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Abstract

In recent years there has been an increased demand for frequently updated Land Cover

Classification (LCC) products. With ever greater numbers of Earth Observation (EO)

and Remote Sensing (RS) platforms capturing data, the combined utilisation of data

from multiple platforms has the potential to improve both the accuracy and frequency

of LCC product updates through a process known as sensor fusion. This thesis examines

how the fusion of RS sensors with diverse imaging characteristics can overcome challenges

encountered when generating an annual LCC product. To undertake this examination,

the technical specifications for the Second Generation Corine Land Cover (CLC+) Back-

bone raster product and its application on the island of Ireland is used as a case study

for evaluating the use of mono-platform and sensor-fused RS datasets for LCC. A review

of Machine Learning (ML) techniques in this thesis highlighted key factors crucial to

achieving high-accuracy classification along with the proposal of a high-accuracy rapid

inference Light Fully Convolutional Neural Network (LFCNN) architecture. This review

also highlighted challenges when performing LCC on the island of Ireland, such as fre-

quent cloud cover that can reduce the availability of optical satellite data, preventing

the widespread use of high-accuracy multi-temporal ML classification. In this thesis, the

application of a decision-level fusion approach is demonstrated as a means of mitigating

the issue of frequent cloud cover and ensuring full classification coverage while also in-

creasing classification accuracy. The versatility of a decision-level fusion approach was

further demonstrated through the fusion of aerial and satellite RS data to improve LCC

in complex non-homogeneous regions such as urban environments. The findings of this

research have direct implications not only for performing LCC on the island of Ireland but

throughout Europe and beyond, with clear recommendations provided for the generation

of LCC products using EO and RS data.
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(2021); Du et al. (2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Sentinel-2 band spectral ranges and spatial resolutions, Source: ESA
(2021a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Landsat-8 band spectral ranges, Source: Ihlen (2019). . . . . . . . . . . 69

3.3 CLC+ nomenclature, Source: Kleeschulte et al. (2019). . . . . . . . . . 71

3.4 List of data sources used for the generation of aggregated labels datasets. 72

3.5 Features form each data sources that are aggregated together to their re-
spective Second Generation Corine Land Cover (CLC+) class. . . . . . . 73

3.6 Month ranges used for the generation of half-yearly and seasonally aver-
aged datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 List of ML techniques to be assessed in mono-platform comparative analysis. 81

3.8 Details of LCNN architectures examined in the mono-platform compara-
tive assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Details of LFCNN architectures examined in the mono-platform compar-
ative assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.10 Details of 1DCNN architectures examined in the mono-platform compar-
ative assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.11 Details of half-yearly averaged 3DLFCNN architectures examined in the
mono-platform comparative assessment. . . . . . . . . . . . . . . . . . . . 88

3.12 Details of seasonally averaged 3DLFCNN architectures examined in the
mono-platform comparative assessment. . . . . . . . . . . . . . . . . . . . 89

3.13 Detail of minimum observation requirements for each temporal dataset. . 95

3.14 Sentinel-2 results using all available label points. The highest test data
weighted F1 and OA for each prepared dataset are highlighted with text
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.15 Landsat-8 results using all available label points. The highest test data
weighted F1 and OA for each prepared dataset are highlighted with text
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiv



3.16 Sentinel-1 results using all available label points. The highest test data
weighted F1 and OA for each prepared dataset are highlighted with text
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.17 Sentinel-2 comparative results. The highest test data F1/OA in each col-
umn are highlighted with text in bold. . . . . . . . . . . . . . . . . . . . 100

3.18 Landsat-8 comparative results. The highest test data F1/OA in each col-
umn are highlighted with text in bold. . . . . . . . . . . . . . . . . . . . 100

3.19 Cross-Platform comparative results. The highest test data F1/OA in each
column are highlighted with text in bold. . . . . . . . . . . . . . . . . . . 101

3.20 Sentinel-2 model coverage for each temporal dataset calculated by the area
meeting minimum observation requirements set out in Table 3.13. . . . . 108

3.21 Landsat-8 model coverage for each temporal dataset calculated by the area
meeting minimum observation requirements set out in Table 3.13. . . . . 108

3.22 Sentinel-2 and Landsat-8 combined model coverage for each temporal dataset
calculated by the area meeting minimum observation requirements set out
in Table 3.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.23 List of the mono-platform ML models obtaining the highest Test F1 score
for each class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.24 Test dataset label points available for each comparative assessments. . . . 111

3.25 Percentage of remaining test points at desired target accuracy as a result of
probability thresholding. The highest value in each column are highlighted
with text in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.26 Estimate of the percentage of area from prediction at a desired target
accuracy as a result of probability thresholding. The highest value in each
column are highlighted with text in bold. . . . . . . . . . . . . . . . . . . 115

3.27 Results of performing classification using an Support Vector Machine (SVM)
with annually averaged Sentinel-2 data that has been generated with set
numbers of observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.28 Results of comparative assessment only using point-based ML techniques. 120

3.29 Model coverage for each platform and temporal dataset calculated by a
requirement for a total of six observations as set out in Table 3.13. . . . . 123

3.30 Model coverage for each platform and temporal dataset calculated by a
requirement for six months with observations. . . . . . . . . . . . . . . . 123

3.31 Comparison of model inference times for point-based and patch to point
LFCNN based ML techniques. . . . . . . . . . . . . . . . . . . . . . . . 125

4.1 Datasets to be tested with pixel-level fusion techniques. . . . . . . . . . . 140

4.2 ML techniques to be assessed for use with pixel-level fused satellite data. 140

4.3 List of mono-platform satellite models (prior models) to be used for decision-
level fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4 Results of comparative assessment of fusion techniques for annually av-
eraged data. The highest test data weighted F1 and OA are highlighted
with text in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5 Results of comparative assessment of fusion techniques for half-yearly av-
eraged data. The highest test data weighted F1 and OA are highlighted
with text in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xv



4.6 Results of comparative assessment of fusion techniques for seasonally av-
eraged data. The highest test data weighted F1 and OA are highlighted
with text in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.7 Results of comparative assessment of fusion techniques for six monthly
averaged data. The highest test data weighted F1 and OA are highlighted
with text in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.8 Results of comparative assessment of mono-platform and pixel-level fused
data with point-based ML techniques. The highest test data weighted F1
and OA for each prepared dataset are highlighted with text in bold. . . . 146

4.9 Decision-level fusion models resulting in negative change in weighted F1
score. Change is calculate relative to the unfused Sentinel-2 seasonally
averaged 3DLFCNN9×9 (S2SE). . . . . . . . . . . . . . . . . . . . . . . 147

4.10 List of decision-level fusion approaches and the variations of those tech-
niques that will be evaluated in variable data fusion assessment. . . . . . 149

4.11 List of fusion sets used in the variable data availability fusion assessment. 154
4.12 Percentage of sample points that can be classified by non-fused prior mod-

els in the S2AN-reduced dataset. . . . . . . . . . . . . . . . . . . . . . . 155
4.13 Percentage of sample points that can be classified by non-fused prior mod-

els in the 25%-reduced dataset. . . . . . . . . . . . . . . . . . . . . . . . 155
4.14 Fusion assessment results using the S2AN-reduced dataset. The highest

test data weighted F1 and OA for each fusion set are highlighted with text
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.15 Fusion assessment results using the 25%-reduced dataset. The highest test
data weighted F1 and OA for each fusion set are highlighted with text in
bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.16 Model filtering assessment results on S2AN-reduced dataset. The high-
est test data weighted F1 and OA for each target model assessment are
highlighted with text in bold. . . . . . . . . . . . . . . . . . . . . . . . . 162

4.17 Results of comparative assessment of Full-SVM averaging and Dual-SVM
averaging to and SVM model using five different combinations of prior
models. The highest test data weighted F1 and OA for each target model
assessment are highlighted with text in bold. . . . . . . . . . . . . . . . . 162

5.1 Aerial survey details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.2 Aerial classes along with the definitions and corresponding satellite classes. 174
5.3 List of satellite prior models to be fused. . . . . . . . . . . . . . . . . . . 179
5.4 F1 and OA results of aerial data classification using UNET architecture. 182
5.5 Results for satellite only classification. The highest weighted F1 and OA

for each site are highlighted with text in bold. . . . . . . . . . . . . . . . 184
5.6 Results for Class-Con satellite-aerial fusion. The highest weighted F1 and

OA for each site are highlighted with text in bold. . . . . . . . . . . . . . 184
5.7 Results for Cor-Prob satellite-aerial fusion. The highest weighted F1 and

OA for each site are highlighted with text in bold. . . . . . . . . . . . . . 184
5.8 Classification change due to satellite-aerial Class-Con fusion relative to

satellite only classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.1 Sentinel-1 Satellite Images used in Chapter 3 comparative assessment. . . 233
A.2 Sentinel-2 Satellite Images used in Chapter 3 comparative assessment. . . 246
A.3 Landsat-8 Satellite Images used in Chapter 3 comparative assessment. . . 284

xvi



B.1 Sentinel-1 Model Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
B.2 Sentinel-2 Model Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
B.3 Landsat-8 Model Results. . . . . . . . . . . . . . . . . . . . . . . . . . . 304
B.4 Sentinel-1 Model Results including shrub class. . . . . . . . . . . . . . . . 306
B.5 Landsat-8 Model Results including shrub class. . . . . . . . . . . . . . . 312

C.1 Results of Pixel-level Fusion using Annually Averaged data. ∆ result cal-
culated relative to LFCNN9×9 using Annually Averaged Sentinel-2 data. 315

C.2 Results of Pixel-level Fusion using Half-Yearly Averaged data. ∆ result
calculated relative to 3DLCNN9×9 using Half-Yearly averaged S2 data. . 319

C.3 Results of Pixel-level Fusion using Seasonally Averaged data. ∆ result
calculated relative to 3DLCNN9×9 using Seasonally averaged S2 data. . 323

C.4 Results of Pixel-level Fusion using Monthly Averaged data. ∆ result cal-
culated relative to 1DCNN6 using Monthly averaged S2. . . . . . . . . . 324

C.5 Prior Model List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
C.6 Preliminary analysis of decision-level fusion methodologies using all prior

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
C.7 Results of Decision-level Fusion Sentinel-2 and Sentinel-1 prior models

using an SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
C.8 Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models

using an SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
C.9 Results of Decision-level Fusion Landsat-8 and Sentinel-1 prior models

using an SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
C.10 Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1

prior models using SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
C.11 Results of Decision-level Fusion using the Sentinel Only Fusion Set on

S2AN-reduced dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
C.12 Results of Decision-level Fusion using the Mono-Platform Fusion Set on

S2AN-reduced dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
C.13 Results of Decision-level Fusion using the SVM Fused Fusion Set on the

S2AN-reduced dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
C.14 Results of Decision-level Fusion using the Mono-Platform Fusion Set on

the 25%-reduced dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
C.15 Results of Decision-level Fusion using the SVM Fused and Mono Platform

Fusion Set on the 25%-reduced dataset. . . . . . . . . . . . . . . . . . . . 352

xvii



Acronyms

ANN Artificial Neural Network.

CLC Corine Land Cover.

CLC+ Second Generation Corine Land Cover.

CNN Convolutional Neural Network.

CORINE Co-ORdinated INformation on the Environment.

DN Digital Numbers.

DSM Digital Surface Model.

EO Earth Observation.

ESA European Space Agency.

FCNN Fully Convolutional Neural Network.

GSD Ground Sampling Distance.

LCC Land Cover Classification.

LCNN Light Convolutional Neural Network.

LFCNN Light Fully Convolutional Neural Network.

LiDAR Light Detection and Ranging.

LSTM Long-Short Term Memory.

LUCAS Land Use/Cover Area frame Survey.

ML Machine Learning.

MLP Multilayer Perceptron.

MNDWI Modified Normalised Difference Water Index.

NDVI Normalized Difference Vegetation Index.

OA Overall Accuracy.

xviii



PTO Probability Thresholding Ordered.

RADAR Radio Detection and Ranging.

RF Random Forest.

RNN Recurrent Neural Network.

RS Remote Sensing.

SAR Synthetic Aperture Radar.

SVM Support Vector Machine.

UAV Unmanned Aerial Vehicle.

xix



Chapter 1

Introduction

Earth Observation (EO) involves monitoring the physical, chemical and biological sys-

tems of the Earth’s surface (EU Science Hub, 2022). The utilisation of Remote Sensing

(RS) technologies for EO, such as imagery captured from satellites, aircraft, and Un-

manned Aerial Vehicles (UAVs), makes EO data a valuable source of information for the

production of Land Cover Classification (LCC) datasets (Chaves et al., 2020). Machine

Learning (ML) techniques have increasingly been used as an effective tool to process

and extract useful information from the increasing volumes of EO data (Salcedo-Sanz

et al., 2020). Many of the RS platforms have different sensor characteristics, and the

inclusion of data from each sensor (sensor fusion) can be used as an effective means of

leveraging the unique information from each sensor to improve the analysis of an object

or phenomenon (Chang and Bai, 2018). However, there are significant challenges to over-

come when incorporating data from sensors with differing spatial, spectral and temporal

resolutions. This thesis will examine how the fusion of RS sensors, with diverse imag-

ing characteristics can overcome challenges encountered when performing LCC. These

challenges include the issue of frequent cloud cover that can reduce the availability of

optical satellite EO data and the challenge of performing EO derived LCC in complex

non-homogeneous regions such as in urban environments. In particular, this thesis will

examine how sensor fusion can be used to overcome these challenges to improve LCC in

Northern European regions such as on the island of Ireland.

This chapter will provide an introduction to the field of LCC outlining (i) the role
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of EO and ML technologies, (ii) the existing LCC datasets available for the island of

Ireland, and, (iii) the current gaps in the field of EO and ML derived LCC that will

be addressed in this thesis. The research objectives addressed in this thesis will then

be presented along with the three key research questions. Finally, the structure of this

thesis will be outlined along with a brief summary of the contents of each chapter.

1.1 Land Cover Classification

Land cover can be defined as “the type of feature present on the surface of the Earth”

(Lillesand et al., 2014, p. 213) or the “observed (bio)physical cover of the Earth’s surface”

(FAO, 2022a, para. 1). Examples of this include lakes, grassland, pavements and bare

rock. This should not be confused with Land use which is defined as “the human activity

or economic activity associated to that land” (Lillesand et al., 2014, p. 213) or the

“activities and inputs people undertake in a certain land cover type to maintain it or

produce change” (FAO, 2022b, para. 1). Examples include sports facilities, schools,

commercial developments or residential developments. As per their definitions, land

cover and land use are related but are distinct terms (Vali et al., 2020; FAO, 2022a).

For example, residential land use could have a ‘building’ land cover, however not every

building is used for residential use.

Monitoring of land cover and land cover change provides substantial benefits to many

sectors such as forestry, agriculture, mining industries, etc. (Belward and Skøien, 2015;

Dabija et al., 2021; Li et al., 2020a; Stehman and Foody, 2019). Land cover mapping

is also vital to the study of environmental and climate change (Congalton et al., 2014).

In recent years the issue of climate change has proven particularly important as Ireland

is required to report annual greenhouse gas emissions to the United Nations Framework

Convention on Climate Change (UNFCCC) (Cawkwell et al., 2017). Developing and

maintaining an up to date and accurate land cover and habitat mapping programme

would enable the identification of carbon sequestration opportunities, as well as adapta-

tion options (Brennan and Tubridy, 2017).
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1.1.1 Earth Observation and Land Cover Classification

EO makes extensive use of RS technologies. RS is the science of obtaining information

using a device without making contact with the surface, area or phenomena being ob-

served (Chang and Bai, 2018). The first aerial photograph was captured from a tethered

balloon over Paris in 1858, marking the beginning of the use of cameras to capture infor-

mation about the Earth’s surface remotely (Lillesand et al., 2014). However, it was not

until the mid-1940s that RS was used for large-scale land cover and land use classifica-

tion achieved through mapping the United States using aerial photography (Vali et al.,

2020; Marschner, 1950). RS sensors used in EO, record information about a surface or

phenomenon by recording the electromagnetic energy that has been reflected from that

surface or phenomenon. RS sensors can be passive or active. Passive sensors rely on an

external source for the generation of electromagnetic energy. In most cases, this source

of electromagnetic energy is the sun. On the other hand, an active RS sensor transmits

energy to the surface and records the reflected energy (Shunlin and Jindi, 2020). Figure

1.1, provides an illustrative example of the difference between passive and active sensors.

Figure 1.1: Illustrative example passive and active remote sensing, Source: GrindsGIS
(2015).

Both passive and active RS sensors can be deployed to numerous platforms, including

satellite, aircraft and UAVs, making them suitable for capturing accurate and up to date

data for LCC. The information obtained from RS platforms has three main components; a

spectral component which is the electromagnetic energy recorded by the sensor, a spatial
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component which is the change in spectral information across the observed area and a

temporal component which is the change in the spectral and spatial components over

time. LCC derived from EO can be viewed as being a function of these three components

and therefore can be expressed as:

LCC ∋ {Spectral, Spatial, T emporal} (1.1)

The use of RS technology enables the capture of this spectral, spatial and temporal

information of land cover in a more cost-effective manner than traditional land surveying

and as a result, has become the primary source for the generation of most modern LCC

datasets (Congalton et al., 2014; Yan et al., 2015).

1.1.2 Machine Learning and Land Cover Classification

Early techniques for the conversion of remotely sensed imagery into land cover datasets

involved the manual photointerpretation of imagery (Lillesand et al., 2014; European

Environment Agency, 1995). However, with advancements in computer processing and

in ML, there have been significant improvements in the accuracy and automation of the

generation of LCC datasets (Vali et al., 2020; Aguilera, 2020). ML is the label ascribed

to a wide range of data analytical techniques which are capable of extracting patterns

from raw data without parameters needing to be explicitly defined by humans (Goodfel-

low et al., 2016). While the difference between traditional statistics and ML is not well

defined, statistical techniques rely on the analyst’s prior knowledge for the choice of the

correct models to use. However, most ML techniques require no prior knowledge of the

data’s structure (Bzdok et al., 2018). Additionally, ML techniques can outperform tradi-

tional statistical methods, particularly in situations where there is an abundance of label

data to fit (train) the ML models (Aguilera, 2020). There is an estimated 5 Petabytes of

EO data collected each year (Salcedo-Sanz et al., 2020). Traditional statistical methods

may be unsuitable for processing this volume of data which is set to increase as more RS

platforms are deployed. ML on the other hand, have been demonstrated as an effective

means of extracting patterns out of ‘big data’ (Salcedo-Sanz et al., 2020; Bzdok et al.,

4



2018). As a result of the benefits of using ML over traditional statistical techniques,

numerous studies have examined the use of ML in a broad range of EO applications,

including the monitoring of surface temperature and drought monitoring, water quality

assessment, vegetation biomass, and land cover and land use classification (Salcedo-Sanz

et al., 2020; Ali et al., 2015). Since the early 1990s, there has been a significant increase in

the number of studies examining the use of ML techniques for LCC. Figure 1.2 illustrates

the number of papers identified on the Web of Science database (www.webofscience.com)

related to LCC using EO and ML. As illustrated in Figure 1.2, there has been a steady

increase in the number of papers related to LCC using EO and ML. This result was

obtained using the following search query:

(ALL=(“land cover classification”) AND (ALL=(“machine learning”) OR ALL=(“Deep

learning”) OR ALL=(“Neural Network”) OR ALL=(“CNN”) OR ALL=(“support vec-

tor machine”) OR ALL=(“svm”) OR ALL=(“random forest”) )) AND (ALL=(“remote

sensing”) OR ALL=(“earth observation”) OR ALL=(“satellite”) OR ALL=(“aerial”)

OR ALL=(“UAV”))

Figure 1.2: Plot of papers related to LCC using EO and ML from 1992 to 2021 on the
Web of Science database.
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1.2 LCC Datasets in Ireland

At the time of writing, Ireland has no national land cover map. However, there are other

land cover and land use datasets generated for larger global or European monitoring

which cover the island of Ireland. Global LCC datasets include the 100m resolution

Copernicus Global Land Cover 2019 datasets and the 10m resolution ESA World Cover

2020 dataset (Green and Zimmermann, 2021). Copernicus has also released additional

land cover datasets produced from satellite imagery using a combination of ML and

interactive rule-based classification available from land.copernicus.eu and are listed in

Table 1.1.

Table 1.1: EO derived Copernicus datasets available from land.copernicus.eu.

Dataset Description

Imperviousness
A product mapping the built-up areas

and sealed soil density ranging from 0-100%.

Forest Type
A product mapping the density of

tree cover and its dominant leaf type.

Grassland
A product mapping the presence or
absence of grassland vegetation.

Water & Wetness
A product mapping permanent water;
temporary water; permanent wetness

and temporary wetness.

Small Woody Features

A product mapping woody linear features with a
minimum width of 20m and a minimum length

of 50m, and small patchy woody elements
with an area of between 200m2 and 5000m2

Another example of a European wide dataset is the JRC EU Crop Map 2018, a 10m

resolution map of areas under crop and their crop types, including grasslands. The JRC

EU Crop Map 2018 is an EO derived dataset generated using ML which was trained

using the Land Use/Cover Area frame Survey (LUCAS) dataset. The LUCAS dataset

is an important Europe wide land cover dataset (Ballin et al., 2018). However, unlike

each of the datasets discussed so far that provide LCC over a large area, the LUCAS

dataset consists of land cover labels for point location in a 4km2 grid structure. Each

point is manually defined using in situ observations or manual photointerpretation. The

LUCAS dataset was originally developed in 2001 and was intended to provide early crop
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estimates for the European Commission. In 2006, the focus of sampling changed from

just an agricultural land survey to encompass a more general survey of land cover and

land use. With the LUCAS dataset consisting of point samples in a 4km2 grid structure,

this dataset is unsuitable as a national land cover dataset due to its low spatial resolution.

Low-resolution datasets such as this can result in the misrepresentation of the cover of

some land coverage classes. (Brennan and Tubridy, 2017)

Datasets generated at a European level are not always suitable for use as a national

land cover dataset. As a result, these datasets commonly include land cover classes

that are inappropriate for a National Land Cover dataset for Ireland. For example,

in Pan-European datasets such as the EU Crop Map 2018 and the LUCAS dataset, the

classification schema contains many land cover classes not present on the island of Ireland.

In addition, ML derived datasets such as those listed in Table 1.1 and in the JRC EU Crop

Map 2018 are trained and validated on European-wide datasets. Therefore, additional

validation of the data on a national Level needs to be undertaken for it to be used as a

national dataset.

In response to the absence of a national land cover map, a joint project between

the Ordnance Survey Ireland (OSI) and the Environmental Protection Agency (EPA)

was undertaken for the generation of the first national land cover map intended to be

published in 2022 (Green and Zimmermann, 2021). The first dataset will be generated

for the 2018 reference year and designed as a baseline for monitoring future land cover

change (Commins, 2021). Utilising both satellite and aerial imagery along with additional

sectoral data such as the PRIME 2 dataset, this national land cover map provides a

more robust and higher resolution national land cover dataset than currently available

(EPA, 2022). For this project, a national land cover classification system for Ireland

was developed, ensuring compatibility with European land cover and land use reporting

(NPWS, 2017).
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1.2.1 Co-ORdinated INformation on the Environment (CORINE)

In the absence of a national LCC dataset, the Co-ORdinated INformation on the Envi-

ronment (CORINE) land cover mapping series is the most detailed land cover dataset

currently available in Ireland (Brennan and Tubridy, 2017). CORINE is a Pan Euro-

pean Land Use and Land Cover monitoring programme. Established in 1985 by the

European Community, that aimed to develop geo-spatial datasets on environmental in-

formation that were standardised and comparable across Europe (EPA, 2021; European

Environment Agency, 1995). The first classification dataset released was for the year

1990 and was intended as an initial snapshot upon which future classification schemes

could be compared. Since then, additional datasets have been released for 2000, 2006,

2012 and 2018. Each dataset following the original 1990 release also included a land cover

change dataset (Büttner et al., 2021). While the CORINE classification scheme has not

changed with successive releases of the CORINE datasets, the definition of each class has

been updated to remove ambiguity between classes (Büttner and Kosztra, 2017; Kosztra

et al., 2019). Additional differences between subsequent CORINE data releases included

the spaceborne RS data used for each assessment, the resulting geometric accuracy and

the overall production time in generating the datasets (Büttner et al., 2021). Table 1.2

outlines some of the changes between each iteration of the CORINE dataset.

Table 1.2: Evolution of CORINE land cover, Source: Büttner et al. (2021).

