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Palaeoclimate data relating to hydroclimate variability over the past millennia have a vital contribution 
to make to the water sector globally. the water industry faces considerable challenges accessing 
climate data sets that extend beyond that of historical gauging stations. Without this, variability 
around the extremes of floods and droughts is unknown and stress-testing infrastructure design and 
water demands is challenging. User-friendly access to relevant palaeoclimate data is now essential, and 
importantly, an efficient process to determine which proxies are most relevant to a planning scenario, 
and geographic area of interest. this paper presents PalaeoWISE (Palaeoclimate Data for Water 
Industry and Security Planning) a fully integrated, and quality-assured database of proxy data extracted 
from data repositories and publications collated in Linked Paleo Data (LiPD) format. We demonstrate 
the application of the database in Queensland, one of australia’s most hydrologically extreme states. 
The database and resultant hydroclimate correlations provides both the scientific community, and 
water resource managers, with a valuable resource to better manage for future climate changes.

Background & Summary
The essential value of high-resolution accessible global palaeoclimate datasets to climate change predictions is 
well recognised1–3. The rise in popularity of data repositories together with advances in computing mean that 
large-scale data compilation and analyses are now more accessible1,2,4–7. Despite such advances, a disconnect 
remains between the availability of palaeoclimate databases and uptake by key industry sectors. One such sector is 
the water industry, which faces significant challenges with respect to climate variability and change and its impact 
on future water supply8.

Improvements to industry decision-making can only be facilitated by establishing the ‘plausible ranges of 
climate change’8 and the reduction in the uncertainty afforded by millennial-scale records9. The relatively short 
observational record-length (<100 years) available for hydrological modelling and water planning, is insufficient 
to capture variability around the extremes of floods and droughts9–14. Climate information also plays a key role in 
enabling the sort of ‘smarter solutions’ required of the industry, with several applications demonstrating the tan-
gible benefits of incorporating palaeoclimate data into water management13,15–17. Palaeoflood data, for example, 
is now routinely used to improve flood frequency analysis in several countries9,18,19 and is especially valuable to 
‘stress test’ infrastructure design to safeguard against dam overspill.

Using palaeoclimate data from the Australasian region, we present an efficient and integrated tool that allows 
access to a standardised database to rapidly assess the proxy records most relevant to a hydroclimate scenario, 
and geographic area of interest. The database represents an expansion on previous compilations and includes 
records reported in Freund et al. (2017), Dixon et al., (2017), and Comas-Bru et al., (2020) with additional records 
sourced directly from publications or authors. The database comprises 396 records derived from 11 different 
archive types (e.g., corals, tree rings, sediments, speleothems) with an emphasis on the Common Era (i.e., the 
last 2000 years). We demonstrate the application of this palaeoclimate information to both the scientific commu-
nity and the water industry by testing the temporal correlation between sample proxy records and a full suite of 
hydroclimate indices relevant to water planning in Queensland, one of Australia’s largest and climatically variable 

1School of Geography, University College Dublin, Belfield, Dublin, Ireland. 2Queensland Department of environment 
and Science, Brisbane, Australia. 3catchment connections, Brisbane, Australia. 4Hamilton institute, Mathematics 
and Statistics, Maynooth University, Maynooth, ireland. 5Victoria Department of environment, Land, Water and 
Planning, Melbourne, Australia. ✉e-mail: jacky.croke@ucd.ie

Data DESCRIPtoR

oPEN

https://doi.org/10.1038/s41597-021-01074-8
http://orcid.org/0000-0003-2846-3456
http://orcid.org/0000-0002-9626-1189
mailto:jacky.croke@ucd.ie
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-021-01074-8&domain=pdf


2Scientific Data |           (2021) 8:292  | https://doi.org/10.1038/s41597-021-01074-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

states. The approach provides palaeoclimatologists, hydrological modellers, water managers, and decision mak-
ers with the opportunity to incorporate ranges of environmental change and hydroclimate variability to better 
inform stress testing decisions. The approach can be used to produce similar output for the entire continent of 
Australia and elsewhere in the southern hemisphere. The resultant datasets also offer the scientific community a 
valuable opportunity to explore underlying patterns in the mechanisms driving climate variability in the southern 
hemisphere.

