimate the 3D morphol-
ogy of unstained cells. Two methods are proposed; the first provides low resolution
depth maps but can be performed quickly while the second provides high resolution
depth maps but is computationally slow. Chapter 4 provides a detailed explanation
of the proposing automated Raman cytology system both in terms of hardware and

software.
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Chapter 2

Investigation of autofocus algorithms
for bright-field microscopy of

unstained cells

In the past decade, there has been significant interest in image processing for bright-
field cell microscopy because the additional chemicals will corrupt the spectrum and
may give rise to either fluorescence or photo-damage. For some applications, where
the biochemical integrity of the cell is required to remain unchanged so that sensitive
chemical testing can later be applied, it is necessary to avoid staining. In particu-
lar, Raman spectroscopy and Raman cytology can only be applied to unstained cells
recorded by brightfield microscope. Much of the previous research on image process-
ing for microscopy has focused on fluorescence microscopy, including cell counting,
cell tracking, cell segmentation and autofocusing. Fluorescence microscopy provides
functional image information that involves the use of labels in the form of chemical
stains or dyes. Unstained cells are often effectively transparent and appear to have a
homogeneous intensity profile when they are in focus. Brightfield microscopy is the
most universally available and most widely used form of optical microscopy and for
the various reasons already mentioned it is interesting to investigate image processing
of unstained cells recorded using a standard bright field microscope. In this chapter,

the application of a range of different autofocus metrics applied to unstained bladder
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cancer cell lines using a standard inverted brightfield microscope with microscope
objectives that have high magnification and numerical aperture are investigated. A
number of conclusions on the optimum metrics and the manner in which they should

be applied for this application are presented.

The brightfield microscope is the most common form of microscope and has played
an essential role in clinical science for over a century|25]. It is comprised of a white
light source, usually a halogen lamp, which is focused onto a sample using a condenser
lens. The light passes through a partially transparent sample and into a microscope
objective. The sample plane is imaged to a digital camera and/or a set of oculars
via the microscopic objective. Variations in the absorption of the sample contribute
to the image that is recorded by the camera. Only objects that have the property of
absorbing light can be imaged to the camera plane. In many cases cells or other bio-
logical samples can appear to be effectively transparent and the resulting brightfield
microscopic image can appear to contain very little contrast. To compensate for this,
staining is often employed in order to add absorption to parts of the sample, eg, the
nucleus of a cell. While this facilities imaging using the brightfield microscope, it has
the disadvantage of being time consuming, costly and in many cases the dyes can be

toxic to the cells, and therefore the cells must first be fixed before imaging.

The inability of brightfield microscopy to image unstained transparent cells has re-
sulted in the development of other forms of microscopy. Phase contrast microscopy|26]
and digital holographic microscopy,|27][28] both enable variation in the refractive in-
dex and/or thickness of the sample to be measured, which allows for visualization of
the cell, and the cell nucleus without the need for staining. However, phase contrast
requires the use of specially designed microscope objectives and digital holographic
microscopy requires a laser and expensive optical elements. Differential Interference
Contrast (DIC) microscopy|29] offers a significant improvement in contrast for un-
stained cells. This technique uses a series of Wollaston prisms and polarisers, both
before the condenser and after the microscope objective, the purpose of which are to
split the illuminating light into two slightly misaligned light sources which are then

realigned after passing through the sample. The effect is to create an interference pat-
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tern that highlight subtle changes in the path lengths travelled and thereby provide
high contrast of features in the object. The main disadvantage of DIC microscopy is

the expense of the additional optical elements and suitable microscopy objectives.

Fluorescence microscopy[30] involves the use of fluorescent labels or fluorophores
that can bind to a specific part of the cell where they absorb a specific wavelength
and emit light of longer wavelength. The location and the amount of the label can be
observed in the image and this can reveal functional information about a particular
part of a cellular structure or a process. Fluorescence microscopy is often expensive; it
normally requires a monochromatic source such as a laser as well as dichroic mirror, a
filter and a suitable low noise camera. In some cases, fluorescence microscopy cannot
be used due to inherent cell damage caused by phototoxicity[31]. Often multiple
fluorescent channels are required to image different parts of the cell such as the nucleus

and the cytoplasm and this can increase the expense and experimental difficulty[32].

Despite the advantages afforded by the various microscopy techniques discussed
above, brightfield microscopy remains the most ubiquitous, inexpensive and widely
used form of microscopy and is the prevalent form of microscopy applied in Ra-
man micro-spectroscopy. To date a range of image processing techniques have been
developed for microscopy but many of these focus on applications involving digital
holographic microscopy,[28|[|32] or fluorescence microscopy.|[30][33| In the past decade,
there has been increasing attention on image processing algorithms for brightfield
microscopy in order to enhance the overall functionality of the technique, particu-
larly for imaging transparent unstained cells.|34|[35](36][37][38](39][40][41] Many of
these papers discuss algorithms that have been shown to successfully calculate the
cell boundary and the cell nucleus for transparent unstained cells that have been
recorded using brightfield microscopy. In particular level set contouring has been
shown to successfully segment unstained cells[38]. Some of these algorithms make
use of the fact that, when the cell is slightly out of focus, certain cell information is

revealed that can be used to segment the cell.

Despite the recent interest in image processing of unstained cells, to the best of

my knowledge, there has been no comprehensive investigation of autofocusing of un-
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stained cells and it is this subject which is explored in this chapter. While it has
been acknowledged that autofocusing has a long history in microscopy.|42]|43] Inves-
tigations to date have focused on objects that absorb light. Autofocusing algorithms
generally require the recording of a stack of images for a range of distances where the
object is moved relative to the microscope objective. A metric is then applied to each
image in the stack and the image which results in this metric having a maximum value
is taken to be the most in focus image. These metrics are universally based on the
idea that, when the image is in focus, image detail can be observed and so they often
quantify the amount of high frequency content or variation in the image. However,
for the case of objects which appear to have a homogeneous intensity pattern, such as
transparent cells, it is well known that these metrics fail. In this chapter, the appli-
cation of 15 well known autofocusing metrics to unstained cells are investigated and
the behaviour of these metrics are compared with that obtained from an abosorbant
object, also recorded using brightfield microscopy. How these metrics can be adapted
to work for transparent cells is demonstrated and the metrics provide the best results

are determined.

The breakdown for this chapter is as follow; In Section 2.1, the various autofocus
metrics that are investigated for this thesis are introduced. In Section 2.2, the differ-
ence in the behaviour of these metrics are analysed for transparent cells and opaque
objects. To do this, all 15 metrics are applied on stacks of unstained bladder cancer
cell images and a USAF resolution chart. By evaluating the performance of these
metrics conclusions are made on how these metrics can be adapted for transparent
objects and three of the best performing metrics are selected for further study. The
three selected metrics are applied on a cheek cell, a blast cell and a bladder cancer cell
respectively in Section 2.3 to prove the robustness of the method. The work presented

in this chapter has been published in a recent conference proceedings|44].

24



2.1 Autofocus Metrics

In this section, the various theoretical aspects of traditional autofocusing are intro-
duced and a number of commonly used metrics that are utilised at the core of aut-
ofocusing algorithms are briefly overviewed. In this chapter the application of these
various metrics are investigated for the autofocusing of unstained epithelial cells ob-
tained using standard brightfield microscopy. The transparent nature of these cells
means that these metrics cannot be employed in a traditional sense and further inves-
tigation is required. The manner in which focus curves are computed and analysed
for these transparent cells is explained step by step in Section 2.2. In addition, the
difference between the focus curves that are calculated for transparent and opaque

cells is emphasised in Section 2.2.

In order to realize autofocusing the use of a focus metric is required that can be
applied to a stack of images by comparing this metric across each image in the stack.
It is possible to identify the most 'in-focus’ image by examining the behaviour of this
metric across the set of images. In this chapter, 15 different autofocus metrics listed
below are investigated. While these metrics have previously been applied to opaque
images,[42| to the best of my knowledge, this chapter represents the first investigation
of these algorithms applied to images of transparent unstained cells, obtained using

brightfield microscopy. The metrics are as following;
1. Absolute Gradient:

Ny—1Ny—1

SN (g nyAynoAL) = T (ngAgyny — 1A, n.AL) (2.1

Nng=0 ny=0

1
NN,

f(n.) =

Where I represents the digital image recorded by a digital camera; A, and A, repre-
sent the camera pixel size in the z and y directions respectively and A, is the distance
the stage is moved between the capture of subsequent images in the vertical direction;
n, and n, take the range of 0 to N, - 1 and 0 to N, - 1 where N, and N, are the
number of pixels in the x and y directions respectively and n, takes the range of 0 to

N, -1 where N, is the total number of images recorded. For the sake of brevity the
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above equation is rewrote where the A,, A, and A, parameters are omitted:

Np—1Ny—1

f(n,) = N N Z Z I (ng,ny,n,) — I (ng,ny —1,n,)| (2.2)

nﬁo Ny =0

This notation is employed for the remainder of this thesis.

2. Square Gradient:

Np—1 Ny—1

f(n,) = N N Z Z (na,ny,n.) — I (ng,ny, — 1,n,)]? (2.3)

Nng=0 ny=0

The two metrics given above in Eqn(2.2) and Eqn(2.3) are related to the gradient
of the image. In image processing, the gradient represents the rate of change of the
image in a given direction. For a non-transparent image that is in-focus and therefore
contains high frequency detail, the magnitude of the gradient (the difference between
the grey-scale values of a pixel with its’ horizontal neighbour) will be larger than the

magnitude of the gradient for out-of-focus images.

3. Netten’s Filter[45]:

N,—1Ny—1

f(n,) = NN, N Z Z (ne +1,ny,n,) — I (ny — 1,n,,n,)]? (2.4)

nz_O ny=0
This metric is similar to the previous two metrics and compares the difference in

grey-scale values between neighbours along the vertical direction.

4. Energy Laplace:

1 Ny—1Ny—1
fn) = 5y 2o D (A my,na)P? (25
ynx:() Ny =0
-1 —4 -1
Aln) =I(n.)* |—4 20 —4 (2.6)
-1 —4 -1

This metric makes use of the discrete convolution of the image with the Laplace mask,

shown above in Equ(2.6), to compute the second derivative A(n,). The value of f(n,)
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is given by the sum of the squares of the result of this convolution.