CLC 1990 CLC 2000 CLC 2006 CLC 2012 CLC 2018

Satellite
data

Landsat-4/5
(single date)
(in a few cases
Landsat MSS)

Landsat-7
ETM

(single date)

SPOT-4
and/or

IRS LISS III
(dual date)

IRS,SPOT
-4/7 and
RapidEye
(dual date)

Sentinel-2
and

Landsat-8
for

gap filling
(dual date)

Time
Consistency

1986-1996
2000

+/- 1 year
2006

+/- 1 year
2011-2012 2017-2018

Geometric
accuracy
of satellite
images

≤ 50m ≤ 25m ≤ 25m ≤ 25m ≤ 10m

Production
Time

10 years 5 years 3 years 2 years 1.5 years
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Designed as a pan-European dataset, there are some limitations which make it un-

suitable for some applications (Brennan and Tubridy, 2017). One such limitation is the

25ha minimum mapping unit. This minimum mapping unit is designed to work for spa-

tial analysis at scales of 1:100,000. However, for applications including urban planning,

forest management or risk assessments, higher scales of 1:50,000 to 1:10,000 are usually

required. In addition the minimum mapping unit of 25ha is unsuitable for mapping some

land cover classes and may result in the underrepresentation of some classes (Ovejero-

Campos et al., 2019). The minimum mapping unit of 25ha can cause additional issues

in countries such as Ireland where the unique makeup of highly varied landscape and

small field parcels results in particular classes which cannot viably be mapped (Brennan

and Tubridy, 2017). While nomenclature definitions have been updated for clarity, nev-

ertheless, issues have still arisen due to mixed classes. An example of a mixed class that

could be represented by two independent land cover classes is the class ‘Land principally

occupied by agriculture, with significant areas of natural vegetation’. The ambiguity of

classes such as this can result in different interpretations of the class in different regions

or indeed, by different analysts (Aune-Lundberg and Strand, 2021).

1.2.2 Second Generation Corine Land Cover (CLC+)

In recognition of the limitations with the CORINE system, in 2017 the Environment

Information and Observation Network (EIONET) Action Group on Land Monitoring in

Europe (EAGLE Group) was tasked with the development of the Second Generation

Corine Land Cover (CLC+). At the time of writing, the first CLC+ dataset is still in

production (Copernicus, 2021) and will be produced for 2018 to be compatible with the

CORINE 2018 dataset (Kleeschulte et al., 2019). CLC+ system has four main elements:

Backbone, Core, Instance and Legacy. CLC+ Backbone consists of a vector and raster

product generated from a combination of geospatial and EO data. CLC+ Core is an

all-in-one data container for environmental land monitoring information according to the

EAGLE data model. CLC+ Instance is the ‘nominal’ endpoint or final product in the

establishment of the CLC+ product suite. And finally CLC+ Legacy, is a dataset derived
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from the CLC+ Instance and is designed for back-compatibility with the first generation

CORINE datasets.

Figure 1.3: Conceptual design showing the interlinked elements required to deliver
improved European land monitoring (CLC+ product suite), Source:
Kleeschulte et al. (2019).

CLC+ Backbone

Of the four CLC+ elements, CLC+ Backbone is the only element that is primarily derived

from EO data. CLC+ Backbone has two data outputs, a Raster Product and a Vector

Product.

Raster product

The raster product is to be generated by a pixel-based methodology with 12 land

cover classes and a 10m spatial resolution. The primary data source for this dataset is

Sentinel-2 satellite imagery. However, due to the lack of availability of Sentinel-2 data, it

is recommended that Sentinel-1 and Landsat-8 satellite data be used where required as

suitable supplementary data to aid in classification.

Vector Product

The Vector Product is to be generated using a combination of known linear segments

‘Hard bones’ and image segmentation to identify natural boundaries in the landscape

‘Soft bones’. The generation of Soft bone segments is achieved using multi-temporal
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data from Sentinel-2 along with mono-temporal Very High Resolution (VHR) satellite

imagery. Finally, each segment is assigned a classification derived from classified pixels

of the Raster Product under each segment (Kleeschulte et al., 2019)

1.3 Gaps in Current Knowledge in the Field of LCC

Despite the rapid growth in the number of studies examining the use ML for EO derived

LCC, gaps in the current state of knowledge were identified during the literature review

conducted as part of this thesis.

1.3.1 Suitability of mono-platform ML techniques for annual

LCC on the island of Ireland

Figure 1.4: Conceptual illustration for mono-platform satellite LCC.

Along with the increase in the studies examining the use of ML for LCC, there is an

increase in demand for EO derived LCC products (Macarringue et al., 2022). Demand is

also increasing for more frequently updated LCC products. In a workshop on CORINE

Land Cover+ in Brussels in November 2017, almost a quarter of member state represen-

tatives indicated the desire for a yearly updated product (Kleeschulte et al., 2019). If

annually updated products are generated, the use of data captured outside the target
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year may not be suitable. Despite the increased number of satellite RS platforms captur-

ing data, obtaining sufficient optical satellite data to perform multi-temporal LCC using

intra-annual data from a single platform can be challenging (Griffiths et al., 2019). The

use of intra-annual mono-platform data can be particularly challenging in a region with

frequent cloud cover such as Ireland, which has 100% cloud cover over 50% of the time

(Met Éireann, 2021). Therefore, an examination of the suitability of ML techniques for

intra-annual mono-platform LCC in a region with frequent cloud cover is required. The

suitability of any analytical technique is largely dependent on the application. Therefore,

to assess the suitability of ML techniques for the generation of an annual LCC product,

the guidelines for the generation of the CLC+ Backbone raster product will be used as

the reference to determine technique suitability.

1.3.2 Sensor fusion with variable data availability

Figure 1.5: Conceptual illustration for multi-platform satellite LCC.

The use of data from multiple satellite platforms can be a useful means of improving

classification coverage and accuracy. For example, where the platforms have similar

characteristics, techniques such as gap-filling and harmonisation can be employed to

overcome this issue of missing data as a result of cloud cover (Griffiths et al., 2019;

Zhong et al., 2019). However, where there are significant areas of missing data, these

techniques may not be suitable (El Fellah et al., 2016). As a result of cloud cover, it is not

12



always possible to ensure that for a given sensor there will be consistent data coverage

across a large area. This issue is further compounded when fusing data from multiple

sensors. Therefore, methodologies used for satellite data fusion in such situations need to

be robust enough for a fusion where the data available varies across the assessed region.

While there have been some studies that have examined this subject, such as by Salberg

and Jenssen (2012) and Useya and Chen (2018), further investigation into this topic is

required.

1.3.3 Decision-level fusion of Satellite and Aerial data

Figure 1.6: Conceptual illustration for multi-platform satellite and aerial LCC.

Another area where there is a significant gap in the current literature is in the fusion

of satellite and aerial data to improve the accuracy of LCC. The use of high-resolution

imagery for LCC has significant benefits (Kannojia and Jaiswal, 2018). However, its

capture for large scale surveying is expensive compared to the use of satellite data. This

issue is further exacerbated when multiple observations are required for multi-temporal

analysis. Alternatively, the fusion of high-resolution aerial and multi-temporal satellite

data can be performed to leverage unique information provided by each platform. During

the literature review conducted as part of this thesis, the majority of papers focus on the

pixel-level fusion of image data from two sources. Pixel-level fusion involves combining

data from each image which can then be used as input data for a model (Chang and
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Bai, 2018). However, significant challenges can be encountered with fusing data with

significantly different spectral, spatial and temporal resolutions. This issue is further

exacerbated when attempting to fuse data from multiple satellite platforms with aerial

data. In such a situation, a decision-level fusion approach may be more suitable. In

decision-level fusion, classification is performed on each platform independently before

being combined to make a final classification output (Le Bris et al., 2019). Under a

decision-level fusion approach, the classification of multi-platform satellite data can be

performed independently to the aerial data before applying a fusion technique. While

undertaking the literature review for this thesis, no papers were identified that utilised a

decision-level fusion approach to fuse satellite and aerial data for LCC. Therefore, there

is significant scope for further investigation into this topic.

1.4 Research Questions

This thesis will explore the following questions to address the identified gaps in current

knowledge:

Question 1

What ML techniques are suitable for mono-platform satellite-derived annual LCC

on the island of Ireland?

With the field of ML encompassing a wide range of data analytical techniques,

addressing this question will involve the identification of state of the art ML tech-

niques used for LCC in the existing literature. These techniques will be assessed for

the classification of data on the island of Ireland with suitability defined not only

by classification accuracy but also by the impact of cloud cover on the classifica-

tion coverage of the technique. These techniques will be assessed using data from

three satellite platforms: Sentinel-1, Sentinel-2 and Landsat-8. In addition, these

techniques will be used as a baseline to determine the effectiveness of sensor-fusion

techniques.
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Question 2

How can a multi-sensor satellite data fusion approach be employed where frequent

cloud cover results in differences in sensor data availability over the area that is

being assessed?

With the issue of frequent cloud cover identified as a potential issue for LCC over

the island of Ireland, the incorporation of data from multiple satellites may be

an appropriate methodology to overcome this issue. However, there are various

methods of performing data fusion. Therefore, the suitability of these techniques

needs to be assessed to identify if they are appropriate in regions with frequent

cloud cover.

Question 3

Can aerial data be used to further improve the accuracy of multi-sensor satellite-

derived LCC?

The use of aerial RS data can contribute important information about land cover

through the use of high-resolution imagery. With the ability of light aircraft to

fly beneath the cloud cover, it may be particularly suited for capturing high-

resolution data for a region with frequent cloud cover. However, the inclusion of

high-resolution aerial data into multi-temporal multi-model satellite classification

poses many challenges which need to be addressed.
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1.5 Structure of this Thesis.

This thesis consists of six further chapters with the following structure:

Chapter 2: Current State of the Art - Literature Review

In this chapter, the challenges of performing LCC using EO technologies are exam-

ined. As part of this examination, existing techniques are identified in the literature

to overcome these challenges. This chapter also presents the role of ML in the gen-

eration of LCC data and highlights the gaps in the current knowledge. This chapter

also examines the suitability of ML techniques for the generation of the CLC+ LCC

datasets and how they relate to the challenges identified in performing LCC.

Chapter 3: Evaluation of ML Techniques for Satellite based LCC

In this chapter, a comparative assessment of ML techniques is performed to deter-

mine their suitability for performing EO derived LCC on the island of Ireland. As

part of this comparative assessment, the impact of frequent cloud cover on model

coverage and accuracy is also assessed.

Chapter 4: Satellite Sensor Fusion LCC

This chapter examines the application of satellite sensor fusion to improve the ac-

curacy and coverage of LCC on the island of Ireland. This assessment is conducted

in two parts; a comparative assessment between pixel-level and decision-level fusion

techniques and an assessment of fusion techniques where the availability of satellite

data varies across the assessed region.

Chapter 5: Combined Satellite-Aerial Data Fusion

In this chapter, decision-level fusion is used and examined for the fusion of non-

temporal high-resolution aerial data and multi-temporal and multi-platform satel-

lite data. As the aerial data is mono-temporal, a simplified classification schema

is required for its classification. The simplified classes are generated such that

they could be related to the satellite class schema before performing fusion. The
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satellite-aerial fusion technique presented in this chapter demonstrates how fusion

can be performed despite the significant difference in the characteristics of each

data source.

Chapter 6: Conclusion

This chapter provides a concise summary of the work undertaken in this thesis

and identifies the key contributions of this research. It also highlights challenges

encountered when undertaking this thesis and identifies topics for future work.

Finally, it concludes with some last remarks on this thesis.
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Chapter 2

Current State of the Art - Literature

Review

2.1 Introduction

This chapter outlines the current state of the art in ML techniques for LCC using EO

technologies. In particular, this chapter will examine techniques suitable for the gen-

eration of the CLC+ Backbone raster product for mapping land cover over geographic

regions impacted by frequent cloud cover. This chapter will be structured into seven

sections. Section 2.2 will outline the challenges associated with utilising EO data for

LCC. Sections 2.3 to 2.6 will provide an in-depth review of ML techniques that can

be employed for LCC using EO data. The ML techniques reviewed in this chapter will

be discussed in the context of four modelling categories: Spectral-based LCC, Spatial-

based LCC, Temporal LCC and Sensor Fusion LCC. It should be noted that not all ML

techniques fit neatly into any one of these categories, with many techniques containing el-

ements from one or more of these categories. The ML modelling categories and associated

definitions for each category are specified below in Table 2.1.
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Table 2.1: ML category definitions used in literature review.

LCC Category Category Focus

Spectral-based
ML techniques that primarily rely

on spectral information within an image.

Spatial-based
ML techniques that leverage the spatial

relationship between pixels within an image.

Temporal
ML techniques that utilise the variations in the

spectral or spatial information in the image over time.

Sensor Fusion
ML techniques combining data collected
from multiple sources or different sensors.

Finally, Section 2.7 will examine the requirements for the generation of CLC+ and

will assess the suitability of ML techniques for the generation of CLC+ Backbone raster

product.

2.2 Challenges using Earth Observation for Land Cover

Classification

With EO playing a central role in modern LCC, it is important to understand the factors

that may impact the accuracy of using EO data for LCC. The factors that impact the

accuracy of LCC using EO will be discussed in this study in terms of the fundamental

resolution characteristics of the EO data namely; spectral, radiometric, spatial and tem-

poral resolution (Chang and Bai, 2018). The definition of each resolution type is provided

in Table 2.2.

2.2.1 Spectral and Radiometric Resolution

For RS sensors, their spectral resolution is typically defined by the number of distinct

spectral wavelength ranges known as bands, while the sensor’s radiometric resolution

relates to its sensitivity and ability to record differences in the signal strength received

by the sensor (Chang and Bai, 2018). Sensors capable of recording information from

about five to twelve bands are commonly referred to as multi-spectral sensors, while

sensors that can capture a much higher number of bands (typically tens to hundreds of
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Table 2.2: Resolution characteristics definitions.

Resolution Type Definition

Spectral
The ability to differentiate signals

captured at different spectral ranges in
the electromagnetic spectrum (Chang and Bai, 2018).

Radiometric
The ability to record differences in the

strength of the signal being recorded (Ihlen, 2019).

Spatial

The ability to identify spatial differences in
the objects or phenomenon being detected.
This is normally recoded as pixel size or

Ground Sampling Distance (GSD) (Lillesand et al., 2014).

Temporal
The ability to detect the temporal change in an object

or phenomenon being recorded. This usually is
recorded as the frequency of data capture (ESA, 2015).

bands) are referred to as hyperspectral sensors (Adão et al., 2017). In contrast, consumer-

grade cameras capture three spectral ranges, Red, Green and Blue (RGB). These image

sensors, commonly use a Bayer filter on a single imaging chipset, comprising a number of

Red, Green Blue digital receptors and are designed to reproduce the human perceptual

quality of a scene rather than produce accurate spectral recordings (Yang et al., 2014;

Nguyen et al., 2014). The difference between the spectral sensitivity of a consumer-grade

camera and a multi-spectral camera is illustrated in Figure 2.1.

In addition, many consumer-grade cameras commonly record each band with an 8 bit

(256 grey levels) radiometric resolution (Lillesand et al., 2014). This is in comparison

to the Sentinel-2 multi-spectral sensor, which records spectral information with a 12 bit

(4,096 grey levels) radiometric resolution (ESA, 2015). The use of sensors with a high

spectral and radiometric resolution is important in EO, as the reflected electromagnetic

energy from a surface can provide information about the object or phenomenon being

observed (Emery and Camps, 2017). Figure 2.2 provides an illustrated example of how

the reflectance of three land cover types may differ depending on the wavelength being

observed. Sensors used for EO are not limited to the capture of optical data. For example,

Radio Detection and Ranging (RADAR) is a widely used EO technique. This technique

involves the transmission of radio waves of a wavelength between 0.5cm to 100cm. After

reflecting off a surface, the retuned signal’s strength, polarization, and phase are recorded.
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Figure 2.1: Spectral response function of conventional cameras Canon EOS 500D (Top
Left) and Nikon D5000 (Top Right) and multi-spectral cameras Mini-MCA6
(Bottom Left) and Sequoia (Bottom Right), Source: Fastie (2015); Deng
et al. (2018).

Figure 2.2: Illustration of spectral reflectance of water soil and green vegetation, Source:
GIS Homework (2021).
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Platforms such as Sentinel 1, TerraSAR-X and RADARSAT-2 used a technique known as

Synthetic Aperture Radar (SAR) for increased spatial resolution (Chang and Bai, 2018).

While increasing the spectral resolution of a sensor can have a significant benefit to

the generation of LCC data, there are limits to spectral range and resolution that can

be recorded. The biggest limitation to the spectral resolution is that narrowing the spec-

tral range reduces the energy that is recorded by the sensor. This reduction in the signal

recorded by the sensor can increase the impact of noise in the data recorded by the sensor

(Rasti et al., 2018). The use of multiple sensors with differing spectral resolutions can

increase the information recorded about an object or platform. However, for some appli-

cations, the different but sometimes overlapping spectral resolutions of each platform and

sensor can make comparing data recorded from each sensor challenging. For this reason,

data collected from ‘twinned’ satellite platforms such as Sentinel-1 A&B, Sentinel-2 A&B

and Pleiades 1A&1B aim to have almost identical spectral and radiometric resolutions

between satellite pairs (ESA, 2012b, 2015; Coeurdevey and Gabriel-Robez, 2012). To aid

cross platform analysis, spectrally harmonized datasets have been generated. One such

example is the ‘The Harmonized Landsat and Sentinel-2 surface reflectance’ dataset. In

this product, Sentinel-2 data has been spectrally adjusted to match the Landsat-8 spectral

resolution (Claverie et al., 2018). Harmonization between sensors can also be achieved by

converting spectral data from each data source to a common format. Sagan et al. (2019)

demonstrated this approach through the application of spectral indices. They were able

to demonstrate that imagery captured from a UAV mounted with a Parrot Sequoia multi-

spectral camera could be used in conjunction with WorldView-3 multi-spectral imagery

for high temporal crop monitoring. However, as outlined in this paper, there are minor

differences in the spectral resolution of each sensor which will be incorporated into the

calculated spectral indices. In this study, the researchers aimed to collect data from sim-

ilar dates for both the satellite and UAV platform. However, no concurrent surveys were

captured to assess if spectral indices calculated for each platform are comparable.

As electromagnetic energy passes through the atmosphere, this energy can be ab-

sorbed or scattered by gasses. The degree by which this interaction occurs is dependent
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on the energy’s wavelength. Therefore, to obtain accurate spectral information from the

data recorded by RS sensors, this interaction with the atmosphere needs to be accounted

for. This is particularly important when recording the change in an object’s spectral

response over time (Shunlin and Jindi, 2020). A number of atmospheric correction tech-

niques have been developed for different sensors and conditions. After performing atmo-

spheric correction of optical data, the signal recorded by the sensor represents the surface

radiance or reflectance of the recorded object or phenomenon (ESA, 2015; Ihlen, 2019).

The need for atmospheric correction is not consistent across all RS sensors. Some SAR

platforms such as Sentinel-1 are not affected by atmospheric conditions including cloud

cover (d’Andrimont et al., 2021).

2.2.2 Spatial Resolution

When deciding whether a sensor is suitable for a given application, a key factor is its

spatial resolution (Baghdadi and Zribi, 2017). The spatial resolution of RS data is com-

monly represented by its Ground Sampling Distance (GSD). GSD is the area on a surface

represented by a single pixel in the image. Depending on the LCC application, the spa-

tial resolution of the data can be a significant limiting factor to generating accurate LCC

data. For example, in Figure 2.3 all buildings in the 0.04m resolution aerial imagery can

be visually identified. However, in the 10m resolution Sentinel-2 imagery, many smaller

buildings could not be visually separated from one another.

Figure 2.3: Sentinel-2B 10m GSD captured (2018-09-05) over Maynooth University
(Left), aerial imagery 0.04m GSD capture (2018-09-03) over Maynooth
(Right).
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Table 2.3: Examples of satellite spatial resolution and image footprint, Source: Satellite
Imaging Corporation (2021); NASA (2021a).

Platform Maximum GSD Image Footprint
Worldview 4 0.31m 13.1km2

Pleiades 2 0.5m 20km2

RapidEye 5m 77km2

Sentiel-2 10m 290km2

Landsat-8 15m 185km2

MODIS 250m 2330km2

While a high spatial resolution can significantly improve classification accuracies,

platforms and sensors capturing high-resolution data tend to have a much smaller over-

all spatial coverage over the ground surface (Zhu et al., 2010). Table 2.3 provides a

comparison between the spatial resolution and image coverage of five optical satellites.

Higher spatial resolution imagery not only helps in delineating the boundary between

classes but also improves classification accuracy when used with ML techniques specifi-

cally designed to take the spatial relationship of data into account (Kannojia and Jaiswal,

2018). With the use of medium to low-resolution imagery, boundaries between objects

may not be well defined. As a result, pixels along this boundary may contain a mix of

spectral information from both objects (Li et al., 2019; Shunlin and Jindi, 2020). How-

ever, obtaining higher resolution aerial or UAV imagery can dramatically increase the

cost of data capture, data storage and the computational cost of processing the data

(Véstias, 2019).

Further challenges are encountered when analysing data captured from multiple plat-

forms with different spatial resolutions. For example, in a 10cm GSD aerial image, 10,000

pixels would cover the same area as a single Sentinel 2 pixel with a GSD of 10m. To ac-

count for this difference, data from one platform can be interpolated to match the spatial

resolution of the other. While this process is normally performed to reduce the resolution

of the high-resolution data source to match the lower resolution data source, techniques

such as pansharpening can be employed to increase the spatial resolution of an image.

When performing pansharpening, a high-resolution image is used as a reference to im-

prove the spatial resolution of the another image (Chang and Bai, 2018). Platforms such
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as the Landsat-8 and Pleiades contain a specific panchromatic sensor that can be used to

pansharpen the lower resolution multi-spectral imagery (Satellite Imaging Corporation,

2021; Ihlen, 2019; Coeurdevey and Gabriel-Robez, 2012). More recently ML enabled

super-resolution techniques have been developed that can be used to improve the spatial

resolution of an image. Shao et al. (2019) and Isa et al. (2021) demonstrated how a ML

enabled super-resolution approach can be used to increase the resolution of Landsat-8

data from 30m GSD to 10m GSD. Their papers also demonstrated that these techniques

could be used to spectrally harmonise Landsat-8 data to that of Sentinel-2. While the ap-

plication of a super-resolution approach may have some benefits in particular situations,

it is essential to understand the limitations of this technique. As this approach effectively

approximates the target sensor’s spectral and spatial resolution, anomalies are likely to

occur where the input sensor has insufficient information for this purpose. This limitation

is recognised in the paper by Isa et al. (2021), where due to the absence of a band with a

similar wavelength range in the input Landsat 8 data, the model was unable to reliably

predict band 10 of Sentinel-2. In the study by Shao et al. (2019), the super-resolution

of the Landsat 8 data was achieved by utilising multiple Sentinel-2 observations from

similar dates as auxiliary information to aid in the super-resolution. As recognised in the

paper, this approach may not be viable if there are insufficient Sentinel-2 observations

due to cloud cover. Attempts to apply the super-resolution approach without using the

auxiliary Sentinel-2 data resulted in significantly lower classification results. Given these

results, the model may overly rely on the Sentinel-2 auxiliary information to determine

the spectral information for the predicted output rather than rely on the Landsat-8 infor-

mation. The reliance on the Sentinel-2 auxiliary information may result in anomalies in

the predicted output where there are significant changes over the observed area between

the capture of the auxiliary information and the target Landsat-8 date.

2.2.3 Temporal Resolution

Temporal resolution refers to the frequency of data capture over a specific area of the

land surface. Accounting for temporal variability can be particularly useful when classi-
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fying vegetation cover, as the spectral response can change for different vegetation types

depending on the time of year (Kovačević et al., 2020; Nogueira et al., 2019). An ex-

ample of temporal variation is illustrated in Figure 2.4. This plot displays Normalized

Difference Vegetation Index (NDVI) values for three land cover classes using Sentinel-2

data. An NDVI from Sentinel-2 data is calculated using the following formula (Henrich

and Brüser, 2021):

NDV I =
ρNIR − ρRed

ρNIR + ρRed

(2.1)

where (ρRed) is the reflectance from the Red band and (ρNIR) is the reflectance from the

near-infrared band.

Figure 2.4: NDVI derived from Sentinel-2 over a year. Red = cultivated land, blue =
build-up area and green = grassland, Source: Peressutti (2018).

An additional consideration is that some phenomena that indicate land cover types

such as seasonal lakes (turlough) are only visible using RS at certain times of the year

(Walsh et al., 2021). Utilising temporal information can also help mitigate the influence

of unique non-persistent events that may impact LCC accuracy. Unique non-persistent

events can include extreme weather events such as flooding or human activities. An

example of a non-persistent event is visible in Figure 2.5. In this instance, during the

capture of the Sentinel-2 image on the 21st April 2018, slurry was in the process of being

spread on established grassland. As the owner of the farmland highlighted in Figure 2.5,

the agricultural practices of the land are known to the author. Typical farm management
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activities such as this may temporally change the spectral reflectance from the surface

and as a result may negatively impact the spectral analysis.