Methods
All data presented in this database have previously been published, and the original peer-reviewed publications 
should be consulted for detailed information on data collection methods, analyses and interpretation. In particu-
lar, we stress the importance of recognising some of the inherent limitations of different palaeoclimate proxy data 
as they relate specifically to chronological uncertainties, and any lagged response between proxy and climate that 
may be related to site-specific environmental conditions20. Some of these limitations are summarised in more 
detail on the project website www.palaeoclimate.com.au.

Palaeoclimate data compilation. Data Sources. The majority of proxy records were sourced from 
online data repositories (e.g. NOAA World Data Service for Paleoclimatology, PANGAEA) and extracted using 
record details contained within the published reviews of Freund et al. (2017) and Dixon et al. (2017), which 
focus on proxies relevant to Australian climate. Freund et al. (2017) report details of a high-resolution (annual 
or higher) proxy network from the southern hemisphere which were used to reconstruct rainfall for Australia’s 
eight natural resource management regions. Low-resolution proxies (>annual) were largely sourced from Dixon 
et al. (2017), who identified a total of 132 high quality palaeoclimate datasets and also provided alternative chro-
nologies based on revised age modelling. Relevant records from the Speleothem Isotopes Synthesis and AnaLysis 
(SISAL) database21 were filtered using the geographic extent for the region influential to Australasian climate 
(cf. Dixon et al. 2017). Where data were not in an online repository, they were sourced from the supplementary 
materials or directly from the authors.

Selection Criteria. Extracted records were screened against several broad criteria to capture the maximum num-
ber of both high and low-resolution records before being collated in the database. To enhance usage by water 
resource managers, the Common Era was prioritised where resolution is generally high, with >50% of datasets 
having a temporal resolution of annual or greater.

The following final criteria were used:

 1. The proxy record must be detailed in a peer-reviewed publication.
 2. The proxy record must contain at least two samples dated to within the last 2000 years.
 3. The proxy record must span at least 20 years.
 4. The proxy record must not require further processing to yield a chronological time series. This relates 

particularly to the exclusion of tree-ring datasets comprised of raw tree-ring width values, which would 
require further processing.

 5. The proxy must be related directly, or teleconnected to, Australian climate, as stated in the original publica-
tion or a more recent published synthesis.

Database collation of proxy records. Proxy records including all associated metadata were compiled and refor-
matted in the Linked Paleo Data (LiPD) format7 using the lipdR and dplyr packages in the statistical language 
R22–24. The LiPD format is based on linked JavaScript Object Notation (JSON-ld), and has the benefits of being 
highly flexible, self-contained (data and metadata are always stored together), and permits integration and com-
parison with previously published syntheses1,2,4,25.

Table 1 outlines a subset of metadata fields for proxy records stored in the database, which is provided as both 
LiPD and R data files26. PalaeoWISE database users are directed to McKay and Emile-Geay (2016) and the Linked 
Earth Ontology27 for full details of database structure and standard definitions and terminology of field names. 
All included fields are fully described in the PalaeoWISE files26. PalaeoWISE26 also includes an overview of the 
completeness of the database fields in the supplementary material (Section 1). Meta-analysis and visualisation of 
the database were undertaken in R using the packages dplyr, ggplot2, sf, and rnaturalearth23,24,28–31.

Following collation and standardisation of proxy records, summary dashboards were produced for each 
record to facilitate the quality control of database contents similar to those outlined by PAGES2k Consortium 
(2017). Further detail on quality control procedures and examples of dashboards are provided in the Technical 
Validation section.