5. Laplacian:

1 Np—1Ny—1

f(n,) = N, Z Z n:mny 1L,n,)—21 (nx>nyanz)+l(nxany+ 1 nZ)]2 (2.7)

nxfo Ny =0

This metric is based on the sum over the image of the squared second derivatives and
has been previously used by Muller and Buffington[46|. In the Fourier domain, the
transfer function of a second order difference filter (Laplacian) enhances the higher

spatial frequencies more strongly than the first-order difference filter (Gradient)[47].

6. Tenenbaum gradient:[48][49|

Ny—1Ny—1
1 x Y
f(n.) = >N (T (e, ny, ) PIT (nayny, )] (2.8)
NzNy ngz=0 ny=0
1 2 1
T.(n,)=1I(n)*| 0 0 0 (2.9)
-1 -2 -1
-1 0 1
Ty(n.)=1I(n,)* -2 0 2 (2.10)
-1 0 1

This metric convolves the image with Sobel operators, and then sums the square of

the gradient vector components.

7. Image Power:

No—1Ny—1
)2
I (ng,ny,n,)| (2.11)

fnz

_NN

nz_O ny—O
This metric squares the grey scale value of each pixel.
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8. Variance:

No—1Ny—1

f(n 1N Z Z [I (g, ny,n.) —mean{I(n,)}]? (2.12)
Y ny=0 ny=0

Variance measures how far the value of the pixels deviate from the mean. Large values

of variance indicate distinct high frequency content in the image. On the contrary,

small values of variance indicate homogeneous low spatial frequency image content.

The metrics 9 to 11, that follow are slight variations of the variance metric and require

no further discussion.

9. Normalized Variance:

N,—1Ny—1

f(n,) = NN [mean{] Z Z (2, ny, ) —mean{I(n,)}>  (2.13)

ngz=0 ny=0

10. Absolute Variance:

N,—1 Ny—1

f(n,) = N N Z Z I (ng, ny,n,) —mean{I(n,)}| (2.14)

ngz=0 ny=0

11. Normalized Absolute Variance:

Np—1Ny—1

f(n,) = NN [mean{] Z Z I (ng, ny,n.) —mean{I(n,)}| (2.15)

ng=0 ny=0

12. Vollath’s F4:[50|

1 N,—1Ny—1

f(n,) = NN, Z Z (g, My, mz) X I(ng + 1,1, n,)—

nz—D Ny =0

e (2.16)

Z Z I(ng,ny,n,) X I(ng +2,n,,n,)]

nz=0 ny=0
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13. Vollath’s F5:[51]

1 Nl Ny—1

f(n,) = NN, Z Z I(ng,ny,n,) x I(ng +1,n,,n.) —mean{I(n,)}*> (2.17)

nz=0 ny=0

Vollath proposed two focusing metrics with good performance in the presence of
noise[50]. F4 is based on the autocorrelation function while F5 is based on the stan-

dard deviation function.

14. Contrast:
max{l(n,)} —min{I(n,)}
max{I(n,)} + min{I(n,)}

f(n.) = (2.18)

where max{I(n,)} and min{I(n.)} are the maximum and minimum values of the
entire image. Contrast is a commonly used metric to measure image quality. Mathe-
matically, it equals the difference between maximum and minimum grey-scale values
divided by the sum of the maximum and minimum grey-scale values. For an in-focus
image containing a high content of image detail the contrast is expected to be rel-
atively large, while for a defocused monotone image it is expected to be relatively

small.

15. Histogram Entropy:

255

f(n.) =— sz‘ X logapi (2.19)
i=0

where p; is the probability of number of pixels’ grey-scale value equal to i. It is
expected that an in-focus image that has a high content of detail will have an in-
homogeneous intensity pattern and will therefore have a broad histogram. In the
case of an out-of-focus image which will appear to be more homogeneous a narrower
histogram is expected. Considering the limiting cases where (i) all of the pixels have
only one constant value, and (ii) all of the pixel values share an equal probability
in the image; For the first example, f(n,) will equal zero since log, 1 = 0. For the
second example f(n,) = —256 X (55 X loga5ss) = 8. If investigated image contains

highly varying values, its histogram entropy will be greater than for the case where
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the image is more homogeneous.

In the following section how these metrics can be applied to image data is demon-
strated. By applying any metric above to a sequence of images, whereby the micro-
scope stage is moved in the z direction between captures, the value of f(n,) can be
calculated for n,=0 — N, — 1. In general, for images of opaque absorbing objects,
it can be shown that the value of n,A, which corresponds to the maximum value of
f(n.) is the most in-focus image. However, for transparent objects this is not the
case. As shown below, the value of n,A. that corresponds to the minimum value of

f(n,) represents the most in-focus image.

2.2 Comparison of autofocus metrics for unstained

transparent cells and absorbing objects

In this section, the 15 metrics introduced in Section 2.1 are applied to stacks of
images recorded from (i) an absorbing object and (ii) an unstained transparent cell.
In both cases, the autofocus curve, f(n,) are plotted. In the experiments, various
metrics discussed in Section 2.1 are applied to each image in a stack, whereby one
focus measurement value is computed for each image in the stack. In all of the results
that follow in this chapter, the measured value f(n,) against the layer numbers n, is

plotted, which corresponds to the position in the stack.

In the case of stained cells or fluorescently labelled cells, previous studies have
shown that the position n,, resulting in the maximum value of f(n,) corresponds to
the correct in-focus plane. For stained cells, the defocused images inherently have
less information content than well focused images [52]. Therefore, focus metrics such
as those discussed in Section 2.1 respond to the best focal position with a global
maximum. In order to demonstrate the behaviour of autofocusing applied to an
absorbent object, N, = 50 images of a USAF resolution chart are recorded. Images
were recorded using a Nikon Diaphot 300 inverted microscope operating in brightfield

mode. The microscope objective that was used in this experiment was a Reichert Plan
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Fluor 100x /0.95NA o00/0. The digital images were captured using a Basler CMOS
camera (acA2000-340km) with N,=2040 and N,=1088 and pixel sizes of 5.5um in
both the x and y dimension. The path of light through the microscope provides
an additional x2 magnification which results in an effective pixel size of A, = A,
= 27.5nm. Images were recorded with a sampling interval of A, = 1um. In Fig.
2-1(a), (b) and (c), the recorded image shown for n, = 22, 25, and 28 respectively
corresponding to the image just before, at, and just after the focal plane. In Fig.
2-1(d), f(n,) is plotted using the variance metric, given in Eqn (12) which is widely
used in autofocusing algorithms. It is clear that there exists a clear increase in the
value of f as n, approaches the focal plane followed by a clear decrease as the object
moves out of focus. The position n,, at which the image is most in focus is defined

by an obvious maximum in f.

It is usually expected that autofocus algorithms fail to work for transparent objects
such as unstained cells. In order to investigate the behaviour of the various focus
metrics for a transparent object, the same approach was applied to an unstained
cell on a glass slide. In this experiment, a bladder cancer cell (T24) was grown in a
cell culture medium and deposited on a glass slide. For this experiment, the same
microscope, objective and camera were used but this time the number of images was

increased to N, = 200 and the sampling interval was reduced to A, = 0.25um

In Fig. 2-2(a), (b), (c) and (d), the recorded image for four different values of n,
are shown. In Fig. 2-2(a), n, = 98, the image is not in focus and appears blurred.
The dark circle around the nucleus and bright circle around the cytoplasm indicate
that this image is recorded in an out-of-focus plane. In Fig. 2-2(b), n, = 106, it is
clear that the cell cytoplasm has reduced in visibility and the bright circle around
cytoplasm has disappeared, suggesting that this part of the cell has come into focus.
Dark features that are visible around the nucleus indicate that this part of the cell
remains out-of-focus. Moving to Fig. 2-2(c), n, = 110, the nucleus is now in-focus; the
dark features around it have disappeared and some detail inside the nucleus appears
in this image. Finally in Fig. 2-2(d), n, = 115, the entire cell is once again out-of-

focus. Applying the variance metric to this stack of images provides the autofocus
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curve shown in Fig. 2-2(e). It is clear that there is an obvious global minimum in
the variance curve at the most in-focus position, n,. This phenomenon results from
the image of the cell becoming increasingly homogeneous as it nears the focal plane
making it difficult to distinguish the cell from the background and in this case the
variance reduces. As described previously, in Fig. 2-2(a) to (d), as the cell moves out
of focus, detail in the image develops with corresponding increases in the value of the

variance.

In order to compare all of the metrics discussed in Section 2.1, all of them were
applied to both the stack of images of the resolution chart and the unstained cyto-
spinned T24 bladder cancer cell in and Fig. 2-3(a) and (b) respectively.

As shown in Fig. 2-3(a), all of the metrics provide reasonable performance for
the absorbent object, except for metrics (14) and (15). The result of metric (14)
is a straight line because the minimum value of the images is always zero in this
particular case, leading to the constant contrast((mazima — 0)/(mazxima + 0) = 1).
Unexpectedly, metric (15) provides a global minimum in this case, where as could
have expected a global maximum. This is because the resolution chart image in Fig.
2-1(b) is more homogeneous than Fig. 2-1(a) and (b), which have a greater range of
different grey-scale values. Since the histogram entropy decreases when homogeneity
increases, It can be seen that for this particular absorbent object this metric provides
a global minimum at the correct in-focus plane. This behaviour is dependent on
the specific object used in this experiment, whereby the in-focus image essentially
contained only two grey scale value. In general, it is expected that this metric will

provide a maximum for stained cells.

In Fig. 2-3(b), the same set of results are shown for the stack of images of the
unstained T24 cell; It is clear to see that metric (2), (5), (7) are the poorest, since
they didn’t provide any readable spacial extremum. It can be identified that metrics
(1), (3), (4), (6), (12) and (14), all have a local minimum around the correct focal
position but are not well pronounced. However, six of the metrics: (8), (9), (10), (11),
(13) and (15) all provide smooth and distinctive global minima values corresponding

to the most in-focus image. Among those six metrics, four of them, (8), (9), (10) and
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Figure 2-1: Focus steps: (a) under in-focus plane; (b) in-focus plane; (c) above in-focus
plane; (d) autofocus curve of resolution chart using variance metric where the posi-
tion of the planes shown earlier have been indicated using arrows. The sizes of micro-
scope images shown in (a),(b) and (c) are identical which is 20.4um (width)x 18.5um
(height) each.
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(11) are all based on variance and they all display similar characteristics. Metric (11)
is selected from this group of four for further study as its curve shows the greatest

difference between maximum and minimum focus measurement values.