(a) Sentinel-2A (2018-04-21) (b) Sentinel-2A (2018-05-16) (c) Bing Imagery

Figure 2.5: An example of a unique non-persistent event captured by (a) Sentinel-2A
(2018-04-21) in image and circled in red. (b) Sentinel-2A (2018-05-16) image
(c) and Microsoft Bing Imagery (www.bing.com/maps/aerial) for reference.

While there are many benefits to the use of temporal information for LCC there are

many challenges that can be encountered through its application. One such challenge is

obtaining sufficient optical satellite observations over the target region. While the number

of EO platforms has significantly increased over recent years, obtaining sufficient optical

satellite imagery remains one of the most significant challenges for temporal analysis in

regions with frequent cloud cover (Huang et al., 2020) such as Ireland. Where a small

area of a region undergoing assessment has missing data due to cloud cover, gap-filling

techniques can be used. These gap-filling techniques include global linear histogram

matching or matrix completion (El Fellah et al., 2016). Gap-filling techniques can be

particularly useful when performing analysis over a large area as some temporal ML

techniques require that all data points being analysed have identical observation counts

and dates (Zhong et al., 2019). However, these gap-filling techniques may not be suitable

where there are significant areas of the assessed region that have missing data due to

cloud cover. If two regions have a different number of observations, two independent

models may need to be trained for each respective region (Salberg and Jenssen, 2012).

One potential solution to address the challenge of limited temporal resolution as

a result of frequent cloud cover, is to include data captured from multiple platforms.

However, as already discussed, there are additional challenges when performing analysis
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using data sources which have different spectral and spatial characteristics. Some SAR

platforms may be a viable alternative in regions with frequent cloud cover. This is due

to the fact that cloud cover has a minimal impact on the wavelength that some SAR

systems operate (Emery and Camps, 2017). Capturing data using an aircraft or UAVs

can be used as another alternative to optical satellite platforms due to their ability to

fly beneath cloud cover. However, the cost issue of surveying a large region is further

compounded if multiple surveys are required to accommodate multi-temporal analysis.

Additionally, variation in the cloud cover during an aerial or UAV survey may result in

variable solar irradiance conditions that may negatively impact the quality of captured

multi-spectral or hyper-spectral imagery (Wang et al., 2019).

One consideration when performing analysis using multi-temporal data is that the

inclusion of additional temporal information can dramatically increase computational

requirements and the volume of data to be processed (Kovačević et al., 2020). As a

result, a number of techniques have been developed in an attempt to account for this

issue. Observations that do not significantly contribute to the model’s prediction accuracy

can be excluded through data exploration. This approach can be useful before training

a model for cropland cover classification as it has been determined that data collected

within specific date ranges are significantly better at aiding discrimination between classes

(Valcarce-Diñeiro et al., 2019). Alternatively, a dimensionality reduction approach can

be employed to reduce the number of variables used when training a model. When

performing dimensionality reduction, the aim is to transform the input variables such

that they can be represented by fewer variables while not losing information that might

be significant to the analysis. Dimensionality reduction can be achieved through methods

such as temporal averaging, the utilisation of spectral indices in place of spectral bands,

or performing Principle Component Analysis (PCA). These approaches have been applied

in a number of studies such as by Huang et al. (2020), Haarpaintner and Hindberg (2019)

and Carrasco et al. (2019). While each of these studies obtains the highest classification

accuracy using normalised difference indices, by limiting the analysis to a single spectral

index such as NDVI, other spectral information is excluded from the analysis. In each
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study, the temporal mean and variance of these indices were examined as input variables.

However, as identified by Carrasco et al. (2019), the analysis results can be negatively

impacted where there are few observations to calculate the data’s temporal mean or

variance.

2.3 Spectral Based LCC

Spectral based LCC techniques rely on the pixel values which are recorded as Digital

Numbers (DN) within an image for classification. A simple example of how DN values can

be used for the classification of images can be demonstrated with the use of thresholding,

where a class is assigned to a pixel if its DN value is greater than or less than a defined

threshold value. This is represented by the formula:

DN ′
i =


1, DNi < θ

0, DNi > θ

(2.2)

A practical example of using thresholding for classification is illustrated in Figure:

2.6, where a Sentinel-2 image has been classified into land and water. This process was

achieved by first calculating a Modified Normalised Difference Water Index (MNDWI)

using the following formula (Du et al., 2016):

MNDWI =
ρGreen − ρSWIR

ρGreen + ρSWIR

(2.3)

where (ρGreen) is the reflectance from the green band and (ρSWIR) is the reflectance from

the short-wavelength infrared band. In the case of data from the Sentinel-2 satellite, the

formula is as follows:

MNDWI =
ρBand3 − ρBand11

ρBand3 + ρBand11

(2.4)

MNDWI takes advantage of the significant difference in how the green and short-wavelength

infrared bands are reflected by land and water. Difference indices such as the MNDWI
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have values ranging between -1 and 1. In the case of MNDWI, higher values above zero

generally correspond to water, while lower values typically correspond to land (Du et al.,

2016). The results of applying this threshold are visible in Figure 2.6. While this ap-

proach does appear successful at identifying water bodies in the scene, there are a number

of locations where land is falsely classified as water.

Figure 2.6: Sentinel-2 image over Dublin, Ireland (01/06/2020) true colour image (top
left), MNDWI (top right) and MNDWI threshold with a threshold of zero
(bottom).
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Spectral indices such as MNDWI are used to reduce the spectral information captured

across multiple bands to a single value. The output of these indices can then be used in

further analysis. Table 2.4 lists a number of spectral indices that have been developed to

highlight specific elements of the recorded RS spectral information.

Table 2.4: Spectral indices for Sentinel-2 satellite data Sources: Henrich and Brüser
(2021); Du et al. (2016)

Indices Formula

Normalized Difference Vegetation Index (NDVI) ρband8−ρband4

ρband8+ρband4

Modified Normalised Difference Water Index (MNDWI) ρBand3−ρBand11

ρBand3+ρBand11

Leaf Chlorophyll Index ρband8−ρband5

ρband8+ρband4

Soil Composition Index ρband11−ρband8

ρband11+ρband8

Global Vegetation Moisture Index (ρband9+0.1)−(ρband12+0.02)
(ρband9+0.1)+(ρband12+0.02)

2.3.1 Spectral Based ML Techniques

A number of other spectral-based classification techniques, varying in complexity, follow

a similar process to the example provided in the preceding section in terms of grouping

pixels based on DN values. Three examples of ML techniques used for spectral base

classification that will be examined in this section include; Random Forest (RF), Artificial

Neural Network (ANN) and Support Vector Machine (SVM).

2.3.1.1 Random Forest (RF)

RF is an ensemble-based ML technique that employs a collection of decision tree models.

Using bootstrapped samples from the original training data set, each decision tree is

developed by recursively partitioning the data into nodes such that each node contains

similar samples. For each partition step, a random subset of the available features is used

to determine the optimum partitioning of the samples. This process is repeated until a

defined threshold has been met, such as the tree depth. Predictions using a RF model are
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achieved by taking the majority vote of all decision trees within the model as illustrated

in Figure 2.7. While each decision tree may not produce accurate classification, the

overall result of the RF can be much more accurate (Breiman, 2001; Zafari et al., 2019).

Additional benefits to implementing RF is its ability to overcome the issue of ‘noise’ in

the input data and its ability to handle large datasets (Shunlin and Jindi, 2020; Nitze

et al., 2015). A number of papers applying a comparative analysis of ML techniques have

identified RF in particular as one of the best-performing spectral-based methodologies for

LCC using medium spatial resolution EO imagery (Talukdar et al., 2020; He et al., 2019;

Wulder et al., 2018). In the case of the paper by He et al. (2019), RF was utilised with

temporal information by including the spectral data from each date as additional input

variables. This study demonstrated that RF could outperform models that are specifically

designed to be used with temporal data. A significant benefit of utilising RF is the ability

to identify the importance of each input variable to the classification result. Identifying

the importance of each input variable can enable an analyst to exclude variables that do

not contribute to the model, reducing the computational cost of performing classification.

Additionally, examining the importance of input variables can provide the analyst insight

into the type of data required for future study. In the paper by He et al. (2019), the

researchers identified that features derived from March or April were the most significant

variables to the classification of winter wheat.

Figure 2.7: Example illustration of random forest structure.
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2.3.1.2 Artificial Neural Network (ANN)

ANN, derive their name from the fact that they were first developed as models for neurons

in the human brain. Their widespread application is such that they have become the

foundation upon which more complicated ML techniques have been developed (Raschka

and Mirjalili, 2017). An ANN is composed of layers of nodes. For each node (i) the input

values (x) are each multiplied by weights (w). These calculations are summed along with

a bias (b) before applying an activation function (S). The output of a neuron (yi) is given

by (Skansi, 2018):

yi = S

(
bi +

n∑
j=1

wijxj

)
(2.5)

In general, the activation functions are nonlinear in structure and so enable the net-

work to model non-linear relationships in the data. The output from each layer of neurons

is input into the next layer. This process is repeated until the end of the network where

the output of the final layer is used as the model prediction. Figure 2.8 provides an

illustration of an example ANN architecture. The model is trained using a methodology

known as backpropagation (Hastie et al., 2017), where the weights and bias of the neurons

are updated based on a loss function. Beginning with the last layer of the network, the

weights and bias of each neuron in the layer are updated before moving to the previous

layer.

Figure 2.8: Example illustration of artificial neural network.

Over the years, a number of different types ANNs have been developed. One of

the simplest forms of ANNs, comprising very few layers is commonly referred to as a
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Multilayer Perceptron (MLP). Conversely, ANNs that have a large number of hidden

layers fall into the category of deep learning, which has been proven as an extremely

powerful tool for modelling complex data (Shunlin and Jindi, 2020). ANNs have appeared

in a number of papers comparing ML techniques for LCC (Gašparović and Dobrinić, 2020;

Camargo et al., 2019; Talukdar et al., 2020). In these comparisons, ANNs are generally

surpassed by other ML techniques. However, ANNs have played a vital role in the

development of EO derived LCC as the original foundational structure for other spatial

models such as Convolutional Neural Networks (CNNs) and temporal models such as

Recurrent Neural Networks (RNNs).

2.3.1.3 Support Vector Machine (SVM)

A SVM functions by defining a hyperplane that is designed to maximise the margin

between samples from each class and the hyperplane. An SVM’s margin is defined as the

sum of the distance to the hyperplane from the closest point in each class. The points

on the margin are referred to as support vectors (Zafari et al., 2019; Hastie et al., 2017).

Figure 2.9 provides a basic illustration of a SVM for separation of two dimensional data.

Figure 2.9: Example illustration of support vector machine structure.

SVMs are particularly effective when employed with high dimensional data (Shunlin

and Jindi, 2020). While RF is widely used for LCC, for some applications SVMs can

provide comparable results. Camargo et al. (2019) conducted a comparative assessment

on a variety of pixel-based machine learning techniques for LCC using ALOS-2/PALSAR-

2 Polarimetric SAR imagery. Of the ML techniques they evaluated, they observed that
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RF, MLP, and SVM obtained the best results with statistically similar Kappa indices for

each. A comparative assessment of ML techniques for LCC using SAR data by Gašparović

and Dobrinić (2020) found that for single observation classification, SVMs outperformed

all other techniques assessed, including RF and ANN. In the study undertaken by Dabija

et al. (2021), evaluating the use of Sentinel-2 and Landsat-8 for the classification of Corine

Land Cover (CLC) data, it was found that an SVM obtained the highest accuracy results

for each respective platform sensor dataset.

2.4 Spatial Based LCC

Spatial Based LCC techniques use the spatial relationship of data within an image to

provide additional information, enabling improved classification accuracy (Sharma et al.,

2017). A Convolutional Neural Network (CNN) is an example of an ML technique that

has been developed to exploit the spatial relationship inherent within an image (Carranza-

Garćıa et al., 2019). CNNs have a number of similarities to ANNs and are influenced

by the understanding of how the brain interprets visual information (Rawat and Wang,

2017). As with ANNs, a number of CNN architectures have been developed. To examine

the application of CNNs for LCC, here CNNs will be divided into two broad architectures.

The first architecture uses an image patch as an input into the network resulting in a

single classification output (Patch-to-Point). In the second type of CNN architecture,

the output of the CNN is an image where each pixel is assigned a class (Patch-to-Patch).

2.4.1 Patch-to-Point

Similar to ANNs, a CNN comprises an input layer, a number of hidden layers and an

output layer. In CNNs, the hidden layers include convolutional and pooling layers. Con-

volutional layers utilise an array of values known as a kernel. For a given pixel in the

input image array, the dot product is calculated between the kernel and the pixels neigh-

bouring, equalling the size of the kernel centred at that pixel. This process is repeated

for all pixels in the input data enabling the spatial relationship of data within the image
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to be taken into account. This process also enables the sharing of parameters across

the entire image. The output of each layer is referred to as a feature map (Goodfellow

et al., 2016). Pooling Layers are designed to reduce the size of a feature map through

the aggregation of values. This process reduces the number of variables and can reduce

the impact of spatial distortions and translations in the input data. A common form of

pooling is max pooling, where the largest value within its receptive field is selected as

the value for the next layer (Rawat and Wang, 2017). In CNNs that are designed to

generate a single classification based on an input image, the network performs a number

of convolution and pooling of layers before ‘flattening’ the data into a one-dimensional

layer and subsequently, the resulting vector is input into a dense neural network (Skansi,

2018). An example of the structure of a CNN is outlined in Figure 2.10.

Figure 2.10: Illustration of an example CNN structure.

The resulting output of patch-to-point CNNs is a single classification where the output

could either represent a single target pixel or an overall classification known as scene

classification. Scene classification provides a class that represents a particular feature

of the input image patch. Some researchers use the terms ‘land cover’ or ‘land use’

classification when discussing scene classification techniques in contemporary research

publications. However, without modification these techniques, in themselves, do not

result in a land cover classification map (Ma et al., 2019). Carranza-Garćıa et al. (2019)
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obtained much higher accuracy results using CNNs, when carrying out a comparison of

ML techniques for LCC using k-nearest-neighbours, RF, SVM and CNN. In addition,

there study observed that the computation time for performing classification using their

CNN model was significantly faster than with RF and SVM. However, this analysis did

not appear to account for the fact that their model requires the generation of an input

patch for each pixel to be classified. This generation process will result in the creation of

highly overlapped input patches for classification over a large area, significantly reducing

the computation time.

Song et al. (2019) evaluated the performance of spectral-based and spatial-based ML

techniques for LCC using Landsat-8 data. In their study, each of the models, incorpo-

rating spatial data, outperformed spectral-based techniques. The researchers also found

that the use of a shallow CNN which, they refer to as a Light CNN (LCNN) produced the

best results. This study set out to examine models suitable for classification where there

are a limited number of sample points to train the model. Additionally, the “deep” CNN

(DCNN) which is used in the study for comparison, utilised a small input patch of 5X5

pixels. Therefore, it is unclear if the DCNN architecture or an alternative CNN architec-

ture, utilising larger patch inputs would outperform the LCNN architecture with more

sample points. The application of CNNs is not limited to classifying 2D spatial informa-

tion. Xu et al. (2018) demonstrated how a 3D CNN trained for using Light Detection and

Ranging (LiDAR) information can out-preform a 2D CNN using 2D raster information

such as a DSM and gridded intensity information derived from LiDAR data. However,

as identified in their paper, the application of a 3D-CNN requires a significant volume

of training data to ensure accurate classification. Additionally, the issue of LiDAR data

occlusion from dense tree cover was identified as a potential source of classification error.

2.4.2 Patch-to-Patch

Patch-to-Patch CNNs generate an image as an output. As these methods calculate the

classification of multiple pixels based on the input image, the resulting process can be

significantly more computationally efficient than a patch to point method which can
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require the generation and classification of highly overlapped image patches to classify

the overall image (Wu et al., 2019). These architectures are commonly composed of a

series of convolutional pooling layers followed by a series of deconvolution and upscaling

layers. As these networks are primarily composed of convolutional layers, they are also

known as Fully Convolutional Neural Network (FCNN). Long et al. (2015) presented

one of the first implementations of a FCNN capable of achieving pixel-level semantic

segmentation. An example of the structure of a FCNN is illustrated in Figure 2.11.

Figure 2.11: Illustration of an example FCNN structure.

Since the publication of the paper by Long et al. (2015), research in this field has

dramatically increased, giving rise to the design and development of many novel CNN

architectures. The results of a study conducted by Zhang et al. (2020b) revealed that

the use of CNN architectures such as SegNet, U-Net, and PSPNet significantly outper-

formed more traditional ML methods such as SVMs, RF and CART (Classification and

regression tree). However, due to the significant number of training variables in the as-

sessed CNN architectures, the authors recognised that a substantially larger number of

training variables are required to accurately train such models. Additionally, as these

models require a patch model to be trained, the generation of these labels can be sub-

stantially more time-consuming. When using CNNs with very high-resolution imagery, it

may also be necessary to use a CNN architecture which processes the imagery at different

scales. These CNN architectures, also known as multi-scale CNNs are designed to take

advantage of the clear boundaries visible in the imagery along with the overall context

of the object being classified (Sun et al., 2019; Zhang et al., 2020a). In both papers,

the authors propose generating multiple image patches of differing sizes centred at the
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location where classification is to be performed. For each patch size, a dense CNN is

used to extract features which are then concatenated together for final classification. As

a result, the classification process will be significantly slower and require more compu-

tational resources than a single scale CNN architecture. However, a comparison of the

computation time relative to other CNN architectures is not provided in either paper.

2.4.3 Object-Based Classification

Another approach to integrating spatial information into LCC is through the application

of object-based classification. Object-based classification utilises a two-step process. The

first step is the grouping of homogeneous and contiguous pixels into segments. A com-

mon classification is then assigned to all pixels within that object (De Luca et al., 2019).

A large number of segmentation techniques have been developed, including Watershed

Transformation, Mean Shift Segmentation and Region Adjacency Graph Segmentation.

The choice of which segmentation technique to employ is dependent on the input image

and associated application (Hossain and Chen, 2019). Once the segments have been gen-

erated, each segment is assigned an independent classification. One approach in assigning

a class to a segment is through computing common attributes for each segment such as

the average spectral value, the segment size and shape. These variables can then be used

as inputs into models such as ANNs, RFs and SVMs (De Luca et al., 2019; Whyte et al.,

2018; Hurskainen et al., 2019; Vilar et al., 2020). Alternatively, each generated segment

can be used to define the input patch for a CNN (Zhang et al., 2020a; Li et al., 2019). In

some instances, the classification of the image is performed independently to the segmen-

tation and a single class is assigned to each segment based on the independently classified

pixels within it (Zhou et al., 2019; Kleeschulte et al., 2019; Mugiraneza et al., 2019). One

benefit of object-based classification is that it can help reduce the impact of the “noise”

effect associated with spectral models (Zhang et al., 2020b). Figure 2.12 provides an il-

lustrated example of this effect and how object-based classification can reduce the impact

of noise in a classified output.
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Figure 2.12: Example of the impact of employing object-based techniques on the ‘noise’
in classification output over Carrick-on-Suir, Tipperary Ireland. Sentinel-2
true colour image (left), pixel-based random forest classification (centre),
object-based random forest classification.

2.5 Temporal LCC

While techniques discussed so far take advantage of spectral and spatial characteristics

of an object or phenomenon at a specific instance in time, temporal analysis utilises

the variations in spectral and spatial information over time. These techniques will be

explored and analysed under three broad categories; multi-dimensional techniques, tem-

poral ensemble techniques and time-series analysis.

2.5.1 Multi-dimensional Techniques

One of the most straightforward approaches to incorporate temporal information is to

simply include the temporal dimension of the data as additional input variables. This

approach enables the use of spectral and spatial ML techniques such as RF, ANN, SVM,

and CNN. Gašparović and Dobrinić (2020) undertook a comparative assessment on the

identification of vegetation using multi-temporal Sentinel-1 imagery. This assessment

compared techniques such as RF, SVM, extreme gradient boosting (XGB), MLP, Ad-

aBoost.M1 (AB), and extreme machine learning (ELM). This comparative assessment

revealed that for the given application, the highest accuracy results could be achieved

using an MLP. The study observed that where a single date was used for classification, an

SVM outperformed other assessment techniques. The inclusion of multitemporal satellite

data increased classification accuracy for each ML technique, with the MLP obtaining
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the highest classification result. While the study identifies that increasing the number of

satellite observations increases classification accuracy, only a maximum of five Sentinel-1

observations were used per site. The authors conclude that increasing the number of ob-

servations may reduce the impact of speckle noise present in SAR data. It is unclear from

this study if increasing the number of observations beyond five would further increase

classification results.

A number of papers have employed dimensionality reduction techniques before train-

ing their models to account for, the high number of input variables that can arise when

applying temporal analysis. For example, Huang et al. (2020) applied RF on the tempo-

ral mean and variance data values of an NDVI calculated using Sentinel-2 data. Their

method was effective in differentiating land cover classes, including forestry, agricultural

land, water, wetland and impervious surfaces. This methodology was particularly ef-

fective in the target study area as frequent cloud cover made employing other temporal

classification methodologies difficult due to insufficient cloud-free data. However, as iden-

tified in Section 2.2.3, by relying on a single vegetation index such as NDVI, potentially

beneficial information from other spectral bands is excluded from the analysis. Addition-

ally, the accuracy of the calculated mean and variance will be impacted by the number

of observations and may negatively impact classification accuracy in an area with fre-

quent cloud cover. The use of RF with temporally averaged data was also examined by

Carrasco et al. (2019). These researchers employed a temporal averaging approach to

account for missing data due to cloud cover. Their results demonstrated that the use

of seasonally averaged data could outperform annually-averaged data. The study also

noted that increasing the number of dates included in the temporal average improved the

classification accuracy.

2.5.2 Temporal Ensemble Techniques

Another methodology of incorporating temporal information when performing LCC is

to apply an ensemble based approach. This approach is achieved by first performing

independent classification for each observation date. The output from these classifications
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are combined to form a final classification. Mendili et al. (2020) employed this approach

by training a CNN using the VGG-16 architecture for each observation date. The output

of this model from each observation was concatenated together before being used as an

input into another CNN. Only three input dates could be used and only a two-class

output could be generated due to the computation requirements involved in the process.

As a result, several models may need to be trained if more than two land cover classes

are to be classified.

2.5.3 Time Series Analysis

The temporal ML techniques discussed so far exploit temporal information as multi-

dimensional data where the order of input variables are, in most instances, inconsequen-

tial. However, the order of temporal variation can provide additional information about

the relationship between variables (Aggarwal, 2018). Two ML techniques which can

be used with time-series data are Recurrent Neural Networks (RNNs) and Time-series

CNNs.

2.5.3.1 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a family of ANNs designed to process data as a

sequence of values. For a given time-series, data is input into the model in the order it

occurs in the series. Each iteration of this process is commonly referred to as a time-step.

The models generated from each time-step are used as an input to the model at the next

time-step along with the next value or set of values in the time-series. This process is

repeated for the full length of the sequence. Through this process, each member of the

series is processed using the same parameters (Goodfellow et al., 2016). There are four

main input and output RNN model structures as illustrated in Figure 2.13.

Primarily driven by research in speech recognition and stock market prediction, RNNs

have seen iterative improvements by including techniques such as Long-Short Term Mem-

ory (LSTM) or Gated Recurrent Units (GRU). These techniques are designed to overcome

some of the challenges of training models with large sequential datasets. These techniques
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Figure 2.13: Illustration of the four different RNN model categories, Source: Raschka
and Mirjalili (2017).

also aim to ensure only relevant information is passed on at each time-step (Raschka and

Mirjalili, 2017). Rußwurm and Körner (2017), demonstrated that the benefit of time-

series analysis for LCC with both an RNN and RNN with LSTM achieve significantly

higher classification accuracies when compared with non-temporal methodologies such

as CNN and SVM. Ienco et al. (2017) demonstrated how the incorporation of classi-

fiers such as RF and SVM into an RNN with LSTM can further improve LCC accuracy.