Data Records
The PalaeoWISE (Palaeoclimate Data for Water Industry and Security Planning) database contains 396 palae-
oclimate proxy records26,32–128, each of which documents an archive’s response to past changes in climate. The 
majority of proxies come from sites located in the Australasian region, with some records in the Indian and 
central Pacific Oceans, as well as Antarctica (Fig. 1). The geographic distribution of proxies is predominantly 
from tropical latitudes (Fig. 1). This reflects both the dominance of tropical coral as a palaeoclimate archive for 
the Australasian region and the influence of dedicated ocean/atmospheric climate research programs that have 
produced multiple proxy records from a single site (e.g. Global Tropical Moored Buoy Array Program) (Table 2). 
A single marine sediment core extracted from the Makassar Strait, Indonesia, for example, has yielded four proxy 
datasets94. Records are derived from diverse archives (coral, foraminifera, ice cores, leaf material, ostracods, 
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Brief 
Citation DOI

Dataset 
ID Location Latitude Longitude

Archive 
Type Proxy Type

Start 
Year 
(CE)

End 
Year 
(CE)

Overlap 
with 
1 ka 
(years) Continuity Resolution

Duncan 
et al., 
2010138

https://doi.org/10.1007/s00382-010-0794-2 156

South 
Island and 
Lower 
North 
Island

−43.27 172.18 Tree Ring Tree Ring 
Width 1457 1999 542.0 Continuous Annual

Barr 
et al., 
2019139

https://doi.org/10.1038/s41598-019-38626-3 199 Swallow 
Lagoon −27.50 153.45 Leaf Material

Delta Leaf 
(Carbon 
Isotope 
Discrimination)

−5743 1993 974.0 Continuous 
With Gaps

Multi-
Annual

Hendy 
et al., 
2003140

https://doi.org/10.1191/0959683603hl606rp 269
Great 
Barrier 
Reef

−18.50 146.75 Coral Luminescence 1612 1985 373.0 Continuous Annual

Griffiths 
et al., 
2016141

https://doi.org/10.1038/ncomms11719 408 Liang 
Luar Cave −8.53 120.43 Speleothem Delta-

Carbon-13 −20 1997 978.0 Continuous Multi-
Annual

Dixon 
et al., 
20174

https://doi.org/10.5194/cp-13-1403-2017 470
Lake 
Logung, 
East Java

−8.04 113.31 Sediment Calcium-
Titanium Ratio 1975 2007 32.5 Continuous Sub-

Annual

Dixon 
et al., 
20174

https://doi.org/10.5194/cp-13-1403-2017 497 Makassar 
Strait 3.88 119.45 Foraminifera Aluminium-

Calcium Ratio 1664 1971 306.8 Continuous Multi-
Annual

Jones 
et al., 
2014142

https://doi.org/10.5194/cp-10-1253-2014 595 Siple 
Dome −81.66 −148.72 Ice Core Delta-

Oxygen-18 1919 1995 76.0 Continuous 
With Gaps Seasonal

Table 1. Description of a selection of metadata fields with examples given for the eleven proxy datasets used in 
the technical validation section. The extended version of this table is included in PalaeoWISE26 which details all 
records in the database.
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Fig. 1 Spatiotemporal overview of the palaeoclimate proxy database (n = 396). (a) Distribution of proxy 
records by archive type. (b) Proxy temporal availability by archive type for the Common Era, and proportional 
availability by archive type for the last~38 ka (inset). (c) Latitudinal distribution of proxies by archive type (10 
degree bins). Vector map data sourced from http://www.naturalearthdata.com/. An interactive map of the 
database is available at www.palaeoclimate.com.au.
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sediment, speleothems, and tree rings) and the temporal resolutions range from monthly/seasonal (e.g. corals) to 
decadal/centennial (e.g. foraminifera) (Fig. 1). Records in the database have timespans ranging from 21 to 40,000 
years, although the majority of records do not extend beyond the beginning of the Common Era (Fig. 1, Table 2).