Comparing Fig. 2-3(a) and (b), the most significant difference is that transparent
cells return a minimum rather than the maximum for the case of the absorbent
object. In the next section, three of the best behaving metrics were selected for
further evaluations namely; (11) normalized absolute variance, (13) Vollath’s F5 and

(15)histogram entropy for further evaluation.
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Figure 2-2: Focus steps: (a) under in-focus plane; (b) cytoplasm in-focus; (¢) nucleus
in-focus; (d) above in-focus plane; (e) Autofocus curve of the bladder cancer cell using
the variance metric where the focus planes that are shown in this figure are clearly
indicated using arrows. The sizes of microscope images shown in (a),(b),(c) and (d)
are identical which is 12.57pum (width)x14.3um (height) each.
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Figure 2-3: Result of the metrics in Section 2.1 applied to (a) the stack of 50 images of
the USAF resolution chart; (b) the stack of 200 images of the unstained T24 bladder
cancer cell.

36



ost

e
o
T

Focus Measurement Vakse, finz)

e
"
T

= = = Metric(11) Normalized absolute variance
— etric(13) Vollath's F5
+= = Metriz(15) Histagram entropy

e
T

] 20 ] [ &0 I 120 140 160 150 E
Layer, nz
1 7 T 7 Py T T T T T
P -
AR v;‘a, My v i
nof rr. e -
o nbehET Yan t 2 .

’ Al
e e v 4

H

] _
=
:

- - - etric{11) Normalised absolute variance “ “

0t || —— Metric(13) Vollath's F5 =4

----- Metric(15) Histogrem entropy ] ta
N T T T T % N 1 1 ]
20 ] B0 =0 100 120 40 I3 TR0 E
Layer, nz

- = —Matrici 11} Mormalised absoluta variznca

ool —— Metic(13) Vallath's F&

-= = -Matnic| 15) Histagram entropy ;
= OA R C -
¥ .“,_. i
éo?. A "
= 08
Eos
i
=
gos
fr

o2

(e) (f)

Figure 2-4: (a):In-focus images of cheek cell, n, = 97, size is 35.26pm
(width)x28.66um (height); (b): Comparison of the three selected metrics applied
to the cheek cell; (¢): In-focus images of Blast cell, n, = 99, size is 17.66um
(width)x14.38um (height); (d): Comparison of the three selected metrics applied
to the Blast cell; (e): In-focus images of bladder cancer cell, n, = 107, size is 17.66m
(width)x14.38um (height); (f): Comparison of the three selected metrics applied to
the Bladder cancer cell.
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2.3 Evaluation

To confirm the repeatable performance of the results shown in Section 2.2, three of
the best behaving metrics were proceeded to be selected and apply them on different
unstained cells. All the images were recorded using the same Nikon Diaphot 300
microscope used in the previous experiment, once again operating in brightfield mode.
The experimental parameters for the three cells are shown below in Table. 1, and all
the focus curves shown in Fig. 2-3 are normalized by first subtracting the minimum
value followed by dividing by the maximum value of the result in order to visualize

all three metrics on the same scale.

Cell | Magnification | NA | N, N, | N, A, A, A,
Cheek 50 0.8 | 2040 | 1088 | 200 | 55nm | 55nm | 0.1pum
Blast 100 0.95 | 2040 | 1088 | 200 | 27.5nm | 27.5nm | 0.25um

T24 100 0.95 | 2040 | 1088 | 200 | 27.5nm | 27.5nm | 0.25um

Table 2.1: Experimental parameters for three unstained cells

From Fig. 2-4, it is clear to see that all three metrics repeatedly provide very
obvious and reliable minima for all three cells. This result is similar to any other cells
that were tested, which are not described in this chapter. Normalized absolute vari-
ance, Vollath’s F5, and histogram entropy are proven to provide robust performance
for autofocusing where a minimum indicates the most in-focus distance, as opposed
to the more traditional case of finding a maximum value for opaque absorbent ob-
jects. In order to compare the computational speed of all three metrics, they were
tested using an Intel Core i7 2.4GHz processor by implementing them in MATLAB
R2013b. For the images sizes indicated in Table 1, Vollath’s F5 required twice as
much processing time as the other two metrics. Histogram Entropy is slightly faster

than Normalized absolute variance.
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2.4 Conclusion

In this chapter the first comprehensive investigation on the application of autofo-
cusing metrics to images of unstained transparent cells obtained using brightfield
microscopy was provided. In Section 2.1 15 autofocus metrics were reviewed and in
Sections 2.1 and 2.2 all of them were applied to stacks of images obtained from (i) an
opaque absorbent object in the form of a USAF resolution chart and (ii) an unstained
bladder epethelial cell. It was found that instead of obtaining a local maximum at the
correct focal distance for the case of an absorbent object, a local minimum is found
for unstained transparent cell indicating the correct in-focus plan. After comparing
the performance of all 15 metrics, three were selected for further study: normalized
absolute variance, Vollath’s F5 and Histogram Entropy. These three metrics appear
to provide reliable autofocusing are for unstained cell images recorded by brightfield
microscope since they have smooth focus curves with a very obvious global minimum
at the correct distance. This conclusion was confirmed in Section 2.3 by applying the
three metrics to three different cells: a cheek cell, a blast cell and a second bladder
cancer cell respectively. Finally, took computation time into consideration: normal-
ized absolute variance and histogram entropy require approximately half the time
of Vollath’s F5. The work presented in this chapter has been published in a recent

conference proceeding|44].
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Chapter 3

Recovering the three dimensional
morphology of unstained cells using

brightfield microscopy

In the previous chapter, the phenomenon that unstained cells are often effectively
transparent and appear to have an homogeneous intensity profile when they are in
focus has been addressed. In this chapter, a method is proposed to recover infor-
mation about the morphology of an unstained cell using brightfield microscopy and
the autofocus algorithm introduced in chapter 2, which is based on recording a stack
of images where the sample is mechanically moved by sub-micron amounts between
captures. The implementations of proposing algorithm is provided using both central
processing unit(CPU) and graphic processing unit(GPU). The experimental results
demonstrate the usefulness of the method. This approach is expected to have appli-
cation in various forms of clinical cytology and as a useful adjunct in the automation
of Raman and FTIR micro-spectroscopy systems.

The idea of applying autofocusing to regions across a stack of microscopic images
is not new. In Ref. [53], B. Forster et. al. concluded that there are three different
approaches for the purpose of extracting information on the three dimensional shape
of the object under investigation: (i) Pixel-based methods[54| compare pixels with

same coordinates across each image in the stack and the most in-focus plane for a

41



given pixel is determined by applying a maximum selection rule on the grayscale value
of pixels; (ii) Region-based methods|[55] apply a metric to a block of pixels across each
image in the stack. The most in-focus plane for that region is determined according
to a given selection rule and that depth is assigned to the pixel at the centre of that
region; (iii) Multiresolution-based methods[56] are based on the assumption that in-
focus regions contain more high frequency components. Among the multiresolution
methods, the wavelet transform offers good performance[53]. All of the methods
proposed to date for the recovery of three dimensional images from stacks of two
dimensional microscopic images have been based on the principle that areas that are
in focus contain more detail than areas that are out of focus. However, in the case
of unstained transparent cells, this is not true and all of these algorithms fail[53].
In this chapter, an adaptation of the region based method is investigated such that
three dimensional images can be recovered from phase only objects. This algorithm
is based on recent work where the application of autofocus algorithms to unstained

cells was investigated|44].

In Chapter 2, (and also in a recent publichation [44]) the application of auto-
focusing algorithms are investigated to images of unstained cells using brightfield
microscopy. Although autofocusing has a long history in microscopy,[42][43] previous
investigations focused on objects that absorb light; after recording a stack of images
where between captures the object is moved relative to the microscope objective, a
metric is then applied to each image in the stack and the image that results in this
metric having a maximum value is taken to be the most in-focus image. These metrics
universally work based on the idea that when the image is in focus, more image detail
can be observed and so they often quantify the amount of high frequency content
or variance in the image. However, for the class of objects that appear to have an
homogeneous intensity pattern such as transparent cells, it is well known that these
metrics fail. In the previous chapter and the corresponding paper|44], the application
of fifteen well known autofocusing metrics to unstained cells were investigated and
the behaviour of these metrics were compared with that of an opaque object, also

recorded using brightfield microscopy. How these metrics can be adapted to work
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for transparent cells were demonstrated and which metrics provide the best results
were determined. In this chapter follow-on investigations are conducted in order to
show that these metrics can be applied in a similar manner to sub-regions within
the image, thereby providing a spatial resolution on the focal depth of the unstained
cell which in turn enables us to extract information on the three dimensional cellular
morphology.

In Raman micro-spectroscopy, it is often preferable to select a point within the
nucleus when recording the spectrum of a cell for the purpose of diagnostics or for
comparing biochemistry across different cells. Staining of cell nucleus is not an option
in this case as the additional chemicals corrupt the recorded spectrum and may give
rise to either fluorescence or photo-damage. Without staining is difficult to estimate
the depth and position of the nucleus using brightfield microscopy. The failure to
align the nucleus with the source laser can lead to reduced sensitivity for Raman
diagnostics[12]. The method proposed in this chapter can be used as a useful tool
for the optimal alignment of cells for Raman microspectrosocpy. Furthermore, it may
be possible to employ this algorithm as part of an automated process for preforming

Raman based cytology for high throughput diagnostics|[12][14].

3.1 Autofocus of sub-regions for unstained cells

The core part of this proposing algorithm is the application of an autofocusing metric
to images of unstained cells introduced in Chapter 2. In the previous chapter, fifteen
commonly used autofocus metrics were investigated for images of unstained cells
and three optimal autofocus metrics were identified: normalized absolute variance,
Vollath’s F5 and histogram entropy. The mathematical expressions of these three
metrics are shown below:

1. Normalized Absolute Variance:

No—1Ny—1

Z Z |I (naAz,ny,Ay,n,Az) — mean{l(n,Az)}|

ng=0 ny=0

J(n:) = N.N, [mean{] (n.Az)}

(3.1)
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where I represents the image recorded by a digital camera; n, and n, take the range
of 0 to V; —1 and 0 to Ny, — 1 where N, and N, are the number of pixels in the  and
y directions respectively; Az and Ay represent the camera pixel size in the x and y
directions respectively and Az is the distance the stage is moved between the capture
of subsequent images in the vertical direction; n, takes the range of 0 to N, —1 where

N, is the total number of images recorded.