In their assessment RNN with LSTM out-performed multi-temporal classification with

SVM or RF. He et al. (2019) identified that RF slightly outperformed an RNN with

using attention-based long short-term memory (A-LSTM) in a comparative assessment

for the identification of winter wheat. However, it was observed that classification time

was significantly faster using the A-LSTM used with GPU acceleration. While this study

identified that classification time is shorter with a LSTM model, the training of RNN

based models can be challenging and requires that all data be prepared in an ordered

series (Pascanu et al., 2013). Therefore, with a higher classification result and greater

ease at training, the application of RF may be more suitable. A CNN can be integrated

into an RNN in order to facilitate the inclusion of spatial information into time-series

analysis. This approach was examined by Rußwurm and Körner (2018). Their study

demonstrated that an RNN based model could be used even when some of the input
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data contained cloud cover. This negated the requirement to perform cloud masking

before training the model. In their study, it was identified that their model could identify

and mask clouds visible in any image in the sequence, thereby negating their impact on

the final classification. However, it is unclear from the study if issues would arise where

images with significant cloud cover made up a substantial proportion of the time series.

Additionally, the authors do not outline the impact of cloud shadow on the classification

results.

2.5.3.2 Time-series CNN

An alternative methodology of processing time-series data is through the use of CNNs.

Just as CNNs can take advantage of the spatial relationship of data within grid data,

CNNs can be adapted such that they are capable of leveraging the temporal data in the

form of 3D grid data. In this instance, the third dimension is temporal information and

one approach is to use a CNN utilising one dimensional convolutions (1D-CNN ). However,

this approach does not leverage spatial information within the data. In a recent study

involving deep learning-based multi-temporal crop classification by Zhong et al. (2019), a

1D-CNN outperformed a number of other techniques including an RNN with LSTM. The

successful application of a 1D-CNN was also demonstrated by Zhao et al. (2019) on SAR

data for crop detection. The application of time-series analysis is particularly suitable

for SAR time-series data due to its cloud penetration capability, and so avoiding gaps in

the time-series data. Implementing a CNN utilising three dimensional convolutions (3D-

CNN ) enables the integration of both spatial and temporal information in the ML models.

This technique was examined in a recent study by Ji et al. (2018) which demonstrated

that a 3D-CNN was capable of outperforming a 2D-CNN for crop classification. Li

et al. (2020b) utilised a Multi-Scale Fully Convolutional 3D-CNN designed to exploit

the global and local features within each image. In their study, a Multi-Scale Fully

Convolutional 3D-CNN outperformed a number of 2D and 3D ML techniques for LCC.

While the study examines the computational complexity of the proposed model in terms

of training parameters, no detail is provided on the time required to perform classification.
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Additionally, the authors outline that a random sampling approach was used for selecting

the training, validation and test dataset used in the assessment. However, with a random

sampling approach, there is no guarantee of the independence of the test data, as test

samples can be selected in close proximity to training samples. Ideally, a stratified random

sampling approach should be applied ensuring test sample independence (Kubat, 2017).

2.6 Sensor Fusion LCC

All the ML techniques discussed so far have been focused on data collected from a single

sensor or platform. The use of data from a single sensor has the benefit of simplifying

the analysis as it can be assumed that all data being used as model inputs comprise of

the same structure. However, combining data collected from multiple sources or sensors

(Sensor Fusion) can significantly increase the information available for the analysis of an

object or phenomenon (Chang and Bai, 2018; Salcedo-Sanz et al., 2020). Sensor fusion

between image data from different platforms poses a variety of challenges. Each sensor

may have different spatial, spectral and radiometric attributes which usually need to

be taken into account prior to processing. A variety of methods have been developed to

enable sensor fusion modelling techniques. These techniques can be broadly grouped into

three categories, pixel-level, feature-level and decision-level (Chang and Bai, 2018; Useya

and Chen, 2018; Mahyouba et al., 2019). Fusion at the pixel level is the most direct form

of fusion and involves simply including data from each sensor as input variables before

training the model. Feature-level fusion is performed by first extracting features from

each data source, which are then fused. These features can be extracted prior to training

a model and as input variables to the model. Alternatively, the features can be derived

and combined within a model’s structure. Finally, in a decision-level fusion approach,

each data source is classified independently, and the output classifications are fused to

provide a final classification (Zhang, 2010). An illustrative example of the structure of

the three different fusion categories is illustrated in Figure 2.14.
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Figure 2.14: Illustration of the basic structure of the three different fusion categories.

2.6.1 Pixel-level Fusion

Pixel-level fusion is one the most direct forms of sensor fusion, where data from each

source is combined into a single image dataset (Zhang, 2010). Figure 2.15 provides an

illustrative example of the pixel-level fusion process.

Figure 2.15: Illustration of the steps involved in performing pixel-level fusion.

As already highlighted in this chapter, applying a harmonisation technique can be a

valuable methodology to enable pixel-level sensor fusion. However, as a result of spectral

harmonisation, useful spectral information in the unharmonised data source may be lost

in the process. Additionally, any error in the harmonisation process would propagate to
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further analysis stages. An alternative methodology of pixel-level fusion is to simply in-

clude the spectral information of each source into the analysis. A study by Barrett et al.

(2016) demonstrated that the pixel-level fusion of Sentinel-1 SAR and Sentinel-2 optical

data could obtain higher accuracies for the classification of upland vegetation than can

be obtained from either source alone. Mercier et al. (2019) demonstrated that using a

combination of Sentinel-1 and Sentinel-2 time-series data for LCC over predominantly

forested areas in Spain and Brazil provided more accurate classification than that pro-

vided by either satellite alone. Their approach was to use a RF classifier and treat data

from each source as additional input features in a combined temporal stack. A feature

selection step was included to reduce the number of variables used in the analysis. In

the study, the increase in accuracy due to the combination of Sentinel-1 and Sentinel-2

was more pronounced over the Spain study area, with Sentinel-2 data alone obtaining

similar results over the Brazil study area. One possible reason for this result is the dif-

ference in date range and number of Sentinel-1 observations used between the two sites.

In the Spain study area, 22 Sentinel-1 observations were used from December 2016 to

September 2017, while only 14 observations from November 2016 to December 2017 were

used for the Brazilian study area. As a result, the use of Sentinel-1 data alone obtained

lower classification results in the Brazil area than in the Spain area. This, in turn, would

negatively impact the fused classification results in the Brazil area. Carrasco et al. (2019)

also employed an RF model to enable data fusion of Sentinel-1, Sentinel-2 and Landsat-8

data. For classification over the entire study area, the combined data fusion approach

obtained higher classification results than from a single sensor alone. However, their ap-

proach required that all datasets had a complete temporal dataset series with no missing

data. Their study demonstrated that the fused datasets produced higher classification

accuracy than individual sensor datasets. During their study, they compared the result

of fusion to performing classification utilising two non-temporally aggregated Sentinel-

2 observations. In this assessment, the fused dataset obtained almost identical results

to using two non-temporally aggregated Sentinel-2 observations. However, due to cloud

cover, this compassion could only be conducted over 80% of the study area.
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A study by Liu et al. (2019) also examined the fusion of Sentinel-1 and Sentinel-

2 data. In their study, they observed that the inclusion of Sentinel-1 data in a RF

model significantly increased classification results in comparison to Sentinel-2 data alone.

However, only minor improvements in classification accuracy were observed with the

inclusion of Sentinel-1 data when training a CNN model. CNN models utilise the spatial

relationship between pixels to improve classification accuracy. Due to factors such as

speckle noise present in SAR data, Sentinel-1 data may not be suitable for use in a

CNN architecture. In the study, segmentation from the fused SAR and optical data was

used to refine and improve the accuracy of the generated pixel-level classification map.

As outlined in section 2.4.3, the application of object base classification can reduce the

impact of noise in the input dataset, such as the speckle noise present in SAR data.

Pixel-level fusion is also a commonly applied methodology for the fusion of satellite

data and high-resolution data from aerial or UAV sources. In a literature review con-

ducted by Emilien et al. (2021) two-thirds of identified papers, performing data fusion

between satellite and UAV data used a pixel-level fusion technique. A study by Zou et al.

(2018) demonstrated the use of pixel-level fusion of GF-1 satellite and UAV data for crop

classification.

2.6.2 Feature-level Fusion

Sensor fusion at the feature level occurs after the processing of one or more of the data

sources has been undertaken in order to extract relevant object features. For example,

an object feature can be either manually defined or generated using one of the input

data sources. Relevant information from each source can then be extracted to the object

before performing fusion of the data (Chang and Bai, 2018). An illustrative example of

the steps involved in performing feature-level fusion is presented in Figure 2.16.

Gevaert et al. (2015) utilised this approach using manually defined features. Their

study demonstrated that eight-meter GSD satellite multispectral data from Formosat-

2 and 1-meter GSD UAV hyperspectral data can be combined as a spectral–temporal

response surface. This spectral–temporal response surface could then be used for fur-
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Figure 2.16: Illustration of the steps involved in performing feature-level fusion.

ther analysis of the sample plots. A feature-level fusion technique was developed by

Feng et al. (2019) for LCC using Sentinel-1 and 2 multi-temporal data. In this study,

a CNN was used for feature extraction for each image at each time-step. Extracted

features were then concatenated together before classification. This study also identified

issues when attempting to perform classification using a CNN with Sentinel-1 data alone.

However, when combined with Sentinel-2 data in their proposed multibranch network,

they observed an increase in classification accuracy in comparison to using Sentinel-2

data alone. Rasti and Ghamisi (2020) achieve sensor fusion by transforming data into a

low-dimensional subspace where features can be extracted. This fusion approach was ex-

amined for two datasets. The first dataset contains hyperspectral, multispectral LiDAR,

and very high-resolution RGB images over the University of Houston, USA. The second

dataset comprised only hyperspectral and LiDAR data for the city of Trento, Italy. The

subspace feature extraction was performed using morphological profiles, which is used to

model the spatial dependencies of adjacent pixels. These features were then classified

using an RF classifier. Their results demonstrated that a higher classification accuracy

could be achieved with fused data when compared with single data source classification.
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However, no comparison was undertaken to determine the benefit of performing the pro-

posed subspace feature extraction approach to other sensor fusion approaches, such as

pixel-level fusion.

2.6.3 Decision-level Fusion

Decision-level fusion is achieved by first performing independent analysis on each data

source, and the results of each model are combined to make an overall decision. Figure

2.17 provides an illustrative example of the decision-level fusion process.

Figure 2.17: Illustration of the steps involved in performing decision-level fusion.

The application of decision-level fusion assumes that each independent analysis will

provide unique information about the object or phenomenon being observed, and the fu-

sion seeks to leverage this information from each source (Chang and Bai, 2018; Raschka

and Mirjalili, 2017). In comparison to pixel-level and feature-level fusion, the applica-

tion of decision-level fusion preserve significantly less information at the point of fusion

(Gravina et al., 2017). However, decision-level fusion benefits from lower computational

costs compared to pixel-level and feature-level fusion, along with enabling the fusion of

diverse data types.

Several methodologies can be employed to enable multi-sensor decision-level data

fusion. For a hand-crafted approach to fusion, a rules-based fusion approach can be
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employed. This approach takes advantage of the interpreter’s knowledge of the data and

survey area. A recent study by Zare and Mahmoudi (2019) demonstrated the effectiveness

of a rules-based approach for the fusion of optical and SAR data which significantly

improved classification accuracy in comparison to classification from a single data source.

Applying a rules-based approach to sensor fusion leverages a researcher’s knowledge to

improve classification. However, this approach may prove time-consuming, particularly

where a significant number of data sources are to be fused.

Several studies have demonstrated the application of voting based techniques for data

fusion. The classification predicted from each model is counted and the final classification

is the class which received the most votes. Useya and Chen (2018) employed a plurality

voting methodology for decision-level fusion. In this study, fusion was performed between

Landsat-7, Landsat-8 and Sentinel-2 over the Manicaland province in Zimbabwe with a

focus on crop classification. Multiple observations were utilised to generate a single mosaic

for each platform. The researchers carried out a comparative analysis and demonstrated

that the use of a decision-level fusion approach could outperform pixel-level fusion. In

addition, it was observed that performing fusion using output from multiple differing ML

techniques obtained higher classification results than from a single technique from each

data source. This approach to fusion is similar to the concept of ‘weak learners’, where

each ML technique will model different features of the input data (Bonaccorso, 2018).

While some studies have assigned equal weights for each vote, when applied to fusing

data with significantly different properties, a weighted voting approach may be more

suitable (Zhong et al., 2017). Vohra and Tiwari (2020) demonstrated this weighted

voting approach for LCC using RGB and hyperspectral data. Their study used the class

conditional probabilities of each classifier to assign the weight of each vote. While the EO

data used in this study is fused using an object-based fusion approach. In the study an

SVM and ANN model were trained from the fused input features. The weighted voting

fusion is then employed to fuse the output of the SVM and ANN models obtaining a

higher classification result than can be obtained from either model alone. Zhong et al.

(2017) employed a Differential Evolution Algorithm to determine the optimum weights for
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decision-level fusion of LiDAR and hyperspectral data for LCC. Through this approach,

the fusion model is trained to determine the significance that each input should have on

the final outcome. The results of the study demonstrate that the optimised weighted

voting approach obtained a higher classification approach over unfused methodologies.

However, no comparison was given over the results of unweighted fusion or the fusion

weighed by model classification probability. Another approach for decision-level fusion

is to input the independently classified data from each source into another ML model

(Zhang, 2010; Meng et al., 2020). Bigdeli et al. (2014) employed a Naive Bayes model for

decision-level fusion of LiDAR and hyperspecteral imagery. In their study, SVM models

were trained on data from each source independently. This study demonstrated that the

application of naive bayes for decision-level fusion could improve classification accuracy

over mono-platform classification. However, no details of the efficiency of this approach

were provided relative to mono-platform classification. In the paper by Yokoya et al.

(2018), a Markov random field classifier was employed to produce a final classification

using the class-conditional probabilities of models trained on Sentinel-2, Landsat-8 and

Open Street Map Data. However, in this study the proposed architecture performed

senor fusion at the pixel level and the fused data was used to train models using three

ML techniques, RF, CNN and gradient boosting machines (GBM). The application of

decision-level fusion utilising a Markov random field classifier was used as a means of

fusing the output of the three models with the aim of smoothing noise that may be

generated from any particular model.

During this literature review, few LCC papers were identified that utilised a decision-

level fusion for the fusion of medium spatial resolution images such as those obtained

from Landsat-8 and Sentinel-2 with high or very high resolution imagery that can be

obtained from aerial and UAV platforms. The fusion of 1.5m resolution mono-temporal

Spot6 satellite data and 10m resolution Sentinel-2 satellite data was examined by Wendl

et al. (2018). In their study, the Spot6 model was classified using a CNN model, and the

multitemporal Sentinel-2 data was classified by a RF model. An SVM fusion model was

used to fuse the independent models using class probabilities. A study by Sirmacek and
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Unsalan (2010) applied a decision-level fusion approach for the fusion of aerial and Ikonos

satellite data. In their study, the independent satellite and aerial probabilities were fused

for building detection. This study focused on building location and therefore did perform

LCC. In a review of UAV and satellite synergistic studies, Emilien et al. (2021) noted

that while they could not find any studies that performed decision-level fusion between

UAV and satellite data, its application, nevertheless, had interesting potential. With

only a limited number of papers identified examining the use of decision-level fusion for

the fusion of medium spatial resolution and high or very high spatial resolution data, this

is a significant gap in current knowledge in this field.

2.6.4 Sensor Fusion with partially Missing Data

While sensor fusion techniques for LCC have been utilised in multiple studies observed

during this literature review, few studies were identified that applied sensor fusion in

scenarios where one or more of the sensors to be fused are missing across the assessed

areas. In many instances, particularly where the ML techniques are utilised for the

fusion of multi-sensor data, it is assumed that at each location in the assessed area,

the availability of data from each sensor is consistent. Temporal averaging, Gap filling,

and sensor harmonisation techniques have been used in studies as potential solutions

for small areas of missing data. These techniques were successfully employed in studies

such as Carrasco et al. (2019) who employed temporal averaging, Griffiths et al. (2019)

who employed a band-wise temporal linear interpolation for gap filling and Nguyen and

Henebry (2019) who utilised the Harmonized Landsat-8 and Sentinel-2 (HLS) product

for LCC. Many ML techniques such as SVM or ANN require that the number of input

variables do not change during training or inference (Han and Kang, 2022). Therefore,

changes in the available data across the assessed region pose a significant challenge. A

number of techniques have been developed to account for missing data in input models.

These techniques include simple replacement methodologies such as zero or mean value

replacement (Salberg and Jenssen, 2012).

Alternatively, ML models can be used for the imputation of the missing data values.
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A study by Han and Kang (2022), compared multiple methods of value replacement and

value imputation techniques on 20 benchmark datasets for machine learning classification.

In this study, five techniques for value replacement/imputation were examined. These

included both zero and mean value replacement techniques. For value imputation, three

ML techniques were examined, the use of a K-Nearest Neighbour (KNN) as proposed by

Troyanskaya et al. (2001), the use of a denoising autoencoder as proposed by Gondara

and Wang (2018), and the use of a generative adversarial network (GAN) as proposed by

(Shang et al., 2017). A significant limitation of each of these techniques is that they rely

on other observations to aid in the generation of replacement data. Any change between

the reference observation and the target date will not be detected. Additionally, where

there is a substantial number of missing observations at one location due to issues such

as frequent cloud cover, these approaches may not be suitable. A study by Schneider

(2012) examined the use of ML techniques in a region with partially missing sensor

data. Multi-temporal models were trained with some missing data to overcome the issue

of missing data in the study. The study identified that ML techniques such as SVM

and Decision trees could result in accurate classification from multi-temporal Landsat-8

satellite datasets where there is some missing data. However, it was observed the number

of missing observations impacted the classification accuracy.

Gap filling and value imputation may be suitable for replacing small gaps in missing

data. However, in situations where there are significant regions with missing data or a

significant percentage of missing data at a point, these techniques may not be suitable.

In such scenarios, the sensor fusion technique utilised needs to be flexible enough to only

fuse the available data without imputation of other sensors. One such technique was

assessed by Salberg and Jenssen (2012) through the training of a SVM model for each

combination of available data. For each location, the appropriate SVM model was used

depending on data availability. This approach was observed to outperform techniques

such as zero value replacement for missing data and was utilised for the pixel-level fusion

of Digital Surface Model (DSM) and multi-temporal Landsat-8 imagery with missing

input data due to cloud cover. The comparative assessment by Useya and Chen (2018)
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examined the fusion of Landsat-7, Landsat-8 and Sentinel-2 data with significant regions

of missing data amongst each platform. In their study, they employed both pixel-level

fusion and decision level fusion techniques to ensure full data coverage over the assessed

region. During their study, the use of a plurality voting decision-level fusion approach

obtained better results than the assessed pixel-level fusion technique. While the study by

Useya and Chen (2018) examines the use of decision-level fusion for the fusion of data with

variable data availability, this study only examines a single decision-level fusion technique.

Given the limited number of studies focusing on addressing the issue of applying fusion in

situations where data availability varies across the assessed region, a further examination

into this field is required.

2.7 Suitability of ML Techniques for CLC+ Back-

bone Raster Product

As one of the primary sources for EO derived land cover labelling within CLC+, signifi-

cant consideration is required to determine suitable methodologies for the generation of

the CLC+ Backbone raster product. As outlined in this literature review, there are a

variety of ML techniques that can be used for the classification of EO data. However,

a number of the techniques discussed may not be suitable for generating this product.

These techniques will be reviewed in terms of the CLC+ Backbone raster product re-

quirements set out in the CLC+ Backbone technical specifications (Kleeschulte et al.,

2019) and CLC+ Backbone tender specifications (Agency, 2019) in order to assess the

suitability of the techniques discussed in preceding sections.

These requirements include:

- The pixel based EO derived requirement.

- The sensor and multi-temporal requirement.

- The resolution requirement.
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2.7.1 Pixel-Based Requirement

Despite a number of papers demonstrating the effectiveness of object-based techniques,

the requirement for a pixel-based methodology excludes these techniques. This exclusion

also encompasses object-based feature-level fusion techniques. One likely reason for this

requirement is that the CLC+ Backbone vector product is technically an object-based

classification dataset where classes are derived from the independently classified raster

dataset. As a result, implementing an object-level classification for the generation of the

raster product would be redundant. However, it is not clear if this requirement precludes

the application of any spatial based techniques. CNNs such as the Light CNN evaluated

by Song et al. (2019) can be used to incorporate spatial data and classify each pixel

independently. However, for any adjacent pixels to be classified, the variables used to

classify the point are not independent as each generated patch covers highly overlapped

areas (Wu et al., 2019). This lack of variable independence for the classification of a

pixel is also true for FCNNs. For most FCNN architectures, the class of any pixel in the

output patch is dependent on all values in the input patch. However, despite the potential

issue of non-independence of variables, a number of assessments have demonstrated the

effectiveness of incorporating spatial information into LCC. As such, the application of

CNNs for the generation of the CLC+ Backbone raster product should be explored.

2.7.2 Sensor and Multi-temporal Requirements

The recommended EO data source for the generation of the CLC+ Backbone raster

product is Sentinel-2. In particular, the technical specification requires that at least six

observations within the target reference year be used to enable temporal analysis. There-

fore all techniques used in the generation of the raster product must be able to include

temporal information in consideration of this requirement. This does not exclude any

specific ML architecture discussed in this chapter. However, architectures such as 1D/3D-

CNNs or RNNs have been shown to be particularly suited for managing this time-series

data (Rußwurm and Körner, 2018; Ienco et al., 2017; Zhao et al., 2019). A significant

impact of this requirement is that in regions with frequent cloud cover, obtaining suf-
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ficient observation from Sentinel-2’s optical sensors may be challenging. In the CLC+

Backbone technical specifications, it was recognized that regions along the Atlantic coast

with frequent and high cloud cover may have had few cloud-free satellite images over a

given year upon which to use for LCC (Kleeschulte et al., 2019). Ireland is one of the

regions in Europe most significantly impacted by the issue of cloud cover. As an island

on the northwest of Europe that is strongly influenced by Atlantic low-pressure systems,

Ireland has 100% cloud cover 50% of the time (Met Éireann, 2021). One recommendation

set out in the technical specifications for dealing with the issue of limited observations is

the inclusion of EO data from the year preceding and following the target reference year.

This approach does increase the number of available observations to be used in the anal-

ysis. However, by broadening the analysis over three years, there is an increased risk that

the land cover class may change over the observation period, for example, due to urban

development or change in agricultural practices. In addition, changes in the climatic con-

ditions across the three years may also need to be considered. The first CLC+ datasets

are being generated for the year 2018. In 2018, Ireland experienced drought conditions for

the months of June and July (Moore et al., 2018). With drought conditions uncommon

on the island in Ireland, this occurrence may significantly impact the spectral response

of vegetation relative to the preceding and following year. The current update cycle of

the CLC+ Backbone datasets is expected to be 3-6 years. However, during a workshop

on CORINE Land Cover+ in Brussels in November 2017, almost a quarter of member

state representatives indicated the desire for a yearly updated product (Kleeschulte et al.,

2019). With an increase in demand for up-to-date land cover monitoring, it is likely that

the demand for annual updates will increase in the future. If updated annually, the use

of satellite imagery outside the target year would result in a significant repeat in the

data used across each update. Therefore, the capture and processing of data from within

the same target year should be examined for the generation of future CLC+ Backbone

datasets.

The application of gap-filling techniques using Landsat-8 data has also been suggested

as a recommended methodology to mitigate the issue of limited Sentinel-2 observations
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due to frequent cloud cover (Kleeschulte et al., 2019). Sentinel-1 data was also suggested

as a means of improving classification accuracies. However, no recommendation was pro-

vided for the means of incorporating each of these data sources. There are three categories

of sensor fusion; pixel-level, feature-level and decision-level, as outlined in Section 2.6.

Pixel-level fusion through a spatial and spectral harmonisation approach can increase

the temporal availability of data. However, harmonisation is commonly performed using

another optical satellite data such as Landsat-8 which is also affected by frequent cloud

cover. For this reason, harmonised Sentinel-2 and Landsat-8 may still not provide suf-

ficient cloud-free observations. In addition, any error in the harmonisation process may

negatively impact the overall classification results. Non-harmonised pixel-level fusion

and non-object feature-level fusion have been demonstrated to improve classification ac-

curacies. However, with each data source having differing spatial, spectral and temporal

resolutions, performing fusion at this level would be challenging. There is an additional

challenge in applying fusion techniques where the availability of each data source differs

across the assessed regions. With these considerations, a decision-level fusion approach

would likely be the most suitable approach to incorporate data from each platform. How-

ever, the means and effectiveness of utilising a decision-level fusion approach in a region

with frequent cloud cover requires examination.

2.7.3 Spatial Resolution Requirement

The final consideration is the requirement for a 10m resolution output. The recommended

EO input is Sentinel-2, which has only four spectral bands with a 10m spatial resolution.