PalaeoWISE26 is hosted on figshare (https://doi.org/10.6084/m9.figshare.14593863.v3), which 
is also accessible via the project website (www.palaeoclimate.com.au/project-outputs/proxy-map/
access-the-palaeowise-database/). PalaeoWISE26 includes 15 items as detailed in Table 3, together with the code 
to produce the figures presented in this manuscript. The proxy data are presented as a zipped folder of LiPD 
and Rdata files and includes a brief introduction on how to interact with LiPD files in R and a README.txt 
file. PalaeoWISE26 also includes all proxy dashboard figures (Fig. 2), and correlation maps and coefficients for 
each of the 396 proxy records, 73 Queensland catchments, and 75 climate variables. An analysis of correlation 
coefficient lags (in years) for the seven example proxy datasets is also included in PalaeoWISE26. More infor-
mation for each item can be found in Table 3 and in the PalaeoWISE readme file26. The proxy data contained 
in PalaeoWISE26 is also hosted by NOAA World Data Service (WDS) for Paleoclimatology (https://www.ncdc.
noaa.gov/paleo/study/34073)32. This community-specific, open access repository archives the PalaeoWISE proxy 
data in LiPD format, and also in the WDS template text format for records not previously archived in the WDS 
Paleoclimatology32.

technical Validation
Database quality control. Essential quality assurance was completed on the individual proxy records using 
summary dashboards following the example of PAGES2k Consortium (2017). Proxy records, which comprise a 
single timeseries and multiple metadata fields, were verified by comparison with the original source data where 
available. The full collection of summary dashboard plots is available in PalaeoWISE26. The overall completeness 
and accuracy of individual datasets was also verified during the creation of the LiPD files for each dataset.

Relationship between proxies and hydroclimate. A key goal was to examine the extent to which the 
database captures the variability in hydroclimate using the state of Queensland as an example. However, a com-
mon challenge is that of stationarity, which assumes that the relationship between the proxy and climate variable 
over the shared period is representative of the entire time span of the proxy record. While methods exist to model 
unstable/nonlinear or multivariate relationships between proxies and climate variables, the approach adopted 
here is simple in the hope that it can be employed by a greater range of potential users, including the water indus-
try, to efficiently screen the database for proxy data of relevance to catchment-scale hydroclimatic variability.

Archive type References*
No. of 
datasets Resolution

Overlap with 
the Common 
Era (years)

Coral

Lough, 2011143, Tudhope, 2001144, Linsley et al., 2006145, Linsley 
et al., 2000146, Urban et al., 2000147, Zinke et al., 2004148, Zinke 
et al., 2016149, Kuhnert et al., 2000150, Dunbar et al., 1994151, 
Bagnato et al., 2005152, Linsley, 2000153, Hendy et al., 2003140, 
Quinn et al., 1998154, Zinke et al., 2015155, Charles et al., 2003156, 
Cole et al., 2000157, Kuhnert et al., 1999158

78 Annual, Monthly/seasonal 402

Foraminifera Newton et al. 2006159, Stott et al. 2004160, Oppo et al. 2009161, 
Steinke et al. 2014162, Dixon et al. 20174 61 Annual, Decadal/centennial 1987

Ice core Vance et al., 2013163, Jones et al., 2014142, Banta et al., 2008164 25 Annual, Monthly/seasonal 1009

Leaf material Barr et al., 2019139, Konecky et al. 2013165, Tierney et al. 2010166, 
Langton et al. 2008167, Dixon et al. 20174 11 Annual, Decadal/centennial 2000

Ostracod Gouramanis et al. 2010168, Dixon et al. 20174 39 Decadal/centennial 2000