Large values of variance indicate distinct high frequency content in the image.
Conversely, small values of variance indicate homogeneous low frequency image con-
tent. In Ref. [44] it was demonstrated that for images of high contrast opaque objects
the variance has a maximum value when the image is in focus, while for homogeneous

phase only objects the variance has a minimum value.

2. Vollath’s F5:[51]

Ny—1Ny—

f(n,Az) = NN Z Z { (nyAz, ny, Ay, n,Az)

ngz=0 ny=0

x I(n,Az +1,n,Ay,n,Az) — mean{[(nZAz)}Q}

(3.2)

This metric is based on the standard deviation function which compares the difference
between the product of a pixel and the grayscale value of its neigboring pixels with
the square of the mean grayscale value. It has been demonstrated to provide good

performance in the presence of noise[50][51].
3. Histogram Entropy:

255

nZAZ Zpl X log2pz (33>

where p; is the probability of a pixels’ grayscale value equal to i. It is expected that
an image that has high detail content will have an inhomogeneous intensity pattern
and will therefore have a relatively broad histogram. In the case of an image that is

more homogeneous, a narrower histogram is expected.
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In Chapter 2, these metrics were applied to each image in a stack of images, where
the object was moved in the vertical direction between captures. In this section, a
similar analysis are applied, but this time the investigation is focused on sub regions
within the images in the stack. In order to determine which metric provides the best
performance, all three metrics are applied to a number of different regions located in
different areas within the image of the cell. The size of the region is an important
parameter in this investigation and so the analysis was repeated for a range of different
block sizes in order to establish the best performing block size. The result is shown in
Fig. 3-1, where in regions that are representative of different focal depths are marked

with different colours and the same colours are used in the corresponding focus curves.

The sample used in this experiment is an unstained bladder cancer cell with 200
images in total. Images were recorded using a Nikon Diaphot 300 inverted micro-
scope operating in brightfield mode. The microscope objective that was used in
this experiment was a Reichert Plan Fluor 100x /0.95NA 00/0. The digital images
were captured using a Basler CMOS camera (acA2000-340km) with N,=2040 and
N,=1088 and pixel sizes of 5.5um in both the z and y dimension. The path of light
through the microscope provides an additional x2 magnification which results in an
effective pixel size of Ax = Ay = 27.5nm and the translation stage was moved in the
vertical direction between captures with a sampling interval of Az = 0.25um. The
highlighted grey area on the curves represent the full depth of field that is selected
for further analysis, which corresponds to the images in the stack given by n,= 92 —
122. This range is selected based on the global in-focus image, which is determined
to be at n,= 107, and the range of interest that estimated using a priori knowledge
of the approximate cell height. The first column in Fig. 3-1 displays the focus curves
generated for all three metrics using a block size of 10 by 10 pixels. The normalized
absolute variance and Vollath’s F5 have clearly identifiable local minima (red and
yellow) at the correct focal planes but regions inside the nucleus (green, blue and
black) return no significant features on the curves. The histogram entropy performs
poorly for all of the regions but the general performance improves when a 30 by 30

block size is used as shown in the second column in Fig. 3-1. However, it remains
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difficult to identify discernible minima for regions inside the nucleus. However, when
the block size is increased to 50 by 50 pixels, the minima are clearly identifiable for
all cases, indicating the correct focal planes. Thus, a trade-off exists between the
accuracy of results in the z directions and the spatial resolution of the depth map in
the horizontal plane. Repeated experiments have shown that a 50 by 50 pixel block
size is the best compromise for the testing system in order to guarantee reasonable
performance. However, it has been found that the block size should be varied on
a case by case basis, as factors such as magnification, numerical aperture, camera
pizel size and cell type can impact on the performance for a given block size. The
normalized absolute variance was selected for further investigation, as it appear to be

the most accurate of the three metrics in general.

In order to automatically identify the correct local minimum on the focus curve
within the range of interest, the Savitzky-Golay filter[57] is used to smooth the data.
The difference between the original curve and the Savitzky-Golay filtered curve high-
lights the sharp changes in the original focus curve; in this way the correct focal
plane is indicated by a global minimum instead of a local minimum which facilitates
simpler automatic identification. In Fig. 3-2, the application of the Savistky-Golay
filter is illustrated to focus curves corresponding to two regions within the cell; the
data shown in red corresponds to a relatively higher region in the cell nucleus and
the data in blue corresponds to a lower region in the cytoplasm. In Fig. 3-2 (b) and
3-2 (c), it is shown that the original focus curve using normalised absolute variance
and the filtered version of the same curve corresponding to the higher region in the
cell. Tt is clear that, within the region of interest, the original focus curve does not
return a global minimum at the correct plane, but this is found to be the case for
the filtered data. However, for lower regions it is found that, specifically within the
cytoplasm, which contains very little image detail when in-focus, the global minimum
of the Savitsky Golay filtered data does not correspond to the correct focal plane;
rather in this case, the global minimum of the original autofocus curve is more reli-
able. This is illustrated in Fig. 3-2 (d) and Fig. 3-2 (e). In general, it has been found

that combining both approaches returns the most accurate depth map for the entire
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Figure 3-1: Comparison of performance of three autofocus metrics: Normalized ab-
solute variance, Vollath’s F5 and histogram entropy with three different block sizes:
10 by 10, 30 by 30, 50 by 50 pixels. The sizes of microscope images shown in the first
row are identical which is 12.57pm (width)x14.3um (height).



cell. For a given region, the location of the global minimum of the autofocus curve
within the region of interest is taken to correspond to the correct focal plane, except
when that location is higher than the global in-focus plane of the overall image; for

these higher regions the location of global minimum of the filtered curve is used.
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Figure 3-2: Examples of failed regions using normalised absolute variance global min-
imum and Savitzky-Golay filtered global minimum (a) two example problem regions
of a bladder cancer cell, image size is 12.57um (width)x14.3um (height); (b) nor-
malized absolute variance curve of red region; (c) Savitzky-Golay filtered normalized
absolute variance curve of red region; (d) normalized absolute variance curve of blue
region; (e) Savitzky-Golay filtered normalized absolute variance curve of blue region.

3.2 Algorithm for recovering 3D cell morphology

3.2.1 Methodology

In this section, a basic algorithm is proposed for the recovery of a continuous 3D
morphology of an unstained cell using the principles developed in Section 3.1. Two
different approaches are considered; the relatively simpler case where the regions
are non-overlapping and the more computationally intensive case where overlapping
blocks were considered. In the non-overlapping case, illustrated in Fig. 3-3 (a), each

image in the stack is divided into many small non-overlapping blocks with uniform
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size. The previously described autofocus metric is applied to each block throughout
the stack, revealing the correct focus depth for each particular region. The focal depth
for a given block is assigned to the centre pixel in that block and the resulting depth
map has a low spatial resolution, with N, /B, and N,/B, samples with sampling
intervals of AzB, and AyB, in the x and y directions respectively, where B, and B,
denote the block size in pixel numbers. For the overlapping case, the block window
moves pixel by pixel and the focus depth that is computed for a given block is assigned
to the middle pixel in the block, as illustrated in Fig. 3-3(b). At the end of this
process, a new image with the same size of the original image is generated in which
the value of each every pixel in the new image corresponds to the focal depth of
the corresponding block. Clearly the non-overlapping case provides a low resolution
depth map but it has the advantage of being relatively light in terms of computation.
The overlapping case on the other hand can provides a high-resolution depth map

has a heavy computational load.
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Figure 3-3: (a) non-overlapping and (b) overlapping methods to apply autofocusing
algorithms

Regardless of which if these two methods is used to generate the depth map, the
same autofocus metric is applied to each block, as discussed in Section 3.1. Following
calculation of the raw depth map, thresholding is necessary in order to identify those

pixels which correspond to background and contain no meaningful object data. The
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focus curve relating to background pixels is highly random and has a low amplitude
relative to data from object pixels. For this reason, basic thresholding can be applied
to identify background pixels and a constant depth value is assigned to these pixels
equal to the minimum value that is calculated from the object pixels. A trade-off
where high threshold values result in a cleaner background but have the drawback
of incorrectly assigning some object pixels as background, thereby creating holes or
gaps within the object depth map. Thus, a tunable threshold is built into the GUI
that was designed for this application. When selecting the choice of threshold, small
holes are tolerable in order to ensure a clean background. The final step in proposing

algorithm is to fill small holes.

3.2.2 Fast algorithm

As previously discussed in section 3.2.1, the overlapping method is very timeconsum-
ing. For an image of size (N,,N,)) = (1088,2040) and a block size of (B,,B,) = (50,50),
the non-overlapping method results in approximately 840 separate block calculations
while the overlapping case results in over two million. Comparing the speed of apply-
ing normalized absolute variance and the histogram entropy metric on a single 50 by
50 block in MATLAB 2013b, normalized absolute variance takes 2.2s to generate the
focus curve, which is faster than 2.7s using the histogram entropy metric. The most
significant part of this process involves opening and closing each image in the stack,
which is necessary due to the large amount of data involved compared with available
RAM. Applying the normalised variance metric to all blocks in the overlapping case
for the image size and block size metioned above requires a stack of approximately
70 seconds with MATLAB. Applying the same approach to the non-overlapping case
results in a time of approximately 100 days of computation time. However, it is possi-
ble to implement the overlapping method in a significantly shorter time by employing
the Fast Fourier Transform (FFT) algorithm as described below.