The remaining bands have a resolution of 20m and 60m. Therefore, if limiting the input

data to only 10m or better resolution, only four Sentinel-2 bands could be used. Ad-

ditionally, this requirement would exclude the use of Landsat-8 with its 30m resolution

bands. The Sentinel-1 Ground Range, Multi-Look, Detected (GRD) product is provided

at a 10m spatial resolution. However, the GRD product is derived from the Slant Range,

Single-Look Complex (SLC) product. Due to the off nadir observation of SAR the spa-

tial resolution of the SLC product varies across the observation area (Emery and Camps,
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2017). Spatial resolution ranges from 5m to 20m for Sentinel-1 when operating in the In-

terferometric Wide Swath Mode. Therefore, the ability to delineate boundaries may vary

across the GRD product. While data-acquisition modes such as Strip Map Mode result

in 5m spatial resolution, Interferometric Wide Swath Mode is the default capture mode

(Attema et al., 2007). Furthermore, pre-processing steps such as applying a speckle filter

to remove ‘noise’ can result in blurring the imagery (Kupidura, 2016). Considering these

issues, the inclusion of Landsat-8, Sentinel-1 and non-10m Sentinel-2 resolution bands

may negatively impact classification accuracy, particularly at the boundary between land

cover classes. One possible solution for this issue is the incorporation of high-resolution

imagery into the analysis to help improve classification and minimise the issue of mis-

classification around class boundaries. While the technical specification mentions the

inclusion of high-resolution satellite imagery for the generation of the CLC+ Backbone

vector product, there was no mention of its inclusion in the generation of the CLC+

Backbone raster product. One likely reason for this is the difficulty in applying fusion

between data with significantly different spatial resolutions. Additionally, sensor fusion

techniques may have already been used at the satellite level to overcome the issue of miss-

ing data due to frequent cloud cover. Therefore, the further fusion of high-resolution data

may pose additional challenges. One possible means of incorporating the high-resolution

RS data to prior fused satellite data is through the use of a decision-level fusion tech-

nique. In a region with frequent cloud cover, obtaining enough high-resolution optical

satellite data over a large area may be quite challenging. One viable alternative is for

the inclusion of aerial or UAV data where the aircraft or drone can fly beneath the cloud

cover. Incorporating this high-resolution optical imagery into the raster LCC should

be explored further as a potential means of improving class delineation, particularly in

complex scenes. While undertaking this literature review, no papers were identified that

used a decision-level fusion approach to fuse satellite and aerial data for LCC. Therefore,

this subject requires further investigation.
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2.8 Summary

This chapter explored the key challenges in LCC as well as potential solutions in the

current state of the art of ML modelling in terms of how these techniques can be applied

to LCC. These challenges and potential solutions were examined and assessed under four

fundamental RS characteristics namely; spatial, spectral radiometric and temporal reso-

lution. It was found that increasing the resolution of any one of these RS variables can

improve classification accuracies. However, sometimes these improvements can, inadver-

tently, generate additional issues that need to be addressed. In the process of assessing

the challenges associated with each resolution category, a number of ML techniques and

in some cases adaptations were highlighted, which were found to significantly improve

final classification results. Throughout this chapter, many ML classification techniques

were examined from simple spectral thresholding to more advanced time-series and sen-

sor fusion ML techniques. On closer scrutiny, a number of papers were identified that

demonstrated that better ML classification results were usually generated when exploit-

ing the spatial or temporal properties of the RS data when compared to model outputs

that simply relied on spectral data alone.

This chapter then examined the suitability of ML techniques for the generation of

the CLC+ Backbone raster product and, in particular, how well the model outputs

matched the requirements set out in the CLC+ technical specifications. This closer

examination identified three areas requiring further investigation. The first area requiring

further investigation is whether the incorporation of spatial data through the use of

CNN architectures increase classification accuracy relative to pixel-based techniques for

the generation of the CLC+ Backbone raster product. This issue will be addressed in

Chapter 3 and in line with the first research question “What ML techniques are suitable

for mono-platform satellite-derived annual LCC on the island of Ireland?”.

The second area requiring further investigation is whether a decision-level sensor

fusion approach can be used as an appropriate means of fusing data with differing resolu-

tions and availability across the assessed region. This issue will be examined in Chapter

4 and will be addressed in line with the second research question of this thesis “How
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can a multi-sensor satellite data fusion approach be employed where frequent cloud cover

results in differences in sensor data availability over the area that is being assessed?”

Finally, the use of a decision-level fusion approach for the fusion of satellite and aerial

data is an area requiring further investigation. This subject will be examined in Chapter

5 and will address the third research question in this thesis “Can aerial data be used to

further improve the accuracy of multi-sensor satellite-derived LCC?”
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Chapter 3

Evaluation of ML Techniques for

Satellite based LCC

3.1 Introduction

This chapter will examine the generation of EO derived LCC using ML techniques. In

particular, this chapter will examine the challenges associated with performing LCC using

a single satellite source as a result of frequent cloud cover on the island of Ireland. This

chapter will build upon the work undertaken in Chapter 2 by conducting a comparative

analysis of several ML techniques. The techniques to be evaluated in this comparative

assessment will be performed on data captured by three satellite platforms, Sentinel-1,

Sentinel-2 and Landsat-8. The techniques reviewed in this comparative analysis will be

examined based on their suitability for the generation of the CLC+ Backbone raster

product. One important requirement set out in the CLC+ technical specifications is that

a minimum of six satellite observations should be used for classifications. As outlined

in the CLC+ technical specifications, in regions with frequent cloud cover it may not be

possible to meet this requirement for all areas. As part of the comparative analysis, the

coverage of each technique will also be assessed based on this requirement.
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This chapter is structured into four sub-sections in order to carry-out this comparative

assessment. Section 3.2 will outline the regions and data to be used in this evaluation.

Section 3.3 will describe the data preparation methodologies, the ML techniques to be

evaluated and will outline the metrics used for assessing the suitability of techniques.

Section 3.4 will detail the results of the study. Section 3.5 will provide an in-depth

analysis of the results and highlight the knowledge learned from this assessment.

3.2 Data

A systematic approach was employed when preparing all data used in this assessment to

ensure reproducibility in various data handling and analysis stages. The same geodetic

datum and projection system was used for all spatial datasets examined in this study.

The use of a common geographic projection system between datasets ensures that all

geographic information is comparable between datasets. The correct choice of projec-

tion was necessary to minimise the spatial distortions which can occur when attempting

to represent the surface of the earth as a two-dimensional object (Bolstad, 2019). The

‘WGS84/UTM29N’ (EPGS:32629) projection was used as the common geodetic frame-

work for this assessment. WGS84/UTM29N is a meter based projection designed for use

on data between 12°W and 6°W in the Northern Hemisphere (MapTiler, 2019). This pro-

jection was also chosen as it was the default projection provided for much of the satellite

EO data used in this assessment.

3.2.1 Study Area

This study was undertaken at seven sites, located across on the island of Ireland. The

choice of these locations was primarily determined by the availability of labelled data

from the Copernicus Urban Atlas and Copernicus Coastal Zones datasets. A bounding

box was created for five of the regions based on the coverage extent of the Copernicus

Urban Atlas data available in each region. Two additional target study areas of interest

labelled as Dunglow and Glengariff were also generated. The extent of these two target
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study areas was manually defined in areas with sufficient label data coverage from the

Coastal Zones dataset.

Figure 3.1: Geographic extent of study areas. Base map: Microsoft Bing imagery
(www.bing.com/maps/aerial).
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3.2.2 Satellite Data

Only satellite data from a single year will be used to assess the suitability of generating an

annual CLC+ Backbone raster product in this assessment. Therefore, 2018 was chosen

as the year to collate satellite data for this study. This year was also chosen since it was

the target year for the generation of the first CLC+ dataset (Kleeschulte et al., 2019)

and labelled land-cover data was also available for 2018.

The three satellite data sources to be used in this comparative assessment are Sentinel-

1, Sentinel-2 and Landsat-8. Tables listing all satellite images used in this assessment are

presented in Appendix A.

3.2.2.1 Sentinel-1

As part of the European Space Agency (ESA) Sentinel satellite series, Sentinel-1 is an

earth observation satellite consisting of a C-band SAR system that transmits and re-

ceives electromagnetic energy in both a horizontal and vertical polarisation with a cen-

tral frequency between 5250-5570 MHz (ESA, 2012a). Presently, there are two Sentinel-1

satellites in orbit, Sentinel-1A and Sentinel-1B (ESA, 2021d). Figure 3.2, provides an

illustrative example of a Sentinel-1 satellite.

Figure 3.2: Illustration of Sentinel-1 satellite, Source: ESA (2021b).
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This platform was primarily designed with the following application in mind:

� monitoring sea-ice zones and the polar environment.

� mapping in support of humanitarian aid in crisis situations.

� surveillance of marine environments.

� monitoring land surface motion risks.

� mapping of land surfaces: forest, water, soil and agriculture.

(ESA, 2012a)

The data used in this research was downloaded from the Copernicus Open Access Hub

(scihub.copernicus.eu/dhus) as a ground range detected product processed to a 10m pixel

resolution with both VV + VH polarization. Once downloaded, pre-processing of each

dataset was undertaken using the following image-processing steps in the ESA SNAP

software package.

1. Radiometric Calibration

This process was undertaken to account for the systematic variation in the image

signal across the sensing area (Lillesand et al., 2014).

2. Speckle Filter

RADAR pulses transmitted from RADAR satellites such as Sentinel-1 are trans-

mitted coherently so that transmitted waves oscillate in phase with one another.

However, interaction with different objects can change in the phase of the returning

data. This change in phase can result in amplification or reduction of other return-

ing signals. This has the result of creating noise (speckle) in the captured data

(Lillesand et al., 2014). This research is focused on understanding the temporal

characteristics from each data source, therefore a multi-look approach for reducing

speckle filter was not applied as this requires multiple independent images captured

over the same location (Emery and Camps, 2017). A Lee Sigma filter was applied

to the data to reduce the impact of the speckle.
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3. Terrain Correction to UTM N29

Terrain correction uses a known elevation model along with known satellite or-

bital positions in order to georeference the data to correct for relief displacement

caused by elevation variation across the observed area and ensure spatial accuracy

(Chang and Bai, 2018). The reference elevation dataset used in this assessment was

produced by the Shuttle Radar Topography Mission (SRTM) sensor system.

4. Convert to Decibels (dB)

Finally, the image data was converted to a backscattering signal as a log ratio of

the transmitted and received signal in decibels (dB) (Lillesand et al., 2014). This

step was undertaken to ensure data was comparable between datasets.

3.2.2.2 Sentinel-2

ESA’s Sentinel 2 constellation presently comprises of two sun-synchronous near-polar or-

biting multi-spectral satellites, Sentinel-2A and Sentinel-2B. Figure 3.3, provides an illus-

trative example of a Sentinel-2 satellite. The onboard Multi-Spectral Instrument (MSI),

is capable of capturing imagery with 13 spectral bands between 433nm and 2202nm. Four

of these bands have a spatial resolution of 10m, six bands have a spatial resolution of

20m, and three have a spatial resolution of 60m. Table 3.1 details the spatial and spectral

specifications for the Sentinel-2 satellites. While there are minor differences in the spec-

tral resolution between Sentinel-2A and Sentinel-2B (ESA, 2021a), for this assessment,

the spectral resolution from each satellite will be treated as identical.

To align with the guidelines outlined in the CLC+ technical specifications, all Sentinel-

2 data used in this assessment was atmospherically corrected to bottom of atmosphere

reflectance (Kleeschulte et al., 2019). The atmospherically corrected data was downloaded

as a L2A product from the Copernicus Open Access Hub (scihub.copernicus.eu/dhus).

The selection of image data to download was based on visual observation of the preview

images, selecting images which contained cloud-free regions over the areas of interest for

the 2018 test-year. Initial cloud cover masks were generated using data provided in the

MSK CLOUDS B00.gml file along with pixels in the file MSK CLDPRB 60m.jp2 with
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Figure 3.3: Illustration of Sentinel-2 satellite, Source: ESA (2021c).

Table 3.1: Sentinel-2 band spectral ranges and spatial resolutions, Source: ESA (2021a).

S2A S2B

Band
Number

Central
wavelength

(nm)

Bandwidth
(nm)

Central
wavelength

(nm)

Bandwidth
(nm)

Spatial
Resolution

(m)
1 442.7 21 442.3 21 60
2 492.4 66 492.1 66 10
3 559.8 36 559.0 36 10
4 664.6 31 665.0 31 10
5 704.1 15 703.8 16 20
6 740.5 15 739.1 15 20
7 782.8 20 779.7 20 20
8 832.8 106 833.0 106 10
8b 864.7 21 864.0 22 20
9 945.1 20 943.2 21 60
10 1373.5 31 1376.9 30 60
11 1613.7 91 1610.4 94 20
12 2202.4 175 2185.7 185 20

values above 90, indicating a 90% probability of cloud cover. Visual inspection of each

image was then conducted to identify any remaining cloud, cloud shadow, or atmospheric

haze within the image that could impact the research results.

3.2.2.3 Landsat-8

Launched in 2013, the Landsat-8 satellite is the eighth satellite launched in the Landsat

satellite series, which started with Landsat-1 in 1972. Figure 3.4, provides an illustrative

example of the Landsat-8 satellite. Landsat-8 has two onboard EO sensors, the Opera-

tional Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI has eight

30m multi-spectral bands and one 15m resolution panchromatic band. The TIRS has
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two 100m resolution bands (Ihlen, 2019). Table 3.2 details the spatial and spectral spec-

ifications for the Landsat-8 satellites. Due to the lower resolution and calibration issues

with the sensor (Barsi et al., 2017), TIRS data will not be used in this assessment.

Figure 3.4: Illustration of Landsat-8 satellite, Source: EROS (2013).

Table 3.2: Landsat-8 band spectral ranges, Source: Ihlen (2019).

Band Number Band Name Wavelength Range (nm)
Spatial

Resolution (m)
1 Costal/Aerosol 0.435 – 0.451 30
2 Blue 0.452 – 0.512 30
3 Green 0.533 – 0.590 30
4 Red 0.636 – 0.673 30
5 NIR 0.851 – 0.879 30
6 SWIR 1.566 – 1.651 30
7 SWIR2 2.107 – 2.294 30
8 Pan 0.503 – 0.676 15
9 Cirrus 10.60 – 11.19 30
10 TIR-1 11.50 – 12.51 100
11 TIR-2 13.63 – 13.84 100

Landsat-8 data obtained for this assessment was downloaded from the USGS Earth

Explorer website (earthexplorer.usgs.gov). As with Sentinel-2 data, the selection of im-

agery to download was based on visual inspection of all Landsat-8 preview data over

the survey areas for 2018, selecting images with cloud-free regions. The Level 2 (L2)

Surface Reflectance product was downloaded in order to comply with the requirement

for atmospherically corrected data. This product does not include the 15m resolution

panchromatic band (Ihlen, 2019) and the Band 9 (Cirrus) and therefore these bands

were not used in this assessment.
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3.2.3 Clipping and Resampling

Each image was clipped to the defined regions shown in Figure 3.1, once each satellite

data source had been prepared. During this process, each image was resampled to ensure

that the image’s minimum and maximum extents were divisible by 10. Resampling was

performed using a bilinear interpolation. This process was performed to ensure alignment

between the grid structure of each image and the label data used in this assessment.

3.2.4 Labelled Data

The CLC+ Backbone technical specifications define the twelve land cover classes required

for the raster product classification dataset. The classification schema for the CLC+

Backbone raster product is detailed in Table 3.3. Examination of LCC datasets, including

CORINE 2018, URBAN ATLAS, and LUCAS revealed that the following classes were

not identified and reported on the island of Ireland and therefore will be excluded from

this assessment:

� Class 4: Woody - broadleaved, evergreen trees

� Class 8: Lichens and mosses

� Class 12: Snow and Ice

In addition to these classes, Class 5: Woody (shrubs/bushes) will also be excluded from

this assessment. As this class is defined based on elevation, elevation information would be

required in this assessment. While it is possible to generate a DSM using Sentinel-1 data,

preliminary analysis of the inclusion of a DSM generated using Sentinel-1 data did not

improve classification accuracy. One possible reason for this is the poor quality labelled

data for shrubs. During preliminary analysis the shrub class was primarily defined using

the Copernicus High-res Small Woody 2015 dataset. With satellite data capture for the

year 2018, changes to the land cover class may have occurred since 2015. For these

aforementioned reasons, classes, 4,5,8 and 12 were excluded from this assessment.
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Table 3.3: CLC+ nomenclature, Source: Kleeschulte et al. (2019).

No. Class Name Description

1 Sealed
All impervious and sealed surfaces. Artificial surfaces
such as buildings and artificial constructions, asphalt,

concrete, tarmacadam.

2
Woody

needle leaved
trees

Trees and shrubs with typical needle-shaped leaves. The
botanical group Gymnospermae (Ford-Robertson, 1971).

3
Woody

broadleaved,
deciduous trees

Perennial plants which are leafless for a certain period
during the year of the botanical group Angiospermae,

with the exception of ginkgo (Ginkgo biloba).

4
Woody

broadleaved,
evergreen trees

Perennial plants that are never entirely without
green foliage of the botanical group Angiospermae,

with the exception of ginkgo (Ginkgo biloba).

5
Woody

shrubs/bushes
Perennial woody plants with a shrub growth form with

height usually less than 8 metres of any leaf type.

6
Permanent
herbaceous

Areas of continuous vegetation cover with no
bare soil throughout the year. This includes both

managed and unmanaged vegetation such as grasslands,
or arable areas with a permanent vegetation cover

(e.g. fodder crops) or even set-aside land in agriculture.

7
Periodically
herbaceous

Areas of land cover which may alternate between bare
soil and herbaceous vegetation within one year. Typically

this would be a result of managed arable areas.

8
Lichens

and mosses

Any type of lichen or mosses. Lichens are composite
organisms formed by a symbiotic relationship of a fungus
and a photosynthetic partner. Mosses are non-vascular
plants in the land plant division Bryophyta. They are
small (a few centimetres tall) herbaceous (non-woody)
plants that absorb water and nutrients mainly through

their leaves and also photosynthesize.

9
Sparsely
Vegetated

Sparsely vegetated and unstable areas of stones, boulders,
or rubble on steep slopes where the vegetation layer

consisting of herbaceous vegetation covers between 10%
and 50% of the surface.

10 Non-vegetated

Contains consolidated and unconsolidated materials as
well as permanent bare soils, where non-vegetated areas
cover >= 90% of the land surface. Examples include
rock formations, quarries, mineral extraction sites,
open pit mines, screes, sand, permanent bare soil.

11 Water

Water in liquid state of aggregation regardless of
location, shape, salinity and origin both natural or
artificial. This includes rivers, canals, natural lakes,

fishponds, man-made reservoirs, pools, irrigation ponds.

12 Snow and ice
Areas covered in snow for at least 90% of observation

period or Ice for 100% of the observation period.
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With the official CLC+ 2018 Backbone dataset still in production (Copernicus, 2021),

no single source of data could be found for the generation of the required land cover labels.

For the assessment, multiple data sources were aggregated together to ensure sufficient

label data sources for each land cover class. The data sources used for labelled information

are listed in Table 3.4.

Table 3.4: List of data sources used for the generation of aggregated labels datasets.

Data Set Date Obtained

Copernicus Coastal Zones 2018 05/04/2021

Copernicus Urban Atlas 2018 24/03/2020

Copernicus EU-Hydro 16/06/2020

EPA Lake Segments 25/03/2020

Riparian Zones 2012 12/07/2019

Copernicus High-res Forestry 2018 25/03/2020

Copernicus High-res Small Woody 2015 26/04/2020

A systematic approach was applied to aggregate the labelled datasets used in this as-

sessment. The first step was the aggregation of features within each dataset and assigned

to their respective CLC+ nomenclature. The feature aggregation from each data source

is outlined in Table 3.5. No land cover class was identified in the Copernicus Urban

Atlas datasets that could accurately represent a Sparsely Vegetated land cover class. As

a result of the aggregation of the Copernicus Urban Atlas dataset, Sparsely Vegetated re-

gions were commonly labelled as Permanent Herbaceous. Therefore, manual relabelling

of Sparsely Vegetated was performed using photointerpretation of the 10m resolution
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Sentinel-2 and Bing imagery in QGIS. Each dataset was merged after the datasets had

been aggregated into the CLC+ classification schema. This data merging was performed

by beginning with the manually digitised Sparsely Vegetated label and then merging each

aggregated dataset in the order appearing in Table 3.5. The dataset to be merged was

clipped by existing labels where there was a conflict of labels. Once aggregated, the

vector labels from each region were converted to a 10m raster dataset. The extent of the

raster was created so that the beginning of each grid location was divisible by 10 for each

region. The process was undertaken to ensure the label data grid was directly relatable

to each satellite image pixel.

Table 3.5: Features form each data sources that are aggregated together to their respec-
tive CLC+ class.

Class Name Data Source

Sealed

Copernicus Coastal Zones 2018
Features:

1.1 Urban fabric, industrial, commercial,
public, military and private units
1.2.1 Road networks and associated land
1.2.2 Railways and associated land
1.2.3 Port areas and associated land
1.3.3 Construction sites

Copernicus Urban Atlas 2018
Features:

11100 Continuous Urban Fabric
11210 Discontinuous Dense Urban Fabric
11220 Discontinuous Medium Density Urban Fabric
11230 Discontinuous Low Density Urban Fabric
11240 Discontinuous Very Low Density Urban Fabric
11300 Isolated Structures
12100 Industrial, commercial, public, military and

private units
12210 Fast transit roads and associated land
12220 Other roads and associated land
12230 Railways and associated land
12300 Port areas
13300 Construction sites
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Features form each data sources that are aggregated together to their respective CLC+
class [continued].

Class Name Data Source

Woody
Needle leaved trees
(Woody Coniferous)

Copernicus Coastal Zones 2018
Feature:

3.2 Coniferous forest

Copernicus High-res Forestry 2018
Feature:

Coniferous forest

Woody
broadleaved,
evergreen trees

(Woody Broadleaved)

Copernicus Coastal Zones 2018
Feature:

3.1 Broadleaved forest

Copernicus High-res Forestry 2018
Feature:

Broadleaved forest

Permanent
herbaceous

Copernicus Coastal Zones 2018
Features:

4.0 Grassland
2.2 Permanent crops
1.4 Green urban, sports and leisure facilities
7.1.2.2 Unexploited peat bogs

Copernicus Urban Atlas 2018
Feature:

14100 Green urban areas
32000 Herbaceous vegetation associations

(natural grassland, moors...)
23000 Pastures

Periodically
herbaceous

Copernicus Coastal Zones 2018
Features:

2.1 Arable land

Copernicus Urban Atlas 2018
Feature:

21000 Arable land (annual crops)
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Features form each data sources that are aggregated together to their respective CLC+
class [continued].

Class Name Data Source

Sparsely
vegetated

Copernicus Coastal Zones 2018
Features:

6.1 Sparsely vegetated areas

Manual photo interpretation

Non-vegetated

Copernicus Coastal Zones 2018
Features:

6.2 Beaches, dunes, river banks
6.3 Bare rocks, burnt areas, glaciers and

perpetual snow
7.2.3 Intertidal flats

Copernicus Urban Atlas 2018
Feature:

13100 Mineral extraction and dump sites
33000 Open spaces with little or no vegetation

Water

Copernicus EU-Hydro
Features:

Canals p
Coastal p
River Net p
Transit p
InlandWater

Riparian Zones 2012
Features:

9 Rivers and Lakes
10 Sea and Ocean
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While this assessment is primarily focused on inland LCC, it is noted that some of

the labelled datasets for water extend into coastal and ocean waters. The inclusion of

this sample data ensures that the trained models are robust to a wide variety of water

bodies and could be used in coastal regions without concern for the manual digitising of

coastal boundaries.

The exclusion of the Woody (shrubs/bushes) from this assessment also meant ensur-

ing removing locations that might represent this class. To exclude these regions, the

Copernicus High-res Small Woody 2015 dataset and the Heathland and Scrub, Lines of

Trees and Scrub and Transitional Woodland and Scrub features in the Copernicus Zones

dataset were used. This exclusion was achieved by clipping and removing all existing

labels except for the Woody (Needle leaved trees) and Woody (Broadleaved, deciduous

Trees) classes. Figure 3.5 illustrates the impact of shrub removal on the rasterised label

dataset.

(a) Annually averaged Sentinel-2.

(b) Rasterised labels before shrub removal. (c) Rasterised labels after shrub removal.

Figure 3.5: Impact of removing shrub label locations from rasterised label dataset.
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3.3 Methodology

Following the pre-processing steps of the satellite and label data a systematic approach

was employed in order to convert the data to a format that could be used to train and

test various ML models.