Sediment

Marx et al., 2011169, Lam et al., 20179, Croke et al., 201612, Brooke 
et al., 200885, Rodysill et al. 2012170, Saunders et al. 2013171, 
Saunders et al. 2012172, Wilkins et al. 2013173, Steinke et al. 
2014174, Langton et al. 2008167, Kemp et al. 2012175, Dixon et al. 
20174

48 Annual, Decadal/centennial 2011

Speleothem

Haig et al., 2014176, Rasbury and Aharon, 2006177, Griffiths et 
al. 2016141, Dixon et al. 20174, Partin, 2013178, Maupin, 2014179, 
Hartmann, 2013180, Treble, 2005181, Wurtzel, 2018182, Chen, 
2016183, Krause, 2019184, Williams, 2005185, Williams, 2004186, 
Lorrey, 2008187, Griffiths, 2009188, Ayliffe, 2013189, Nott, 2007190, 
Partin, 2007191

59 Annual, Decadal/centennial, 
Monthly/seasonal 2011

Tree ring

Duncan et al., 2010138, D’Arrigo et al., 1996192, Xiong and 
Palmer, 2000193, Palmer et al., 1988194, Palmer et al., 2015195, 
Ahmed and Ogden, 1985196, Fowler et al., 2004197, Fowler, 
2008198, Buckley et al., 1997199, Allen et al., 2001200, O’Donnell 
et al., 2015201, Buckley et al., 2010202, Brookhouse et al., 2008203, 
D’Arrigo et al., 1998204, D’Arrigo et al., 2000205, Xiong et al., 
1998206, Norton 1983207

75 Annual 981

Table 2. Summary of all proxy records in the database by archive type. Note: a single reference may be 
associated with multiple datasets. *bold text denotes references for the example datasets discussed in this paper. 
Italicised text denotes references for which data were sourced from supplementary materials or directly from 
authors.
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Selection of example proxy and hydroclimate variables. From the complete database, an example proxy set was 
selected for each of the eight archive types (sediment, foraminifera, ice core, leaf material, tree ring, ostracod, spe-
leothem and coral) based on the highest correlation coefficient between the proxy, the 75 climate variables and 73 
Queensland catchments. None of the ostracod-derived proxies reported a significant correlation coefficient with 
any of the selected climate variables and catchment, so no example is provided here. The data sets for the example 
proxy records are either continuous or have gaps/irregular time steps to allow us to test for changes in correlation 
coefficients based on record continuity, but all have an average temporal resolution of less than ten years.

A comprehensive set of hydroclimate variables relevant to catchment-scale hydroclimate modelling and 
future climate change projections (https://www.longpaddock.qld.gov.au/qld-future-climate/dashboard/) 
were selected: annual rainfall, evapotranspiration, temperature, Standardised Precipitation Index (SPI)129,130, 
Standardised Precipitation Evaporation Index (SPEI)129, and indices for severe and extreme wetness and dryness 
(Table 4). Gridded datasets (cell size = 0.05 degrees, approximately 10 km) of annual rainfall, evapotranspira-
tion, and temperature were extracted from the Scientific Information for Landowners (SILO) database (https://
www.longpaddock.qld.gov.au/silo) for the period 1889 to 2019 using the July to June water year. SPI and SPEI 
grids (cell size = 0.05 degrees) were then calculated from instrumental data at timescales of 12, 24, 36, and 48 
months (Table 4), which are standard accumulation periods used by hydrologists and climatologists. In terms 

Filename Contents

Dataset_details.pdf Summary table of key metadata for each dataset

lipds.zip LiPD files of data and metadata for each dataset.

lipds.rdata Rdata file of data and metadata for each dataset

fieldnames.xlsx Spreadsheet of fieldnames and their descriptions.

corr_maps.zip Correlation maps of maximum significant absolute correlation coefficient by catchment for each climate 
variable and the 396 proxy datasets in the database.

Success_histograms.pdf PDF of ‘success histograms’ for each climate variable.

Corrs_max_abs_sig.zip Concise correlations (maximum significant absolute correlation coefficient) for each catchment, dataset, 
and climate variable.