Taking another look at Equation (3.1), a core element in the calculation of the
autofocus metric is to numerically calculate the mean value of a given block. For

the overlapping case, this process needs to be repeated for every overlapping block
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of B, by B, pixels. This process is recognised as equivalence as convolving the
image with a rectangular function of width B, and B, in the x and y directions and
height 1/(B,B,). The value of each sample in the resulting 2D image represents the
mean value for a block centred at that sample location. Such a convolution can be
implemented using the FFT algorithm; convolution with a rectangular function in
the space domain is equivalent to multiplication with a sinc function in the spatial
frequency domain|58]. The process of calculating the mean values of each block can

be described as follow as follows

M (n,Ax,n,Ay) = F ' {B,B,Sinc (BymyAfy, Bym,Af,) x F{I (n,Az,n,Ay)}}
(3.4)

where F{-} and F~*{-} denote the operators for the Discrete Fourier Transform
and Inverse Discrete Fourier Transform respectively, both of which can be imple-
mented using the FFT algorithm; Af, = 1/(N,Az) and Af, = 1/(N,Ay) and M de-
notes the matrix containing the mean values of each block. Appropriate zeropadding
is required before the first DFT, see [58|. The multiplication step in the equation
above denotes element-by-element multiplication and not matrix multiplication, i.e.

a(1,1) = b(1,1) x ¢(1, 1).

The overall process of obtaining the depth map can be calculated according to the

following equation:

|I (ng,ny,n.) — M (ng, ny,n,)|
D(ng,ny,n.) = 3.5
(1, 1y, 1) No Ny M (ng,my,ny) X M (ng,ny, ns) (3.5)

Again, the multiplication and division in the above equation are element-by-
element and not matrix operations. The above equation is calculated for each value of
n, in the stack, providing the raw data that is then analysed as described in Section
3.1. Simple averaging is requires B, B, additions and for the overlapping methods this
averaging needs to be repeated N, N, N, times which results in B, B, N, N, N, numeri-
cal operations. Using the FFT approach this reduces to approximately 2N, N, N, (log, N,+

log, N, ), assuming a radix 2 FFT. This accounts for approximately a 60 times speed
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up over the direct approach.

3.2.3 GPU implementation

Although fast algorithm is implemented to speed up the computation time, the total
calculation is still need more than an hour to get result from MATLAB using a con-
tinuous way. Thus, the proposing 3D morphology recovery algorithm is implemented
using GPU.

The forward and inverse FF'Ts for the fast evaluation of the convolution operations
for the mean and variance calculations of the normalized absolute variance autofocus
metric are carried out using GPU computation. CUDA[59] programming language is
used for the GPU implementation and highly optimized CuFFT library[60] is used for
the FFTs. Since the input and output data are real valued for these convolutions, real
to complex 2D FFTs for the forward case and complex to real 2D FFTs for the inverse
case are used to reduce the computation amount by half using the mirror symmetry
observed in these types of FFT operations. The mean kernel multiplication between
the forward and inverse FFTs is also carried out on the GPU device avoiding the
transfer of the intermediate data between the host computer and the GPU device.
The complete GPU computation of the autofocus metric includes the following steps
for each separate image of the stack: 1) Initial image pixel values are transferred
to the GPU memory and zero padded to make the dimensions suitable for GPU
computation. 2) Convolution for the mean calculation is carried out using forward
and inverse FFTs and intermediate kernel multiplication is applied as described above.
3) Convolution for the variance calculation is carried out by the repetition of the
previous step. The input for this second convolution is calculated as the mean image
pixel values subtracted from the original image pixel values (absolute value is taken
after the subtraction). 4) Calculated variance image pixel values are divided by the
square of the mean image pixel values.

The autofocus metric is calculated for the stack of images on the GPU. The resul-
tant autofocus metric images are gathered together as a 3-dim stack and transposed

to establish data locality in the z-axis which holds the data for the focus curves
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(autofocus metric values of separate images for a specific pixel). The transposed 3
dimensional stack data is transferred to the host computer for Savitzky-Golay filter
application on the CPU. The local minima identification is carried out on the GPU
for each pixel after the Savitzky-Golay filtered curves are subtracted from the original
focus curves and transferred back to GPU memory. Each GPU thread is responsible
for a separate focus curve in the local minima identification GPU kernel and thus
a high degree of parallelization is established. The depth map image is constructed
from the local minima values for each pixel and a median filter is applied to smoothen.

This resulted depth map image is transferred back to host computer.

3.3 Experimental Results

All the images were recorded using the same Nikon Diaphot 300 microscope and
digital camera described in Section 3.1, once again operating in brightfield mode.
The other variable parameters are listed in table 3.1. Two cells were investigated; the
first was a fresh cheek cell smeared onto a glass slide and the second was a bladder

cancer cell cultured, and dropped onto a glass slide.

Cell | Magnification | NA | Pixel size Az | Pixel size Ay | Step size Az | n,
Cheek 50 0.8 0.055m 0.055um 0.1pum 200
Blast 100 0.95 | 0.0275um 0.0275um 0.25pm 200

Table 3.1: Experimental parameters for two unstained cells

Fig. 3-4 shows the result of applying the algorithm described in previous sections
to a normal cheek cell using both the non-overlapping and the overlapping methods.
In this experiment, normalized absolute variance is used and a block size given by
(B:,By) = (50,50). In Fig. 3-4(a) and (b) the depth maps recovered from both
methods is shown. It can be seen that they both provide a similar morphology but
with different spatial resolutions; (a) can be considered as a down sampled version
of (b). Fig. 3-4(c) is the most in-focus image in the stack without any processing

and Fig. 3-4 (d) is extended depth-of-focus image that is generated by using the
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most in focus values for each pixel value throughout the stack, according to the depth
map. Interestingly, there is even reduced image detail visible in the extended focus
image, further highlighting the point that a transparent cell is a phase only object
and detail can only be observed indirectly by analysing an out-of-focus image. Fig.
3-4(e) illustrates a contour map that overlies the original unprocessed cell image and
highlights regions of similar depth. It is interesting to note that the cell can be
segmented accurately using this contour map. Finally, in (f), the original image with
the highest area marked in green is shown, presumably the cell nucleus. This image is
similar to staining and it is of particular interest in the context of those applications
where identification of the cell nucleus is important and where it is preferable not to
perform chemical staining.

Fig. 3-5 shows the result of applying 3D morphology recovery algorithm on a blad-
der cancer cell in both non-overlapping and overlapping case. In this case, the block
size is increased to 60 by 60 pixels to show that 50 by 50 pixels is the recommended
minimum block size but slightly increasing the size is acceptable and will lead to
smoother morphology. Fig. 3-5 (a) and (b) are the non-overlapping and overlapping
3D plot respectively and again, they are very similar and (a) is the down-sampled
version of (b). Fig. 3-5 (c) is the original most in-focus image without any image
processing. It is clear to see that the enlarged dark nucleus in the center of the cell
which is clearly not in focus. Fig. 3-5 (d) is the extend depth of focus image of this
cell where everything are in focus including the partial cell in the upper left corner.
Fig. 3-5 (e) and (f) are the contour and highlighted nucleus on top of global in-focus
image obtained by applying different thresholding on the non-overlapping depth map.
Basiclly, with the depth map, any part of the cell can be identified and segmented

like nucleus and cytoplasm very easily.

3.4 Conclusion

In this chapter, a 3D morphology recovery algorithm was introduced for unstained

cells recorded using brightfield microscopy that is based on the results in Chapter
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Figure 3-4: Normal cheek cell (a) non-overlapping 3D morphology plot; (b) over-
lapping 3D morphology plot; (¢) global in-focus image; (d) extended depth of focus
image; (e) contour map; (f) highlighted nucleus image. The size of microscope im-
ages shown in (d),(d),(e) and (f) are identical which is 112.2um (width)x59.84pm
(height).
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Figure 3-5: T24 bladder cancer cell (a)non-overlapping 3D morphology plot;
(b)overlapping 3D morphology plot; (c)global in-focus image; (d)extended depth of
focus image; (e)contour map; (f)highlighted nucleus image. The size of microscope

images shown in (d),(d),(e) and (f) are identical which is 56.1pm (width)x29.92um
(height).
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2, where the application of autofocus metrics to images of unstained cells was inves-
tigated. Making use of the special property that unstained cells become effectively
transparent when they are in-focus an autofocus algorithm for unstained cells was
developed. In this chapter, the application of the metrics discovered in Chapter 2 to
sub-regions with cell image was investigated in order to identify the focal depth of
small areas in the image. In this way, a depth map can be created that reveals infor-
mation about the three dimensional cellular morphology. Two different approaches
were developed and they were applied to non-overlapping and overlapping regions to
achieve depth map with low and high resolutions respectively. The overlapping case
provides a depth map with a significantly higher resolution than the non-overlapping
case with the caveat that it takes considerably more time to generate the results. For
the sake of improving the efficiency of the overlapping case, the algorithm has been
implemented using a parallel GPU solution based on the CUDA programming envi-
ronment. As shown in section 3.3, the proposed algorithm provides excellent results
and the depth map that is generated can be used to identify or segment any part of
the cell in a straightforward manner and in particular the nucleus can be identified
and an image showing a type of virtual staining can be generated. This algorithm is
very useful for any application that requires the automatic identification of a cell nu-
cleus for unstained cells using brightfield microscopy. The work presented in Chapter
3 is not directly used in the automated Raman system that is presented in Chapter
4. In Chapter 4, a simple image processing technique was employed based only on
the global in-focus metrics that are investigated in Chapter 2. However, it may be
possible to ensure more accurate alignment of the nucleus by incorporating the algo-
rithm presented in this chapter into the automation process. This is considered to
be a viable course of future work but insufficient time was available in this research
masters to implement this. Finally, the work presented in this chapter is the subject

of a jounral paper in preparation.
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Chapter 4

Automated Raman Cytology System

In this chapter, an automated Raman micro-spectroscopy system that is capable of
identifying unstained cells on a slide using image processing and automatically align-
ing the nuclei with the source laser for recording a spectrum is described. This work
follows from the previous chapters where the methods of autofocusing was developed
for unstained cells. The automation process is built around the open source Micro-
manager software system and can be adopted by any lab using a commercial Raman
micro-spectroscopy system or a custom built one. This methodology will help in the
standardization of Raman cytology and its adoption into the clinic.