3.3.1 Data Preparation for ML

The data used in this assessment was split into three components; training data, valida-

tion data and test data. All satellite data from the Dublin region was used as test data

for this assessment. Selecting a single region for the test data ensured that it was fully

independent of the training and validation data. Dublin was chosen as the region for

the test data as it contained sufficient labels of each of the land cover classes to be used

in this assessment. The remaining regions were then used to generate the training and

validation data. Two different dataset types were created for this study: a Point Dataset

and a Patch-to-Point Dataset.

3.3.1.1 Point Dataset Preparation

Random sample points were generated at 10 points per square kilometres for each region

used in this study. Points within 100m of each other were removed to ensure that there

was no duplication of sample locations. The land cover class at each point location

was extracted from the rasterised label files. Examination of the extracted point data

revealed class imbalances in the number of points per class. An imbalance in classes can

negatively impact classification accuracies (Kubat, 2017; Igual and Segúı, 2017). Points

within each class that had greater than 125% of the points in the least frequent class were

randomly removed in order to reduce the impact of class imbalance in the point data.

While this class balancing is important, it is recognised that this process may result in

a proportionally higher cluster of points in regions with less frequently occurring classes.

The rebalancing was independently applied to the test data and the combined training

and validation data. Figure 3.6, illustrates the total sample point count before and after

filtering.
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(a) Unfiltered Points.

(b) Filtered Points.

Figure 3.6: Point count per class for all regions (a) before and (b) after applying filtering
steps to correct for class imbalance.

After correcting for class imbalance, a stratified random sampling approach was ap-

plied to split the non-test data points into the validation and training data, with the

validation dataset making up 10% of the available data. A stratified random sampling

approach was used to ensure a similar class distribution was available between the train-

ing and validation data. Once the training, validation and test data points had been

generated, the pixel value and image capture date from each Sentinel-1 image and each

cloud and cloud shadow free area of the Sentinel-2 and Landsat-8 images were extracted

for each point in the datasets. The inclusion of bands with differing spatial resolutions

was examined in more detail since Sentinel-2 imagery consists of bands, processing three

different spatial resolutions. For this purpose, three combinations of Sentinel-2 bands

were prepared. The first combination included the four 10m bands, the second version

included the 10m and 20m bands and the third version included all Sentinel-2 bands.
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3.3.1.2 Patch-to-Point Dataset Preparation

For this assessment Patch-to-Point datasets were generated to assess the contribution of

incorporating spatial information in the analysis. Patch-to-Point datasets contain image

patches and a single label. For these datasets, the same point locations from the point

datasets were used. For each point in the point datasets, an image was clipped from the

satellite data centring on the pixel intersecting that point to make the image patch. The

size of the patch clipped for the generation of the Patch-to-Point dataset was dependent

on the input size of the model. Each non 10m resolution Sentinel-2 band was resampled

to 10m using a nearest neighbour sampling approach in order to facilitate the inclusion

of Sentinel-2 bands with differing spatial resolutions.

3.3.1.3 Temporal Data Preparation

Temporally averaged versions of both the point and patch-to-point datasets were created

to assess the benefits of temporal models. Four temporally averaged datasets were created

for each point and patch-to-point dataset. The four temporally averaged datasets include

annually-averaged datasets, half-yearly averaged datasets, seasonally averaged datasets

and monthly averaged datasets. Meteorological seasons were used as the boundary be-

tween seasons temporal ranges for both the half-yearly averaged datasets and seasonally

averaged datasets. The winter season was excluded from the seasonally averaged datasets

due to the limited number of observations from December to February. Table 3.6 outlines

the month ranges applied for both the half-yearly and seasonally averaged datasets.

Table 3.6: Month ranges used for the generation of half-yearly and seasonally averaged
datasets.

Averaged Dataset Type Seasons Month Ranges

Half-yearly averaged
Spring and Summer
Autumn and Winter

March - August
September - February

Seasonally averaged
Spring
Summer
Autumn

March - May
June - August

September - November
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Monthly averaged data prepared for Sentinel-1 enable the generation of a twelve-

month temporal stack. However, due to the lack of available optical observations, for

Sentinel-2, only a six-monthly averaged temporal stack could be generated. The Sentinel-

2 six-monthly averaged temporal stack was generated using the monthly averaged obser-

vations from April, May, June, July, September and October. These months were chosen

after closer data examination revealed that observations over each region were only avail-

able for those six months. Investigation of the samples obtained for Landsat-8 data

revealed that due to a limited number of satellite sensor observations, there were insuffi-

cient sample points to reliably train and assess the accuracy of Landsat-8 models using

seasonally averaged data and monthly averaged data. In addition there were insufficient

Landsat-8 observations to confine analysis to areas that have a minimum of six observa-

tions. Therefore, a single observation was required for the Landsat-8 annual average and

two observations for the Landsat-8 half-year average data.

3.3.1.4 Normalisation of Data

The spectral values of the respective satellite sensor data were scaled between zero and

one for each prepared dataset. This was achieved through the conversion of DN values

to reflectance values for the Sentinel-2 and Landsat-8 data. This value conversion was

achieved using the following formulae:

Sentinel-2 (ESA, 2015):

S2ρ = S2DN/10000 (3.1)

Landsat-8 (Ihlen, 2019):

L8ρ = (L8DN × 2.75×10−05)− 0.2 (3.2)
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For Sentinel-1 data, maximum (S1max) and minimum (S1min) threshold values were

set at 10dB and -30dB, respectively. Values above the maximum threshold were set to

the maximum threshold value, and values below the minimum threshold were set to the

minimum threshold value. This step was undertaken to remove the impact of extreme

outliers values on the dataset. All values were then scaled between zero and one using

the following formula (Raschka and Mirjalili, 2017):

S1norm =
S1DN − S1min

S1max − S1min

(3.3)

3.3.2 ML Techniques to be Evaluated

There are a wide variety of ML techniques that can be applied for LCC using EO data,

as noted in Chapter 2. Eight ML techniques are listed in Table 3.7 and were examined

for this comparative analysis.

Table 3.7: List of ML techniques to be assessed in mono-platform comparative analysis.

Technique Abbreviation
Random Forest RF

Support Vector Machine SVM
Artificial Neural Network ANN
Recurrent Neural Network

with Long-Short Term Memory
LSTM

Light Convolutional
Neural Network

LCNN

Light Fully Convolutional
Neural Network

LFCNN

1D Convolutional
Neural Network

1DNN

3D Light Fully Convolutional
Neural Network

3DLFCNN

Several studies demonstrated the benefit of Patch-to-Patch base CNN techniques

(Zhang et al., 2020b; Sun et al., 2019; Zhang et al., 2020a), as outlined in Chapter

2. Patch-to-Patch models generally require fully semantic patch labels with all pixels

containing a specific label. The label datasets used in this assessment were generated
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using aggregation of multiple datasets and therefore contain regions with no data. Addi-

tionally, the exclusion of shrub further increased the areas without data. Consequently,

it was not possible to generate sufficient label data to train Patch-to-Patch based models.

RF and SVM models were trained using the python module Sklearn version 0.24.2.

All ANN-based architectures were trained using Tensorflow 2.4.2. These architectures

include; ANN, LSTM, Light Convolutional Neural Network (LCNN), Light Fully Convo-

lutional Neural Network (LFCNN), 1DCNN and 3DLFCNN.

3.3.2.1 RF and SVM Hyperparameter Selection

The structure of both RF and SVM are outlined in Chapter 2. The choice of hyper-

parameters for both models was selected using the GridSearchCV module in Sklearn to

iterate over a range of hyperparameters. In this process, the hyperparameters with the

bests results on the validation data were chosen to train the model.

3.3.2.2 ANN and LSTM Structure

For both ANN and LSTM the number of hidden layers and the number of neurons per

layer was manually defined for each model. However, after much experimentation, the

best performance was observed with an expansion-contraction structure. There are two

aspects to the models in this structure: an expansion part and a contraction part. For the

expansion part, the number of neurons in each hidden layer is increased relative to the

previous layer. In the contraction part of the neural network, each hidden layer decreased

the number of neurons relative to the previous layers. In between the expansion and

contraction part of the model, a 10% dropout layer is used during training. Dropout is a

regulation methodology that helps prevent overfitting and enables the models to develop

a degree of redundancy in the network. This is achieved by excluding a percentage of the

output of the previous layer at each training step (Aggarwal, 2018). Each trained model

had a different number of tuneable variables due to manually defining the number of

hidden layers and the number of neurons per layer depending on the input data. Figure

3.7 provides an illustrative example of the ANN structure used in this assessment.
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Figure 3.7: Illustrative example of ANN architecture.

3.3.2.3 LCNN and LFCNN

Proposed by Song et al. (2019), Light Convolutional Neural Network (LCNN) is a CNN

architecture with two convolutional layers. A patch input array is provided as input

to this model and the classification at the centre of the input patch is subsequently

computed. In their paper, Song et al. (2019) proposed two architectures, one with a

3×3 input patch size and one with a 5×5 input patch size. Both proposed architectures

include 10 feature outputs in the first convolutional layer and 20 feature outputs in the

second layer. This output was then flattened into a one-dimensional array. Figure 3.8

provides an illustration of the structure of the LCNN architecture with a 5×5 input

patch size (LCNN5×5). Table 3.8 outlines the structure both LCNN networks. In a

CNN model the number of input bands impacts the number of trainable parameters in

the first convolutional layer for each trained model. Each model was trained on data

from different platforms with differing numbers of input bands (B).
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Figure 3.8: Illustration of LCNN5×5 architecture.

The number of trainable parameters in the first convolutional layer (N) is calculated

with the following formula (Medium, 2018):

N = B ∗K ∗O +O (3.4)

Where (K) represents the kernel size and (O) represents the number of output features.

Therefore, the total number of trainable parameters in each model is given by (N) plus

the sum of trainable parameters in each subsequent layer in the model architecture.

Table 3.8: Details of LCNN architectures examined in the mono-platform comparative
assessment.

Model
Name

Input
Shape

Hidden Layers Trainable
Parameterskernel size output features padding

LCNN3×3 3×3×B
3×3 10 Same

1, 468 +N
2×2 20 Valid

LCNN5×5 5×5×B
3×3 10 Valid

1, 468 +N
2×2 20 Valid
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Three additional modified LCNN architectures were proposed and assessed. These

networks are designed to use larger input images and have more hidden layers and features

per layer. One notable variation in the proposed alternative LCNN architectures is that

rather than flattening the output of the convolutional layers, the proposed alternative

architectures are designed such that the output of the final convolution layer is a 1×1×C

size where (C ) is the number of classes to be classified. During training, this architecture

is trained using point information with a shape of 1×1×C. This model will be referred to

as an Light Fully Convolutional Neural Network (LFCNN), as the model contains only

convolutional layers. The architectural details of each LFCNN model evaluated in this

assessment are outlined in Table 3.9. Figure 3.9 provides an illustration of the structure

of the LFCNN architecture with a 9×9 input patch size (LFCNN9×9).

Figure 3.9: Illustration of LFCNN9×9 architecture.
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Table 3.9: Details of LFCNN architectures examined in the mono-platform comparative
assessment.

Model
Name

Input
Shape

Hidden Layers Trainable
Parameterskernel size output features padding

LFCNN9×9 9×9×B

3×3 20 Valid

49, 938 +N

3×3 30 Valid
3×3 40 Valid
3×3 60 Valid

Dropout 50%
1×1 80 Valid
1×1 80 Valid
1×1 8 Valid

LFCNN15×15 15×15×B

5×5 20 Valid

139, 538 +N

3×3 30 Valid
3×3 40 Valid
3×3 60 Valid

Dropout 50%
3×3 80 Valid
3×3 80 Valid
1×1 8 Valid

LFCNN17×17 17×17×B

5×5 20 Valid

200, 988 +N

5×5 40 Valid
3×3 50 Valid
3×3 60 Valid

Dropout 50%
3×3 70 Valid
3×3 80 Valid
1×1 8 Valid

No pooling layers are present in the proposed architectures, and all convolutional

layers use a stride of 1. Therefore, the output size of the model scales proportionally

with the input patch size. For example, for the LFCNN9×9 architecture, the models can

be trained with a 9×9 input patch for the classification of a single pixel (1×1) or point

location point. However, with a 2008×2008 input, the model will output the classification

for a 2000×2000 patch identical to one where each pixel was classified by the same model

using 9×9 input patches for each output pixel.

3.3.2.4 1DCNN and 3DLFCNN

The application of 1DCNN and 3DLFCNN were examined in order to assess the perfor-

mance of CNNs when used with temporal information inputs. 1DCNN models perform

convolution over time. Three 1DCNNs architectures were examined in this assessment
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and Table 3.10 outlines the network shape for each architecture. 1DCNN4 was trained

using seasonally averaged Sentinel-1 data. 1DCNN6 was trained using Sentinel-2 six-

monthly averaged data, and 1DCNN12 was trained using Sentinel-1 for twelve-monthly

averaged data.

Table 3.10: Details of 1DCNN architectures examined in the mono-platform comparative
assessment.

Model
Name

Input
Shape

Hidden Layers Trainable
Parameterskernel size output features padding

1DCNN4 4×B

3 20 Same

37, 708 +N

3 40 Same
3 60 Same
3 80 Valid
2 80 Valid
1 8 Valid

1DCNN6 6×B

3 20 Same

82, 748 +N

3 20 Same
3 40 Same
3 60 Same
3 80 Same
3 80 Valid
3 80 Valid
2 80 Valid

Dropout 10%
1 80 Valid
1 9 Valid

1DCNN12 12×B

3 20 Valid

69, 948 +N

3 20 Valid
3 40 Valid
3 60 Valid
3 80 Valid
2 80 Valid
1 80 Valid
1 80 Valid
1 80 Valid
1 8 Valid
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Eight 3D CNN architectures were designed and implemented, building upon the

LCNN and LFCNN structures to enable the inclusion of temporal information in the

analysis. The structure of each model is outlined in Table 3.11 and 3.12.

Table 3.11: Details of half-yearly averaged 3DLFCNN architectures examined in the
mono-platform comparative assessment.

Model
Name

Input
Shape

Hidden Layers Trainable
Parameterskernel size output features padding

3DLCNN3×3 2×3×3×B

1×3×3 10 Same

3, 788 +N
2×3×3 20 Valid

Reshape to 2D array
1×1 8 Valid

3DLCNN5×5 2×5×5×B

1×3×3 10 Valid

3, 788 +N
2×3×3 20 Valid

Reshape to 2D array
1×1 8 Valid

3DLFCNN9×9 2×9×9×B

1×3×3 20 Valid

116, 028 +N

1×3×3 40 Valid
1×3×3 60 Valid
2×3×3 80 Valid

Dropout 50%
Reshape to 2D array

1×1 8 Valid

3DLFCNN15×15 2×15×15×B

1×3×3 20 Valid

200, 908 +N

1×3×3 40 Valid
1×3×3 60 Valid
1×3×3 80 Valid
2×3×3 80 Valid

Dropout 50%
Reshape to 2D array

1×1 8 Valid
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Table 3.12: Details of seasonally averaged 3DLFCNN architectures examined in the
mono-platform comparative assessment.

Model
Name

Input
Shape

Hidden Layers Trainable
Parameterskernel size output features padding

3DLCNN3×3 3×3×3×B

3×3×3 10 Same

5, 588 +N
3×3×3 20 Valid

Reshape to 2D array
1×1 8 Valid

3DLCNN5×5 3×5×5×B

2×3×3 10 Valid

3, 788 +N
2×3×3 20 Valid

Reshape to 2D array
1×1 8 Valid

3DLFCNN9×9 3×9×9×B

1×3×3 20 Valid

137, 628 +N

1×3×3 40 Valid
2×3×3 60 Valid
2×3×3 80 Valid

Dropout 50%
Reshape to 2D array

1×1 8 Valid

3DLFCNN15×15 3×15×15×B

1×3×3 20 Valid

236, 428 +N

1×3×3 40 Valid
1×3×3 60 Valid
2×3×3 80 Valid
2×3×3 80 Valid

Dropout 50%
Reshape to 2D array

1×1 8 Valid
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3.3.2.5 Activation Functions and Training Parameters

A softmax activation function was used in the final layer for each ANN-based architecture

examined in the assessment and is given by the following formula (Bonaccorso, 2018):

Softmax(x)i =
exi

n∑
j=1

exj

(3.5)

Where, n is the dimension of the output vector and x = [x1, . . . , xn] is the input vector.

The output of a softmax activation function represents a probability distribution for

each class (Goodfellow et al., 2016; Bonaccorso, 2018). An argmax operation was then

used to convert the model probability outputs to discrete classes, where the highest class

probability is assigned as the class for that output. A Rectified Linear Unit (RELU)

activation function was used for all other layers in the models. A RELU activation

function outputs the input value unchanged for all positive input values. All negative

input values have an output of zero. The RELU activation function (Φ) is given by the

following formula (Raschka and Mirjalili, 2017):

Φ(x) =


0, x < 0

1, x > 0

(3.6)

Each ANN-based model was trained using a categorical cross-entropy loss function. Cat-

egorical cross-entropy loss is calculated using the following formula (Bonaccorso, 2018):

CE = −
N∑
i

xilog(yi) (3.7)

Where (y) denotes true label and x = [x1, . . . , xn] denotes the model predicted prob-

ability. The Adam algorithm was used for gradient-based optimisation with an initial

learning rate of 0.0001. The Adam algorithm determines an adaptive learning rate during

training and is one of the most widely employed algorithms for updating model weights

(Bonaccorso, 2018). An early stopping operation was utilised to stop training where there

was no improvement in the validation accuracy after 15 epochs.
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3.3.3 Evaluation Process

For this assessment, the performance of each technique was assessed using four metrics,

Overall Accuracy (OA), F1 score, confusion matrices and the coverage percentage of each

technique.

3.3.3.1 Overall Accuracy

Overall Accuracy (OA) was calculated as a ratio between correct classification and total

predictions (Kubat, 2017).

OA =
TruePositve+ TrueNegative

TotalSamples
(3.8)

3.3.3.2 F1 Score

An F1 score was calculated for each class using the following formula (Raschka and

Mirjalili, 2017):

F1 = 2
precision ∗ recall
precision+ recall

(3.9)

precision =
tp

tp+ fp
(3.10)

recall =
tp

tp+ fn
(3.11)

Where (tp) is the true positive predictions, (fp) is the false positive predictions and

(fn) is the false negative predictions. An overall Weighted F1 score of each model was

generated as the average F1 score for each class weighted by the proportion of label points

for that class (Pastor-Pellicer et al., 2013; Sklearn, 2020).

3.3.3.3 Comparative Assessment

A preliminary examination of the data revealed differences in the number of label points

available to evaluate each model due to the identified issue of cloud cover. Therefore,
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the results of this assessment will be presented in two stages to provide an accurate

comparison of the performance of each model. In the first stage, the weighted F1 and

OA of models from each platform with similarly prepared datasets will be compared. In

the second stage, models with the highest test dataset weighted F1 score from the first

stage will be selected to perform an in-depth comparison of models from each platform.

The labels to be used to calculate the weighted F1 and OA in the second stage will be

filtered to those that are common between each model in the comparative assessment.

3.3.3.4 Confusion Matrix

To aid in the interpretation of the results from each model, a confusion matrix was

generated for each model. A confusion matrix is a grid matrix identifying the true

positive, true negative, false positive and false negative samples for each class (Forsyth,

2018). An example of a confusion matrix is illustrated in Figure 3.10.

Figure 3.10: Illustration of example confusion matrix.

For this assessment, the values of each confusion matrix were normalised by the num-

ber of predictions for that class. Column-wise normalisation by the predicted labels was

performed to highlight each predicted classes true and false positives. Normalisation also

reduces the impact of differing sample counts between the predicted classes (Gašparović
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and Dobrinić, 2020). Figure 3.11. illustrates the impact of this normalisation on data

from Figure 3.10 above.

Figure 3.11: Illustration of example normalised confusion matrix.

3.3.3.5 Model Coverage

One of the requirements set out in the CLC+ technical specifications is that a minimum

of six satellite observations should be used for classifications. For this assessment, the

term coverage will be defined as the percentage of the accessed regions with a minimum

of six observations. The coverage of each technique will also be assessed based on this

requirement. Figure 3.12 illustrates the total Sentinel-2 observation count over the Gal-

way region and highlights the areas with greater than six observations. As visible in

Figure 3.12 not all areas meet this requirement. The technical specifications highlight

that it may not be possible to meet this requirement in regions with frequent cloud cover

(Kleeschulte et al., 2019).
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(a) Observation Count (b) Observation Threshold

Figure 3.12: Illustrative example of annual Sentinel-2 a) observation count and b) area
meeting the six observation count threshold over the assessed Galway region.

As the techniques evaluated in this comparative assessment were undertaken using

one of the four different temporally averaged datasets, coverage was determined by the

availability of that type of temporal data. For the annually averaged datasets, the re-

quirement was defined as the percentage coverage with a minimum of six observations.

For the half-yearly averaged and seasonally averaged datasets the available regions were

further filtered to those with equal distribution between the averaging ranges. This re-

quired that a minimum of three cloud free observations were required for each half of the

year in the half-yearly averaged dataset. Each season must have a minimum of two cloud

free observations for the seasonally averaged data for each of the three seasons used in

the assessment. Finally, for the monthly averaged datasets a minimum of one observation

for each of the selected months was required. Table 3.13, outlines the criteria used to

determine the availability for each temporal range.
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Table 3.13: Detail of minimum observation requirements for each temporal dataset.

Temporal Dataset Requirement

Annual Average
Minimum of six observations

for the entire year.

Half-Yearly Average
Minimum of three observations

for each half of the year.

Seasonally Average
Minimum of two observations

for each season.

Monthly Average
Minimum of one observation per

month used in the temporal dataset.

The coverage used in this assessment was calculated using the manually digitised cloud

masks for both the Sentinel-2 and Landsat-8 data. This requirement is only relevant to

the optical imagery from Sentinel-2 and Landsat-8. It can be assumed that Sentinel-1

has 100% coverage due to its ability to capture data both day and night and to penetrate

cloud cover.
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3.4 Results

A total of 111 models were trained and evaluated as part of this comparative assessment.

The weighted F1 and OA of models from each platform will be presented independently

in this comparative assessment. A complete list of the results obtained as part of this

assessment is, including the F1 score for each class, is presented in Appendix B.

3.4.1 Independent Platform Results

Tables 3.14 to 3.16 displays the validation and test data weighted F1 and OA for models

trained using Sentinel-2, Landsat-8 and Sentinel-1 datasets. The results displayed in

these tables are calculated using all label points available for the model. Therefore, the

results displayed for each platform are only comparable between models using similarly

prepared data.

3.4.1.1 Sentinel-2

81 models were generated using Sentinel-2 data. Three combinations of input bands were

assessed for each architecture and prepared dataset. A single result will be presented for

each architecture and prepared dataset to aid in the interpretation of these results. The

results using input variables that obtained the highest test dataset weighted F1 score for

each architecture and prepared dataset are presented in Table 3.14. The results for all 81

models generated using Sentinel-2 data are presented in Appendix B. The use of SVM,

LFCNN9×9 and LFCNN15×15 all obtained the same weighted F1 score of 0.731 for

Sentinel-2 annually averaged data with LFCNN9×9 obtaining a marginally higher OA of

0.736. However, for the half-yearly averaged and seasonally averaged Sentinel-2 datasets,

the application 3DLFCNN9×9 outperformed all other models with a weighted F1 score

of 0.764 and 0.794, respectively. The highest accuracy results were obtained using the

1DCNN6 architecture for the six monthly averaged datasets with a weighted F1 score

of 0.791. However, this result is only marginally better than the results obtained using

an SVM with a weighted F1 score of 0.790. No 3DLFCNN based architectures could be

trained for the six monthly averaged datasets.
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Table 3.14: Sentinel-2 results using all available label points. The highest test data
weighted F1 and OA for each prepared dataset are highlighted with text
in bold.