Corrs_all_lags_sig.zip Full Correlation data detailed for all lags (−5 to +5) for each catchment, dataset, and climate variable.

For_gis_sig.zip Concise correlation data formatted for making correlation maps

Data_dashboards.pdf Dashboards for all proxy datasets

Supplementary_Material.pdf Results from correlation method comparison.

Croke2021Figs R code and data to reproduce the figures in this paper

Lipd_guide.html .html with instructions and examples about reading LiPD files and do some basic manipulation

Lipd_guide.Rmd Markdown file with instructions and examples about reading and manipulating LiPD files. The code 
interacts with the data in PalaeoWISE, so users can use the code directly.

README.txt A text file which details the contents of PalaeoWISE and the structure of the LiPD files

Table 3. Description of files contained in PalaeoWISE26.

Fig. 2 Quality control dashboard for Dataset ID 269. Dashboards for all proxy records in the database are 
provided in PalaeoWISE26.
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of hydrological applications annual and multi-annual time scales are important for water storages (and thus 
water supply security) because storages aggregate water over time and have variable ‘stress’ periods ranging 
from single to multiple years. These stress periods relate primarily to droughts, which in Australia are typically 
multi-year events. Periods of severe and extreme wetness and dryness were derived from all SPI and SPEI series 
using criteria outlined in Table 4 and are assessed over the same ~120-year period of recorded climate data. 
Catchment-averaged annual time-series for the 73 Queensland catchments were then derived from all climate 
grids for the July to June water year for the period 1/1/1889 to 31/12/2019.

Outlier analysis of proxy data. As correlation calculations are not resistant to outliers in the proxy data, technical 
validation also tested for outliers using Rosner’s test131 in the R package EnvStats132. This procedure allows the 
user to test for multiple outliers in a dataset, as opposed to more static approaches using only a single outlier at a 
time. We note that the Rosner’s test does not take into account the temporal structure of the data, though there 
are other methods for finding outliers in such series (e.g. Chen and Liu (1993)). However, these are considerably 
more complex to implement in irregularly sampled series133–136.

A maximum of three outliers were tested on each of the example seven proxy datasets (Fig. 3) and two climate 
time series (annual rainfall and temperature; Fig. 4). Of the 2,156 proxy observations considered, the procedure 
found only three potential outliers, shown as vertical lines in Fig. 3. The identification of these outliers does not 
mean that they are incorrect, and remain included, but they might require some further investigation in any sub-
sequent analysis. None of the data points extracted for the climatic observations were considered outliers. Beyond 
the seven records presented here as examples, the entire proxy database was quality controlled, with outliers iden-
tified using the method described above. The quality codes for outliers, suspected outliers, and missing values are 
detailed in PalaeoWISE (in both the LiPD metadata files and the fieldnames spreadsheet)26.

Temporal correlations. The relationship between the proxy records and catchment-averaged hydroclimate 
time series was tested using correlation analysis across the whole database. Correlation coefficients were deter-
mined using a kernel-based approach which is similar to Pearson’s correlation coefficient but has the advantage 
of applying to irregularly spaced data. The approach was used previously in Roberts et al. (2017;2020). For une-
venly spaced series, Pearson’s correlation is not appropriate and the correlation method (and Python/Fortran 
code) from Rehfeld and Kurths (2014) was used. Conservative correlation lags of −5 to +5 years are included to 
acknowledge the potential for some dating uncertainty in high resolution proxies.

An approximate test for significant correlation is given as > αz

N *
/2 , where z is the inverse Gaussian distribution, 

α is the significance level and N* is the minimum number of data points for either time series within the overlap-
ping period. Exact significance tests are not known for the Gaussian kernel method and the number of overlap-
ping points changes depending on the lag and irregularity of the spacing of the two datasets being correlated137. 
Additionally, the significance tests also depend on the characteristics of the data series, for example those that are 
nonlinear, heteroskedastic or have a hidden dependence structure. This approximate significance test was applied 
to all correlation results presented here, and non-significant correlations are not presented.