Raman spectroscopy can be used to evaluate the biomolecular composition of
tissue and cell samples in a non-invasive manner. This technique is based on inelastic
light scattering as a result of the interaction between incident monochromatic light
and a biological sample. The majority of photons undergo elastic Rayleigh scattering
whereby the emitted photons have the same energy to the incident photons. However,
approximately one in 107 photons undergo inelastic Raman scattering|[61], whereby
the photon either gains energy (Anti-Stokes) or loses energy (Stokes) during this
scattering process. The magnitude of the change in energy of the Raman photons
is dependent on the rotational and/or vibrational energies of the molecules in the
biological sample. By analyzing the shift in wavelength of the Raman photons, it
is possible to infer information on the molecular composition of the sample being

investigated. Specifically, the shift in wavelength of the photons and the magnitude of
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the photons that have undergone this shift are indicative of a particular chemical bond
and the concentration of that chemical bond respectively. For a complex mixture of
different chemicals, such as in a biological sample, a highly varying Raman spectrum

can be observed.

A basic Raman spectrometer is made up of four core components: (i) A suitable
laser with a narrow linewidth is necessary to provide the excitation; (ii) A delivery
system composed of a series of optical elements is required to transfer the excitation
source to the sample; (iii) A collection system transfers the Raman scattered pho-
tons into a spectrograph. This collection system is once again made up of a series of
optical elements, this time including an optical filter (such as a long pass or a notch
filter) that is capable of attenuating the Rayleigh scattered photons while allowing
the higher wavelength Raman scattered photons to pass through; (iv) The final com-
ponent is the spectrograph. The entrance to the spectrograph is usually a slit that is
imaged to a highly sensitive detector, via a diffraction grating that disperses the light
into its constituent wavelengths. In a confocal Raman micro-spectrometer a Raman
spectrometer is combined with a microscope; in this case both the delivery and col-
lection systems make use of a microscope objective with a high numerical aperture.
The microscope objective focuses the laser to a microscopic point on the sample and
then efficiently collects the Raman scattered photons from this location. The point
is imaged to a confocal aperture is in the collection path that selectively isolates
the light emanating from the desired point on the sample and thereby reduces the
background signal from the microscope objective and the sample substrate. Usually
the microscope lamp must first be turned off before recording a spectrum. A more

detailed description of a confocal Raman microspectrometer is given in Section 4.2.1.

Raman spectroscopy can be applied to analyze the molecular difference between
various tissue and cell types. The first step in this process is usually to apply post-
processing methods: (i) to reduce the background signal in the spectra; (ii) to cal-
ibrate the wavelength axis; (iii) to normalize the spectra; and (iv) to remove and
smooth any cosmic rays. If subtle differences between similar datasets of spectra is

wished to be identify, e.g. healthy and cancer cell types, multivariate statistical al-
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gorithms may be applied following this post-processing. These algorithms enable the
numerical classification of seemingly similar spectra, which enables the identification
of an unknown cell type, given a database of spectra taken from known cell types.
The method of Principal Component Analysis (PCA) followed by Linear Discrimi-
nant Analysis (LDA) is most commonly employed for the classification of diseased
tissue or cells[62](63][64]. and this topic is discussed further in the following section.

The breakdown of this chapter is as follows. In Section 4.1, the basic physical
principle of Raman micro-spectroscopy is introduced and its application to the clas-
sification of cell types. Two particular forms of cytology that can be augmented by
Raman based classification are highlighted: namely screening for Cervical intraep-
ithelial neoplasia (pap smear) and diagnosis of bladder cancer from samples of voided
urine. In Section 4.2, a detailed description of the setup is provided and the methods
on which the proposed automated Raman cytology system is based. In Section 4.3,

a brief conclusion of this chapter is offered.

4.1 Raman Micro-spectroscopy for cell classification

4.1.1 Classification Algorithms

In order to identify the cell type associated with a particular Raman spectrum, the
spectra obtained are initially subjected to pre-processing methods before undergoing
further multivariate statistical analysis as discussed in the last sub-section. In the
proposing automation algorithm, PCA, LDA and cross validation are employed for
classification of cell types, but other techniques have also been demonstrated.

- Principal components analysis: PCA is a powerful statistical tool used to reduce
the number of variables within a data set. To do this, PCA transforms the spectral
data into a set of variables called principal components (PCs), whereby all PCs are
orthogonal to each other and they are generated in such a way as to represent as
much variance within the dataset as possible. Computationally, PCs are found by

determining the covariance matrix of the data set, and calculating the eigenvectors
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and eigenvalues of this covariance matrix. Further analysis can then be applied to
these PCs to organize them into groups, or clusters, representing different cell or
tissue pathologies; techniques such as LDA or logistic regression analysis (LRA) are
often utilized.

- Linear discriminant analysis: LDA, also known as Fisher’s discriminant analysis,
is a supervised multivariate technique used to optimize class separability by finding
the direction that provides the best separation for two or more groups of data. LDA is
often applied to PC scores to further reduce the dimensionality of the data set. This is
achieved by finding a linear combination of vectors that maximize the ratio of between-
group variance and within-group variance[65]. By maximizing this ratio, LDA is
able to provide the optimum separation for each group, thus improving classification
results.

- Cross validation: Cross validation is often used to estimate how accurately the
diagnostic model will perform. This is achieved by assessing the results of the statis-
tical algorithm when applied to a validation set of data. The most commonly method
is leave-one-out cross validation. Leave-one-out is based on using a single spectrum
as the validation set, and the remaining spectra are used as the training set for the
algorithm. This is repeated to test each spectrum in the dataset, and can be used to
determine how accurate the model is at predicting the pathological status of the sam-
ple. Blind testing and double blind testing can also be applied[12]; these are based on

concealing pathological information from the data in order to remove observer bias.

4.1.2 Application of Raman Micro-spectroscopy to Cancer Cell

Classification

Raman micro-spectroscopy has been shown to be a powerful diagnostic method for the
investigation of various cancer related diseases|66][67| including brain metastases|7],
prostate[8|, breast|9], esophagus[10], skin[11], bladder[12], oral[13], cervical[14] and
lung|15] cancer. In many cases, the results have shown a significant increase in sen-

sitivity and specificity for tissue and cell classification using Raman spectroscopy
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when compared with other diagnostic approaches. This chapter is focused on the
automation of Raman micro-spectroscopy for the analysis of epithelial cells. This
automated system will have applications in the area of cytology, also known as cy-
topathology, which refers to the study of cellular disease and the diagnosis of disease
by analyzing cellular changes. The most common example of this branch of pathology
is the Pap smear|68] which can be used to screen for precancerous cervical lesions.
Pap staining|69] is the multichromatic staining technique that used in this procedure
to feature nuclear details and assure the transparency of cytoplasm. This staining
method consists of a nuclear stain haematoxylin|70] and two counterstains OG-6 and
Eosin Azure. Hydration prepares the cell sample for uptake of the nuclear dye; de-
hydration prepares the cell sample for uptake of the counterstains. Dehydration and
clearing solutions result in cellular transparency and prepare the cell sample for the
final steps: mounting and coverslipping. Generally, the purpose of Pap staining is to
differentiate cells and reveal nuclei details. The nucleus of the cell is an important fo-
cal point for cytology. For a cancerous cell, the morphology of the nucleus can become
larger and less uniform and it can appear darker. This physical change, resulting from
altered DNA activity, can often be identified by qualitative inspection of microscopic
images of the cell by a trained histopathologist. In many cases, staining is used to
enhance the image contrast. In the paragraphs that follow in this subsection, the
specific cases of cytopathology which have been shown to be improved using Raman
micro-spectroscopy is highlighted. Although other forms of cytopathology are maybe
expected to be benefit from Raman spectroscopy, these two branches are underlined

as strong candidates for a fully automated Raman cytology system.

Approximately 471,000 women are diagnosed with invasive carcinoma of the cervix
each year and 233,000 die from the disease worldwide|23|. Cervical cancer is preceded
by a precancerous condition called Cervical Intraepithelial Neoplasia (CIN) that can
be easily treated if detected. It is therefore important to identify CIN, which can be
achieved using a screening test called a "Pap smear’. An abnormal Pap smear is fol-
lowed by colposcopic examination, biopsy and histological confirmation of the clinical

diagnosis. This usually involves the visual examination of histological sections|62].
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The grading characteristics are highly subjective and pre-malignancy may not be vi-
sually perceptible. A more recent innovation is the introduction of automated imaging
systems (ThinPrep Imaging System or Focal Point Slide Profiler) that automatically
scan the slide for large and dark nuclei which are features of abnormal cells. The Thin-
prep Imaging system has been shown be at least equivalent to manual screening[71]. In
1998, Mahadevan-Jansen and colleagues realized the potential use of near-IR Raman
spectroscopy to distinguish cervical cytology grades|72|. They developed a compact
fibre-optic probe to measure the in-vivo Raman spectra of cervical tissue|73|. Further
studies have shown promising results for the application of this method in grading
cervical pre-cancer [74]. In a recent study, a total of 1240 Raman spectra were ac-
quired from 84 cervical patients. Confocal Raman micro-spectroscopy coupled with
PCA-LDA modelling yielded a diagnostic accuracy of 84.1% (a sensitivity of 81.0%

and a specificity of 87.1%) for in-vivo discrimination of dysplastic cervix|19].

Bladder cancer is the fourth most common cancer in men, with about 74,690 new
cases of bladder cancer diagnosed in 2014 in the United States|75]. Cystoscopy is
the most widely used diagnostic method within present clinical techniques, whereby
a small tube is inserted into the bladder through the urethra to examine the lining
of the bladder and urethra. Cytoscopic identification of bladder cancer has a sensi-
tivity and specificity of between 62% - 84% and 43% - 98% [22]. Cystoscopy has a
number of disadvantages; firstly it is inherently an invasive procedure and secondly
it produces a significant number of false negatives due to the abnormal appearance
of the urothelium in patients with inflammation, which makes the identification of
carcinoma in situ problematic. Urine cytology, whereby microscopic images of epithe-
lial cells that have been retrieved from urine samples are qualitatively inspected has
been shown to be a useful adjunct for bladder cancer diagnosis[76]. While it has the
obvious advantage of being entirely non-invasive, it only achieves a high sensitivity
and specificity for high grade cancers. The sensitivity reduces significantly for low
grade cancers, which represent the majority of cases|77|. Recently it has been shown
that standard bladder cytology, which has a 80% to 90% sensitivity and 98% to 100%

specificity for high grade[20] and 20%-50% sensitivity for low grade cancer[21]| can
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be significantly improved using Raman micro-spectroscopy to achieve 92% sensitiv-
ity and 91% specificity for low grade and 100% sensitivity for high grade bladder
cancer|12][22]. Clearly, Raman cytology has a strong potential to become a standard
clinical diagnostic technique.