Model

Name
Variables

Data

Preparation

Validation Test

F1 OA F1 OA

ANN 10m and 20m Bands Annually Averaged 0.695 0.703 0.720 0.728

RF All Bands Annually Averaged 0.667 0.674 0.672 0.677

SVM 10m and 20m Bands Annually Averaged 0.685 0.692 0.731 0.734

LCNN3×3 10m and 20m Bands Annually Averaged 0.670 0.678 0.689 0.695

LCNN5×5 10m and 20m Bands Annually Averaged 0.695 0.700 0.699 0.700

LFCNN9×9 10m and 20m Bands Annually Averaged 0.729 0.735 0.731 0.736

LFCNN15×15 10m and 20m Bands Annually Averaged 0.718 0.723 0.731 0.735

LFCNN17×17 10m and 20m Bands Annually Averaged 0.710 0.714 0.706 0.713

ANN All Bands Half-Yearly Averaged 0.713 0.714 0.736 0.725

RF All Bands Half-Yearly Averaged 0.688 0.693 0.691 0.678

SVM 10m and 20m Bands Half-Yearly Averaged 0.704 0.709 0.736 0.734

3DLCNN3×3 10m and 20m Bands Half-Yearly Averaged 0.677 0.689 0.721 0.726

3DLCNN5×5 10m and 20m Bands Half-Yearly Averaged 0.724 0.728 0.753 0.756

3DLFCNN9×9 10m and 20m Bands Half-Yearly Averaged 0.751 0.753 0.764 0.765

3DLFCNN15×15 10m and 20m Bands Half-Yearly Averaged 0.70 0.705 0.735 0.738

ANN 10m and 20m Bands Seasonally Averaged 0.732 0.734 0.761 0.762

RF 10m and 20m Bands Seasonally Averaged 0.705 0.712 0.723 0.729

SVM 10m and 20m Bands Seasonally Averaged 0.736 0.739 0.757 0.760

3DLCNN3×3 10m and 20m Bands Seasonally Averaged 0.708 0.716 0.722 0.733

3DLCNN5×5 10m and 20m Bands Seasonally Averaged 0.738 0.743 0.761 0.763

3DLFCNN9×9 10m and 20m Bands Seasonally Averaged 0.763 0.766 0.794 0.795

3DLFCNN15×15 10m and 20m Bands Seasonally Averaged 0.762 0.760 0.762 0.762

ANN 10m and 20m Bands Six Monthly Averaged 0.702 0.709 0.746 0.756

RF All Bands Six Monthly Averaged 0.732 0.738 0.748 0.753

SVM 10m and 20m Bands Six Monthly Averaged 0.732 0.734 0.790 0.789

LSTM All Bands Six Monthly Averaged 0.727 0.731 0.775 0.775

1DCNN6 10m and 20m Bands Six Monthly Averaged 0.757 0.755 0.791 0.789
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For most models, the use of the Sentinel-2 combined 10m and 20m bands resulted

in the highest weighted F1 and OA. For some point-based models, the inclusion of all

Sentinel-2 bands resulted in minor improvements. However, for all the patch-to-point

based models, the use of only the Sentinel-2 10m bands or all Sentinel-2 bands resulted

in poorer results relative to the use of the combined 10m and 20m bands.

3.4.1.2 Landsat-8

The results of each Landsat-8 model are presented in Table 3.15. For the Landsat-8

annually averaged data, the best results were obtained using LFCNN9×9, while for the

half-yearly averaged data 3DLFCNN9×9 obtained the best results. The LFCNN17×17,

3DLFCNN15×15 and 3DLFCNN17×17 architectures could not be successfully trained

using Landsat-8 data.

Table 3.15: Landsat-8 results using all available label points. The highest test data
weighted F1 and OA for each prepared dataset are highlighted with text
in bold.

Model
Name

Variables
Data

Preparation
Validation Test
F1 OA F1 OA

ANN All Bands Annually Averaged 0.628 0.635 0.652 0.652
RF All Bands Annually Averaged 0.614 0.629 0.595 0.603
SVM All Bands Annually Averaged 0.621 0.633 0.640 0.642

LCNN3×3 All Bands Annually Averaged 0.598 0.606 0.600 0.606
LCNN5×5 All Bands Annually Averaged 0.618 0.628 0.613 0.623
LFCNN9×9 All Bands Annually Averaged 0.677 0.681 0.678 0.680
LFCNN15×15 All Bands Annually Averaged 0.576 0.592 0.538 0.557

ANN All Bands Half-Yearly Averaged 0.665 0.676 0.680 0.680
RF All Bands Half-Yearly Averaged 0.674 0.687 0.667 0.658
SVM All Bands Half-Yearly Averaged 0.702 0.710 0.699 0.702

3DLCNN3×3 All Bands Half-Yearly Averaged 0.706 0.710 0.717 0.718
3DLCNN5×5 All Bands Half-Yearly Averaged 0.655 0.66 0.630 0.644
3DLFCNN9×9 All Bands Half-Yearly Averaged 0.712 0.720 0.726 0.715

3.4.1.3 Sentinel-1

All results presented in Table 3.16 are comparable since all Sentinel-1 temporal datasets

had the same sample points. The best results obtained using Sentinel-1 were achieved
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using the 1DCNN12 architecture with monthly averaged data. No patch-to-point models

could successfully be trained using Sentinel-1 data.

Table 3.16: Sentinel-1 results using all available label points. The highest test data
weighted F1 and OA for each prepared dataset are highlighted with text
in bold.

Model

Name
Variables

Data

Preparation

Validation Test

F1 OA F1 OA

ANN VV & VH Annually Averaged 0.439 0.453 0.457 0.479

RF VV & VH Annually Averaged 0.504 0.511 0.477 0.482

SVM VV & VH Annually Averaged 0.468 0.479 0.447 0.455

ANN VV & VH Half-Yearly Averaged 0.491 0.501 0.495 0.505

RF VV & VH Half-Yearly Averaged 0.529 0.534 0.522 0.533

SVM VV & VH Half-Yearly Averaged 0.530 0.539 0.536 0.545

ANN VV & VH Seasonally Averaged 0.525 0.535 0.551 0.569

RF VV & VH Seasonally Averaged 0.592 0.597 0.556 0.563

SVM VV & VH Seasonally Averaged 0.593 0.597 0.593 0.599

1DCNN4 VV & VH Seasonally Averaged 0.62 0.623 0.620 0.630

ANN VV & VH Monthly Averaged 0.638 0.642 0.609 0.606

RF VV & VH Monthly Averaged 0.620 0.626 0.595 0.603

SVM VV & VH Monthly Averaged 0.686 0.689 0.642 0.645

LSTM VV & VH Monthly Averaged 0.602 0.604 0.600 0.602

1DCNN12 VV & VH Monthly Averaged 0.691 0.694 0.654 0.653

3.4.2 Platform Comparative Results

The results of the comparative assessment for Sentinel-2 and Landsat-8 models are given

in Tables 3.17 and 3.18 respectively. The results of the cross-platform comparative as-

sessment are displayed in Table 3.19.
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Table 3.17: Sentinel-2 comparative results. The highest test data F1/OA in each column are highlighted with text in bold.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA

LFCNN9×9
Annually Averaged

Train 0.738 0.845 0.640 0.500 0.633 0.771 0.602 0.959 0.709 0.709
Validation 0.774 0.887 0.699 0.449 0.637 0.743 0.694 0.953 0.729 0.730

Test 0.738 0.880 0.730 0.512 0.722 0.661 0.521 0.982 0.773 0.774

3DLFCNN9×9
Half-Yearly Averaged

Train 0.803 0.850 0.674 0.589 0.656 0.823 0.662 0.965 0.750 0.750
Validation 0.808 0.860 0.783 0.581 0.656 0.796 0.633 0.963 0.760 0.762

Test 0.809 0.893 0.775 0.615 0.760 0.650 0.578 0.980 0.808 0.808

3DLFCNN9×9
Seasonally Averaged

Train 0.790 0.855 0.677 0.593 0.658 0.813 0.674 0.975 0.751 0.753
Validation 0.772 0.885 0.781 0.612 0.684 0.815 0.659 0.964 0.771 0.772

Test 0.831 0.881 0.777 0.611 0.755 0.685 0.663 0.978 0.819 0.818

1DCNN6
Six Monthly Averaged

Train 0.851 0.864 0.744 0.635 0.757 0.861 0.820 0.993 0.813 0.810
Validation 0.733 0.847 0.732 0.574 0.698 0.809 0.680 0.973 0.754 0.751

Test 0.755 0.831 0.696 0.579 0.757 0.667 0.643 0.985 0.791 0.789

Table 3.18: Landsat-8 comparative results. The highest test data F1/OA in each column are highlighted with text in bold.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA

LFCNN9×9
Annually Averaged

Train 0.742 0.839 0.669 0.480 0.590 0.771 0.664 0.979 0.725 0.727
Validation 0.694 0.821 0.638 0.500 0.524 0.760 0.636 0.994 0.702 0.705

Test 0.682 0.817 0.716 0.552 0.612 0.256 0.492 0.987 0.702 0.704

3DLFCNN9×9
Half-Yearly Averaged

Train 0.693 0.826 0.593 0.489 0.555 0.764 0.572 0.966 0.692 0.700
Validation 0.759 0.820 0.596 0.517 0.619 0.740 0.604 0.988 0.712 0.720

Test 0.695 0.841 0.675 0.626 0.694 0.177 0.525 0.986 0.726 0.715
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Table 3.19: Cross-Platform comparative results. The highest test data F1/OA in each column are highlighted with text in bold.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA

Sentinel-2
LFCNN9×9

Annually Averaged

Train 0.738 0.828 0.650 0.484 0.663 0.781 0.569 0.965 0.717 0.715
Validation 0.763 0.889 0.735 0.45 0.652 0.756 0.732 0.968 0.744 0.744

Test 0.747 0.898 0.719 0.485 0.723 0.098 0.520 0.981 0.774 0.769

Sentinel-2
3DLFCNN9×9

Half-Yearly Averaged

Train 0.812 0.829 0.667 0.586 0.691 0.843 0.682 0.969 0.763 0.762
Validation 0.775 0.861 0.804 0.581 0.667 0.795 0.629 0.979 0.765 0.765

Test 0.823 0.918 0.787 0.613 0.773 0.267 0.571 0.979 0.819 0.815

Sentinel-2
3DLFCNN9×9

Seasonally Averaged

Train 0.795 0.840 0.673 0.587 0.686 0.818 0.668 0.978 0.759 0.760
Validation 0.784 0.901 0.819 0.644 0.702 0.805 0.688 0.968 0.792 0.791

Test 0.847 0.918 0.785 0.585 0.760 0.059 0.637 0.981 0.823 0.819

Sentinel-2
1DCNN6

Six Monthly Averaged

Train 0.865 0.848 0.742 0.631 0.774 0.865 0.811 0.992 0.818 0.815
Validation 0.776 0.873 0.762 0.578 0.731 0.842 0.806 0.990 0.795 0.791

Test 0.766 0.842 0.722 0.569 0.769 0.118 0.656 0.985 0.802 0.804

Landsat-8
LFCNN9×9

Annually Averaged

Train 0.743 0.835 0.675 0.491 0.610 0.765 0.640 0.980 0.721 0.723
Validation 0.674 0.800 0.679 0.550 0.574 0.760 0.667 0.990 0.711 0.712

Test 0.793 0.800 0.671 0.456 0.682 0.278 0.542 0.986 0.769 0.775

Landsat-8
3DLFCNN9×9

Half-Yearly Averaged

Train 0.700 0.824 0.585 0.478 0.574 0.762 0.577 0.968 0.687 0.694
Validation 0.773 0.822 0.667 0.579 0.615 0.736 0.670 0.990 0.731 0.735

Test 0.772 0.862 0.648 0.492 0.682 0.154 0.527 0.985 0.767 0.763

Sentinel-1
1DCNN12

Monthly Averaged

Train 0.649 0.781 0.649 0.512 0.675 0.684 0.588 0.987 0.698 0.696
Validation 0.478 0.825 0.679 0.495 0.653 0.734 0.557 0.979 0.684 0.685

Test 0.665 0.782 0.623 0.518 0.745 0.0 0.413 0.981 0.736 0.734
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The best results were obtained using the 3DLFCNN9×9 architecture with seasonally

averaged Sentinel-2 data for the Sentinel-2 only and cross-platform comparative assess-

ments. A test dataset weighted F1 of 0.823 and OA of 0.819 were obtained using this ar-

chitecture when carrying out the cross-platform comparative assessment. 3DLFCNN9×9

produced the best results with a test dataset weighted F1 of 0.726 and OA of 0.715 for

the Landsat-8 only comparative assessment.

3.4.3 Confusion Matrices and Classification Examples

Figures 3.13 to 3.15, display the confusion matrices for the best performing model from

each platform. Examination of these confusion matrices revealed that there is a high de-

gree of confusion between the Periodically Herbaceous and Permanent Herbaceous classes.

There is over 10% confusion between the two classes for each of the displayed models.

In addition, for each model, over 14% of the Sealed class predictions were instead clas-

sified as Non-Vegetated. Figures 3.16 and 3.17 provided an illustrative example of the

classification output from the best performing model from each platform.
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Figure 3.13: Confusion matrix for Sentinel-2 seasonally averaged 3DLFCNN9×9.
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Figure 3.14: Confusion matrix for Sentinel-1 monthly averaged 1DCNN.
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Figure 3.15: Confusion matrix for Landsat-8 half-yearly averaged 3DLFCNN9×9.
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(a) Sentinel-2 seasonally averaged 3DLFCNN9×9.

(b) Landsat-8 half-yearly averaged 3DLFCNN9×9.

(c) Sentinel-1 monthly averaged 1DCNN12.

Figure 3.16: Classification examples over Glengarriff harbour, Co. Cork using the best
model for (a) Sentinel-2, (b) Landsat-8 (c) Sentinel-1.
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(a) Sentinel-2 seasonally averaged 3DLFCNN9×9.

(b) Landsat-8 half-yearly averaged 3DLFCNN9×9.

(c) Sentinel-1 monthly averaged 1DCNN12.

Figure 3.17: Classification examples over Dunboyne, Co. Meath using the best model for
(a) Sentinel-2, (b) Landsat-8 (c) Sentinel-1.
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3.4.4 Model Coverage

Tables 3.20 and 3.21 outline the coverage of each region for Sentinel-2 and Landsat-8

respectively. In addition, the combined coverage of Sentinel-2 and Landsat-8 is provided

in Table 3.22. This fused coverage illustrates the coverage where a harmonised Sentinel-2

and Landsat-8 approach was employed to increase temporal data availability.

Table 3.20: Sentinel-2 model coverage for each temporal dataset calculated by the area
meeting minimum observation requirements set out in Table 3.13.

Annually
Averaged

Half-Yearly
Averaged

Seasonally
Averaged

Six Monthly
Averaged

Belfast 99.94% 88.52% 84.90% 30.80%
Cork 99.72% 80.65% 87.69% 53.20%
Dublin 95.64% 69.93% 80.37% 29.48%
Dunglow 94.19% 65.84% 75.59% 1.77%
Galway 95.30% 62.18% 55.44% 12.40%

Glengariff 100.00% 99.47% 97.97% 52.29%
Limerick 99.11% 71.59% 76.32% 19.19%
Waterford 100.00% 96.68% 99.83% 59.46%
Combined 97.55% 76.81% 81.36% 33.37%

Table 3.21: Landsat-8 model coverage for each temporal dataset calculated by the area
meeting minimum observation requirements set out in Table 3.13.

Annually
Averaged

Half-Yearly
Averaged

Seasonally
Averaged

Belfast 11.32% 4.80% 0.71%
Cork 39.82% 28.59% 11.64%
Dublin 12.65% 7.58% 3.12%
Dunglow 12.12% 2.81% 1.22%
Galway 73.54% 7.13% 5.37%

Glengariff 75.75% 61.00% 38.81%
Limerick 31.21% 7.84% 4.04%
Waterford 86.65% 76.40% 42.38%
Combined 36.19% 19.02% 9.90%
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Table 3.22: Sentinel-2 and Landsat-8 combined model coverage for each temporal dataset
calculated by the area meeting minimum observation requirements set out in
Table 3.13.

Annually
Averaged

Half-Yearly
Averaged

Seasonally
Averaged

Six Monthly
Averaged

Belfast 100.00% 96.09% 94.82% 34.67%
Cork 100.00% 99.75% 97.88% 89.79%
Dublin 99.39% 83.53% 87.33% 39.68%
Dunglow 98.43% 66.40% 80.09% 2.54%
Galway 99.60% 81.05% 81.65% 16.75%

Glengariff 100.00% 100.00% 99.80% 81.46%
Limerick 99.86% 84.74% 93.51% 25.03%
Waterford 100.00% 99.98% 99.94% 96.95%
Combined 99.68% 89.16% 91.13% 49.11%

As evident in Tables 3.20 and 3.22, increasing the temporal splits reduces the area

where each model type could be employed. This is particularly notable with Landsat-

8, which is a single satellite compared to the twin satellites in operation for Sentinel-2.

Combining Sentinel-2 and Landsat-8 increased the coverage, however, this still does not

result in 100% coverage. For a monthly averaged dataset, the maximum coverage that

could be achieved is 49.11%. Of the assessed regions, Dunglow produced the lowest

coverage with only 2.54% coverage for the monthly averaged dataset.
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3.5 Discussion

The highest comparative weighted F1 score of 0.823 and OA of 0.819 was obtained using

a 3DLFCNN9×9 with seasonally averaged Sentinel-2 data. However, this model did not

obtain the highest F1 score for each land cover class. Table 3.23 lists the model that

obtained the highest F1 score for each class.

Table 3.23: List of the mono-platform ML models obtaining the highest Test F1 score
for each class.

Class Name Model F1

Sealed
Sentinel-2 Seasonally Averaged

3DLFCNN9×9
0.847

Woody Coniferous
Sentinel-2 Seasonally Averaged

3DLFCNN9×9
0.918

Woody Broadleaved
Sentinel-2 Half-Yearly Averaged

3DLFCNN9×9
0.792

Permanent
herbaceous

Sentinel-2 Half-Yearly Averaged
3DLFCNN9×9

0.613

Periodically
herbaceous

Sentinel-2 Half-Yearly Averaged
3DLFCNN9×9

0.773

Sparsely
Vegetated

Landsat-8 Annually Averaged
LFCNN9×9

0.278

Non-vegetated
Sentinel-2 Six Monthly Averaged

3DLFCNN9×9
0.656

Water
Landsat-8 Annually Averaged

LFCNN9×9
0.986

Overall, Water obtained the highest class F1 scores with all models in the comparative

assessments obtaining a F1 score greater than 0.9 for the classification of Water on the

test dataset. The lowest class F1 score that was obtained on the test dataset was for

Sparsely Vegetated. However, this result may be misleading as limiting the label points

to only those available to all models resulted in only 13 Sparsely Vegetated label point

locations remaining in the test dataset. Table 3.24 provides the count of available label

points in the test dataset available for each comparative assessment.
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Table 3.24: Test dataset label points available for each comparative assessments.

All Label

Points

Sentinel-2

Comparative

Landsat-8

Comparative

Cross

Platform

Comparative

Sealed 481 178 388 163

Woody

Coniferous
481 102 251 64

Woody

Broadleaved
481 107 323 74

Permanent

Herbaceous
481 94 301 73

Periodically

Herbaceous
481 145 360 134

Sparsely

Vegetated
481 50 31 13

Non-

vegetated
385 102 295 91

Water 481 301 451 290

Total 3752 1079 2400 902

It is necessary to examine the training and validation results in order to determine the

highest accuracy classification results for the Sparsely Vegetated class due to the limited

number of test sample points available in the cross-platform comparative assessment.

The Sentinel-2 six-monthly averaged 1DCNN obtained the highest F1 score based on the

training and validation results. However, the highest test F1 score was obtained using a

Sentinel-2 seasonally-averaged 3DLFCNN9×9, when the Sentinel-2 comparative assess-

ment results were examined and where more Sparsely Vegetated sample points existed.

The notable change in the results based on sample availability makes interpreting the

results a significant challenge.
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Another challenge to interpreting the results of this comparative assessment is that a

number of the models produce higher classification accuracies in the test datasets when

compared to those with the training and validation dataset. This phenomenon appears

to be more frequent in the temporally split Sentinel-2 data. One possible reason for this

is that limited sample locations may include more ‘typical’ examples of the classes. This

phenomenon exacerbates further the challenge of interpreting results.

3.5.1 Prediction Probability and Accuracy

While the overall accuracy of each model is important, each model can also be examined

in terms of the accuracy relative to its predicted probability. For each model trained in

this assessment, the prediction probability of each class can be obtained. The relationship

between prediction probability and accuracy can be examined by calculating the accuracy

of predictions made above a series of probability thresholds. However, these probability

thresholds exclude points below the threshold, reducing the number of available sample

point locations. Therefore the accuracy for each threshold is calculated in relation to the

remaining points above the threshold. Figures 3.18 to 3.20, illustrate the relationship

between predicted probability and accuracy of each of the best performing models for

each platform using this approach.

Figure 3.18: Probability threshold vs accuracy and available sample points for Sentinel-1
monthly averaged 1DCNN12.
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Figure 3.19: Probability threshold vs accuracy and available sample points for Sentinel-2
seasonally averaged 3DLFCNN9×9.

Figure 3.20: Probability threshold vs accuracy and available sample points for Landsat-8
half-yearly averaged 3DLFCNN9×9.

As seen in Figures 3.18 to 3.20, increasing the probability threshold increases the

classification accuracy. Using this information, a probability threshold can be set for

each model such that the classification results are above a desired accuracy. Table 3.25,

details the percentage of remaining test sample points from the comparative assessment

after a probability threshold where the models accuracy is above four defined accuracies.
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Table 3.25: Percentage of remaining test points at desired target accuracy as a result of
probability thresholding. The highest value in each column are highlighted
with text in bold.

Target Accuracy 80% 85% 90% 95%
Sentinel-2
LFCNN9×9

Annually Averaged
93.94% 79.78% 68.71% 53.78%

Sentinel-2
3DLFCNN9×9

Half-Yearly Averaged
100% 89.58% 75.33% 56.31%

Sentinel-2
3DLFCNN9×9

Seasonally Averaged
100% 92.98% 78.71% 60.41%

Sentinel-2
1DCNN6

Six Monthly Averaged
100% 87.11% 72.46% 54.01%

Landsat-8
LFCNN9×9

Annually Averaged
96.49% 84.20% 73.56% 55.23%

Landsat-8
3DLFCNN9×9

Half-Yearly Averaged
92.97% 80.24% 68.80% 57.95%

Sentinel-1
1DCNN12

Monthly Averaged
85.60% 74.82% 63.48% 53.48%

The largest remaining sample points with a target accuracy of 95% was obtained using

Sentinel-2 seasonally averaged 3DLFCNN9×9. However, as outlined in the methodology,

sample points were filtered to ensure a balance between each class. Therefore, the re-

sults presented in Table 3.25 are not a true representation of the model coverage over

the assessed regions. By predicting the probability output across each region using the

satellite raster data and the probability thresholds defined from the sample points, a

more accurate estimation of the coverage at the set accuracy ranges can be calculated

for each model. The result of this process is displayed in Table 3.26.
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Table 3.26: Estimate of the percentage of area from prediction at a desired target accu-
racy as a result of probability thresholding. The highest value in each column
are highlighted with text in bold.

Target Accuracy 80% 85% 90% 95%
Sentinel-2
LFCNN9×9

Annually Averaged
53.73% 43.37% 33.72% 25.99%

Sentinel-2
3DLFCNN9×9

Half-Yearly Averaged
59.27% 42.85% 31.09% 24.88%

Sentinel-2
3DLFCNN9×9

Seasonally Averaged
65.59% 52.30% 36.19% 26.43%

Sentinel-2
1DCNN6

Six Monthly Averaged
30.15% 29.96% 28.76% 26.73%

Landsat-8
LFCNN9×9

Annually Averaged
16.88% 13.24% 11.85% 10.89%

Landsat-8
3DLFCNN9×9

Half-Yearly Averaged
8.56% 7.41% 6.77% 6.26%

Sentinel-1
1DCNN12

Monthly Averaged
77.54% 62.00% 46.29% 31.34%
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Based on the results presented in Table 3.26, the largest estimated area for each

target accuracy was obtained using Sentinel-1 monthly averaged 1DCNN12. However,

these results should only be viewed as an estimate of the spatial coverage. As illustrated

in Figures 3.21 to 3.23, the application of probability thresholding impacts each class

differently for each model. Therefore, the coverage at a target accuracy threshold would

largely depend on the land cover over that area. With each model and sensor having

differing estimated coverage and accuracies for each class, these results indicate that a

sensor fusion approach may be an appropriate means of maximising classification coverage

and accuracy when classifying a geographical region impacted by frequent cloud cover.

However, the use of sensor fusion techniques will be explored further in Chapter 4.

Figure 3.21: Probability threshold vs accuracy and available sample points per class for
Sentinel-1 monthly averaged 1DCNN12.
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Figure 3.22: Probability threshold vs accuracy and available sample points per class for
Sentinel-2 seasonally averaged 3DLFCNN9×9.
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Figure 3.23: Probability threshold vs accuracy and available sample points per class for
Landsat-8 half-yearly averaged 3DLFCNN9×9.

Examination of the relationship between probability and per class classification accu-

racy reveals that the increase in classification accuracy is not proportional among each

class. It is also notable that after a given threshold, the accuracy of a class can decrease.