To test the robustness of the Roberts et al. (2017) kernelised approach, we re-calculated the correlation coeffi-
cients based on the ranks for the data values. This in effect allows for a comparison of Pearson vs Spearman-type 
correlation where highly non-linear relationships would appear as a large difference between them. The differ-
ences between the Spearman and Pearson-type correlations when run on the same data sets showed very few 

Climatic Index Description and use Method Reference
Derivation 
period

Average precipitation Catchment-averaged 
precipitation (mm)

Annual precipitation averaged over each 
catchment.

208 12 months

Morton’s potential 
evapotranspiration

Catchment-averaged potential 
evapotranspiration

Morton’s equation, then averaged over each 
catchment.

208 12 months

Temperature Catchment-averaged 
temperature (°C)

Annual temperature averaged over each 
catchment

208 12 months

Standardised Precipitation 
Index (SPI)

Identification of wetter and drier 
periods

Gamma distribution using a 1900–1999 
reference period

130,209 12, 24, 36, and 48 
months

Standardised Precipitation 
Evaporation Index (SPEI)

Identification of longer periods 
of aridity

Gamma distribution using a 1900–1999 
reference period. Morton’s PET estimate.

210–215 12, 24, 36, and 48 
months

SPI-flood index (Severe 
Floods) Frequency of severe flooding

Number of consecutive months in a year 
with Standardised Precipitation Index 
ranging from 1.5 to 2.0

130,216,217 12, 24, 36, and 48 
months

SPI-flood index (Extreme 
Flood) Frequency of extreme flooding Number of consecutive months in a year 

with Standardised Precipitation Index ≥2.0
130,216,217 12, 24, 36, and 48 

months

SPI-drought index

SPI-drought index (Severe 
Drought) Frequency of severe droughts

Number of consecutive months in a year 
with Standardised Precipitation Index 
ranging from −1.5 to −2.0

130,216,217 12, 24, 36, and 48 
months

(Extreme Drought) Frequency of extreme droughts
Number of consecutive months in a year 
with Standardised Precipitation Index 
≤−2

130,216,217 12, 24, 36, and 48 
months

Table 4. Overview of selected climate variables and their derivation periods.
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Fig. 3 Selected plots for three proxy datasets that show the identified outliers in vertical red lines. Rosner’s test 
was applied to the entire proxy database, see the fieldnames file in PalaeoWISE26 for quality codes.
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Fig. 4 Outlier analysis of climate data. Histograms of the difference between the kernelised correlation 
coefficient when run on the raw data (Pearson) against the ranked data (Spearman) for catchment-averaged 
rainfall (a) and catchment-averaged temperature (b). Very few of the differences are observed outside the range 
(−0.1. 0.1).
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values outside the range (−0.1, 0.1) (Fig. 4). The supplementary material within PalaeoWISE (Supplementary 
material; Section 2)26 includes a comparison of the Roberts et al. (2017;2020) approaches, the Rehfeld and Kurths 
(2014) approach, and Spearman and Pearson’s equations.

Visualising temporal correlations. Heat maps were constructed from the resultant correlation data to provide a 
condensed, visual tool that highlights the potential of individual proxies to reflect catchment-scale hydroclimate 

Fig. 5 Correlation coefficients (ccf) shown are the maximum absolute ccf between catchment-averaged rainfall 
and the example proxies for all Queensland catchments from lags +5 to −5 years. White = non-statistically 
significant. Histogram shows the distribution of maximum absolute ccf by lag. The Burdekin and the Balonne-
Condamine catchments referred to in the text are illustrated. Vector map data sourced from www.qldspatial.
information.qld.gov.au.
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and the associated time lag (Figs. 5, 6). The heat maps display the maximum absolute correlation coefficients by 
climate index and catchment, with examples for catchment-averaged rainfall (Fig. 5) and temperature (Fig. 6) 
provided. Maps for each of the 75 hydroclimatic variables are available in a single page format, as are the correla-
tion results for each catchment, dataset, and climate variable26. An interactive summary of the correlation results 
is also presented on the project website at www.palaeoclimate.com.au.