One important reason that explains why Raman micro-spectroscopy has not yet
become an everyday clinical tool for disease diagnosis and cell classification is that
there exists a lack of consistency and standardization in terms of equipment, con-
sumables, and methodologies across different research groups, which results in con-
siderably varying spectra. One solution that may help to mitigate the lack of stan-
dardization could be to implement a fully automated Raman cytology system thereby
minimizing user variability. In addition, a higher throughput of cellular analysis could

be expected from such a system and with a reduction in manpower and cost.

4.2 Automated Raman Cytology

4.2.1 Experimental set-up for automated Raman

Conventional Raman micro-spectroscopy involves the use of a microscope and a con-
focal aperture in order to isolate the Raman spectrum from a specific microscopic
three-dimensional point in a specimen. The laser beam can be delivered at 180° to
the sample surface or at 90°, in either a back scattering- or transmission-based sys-
tem. Biological samples can be measured both in vitro and ex vivo with this method
by mounting them onto a substrate.

Fig. 4-1 illustrates the system for automated Raman micro-spectroscopy that has
been custom built in the lab. A state of the art Raman microscope will cost in the
order of at least $100,000 (can be much more) but an equivalent one can be built
from basic elements for less than half this amount.

The basic optical design in the lab is as follows; The delivery path (red path in
Fig. 4-1) begins with a laser with a sufficiently narrow bandwidth (Sacher Laser TEC
520 7080-100, wavelength 785 nm, power 120 mW) first passing through a computer
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Figure 4-1: Automated Raman cytology system setup
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controlled filter wheel. The reason for this filter wheel is to allow blocking or reduction
of the laser when performing image capture and image processing which constitutes
a core component of the automation process. An electronic shutter or iris could
perform the same function. Following the filter wheel, an optical isolator OI (Sacher
Laser, ISO-35-0780) ensures elimination of any back reflections from the set-up that
may return into the laser cavity and damage the laser head. A line pass filter LP
(Semrock LLO1 785-12.5) is placed after the isolator, which removes any spurious lines
from the laser. Only the line at 785nm is allowed to reach the neutral density filter
ND (Edmund Optics) which can be rotated enabling the power of the laser beam to
be varied. This is followed by two lenses, L1 and L2 (Thor Labs), that are used to
expand the laser beam such that the diameter of the collimated beam is approximately

equal to the back aperture of the microscope objective MO (UMPlanF1 50x/0.85)

The collimated beam is directed onto a dichroic beam splitter DB1 (Semrock
LPDO01-785RS) which reflects light at 785 nm but transmits higher wavelengths.
This facilitates reflection of the laser beam into the microscope while allowing the
backscattered Raman photons to pass through towards the spectrograph. DB1 re-
flects the beam towards a mirror, M (MaxMirror), and then onto a second dichroic
mirror, DB2, which relects all wavelengths above 650 nm and transmits all shorter
wavelengths. DB2 is carefully aligned such that it reflects the beam directly into the
back of the microscope objective. The microscope objective is chosen such that it has
a high numerical aperture which is important for delivering a tightly focused illumi-
nation spot and for recovering as many Raman backscattered photons as possible. It
is also important that the microscope objective efficiently transmits light in the NIR
as this will also impact on the system to recover a strong Raman signal; plan fluorite
microscope objectives provide good performance. The microscope objective focuses
the beam to a tightly focused spot on the sample S approximately 1-2pm in diame-
ter. The sample is placed on a translation stage, T'S (ASI, LS-2000 and LS-50), that
enables sample positioning relative to the laser spot. For the application of cellular
classification, it is desirable to position the cell such that the spot is located within

the cell nucleus as this results in optimum classification sensitivity.
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The collection path (shown in orange in Fig. 4-1) originates at the sample plane
where the backscattered Raman photons (785-1050 nm) travel back through the mi-
croscope objective, are reflected by DB2 and then pass through the dichroic beam
splitter DB1. A holographic notch filter HN (Kaiser HNF-785.0-1.0) is used to remove
Rayleigh scattered light at 785 nm that has passed through the dichroic beam splitter
while simultaneously transmitting all other wavelengths. A third lens L3 (Thor Labs)
focuses the light to a 100um confocal aperture CA (Thor Labs) that is used to ensure
that light reaching the spectrograph has originated from a three dimensional point
within the object in the order of 1um in all three dimensions, thereby enabling 3D
localization of the Raman signal from the sample. The lens L4 (Thor Labs) forms
a one-lens imaging system from the plane of the confocal aperture to the plane of
the entrance slit SL of the spectrograph (Andor Shamrock 500), which provides 0.25
magnification, thereby ensuring that the spot size entering the spectrograph is equal
to the pixel pitch of the spectrograph camera (25um). The system was designed such
that the angle of light entering the spectrograph is matched to the f number of the
spectrograph (6.5). A long pass filter, LP (Semrock LP02-785RU-25), is placed near
the entrance slit in order to further reduce any Rayleigh scattered/laser light that has
reached the spectrograph. The image of the slit is projected onto a cooled electron
multiplying CCD camera CCCD (Andor DU420A-BRDD) via a collimating mirror
CM, a diffraction grating DG, and a focusing mirror FM. Each row of pixels records
an image of the slit corresponding to a specific wavelength, and in this way the Raman
spectrum is recorded using the Andor Solis software system. It is important to use a
high quantum-efficiency, low-noise, cooled CCD in order to recover the weak Raman

signal with minimal noise.

Independently, a separate imaging path shown in green in Fig. 4-1, allows the
sample to be imaged directly onto a second digital camera. A 100-W halogen lamp
passes through a green filter GF (Nikon) and then through an Abbe condenser MC
(Nikon) which focuses the light onto the sample and into the microscope objective.
Since the green light has a wavelength less than 650 nm, the light passes through DB2
and then through a short pass filter SP (Semrock FF01-775/SP-25), which is designed
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to transmit all wavelengths shorter than 775 nm thereby blocking the laser light. The
lens L5 images the object plane onto a digital camera, DC (Basler acA20002AS340km
with 1088x2040 pixels with size 5.5um in both dimensions), that is fixed to the front
exit port of the microscope. This short pass filter can be removed if the laser spot
imaged onto the camera is wished to be seen, which can be useful for one form of
automation mentioned below; it has been found that the optimal scattering plane
can be determined by processing images of the sample where the laser illumination
spot is visible. However, it is possible to determine this optimal plane in other ways,
thereby allowing SP to be utilized and thus removing the need for the filter wheel,
W, to eliminate the presence of the laser spot when capturing images of the sample.

This is regarded as a subject for further study.

4.2.2 Method of Automation

In the proposing automated system, the following elements are controlled using a

single software package:

e The microscope halogen lamp can be switched on and off electronically . The
lamp must be turned on for imaging the cells and automatic alignment of the
cells with the laser but it must be turned off when recording a Raman spectrum
as some of the light will make its way to the spectrograph and swamp the Raman

signal.

o A filter wheel, W, or electronic shutter is used to block the laser when recording
images of the cells on the digital camera. The laser must be on when recording
a spectrum but it must be turned off when recording images of cells to be used

in the image processing algorithms as part of the overall automation process.
e The CMOS digital camera can record images of the sample.
e The cooled CCD camera can record spectra.

e The zyz translation stage can be controlled electronically to align a cell following

from image processing algorithms.
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e The angle of the grating in the spectrograph can be controlled in order to change
the wavelength range that is recorded. It is also possible to change the grating

itself if different resolutions/spectral bandwidths are required.

e In this chapter, a method that entails one manual step involving a change in
microscope objective is described. This enables changing from low to high
magnifications at different stages of the automation process. It is possible for
the microscope objective to be changed automatically using an electric turret

wheel on a motor.

The automation process consists of a number of steps that are illustrated in
Fig. 4-2. All of these steps are implemented using a single software package called
Micromanager|24] which can integrate all of the hardware and software that is dis-
cussed in the previous section. The initial series of steps, shown on the left side of
Fig. 4-2, are applied using a lower magnification objective; in this case a Nikon x20
plan fluor objective is used. This allows us to scan a relatively large field of view
on the slide which facilitates an automated selection process where cells are chosen
for Raman spectroscopy based on some quality metric. All images recorded using
x20 magnification result in an equivalent pixel size of 0.275um in both of the in-
plane dimensions, x and y. This value of effective pixel size decreases by a factor of
5 times when the microscope objective is switched to the x100 magnification which
gives 0.055um.

The initial set of operations are implemented at x20 magnification and the pro-
cesses begin by manually choosing a good starting position (xg, %o, 20)-(%0, o) is ar-
bitrary so long as the chosen area has enough candidate cells and is not very close to
the edge of the substrate. For full automation, the centre of the substrate can simply
be selected but basic manual alignment to an area with cells will speed up the overall
process. However, the initial position in the z direction, zy, is required to be the global
in-focus plane. This can be automated using a basic autofocus algorithm|44]. Once
(%0, Yo, 20) s selected, the following process in x20 magnification is automatically per-

formed using a script written in Micromanager. The initial steps are designed for the
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Figure 4-2: Flow chart of automation process.
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purpose of quickly scanning a relatively large field of view in order to identify good
candidate cells from all of the cells in the field. At the end of the first stage, a list of
coordinates of suitable cells are generated according to some metric. Suitable metrics

include (but are not limited to) the following:

e The distance between neighbors whereby the cell that is most distant from its
neighbors (i.e. most isolated cell) will rank first. This can enable us to be sure
that cells are not overlying one another which can result in problems in spectra
recording. This is the metric that is applied in the experimental validation

presented here.

e Some other aspects of morphology eg. the overall cell size, the nucleus size or
the cytoplasm to nuclues ratio. These values could be determined using other
segmentation algorithms that are not discussed here or they could be inferred

in some way from the bright spots that are described below.

e The appearance of new cells in a particular area if a sequence of images are
captured with cell growth occuring between captures. Such new cells could be

quickly identified using the bright spot methodology described below.