The heat maps deliver meaningful information on the selection of proxy records and their associated skill 
with selected hydroclimate variables. This is especially valuable to appreciate the extent to which a given proxy 
correlates at the catchment (e.g., dataset 274), region (e.g., dataset 170; coastal eastern Queensland) or broader 

Fig. 6 Correlation coefficients (ccf) between catchment-averaged temperature and the example proxies for all 
Queensland catchments from lags +5 to −5 years. White = non-statistically significant. Histogram shows the 
distribution of maximum absolute ccf by lag. Locations of the Burdekin and the Balonne-Condamine catchments 
referred to in the text are illustrated. Vector map data sourced from www.qldspatial.information.qld.gov.au.
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state-level (dataset 269) (Fig. 5). However, as heat maps are designed to show the ‘best case’ correlation coefficient, 
the lag is not constant across catchments. For example, a high correlation between catchment-averaged rainfall 
and proxy dataset 269 occurs at a lag of −1 in the Burdekin catchment (Fig. 5) but at a lag of +1 year in the 
Balonne-Condamine catchment (Fig. 5; PalaeoWISE correlations26). Despite the variability in associated lag, the 
majority of maximum absolute correlation coefficient values occur at lag −1 (Figs. 5, 6). To supplement the maps, 
and as an additional tool to aid the selection of relevant records, Fig. 7 shows the most ‘successful’ datasets for 
catchment-averaged rainfall and temperature records. Here, success was defined as the datasets with the highest 
significant absolute correlation coefficient for each of the 73 Queensland catchments for the climate variable of 
interest. Figure 7 shows dataset 269 has the largest number of highest correlations for rainfall, but that dataset 470 
has the highest correlation coefficient for temperature within the Queensland catchments. Similar plots for each 
climate variable are presented in PalaeoWISE (success histograms)26.

Usage Notes
Table 3 details the individual files contained within PalaeoWISE26. The current and all future versions of 
PalaeoWISE26 can be accessed at https://doi.org/10.6084/m9.figshare.14593863.v3, and the project website (www.
palaeoclimate.com.au/project-outputs/proxy-map/access-the-palaeowise-database/). The proxy data contained 
in PalaeoWISE26 can also be accessed on NOAA WDS Paleoclimatology (https://www.ncdc.noaa.gov/paleo/
study/34073)32 in both the LiPD format and also in WDS template text format for records not previously archived 
in this repository.

The approach and outputs are likely to be primarily used by the scientific community in the first instance to 
access both high- and low-resolution palaeoclimate proxy data in a single digital database. The inclusion of low- 
and high-resolution proxies facilitates use for hydrological modelling scenarios that may vary in timescales from 
annual or centennial.

PalaeoWISE26 also provides an essential resource for scientists and water managers to screen proxies corre-
lated to hydroclimatic indices of their interest. The correlation approach is intended as an efficient, visual tool to 
identify relevant proxies and catchments for further investigation. The code accompanying this work allows for 
straightforward extrapolation of the approach to areas outside of Queensland where accompanying hydroclimate 
variables exist.

We welcome any additional or clarifying information to be incorporated into future versions. When using this 
database or any correlations presented within, please cite both the original data author(s)/collector(s) as well as 
this publication.

Code availability
Code to reformat the relational database to the LiPD and Rdata formats was adapted from this example (https://
github.com/nickmckay/sisal2lipd) and is available in PalaeoWISE26. Code to produce the figures are available in 
PalaeoWISE26. Correlations were all produced using code published within the original publications cited within.
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