The nucleus of cells are often spherical or ellipsoidal in shape and are more dense
that the surrounding cytoplasm. One effect of this morphology is that the cell ef-
fectively behaves like a small crude lens that approximately focuses the microscope
illumination to a point spot at a short distance below the cell (assuming an inverted
microscope configuration.). This lens effect leads to the appearance of bright white
spots in a plane that is slightly below the image focus plane for an inverted microscope
(slightly above for an upright microscope.) The (z,y) location of this spot indicates
the (z,y) location of the nucleus. An example of this effect is provided in Fig. 4-3
below. The experimental parameters need to be described here: bladder cell line T24,
x20 magnification, Basler camera. The z shift between image (a) and (b) in um.

Similar methods have previously been applied to count unstained cells using

brightfield microscopy. In Ref. [40] the spatial coherence of the source illumination
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Figure 4-3: Unstained bladder epithelial cells on a Calcium Fluoride slide shown
in-focus on the left image and a slightly out of focus image is shown on the right.
The bright spots in the image approximately overly the centres of the nuclei of the
cells. The sizes of microscope images shown above are identical which is 280.5um
(width)x149.6um (height).

was considered to be an important factor in the appearance of the spots. However, It
has been found that for the cells have been investigated, standard Kohler illumination
provides satisfactory results. To choose the best white spot plane automatically, a
stack of images along the vertical direction is firstly recorded and saved starting from
a position 35um below the focal plane with a step size of 2.5um. In total, 30 steps
are taken; 14 images are below the focal plane and 15 images above. The variance
of each image is calculated in order to find the maximum value which corresponds
to the plane which is considered to have the optimally bright spots that can be used
in the subsequent processing steps. The plot of image variance versus z position is
shown in Fig. 4-4. The stage is then moved to the plane resulting in the maximum
image variance.

For the steps shown on the left side of flowchart in Fig. 4-2, only the x20 magni-
fication is employed and the z position of the translation stage remains unchanged.
The stage is scanned in the x and y directions in order to record a grid of contigu-
ous images. In practice, some overlap between the images are required in order to
facilitate stitching into a larger image. In the example presented in Fig. 4-5 3x3 im-

ages were recorded by moving translation stage 14.96um up or down and 28.05um left
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Figure 4-4: Variance plot for the stack of images in the vertical direction. The
maximum value corresponds to the plane with the optimally bright spots, which is
then used for locating cell nuclei.

which corresponds to the half image height and width respectively. These nine images
are then stitched together using a correlation algorithm|[12|. The result of stitching
these images together is to create a larger image of approximately 2176 x 4096 pixels
which corresponds to an area of 0.25mm x 0.5mm in size, which covers a large portion
of the cells on investigated slide. From this large image, the positions of the local
maxima is detected in the image where a threshold is included in order to make sure
that only suitably bright spots are targeted. In this way, the approximate horizontal
coordinates of the cell nuclei can be identified. The cells are then ranked according to
some metric as discussed above. In this case, cell candidates are ranked according to
isolation, thereby ensuring that manually overlying cells are not included, the spectra
of which may be corrupted. The process is illustrated in Fig. 4-5.

In the second stage of the automation process, the microscope objective is changed
from from x20 to x100 magnification and immediately an autofocus algorithm is
applied to again detect the best focal plane. The automation algorithm now moves
the stage to the coordinate of the first cell in the list. A minor adjustment is necessary

to relocate the target cell nucleus to the center of the laser spot due to an offset in
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(b)

Figure 4-5: (a) Illustration of the recording of a grid of images with 50% overlap.
In this example nine overlapping images are recorded (8 shifts are shown); (b) The
larger image made up of the nine record images. This stitched image size is 561um
(width)x299.2um (height). All of the cell nuclei are found using the bright spot
method, as shown using the red targets.

the experimental setup that is brought about by changing the microscope objective.
To align correctly, a stack of images along the z axis is recorded and saved, once
again using a step size of 2.5um and again the image corresponding to the maximum
variance is found in order to determine the best white spot plane. The stage is moved
to align the white spot with the laser spot. The horizontal position of the stage is
now correctly aligned but the z position is not yet ideal for recording a Raman signal

of the cell nucleus. Two options are presented for optimal z positioning:

e The best z position of the cell nucleus can be empirically determined using the
most in focus plane and/or the white spot plane as a reference. This can be
achieved by recording a Raman spectrum for a stack of different z positions,
using a relatively short exposure time of approximately 5 seconds and qualita-
tively deciding best spectrum. This could be repeated for a number of different
cells and the best z position, relative to the focal plane or the white spot plane,
can be empirically estimated in this way. The optimal position can then be used
for each new cell using the most in-focus plane and/or the white spot plane as
a reference. Alternatively the procedure could be repeated for every cell, where
a relatively short exposure time is used to record a series of images in the z di-
rection; the best z position could be decided by quantitatively inspecting each

recorded spectrum and deciding on the best one by applying a simple criteria
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based on expected cell peaks. Once the best z position is determined, a longer

exposure time can be used in this position.

e The microscope lamp can be automatically switched off and the laser can be
automatically switched on . Then a stack of images can be recorded and ob-
serve the scattering of the laser spot for different z positions. The z position
corresponding to the least amount of scattering is the optimal plane; see Fig.
4-6. This plane can be identified again using variance or mean value. This is

the method we employed in the example presented here.

Figure 4-6: Image of the laser spot at the z position resulting in least scattering. This
image size is 56.1um (width)x29.92um (height).

Once alignment in all three dimensions has been achieved, the alogirthm switches
off the microscope lamp, switches on the laser and records a spectrum for a predefined
exposure time using the cooled CCD camera. An additional step that could be
included to test the quality of the spectrum and to decide whether or not to save
or record another spectrum. Finally, the laser is switched off using the filter wheel,
the lamp is turned on and the xy stage moves the slide to the position of the second
cell on the list. The process is repeated until some pre-defined number of cells are
investigated or there are no more cells on the list. Finally, when all of the spectra
have been recorded, an algorithm to reduce the background|78|[79], remove cosmic
rays|80], and to area normalize is automatically applied. The code for preprocessing

is written in matlab which is automatically called from the Micromanager script.
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4.3 Conclusion

In this chapter, an automated Raman cytology system built around the Microman-
ager software system was introduced which integrates various hardware and software
components including an autofocusing algorithm that was proposed in Chapter 2 and
a number of image processing steps. The experimental validation using several cell
lines is currently being investigated at the time of writing this thesis. The content of

this chapter is the subject of a journal paper in preparation.
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Chapter 5

Conclusion and Future perspectives

In this thesis, an automated Raman cytology system has been developed which is built
around the open source Micro-manager software system. This system is made up of
a conventional confocal Raman micro-spectroscopy system and controls a translation
stage, an illumination lamp, a filter wheel, a spectrograph, and two cameras that are
connected to the computer. Automation is realised by scanning a slide and recording
a series of images using standard brightfield microscopy; the images are then stitched
together to form a large mosaic, which is then input to an image processing algorithm
that is capable of identifying the cell positions and recording them for further analysis.
The nucleus of cell provides the most reliable spectrum for diagnostics and proposed
algorithm is capable of identifying the nucleus without the need for staining. The
process involves a number of image processing algorithms for autofocusing, image
stitching and for identification of approximate centre of the cell nucleus.

Chapter 2, an analysis of autofocusing algorithms was provided for unstained
cells by investigating 15 commonly used autofocus metrics that have been previously
applied to stained or fluorescent cell images. For the first time that the position of
the global minimum on the autofocus curve corresponds to the correct focal plane is
identified for unstained cells instead of the position of the global maximum which is
the well known case for opaque objects. The reason for this is that the unstained cells
are described by an approximately phase-only transmission function and they appear

effectively transparent when they are in-focus and in this plane there exists very little
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image contrast; however, as moving away from this focal plane, either above or below,
high contrast features appear in the image. These high contrast out-of-focus details
result from the effect of a phase-only function that is propagated a short distance. A
simple example of this is the imaging of a lens; imaging of the lens plane will provide
an image with no detail but the image of the focal plane of the lens will contain a
a region of focused light, assuming a light source is behind the lens. This example
is not chosen arbitrarily. The nucleus of a cell behaves like a miniature lens and
approximately focuses the microscope illumination to a crude bright spot in a plane
that is a short distance from the correct image plane. This effect is used to identify
the positions of the cell nuclei, which in turn facilitates optimal alignment of the cells
with the source laser for Raman micro-spectroscopy. It has been determined that
the best plane to image these "bright spots" can be located at the maximum value of
certain autofocus metrics which further simplifies the overall process. In Chapter 3, an
algorithm was presented for recovering the 3D morphology of a cell using brightfield
microscopy, where once again the autofocus metrics that were investigated in Chapter
2 are used. In this case, a stack of images in recorded where the slide is moved along
the vertical axis and the metrics are applied to sub-regions in the image planes. In this
way, the most in-focus depth for each smaller region can be determined and a depth
map of the cell can be estimated. Two algorithmic approaches were demonstrated
with different advantages in terms of computational time and spatial resolution and
the more intensive case was implemented using GPU processing in order to speed up
the overall process by almost two orders of magnitude. At the time of writing this
thesis, this algorithm hasn’t been incorporated into proposed automation procedure,
but it should be envisaged that more accurate cell alignment could be achieved by
doing so and this is considered to be a viable route for future research. We believe
after recording a set of spectra, cosmic ray removal algorithm, background subtraction
algorithm and classification algorithm like PCA and LDA can be applied afterwards

to get diagnostic results.

At the time of writing this thesis, the research is in the stage of testing proposed

automated Raman cytology system on a number of cell lines, but this work is not
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sufficiently complete for presentation in this thesis. Over the coming weeks, we hope
to complete experimental work and to test and validate the automated Raman cy-
tology system on a number of bladder cancer and breast cancer cell lines in order
to achieve high sensitivities and specificities for each case using PCA and LDA. In
future work, we would like to combine the 3D morphology algorithm with the au-
tomation system for superior nucleus alignment and we would also like to test the
proposing system on patient samples for a true diagnostic test. In the longer term,
we envisage the development of more sophisticated image processing algorithm that
may be capable of distinguishing between different cell types in the image for a more
targeted approach. Such an algorithm is necessitated by the presence of other cell
types in bladder and cervical cytology, e.g. blood cells. We are also considering
the development of a digital holographic microscope that is built around the existing
confocal Raman micro-spectrometer that would be capable of providing very reliable

information on cell shape and morphology.
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