For Sentinel-2 seasonally averaged 3DLFCNN9×9 and Landsat-8 half-yearly averaged

3DLFCNN9×9, this phenomenon is most noticeable with the Permanent Herbaceous and

Woody Broadleaved classes. This phenomenon is also visible in the Sentinel-1 monthly

averaged 1DCNN12, for the Sparsely Vegetated and Non-vegetated classes. However, it

should be noted that there are fewer sample points available to calculate the overall ac-

curacy at higher thresholds. Therefore, a few misclassified samples disproportionately

and negatively impact the classification accuracies.
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3.5.2 Impact of Incorporating Temporal Information

The importance of incorporating temporal data became apparent through carrying out

this comparative assessment. Increasing the number of temporal splits for each platform

resulted in a higher weighted F1 score. Additionally, increasing the number of obser-

vations to be averaged improves classification accuracy for the annually-averaged data.

Table 3.27 lists the test dataset weighted F1 score with annually averaged data generated

using a different number of observations. For each test, the observations to be used as

part of the averaging process were randomly selected. The results presented in Table 3.27

were generated from classification using a SVM with annually averaged Sentinel-2 data.

Table 3.27: Results of performing classification using an SVM with annually averaged
Sentinel-2 data that has been generated with set numbers of observations.

Observations Weighted F1 OA

1 0.550 0.560

2 0.626 0.631

3 0.659 0.664

4 0.682 0.685

5 0.694 0.697

6 0.706 0.709

This finding further confirms the requirements set out in the CLC+ technical specifica-

tions for a minimum of six satellite observations. Additionally, the impact of observation

count on accuracy may provide insight into the reduced accuracy of Landsat-8 models

compared to Sentinel-2 models with similarly prepared datasets. It was not possible to

apply the minimum observation limit to Landsat-8, as outlined in the methodology, due

to the limited number of observations.

3.5.2.1 Temporal Information in Point-based Techniques

The guidelines in the CLC+ technical specifications did not explicitly outline that spatial

models such as CNN could not be used for the generation of the Backbone raster product.
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However, if the use of spatial models cannot be implemented, a comparison of the point-

based techniques using only the spectral-temporal data is required. Table 3.28, lists the

highest accuracy Sentinel-2 point-based models from a comparative assessment for each

temporal dataset.

Table 3.28: Results of comparative assessment only using point-based ML techniques.

Temporal
Preparation

Variables
Model
Name

Validation Test
F1 OA F1 OA

Annually
Averaged

Sentinel-2
10m and 20m Bands

SVM 0.696 0.698 0.771 0.773

Half-Yearly
Averaged

Sentinel-2
10m and 20m Bands

SVM 0.709 0.710 0.773 0.773

Seasonally
Averaged

Sentinel-2
10m and 20m Bands

ANN 0.720 0.721 0.776 0.776

Six Monthly
Averaged

Sentinel-2
10m and 20m Bands

1DCNN6 0.755 0.752 0.788 0.786

The results of the comparative assessment outline in Table 3.28 convey similar results

to the other comparative assessments where models using increased temporal splits have

higher classification accuracy. However, one significant difference is that unlike the spatial

models, where the best model was obtained with the use of seasonally averaged data,

with point-based models, the best models were obtained using six monthly averaged

data. Therefore, if the requirements prohibit the use of spatial models such as LFCNN,

the application of 1DCNN6 using six monthly averaged data would be recommended for

generating LCC datasets. However, as outlined in Table 3.20, the coverage of the six

monthly averaged data is very limited and is impacted by the issue of cloud cover.

An additional observation of this comparative assessment is that for each temporal

dataset, the application of RF was outperformed by other techniques such as SVM, ANN

and 1DCNN. This result contrasts with results obtained in studies by Breiman (2001)

and Zafari et al. (2019) that observed better classification results using RF over other

point-based techniques. However, overall it was observed the choice of point-based tech-

nique had only a minor impact on the results in comparison to the changes in temporal

data preparation.
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The observation that classification accuracy improves with an increased number of

satellite observations in a temporal average and with higher temporal delineation through

an increased number of temporal splits is consistent with results obtained by Carrasco

et al. (2019). However, this observation is in contradiction with the fact that the high-

est accuracy model trained during this assessment was a 3DLFCNN9×9 model trained

with seasonally averaged Sentinel-2 10m and 20m band data. While attempts were made

to train 3DLFCNN9×9 models using the six-monthly Sentinel-2 data, this process was

largely unsuccessful. One possible reason for this issue is the number of trainable variables

in the models. For example, 3DLFCNN9×9 architectures designed for the six-monthly

averaged Sentinel-2 10m and 20m band data had 486,488 trainable parameters. In com-

parison, the equivalent 3DLFCNN9×9 model for seasonally averaged Sentinel-2 10m and

20m band data use over 3.5 times fewer trainable parameters at 137,628. Additionally,

the 1DCNN6 for six-monthly averaged Sentinel-2 10m and 20m band data has just 83,368

trainable parameters. This issue highlights the challenge of including both spatial and

high temporal information into a model.

3.5.2.2 Monthly Observation Requirement

While not explicitly stated in the technical specifications, there are some references in

the technical specifications that suggest a requirement for a minimum of ‘six months with

observations’ rather than a minimum of six total observations. The application of this

increased requirement would significantly reduce the coverage of each dataset. Figure

3.24 provides an illustrative example of the difference in coverage between a requirement

of six observations vs a requirement of six months of observations. Tables 3.29 and 3.30

detail the difference in coverage based on each criteria.
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(a) Total Observation Count (b) Count of Months with Observations

(c) Threshold by Six Total
Observations

(d) Threshold by Six Months
with Observations

Figure 3.24: Illustrative examples of the coverage with the requirement of a) and c) six
observations and b) and d) six months of observations over the Galway
region.
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Table 3.29: Model coverage for each platform and temporal dataset calculated by a re-
quirement for a total of six observations as set out in Table 3.13.

Annually
Averaged

Half-Yearly
Averaged

Seasonally
Averaged

Sentinel-2 97.55% 76.81% 81.36%
Landsat-8 36.19% 19.02% 9.90%

Combined Sentinel-2
and Landsat-8

99.68% 89.16% 91.13%

Table 3.30: Model coverage for each platform and temporal dataset calculated by a re-
quirement for six months with observations.

Annually
Averaged

Half-Yearly
Averaged

Seasonally
Averaged

Sentinel-2 72.11% 37.43% 46.81%
Landsat-8 19.35% 11.85% 6.74%

Combined Sentinel-2
and Landsat-8

85.31% 59.49% 62.23%

As outlined in Tables 3.29 and 3.30, the application of a requirement for six months

with observations significantly reduces the coverage of each dataset. The six-monthly

averaged dataset was not included in this comparison as, by default, the dataset meets

the ‘six months with observations’ requirement. Some months have a greater number of

observations proportionally due to seasonal variation in cloud cover. Therefore, the re-

quirement for a minimum of six months with observations would aid in ensuring a greater

temporal distribution of observations used for LCC. However, the reduced coverage as a

result of this requirement would prevent the classification of significant areas of the as-

sessed regions. Additionally, reducing the coverage of each model can significantly reduce

the number of labels available to train a model, which has been identified as a signifi-

cant challenge such as with the training of the 3DLFCNN architecture with six-monthly

averaged data.

3.5.3 Impact of Incorporating Spatial Information

As part of this comparative assessment, it was observed that the inclusion of spatial

information in the form of patch-to-point models could improve classification accuracies
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relative to the results of point-based techniques. The LFCNN9×9 and 3DLFCNN9×9

architectures, in particular, obtained the best results for both Landsat-8 and Sentinel-2.

During exploratory analysis for the design of the LFCNN and 3DLFCNN architectures,

there was a reduction in classification accuracy for models with greater than six convo-

lutional layers. Additionally, the inclusion of a high percentage dropout layers appeared

to aid both the model training and overall classification accuracies. Through this assess-

ment, a number of models were trained to utilise data with different spatial resolutions.

All Sentinel-2 models using the 10m and 20m bands combined resulted in higher classifica-

tion accuracies than with the 10m bands on their own. For some point based techniques,

the inclusion of the 60m bands resulted in minor improvement. An example of improved

classification as a result of including the 60m bands can be seen with the application of

an RF model using annually-averaged Sentinel-2 data. When trained with all bands, the

model obtained a test weighted F1 score of 0.672. However, when trained with only the

10m and 20m bands, the model obtained a test weighted F1 score of 0.670. However, for

all patch-to-point based techniques, the inclusion of the 60m bands resulted in a reduc-

tion in classification accuracies. With a resolution of 30m and with a target prediction

resolution of 10m, the difference in spatial resolution is likely a contributing factor to the

reduced accuracy of Landsat-8 models relative to comparable Sentinel-2 models.

3.5.3.1 Inference times of LFCNN and 3DLFCNN architectures

One benefit of the LFCNN and 3DLFCNN architectures is that they can be trained on

point data but still, be used to output patch images without modification to the model

architecture. As a result of their design, the LFCNN and 3DLFCNN are faster at the

classification of large raster images relative to the point models. Table 3.31, displays the

difference in inference time between the LFCNN9×9 and 3DFCNN9×9 architectures and

point based architectures for the prediction of a 2000×2000 raster tile from Sentinel-2 10m

and 20m bands data. In this comparison, the SVM and ANN architectures were chosen for

the annually-averaged and seasonally averaged point-based models respectively as they

were the best performing point-based models identified in the comparative assessment
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for their respective temporal datasets. CPU inference times were calculated using an

AMD Ryzen 9 5900X 12 Core Processor and GPU inference times were calculated using

an NVIDIA RTX 3080.

Table 3.31: Comparison of model inference times for point-based and patch to point
LFCNN based ML techniques.

Temporal
Data Type

Model
Inference Time (Seconds)
CPU GPU

Annually
Averaged

SVM 288.16 N/A
LFCNN9×9 0.99 0.28

Seasonally
Averaged

ANN 39.77 65.17
3DLFCNN9×9 2.99 0.80

As displayed in Table 3.31, the application of the LFCNN9×9 and 3DLFCNN9×9

models were faster than either point-based technique. The slowest model was the SVM

taking over four minutes to generate a prediction. While the use of a GPU reduced the

inference time for the LFCNN9×9 and 3DLFCNN9×9 architectures, its use with the ANN

models increased the inference time. As training LFCNN and 3DLFCNN architecture

require the generation of patch input data, the preparation of data to train the models

can take considerably more time to generate than for point models.

The results presented in Table 3.14 outlined that similar classification accuracy can

be obtained by the application of both an SVM and LFCNN9×9 model using annually

averaged Sentinel-2 data. Therefore, where inference time is important, the application

of the LFCNN9×9 architecture would be recommended. However, if inference time is

not a consideration, the application of an SVM may be more appropriate for use with

annually averaged Sentinel-2 data due to the simpler data preparation workflow of point

data over patch-to-point training datasets.

A preliminary assessment of the use of patch-to-patch based techniques was examined

through the application of the UNET architecture. UNET is a fully convolutional neural

network first proposed by Ronneberger et al. (2015). Figure 3.25 illustrates the structure

of the UNET architecture as proposed by Ronneberger et al. (2015). A notable feature

of the UNET architecture is the 1x1 convolutional skip connectors that are intended to

ensure spatial delineation is maintained in the output segmentation map. As a patch-
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to-patch based technique, this model requires fully labelled patches to train the model.

The architecture proposed by Ronneberger et al. (2015), outputs a 388×388 label patch.

However, this represents a 3.88km2 area for Sentinel-2 10m resolution data. In ideal

conditions where the proposed regions had 100% label coverage, this would result in an

estimated 2404 possible unique labels. This is reduced to 267 possible unique labels

for the 30m Landsat-8 imagery. With this in mind, modified UNET architectures were

examined with much smaller input and output data sizes. However, with models requiring

20×20 patch labels for training, it was still not possible to generate sufficient labels with

balanced label classes. As a patch-to-patch based technique, this model requires fully

labelled patches to train the model. The architecture proposed by Ronneberger et al.

(2015), outputs a 388×388 label patch. However, this represents a 3.88km2 area for

Sentinel-2 10m resolution data. In ideal conditions where the proposed regions had 100%

label coverage, this would result in an estimated 2404 possible unique labels. This is

reduced to 267 possible unique labels for the 30m Landsat-8 imagery. With this in mind,

modified UNET architectures were examined with much smaller input and output data

sizes. However, with models requiring 20×20 patch labels for training, it was still not

possible to generate sufficient labels with balanced label classes.

Figure 3.25: Illustrate example of the UNET architecture as proposed by Ronneberger
et al. (2015).
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3.5.4 Assessing the spatial relationship of classification results

EO data is inherently spatial, so it is important to consider and identify any spatial re-

lationship or autocorrelation that may be present in the data and classification results.

However, the nature of the data used in this assessment makes the identification of such

properties challenging. For example, the number of observations used for performing

classification impacts classification accuracy as detailed in Table 3.27. Additionally, the

ability to apply a given model is dependent on the availability of input data. Conse-

quently, the ability to apply high-accuracy models varies across and between regions as

outlined in Section 3.4.4. Therefore, the spatial distribution factors that can impact the

frequency of cloud cover over a region and, thus, the ability of optical satellite data can

impact classification accuracy. These factors could include proximity to the coastline or

mountainous regions. A visual assessment of the location of each correctly classified and

misclassified test sample point for the best-performing models was performed to examine

the spatial relationship of the classification results. Figure 3.26 displays the location

of the correct and misclassified point locations for the test datasets for the Sentinel-

2 seasonally averaged 3DLFCNN9×9, the Sentinel-1 monthly averaged 1DCNN12, and

the Landsat-8 half-yearly averaged 3DLFCNN9×9 models. A notable observation when

comparing each image is the large areas of unclassified points visible in the Sentinel-2 sea-

sonally averaged 3DLFCNN9×9 and the Landsat-8 half-yearly averaged 3DLFCNN9×9

models. The missing sample points in these areas are a result of insufficient observations

to perform classification. This phenomenon appears particularly pronounced over the

Wicklow mountains region in the South-East of the assessment area. Other areas where

there are comparatively few observation points in each image are due to limited labelled

data in those areas. There are also notable clusters of sample points which is a result

of label data distribution and the sample point balancing methodology utilised in this

assessment as outlined in Section 3.3.1.1. There is no visible pattern in the distribution

of misclassified data. However, with an uneven spatial distribution of land cover classes

over the assessed area, it is expected that a higher number of misclassified points will

occur in a region where there are a larger proportion of classes that the model has low
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classification accuracy.

(a) Sentinel-2 seasonally
averaged 3DLFCNN9×9

(b) Landsat-8 half-yearly
Averaged 3DLFCNN9×9

(c) Sentinel-1 monthly averaged 1DCNN12

Figure 3.26: Illustration of correctly classified sample points (Green) and misclassified
points (Red) from the Dublin test datasets for (a) Sentinel-2 seasonally
averaged 3DLFCNN9×9 (b) Landsat-8 half-yearly averaged 3DLFCNN9×9
(c) Sentinel-1 monthly averaged 1DCNN12
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3.5.5 Data Quality

As observed by Zhou et al. (2020) when undertaking LCC using ML techniques, the

quality of the data used is as important as the ML techniques used. For this reason, it

was essential to evaluate the quality of the data used when training ML models.

3.5.5.1 Label Data Quality

One of the most significant issues encountered when performing this assessment was the

acquisition of sufficient high-quality labelled data to perform a reliable comparison of

each ML technique. However, potential errors were observed while undertaking a visual

inspection of the Copernicus Urban Atlas and the Copernicus Coastal Zones datasets.

Figure 3.27, illustrates an example of poor class boundaries in the Copernicus Urban

Atlas dataset with a field of Arable crops partially defined as Pastures. This observation

coincides with the Copernicus Urban Atlas 2018 Validation Report. In the report, using

a ‘blind validation’ approach, an OA of 68.48% was recorded (Wegscheider et al., 2021).

The report identifies that this error was not consistent amongst all classes, with an

accuracy of 82.14% for urban classes and an accuracy of 66.48% for rural classes. However,

it is identified in the report that the blind validation approach can underestimate the

accuracy of some classes. An alternative method for assessing accuracy referred to as

the ‘positional accuracy’ approach, calculated higher accuracies of 93.61% and 86.64%

for urban and rural classes, respectively. In comparison, for the Copernicus Coastal

Zones dataset, an OA of 98.24% and 97.70% was calculated for the blind and positional

accuracies respectively (Zotti and Mantia, 2021). Given the potential source of error that

can be incorporated into the label dataset, the choice of data is important. However,

by limiting that choice of label data to locations where high-accuracy labels can be

guaranteed, other issues may arise. In the case of the dataset used in the assessment, by

excluding any rural classes in the Copernicus Urban Atlas dataset, the classification of any

rural classes would be predominantly based on the Copernicus Coastal Zones dataset. As

a result, the model would be trained and validated in a near-coastal environment making

it unsuitable for inland classification where the characteristics of the classes may differ.

129



Figure 3.27: Example of poor Copernicus Urban Atlas classification with annual averaged
Sentinel 2A&B imagery as a base map.

Examination of the confusion matrices in Figures 3.13 to 3.15, revealed that the

Periodically Herbaceous and Permanent Herbaceous classes exhibited a high degree of

confusion. Poor labelling, such as illustrated in Figure 3.27, may be a possible source for

this confusion. This issue not only impacts the model during training but also impacts the

calculated accuracy results. As is visible in Figure 3.28, the aggregated labels inherited

the error from the Copernicus Urban Atlas dataset. In contrast, a 3DLFCNN using

seasonally averaged Sentinel-2 data appears to classify a greater proportion of the area

correctly. However, if the model was evaluated over this area, a significant proportion

of the area would be identified as misclassified. Therefore, the trained models may

have a higher classification accuracy than is calculated from the labelled data. However,

it is difficult to fully determine the validity of this assertion without a redefinition of

the label data. A potential means of maximising the benefit of such datasets is to

employ a multistep training approach. Under this approach, a model could be initially

trained on the larger volume, but lower accuracy labelled data. Secondary training/model

refinement and accuracy validation could then be undertaken on the higher-accuracy label

datasets. This approach to model training could mitigate some of the issues identified in

this section. However, further investigation beyond the scope of this assessment would

be required to determine the accuracy of this approach and if this approach is prone to

overfitting to the higher accuracy labels used in the second phase of training.
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(a) Senintel-2 image. (b) Label. (c) Classified.

Figure 3.28: Comparison of seasonally averaged Senintel-2 3DLFCNN9×9 classification
to a mislabelled area.

Various other sources of labelled data were examined as potential data sources for this

study, including Open Street Maps (OSM), LUCAS and Prime2. Of these alternative

datasets, the LUCAS 2018 dataset was the most viable dataset. However, this dataset

does not contain a class that would represent the Sparsely Vegetated class and therefore

could not be used as a complete label dataset. Additionally, sampled in a 2km2 grid,

there were insufficient sample locations for each class in the assessed regions to train and

validate the accuracy of each model.

3.5.5.2 Cloud Cover

While the increase in temporal splits increased classification accuracy, it also reduced

the available region where the models could be applied. The models with the highest

accuracy were obtained using Sentinel-2 seasonally averaged data. However, these models

only have 80.87% coverage. If a harmonised product was generated between the Landsat-

8 and Sentinel-2, this coverage could be increased to 90.48%. With results obtained from

Sentinel-2 data outperforming those obtained from Landsat-8, it would be advised to

harmonise the Landsat-8 data spatially and spectrally to Sentinel-2. However, as iden-

tified in Chapter 2, the harmonisation process can introduce errors into the harmonised

data that may negatively impact classification accuracy.

For this assessment, cloud masks were manually digitised in QGIS, using the existing

cloud masks provided with the data as a reference. The cloud mask provided as part of
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the Sentinel-2 L2A is generated using the Sen2COr algorithm (Clerc et al., 2022). As

apparent in Figure 3.29, the cloud mask provided as part of the Sentinel-2 L2A product

underestimates the cloud coverage. In addition, these cloud masks do not cover cloud

shadow, which can also negatively impact the recorded spectral information. The miss

identification of the cloud and cloud shadow can be a significant source of error in EO

derived analysis (Misra et al., 2020).

A comparative assessment of cloud and cloud shadow detection algorithms for Sentinel-

2 imagery was conducted by Tarrio et al. (2020). Their study identified the highest cloud

classification OA of 85.1% was obtained from LaSRC algorithm. In the study, Sen2Cor

and LaSRC frequently failed to identify cloud shadows. Other assessed techniques were

observed to overestimate cloud over. For these reasons, manual digitisation was performed

to ensure that any factors that would negatively impact the results were removed. How-

ever, the emphasis on spectral quality may have resulted in an underestimation of the

coverage of the models.

Figure 3.29: Sentinel-2 true colour image over Greystones with cloud mask (orange) from
‘MSK CLOUDS B00.gml’ file.
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3.5.5.3 Image Co-registration

For this study, additional co-registration of images was not performed as part of the data

processing workflow. With significant cloud cover in a number of scenes, it was decided

not to perform co-registration as it would have been challenging to detect sufficient fea-

tures for accurate co-registration of each image. Additionally, as per the CLC+ technical

specification, the required positional accuracy should be equal to the Sentinel-2 positional

accuracy with no mention of the requirement of additional co-registration (Kleeschulte

et al., 2019). Visual inspection of the images also revealed that additional co-registration

was not required. Figure 3.30, illustrates the quality of co-registration by comparing field

and road boundaries of a single image to an annually-averaged image using up to 16

different images captured over a year.

Figure 3.30: Comparison of Sentinel-2A captured 2018-07-02 (left), Annually averaged
Sentinel-2A&B imagery (right) over Maynooth.

3.5.5.4 Exclusion of Shrub Class

As part of this comparative assessment, the Wood shrubs/bushes class was excluded

due to poor classification accuracies. Figure 3.31, displays the confusion matrix for a

Sentinel-2 seasonally averaged SVM model trained on labelled data that included a Wood

shrubs/bushes class. The Wood shrubs/bushes class was defined using the High-res Small

woody 2015 dataset and Heathland and Scrub, Lines of Trees and Scrub and Transitional

Woodland and Scrub features in the Copernicus Zones dataset for this preliminary assess-
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ment. The Wood shrubs/bushes class has the lowest classification accuracy of each model,

as is evident in the confusion matrix. Additionally, its inclusion reduces the accuracy of

a number of other classes.

Figure 3.31: Confusion matrix for Sentinel-2 seasonally averaged SVM including the
Wood shrubs/bushes class.

3.6 Conclusion

The results of the comparative assessment undertaken in this chapter demonstrate that

the most accurate classification results could be obtained using 3DLFCNN9×9 with sea-

sonally averaged Sentinel-2 10m and 20m bands. The proposed LFCNN and 3DLFCNN

architectures were demonstrated as effective means of including spatial information with
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the models capable of being trained on point data. These models can then be used to

classify large raster images faster than other assessed point-based techniques. The inclu-

sion of both spatial and temporal information were identified as significant to ensure high

accuracy LCC. Models incorporating spatial information such as LFCNN or LCNN were

observed to be particularly important for Landsat-8 and Sentinel-2. However, it could

not be utilised with Sentinel-1 data. The inclusion of temporal information was observed

to increase the accuracy of each model. The use of the 1DCNN was particularly useful at

classifying data with many observation dates, such as with Sentinel-1 monthly averaged

data. However, this study highlighted the challenges when performing classification in

regions with frequent cloud cover. In particular, two issues were identified when attempt-

ing to interpret the results of the comparative assessment. The first issue arises from the

limited number of common sample point locations available to each model. The Sparsely

Vegetated class is the class that is most significantly impacted by this issue resulting in

a limited number of test sample point locations by which to assess each model’s accu-

racy. The second issue is that certain models obtain higher classification accuracy in the

test datasets than the training and validation dataset. This phenomenon was found to

occur more frequently with temporal models where there were fewer test sample points

available and therefore may provide misleading results. Therefore, to determine the most

suitable techniques, it was essential to examine the training, validation and test dataset

results.

By implementing the coverage assessment, it was found that increasing the temporal

splits of the data reduces the regions that a given model can be applied to. However, as

demonstrated through both the comparative assessment and assessment on the impact of

observation count, the inclusion of temporal data is essential to ensure high classification

accuracy.

An examination of the relationship between probability threshold and accuracy re-

vealed that by applying a probability threshold, each model could obtain a desired target

accuracy. However, this same process significantly reduces the coverage of each model.

Based on these results, a model fusion or sensor fusion approach may be a better suited
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methodology of maximising coverage while ensuring high classification accuracy, espe-

cially in regions affected by frequent cloud cover. A more detailed examination of the

benefits of applying a model fusion approach to improve classification accuracy and cov-

erage is examined in Chapter 4.

In summary, this chapter provided the following contributions:

1. LFCNN and 3DLFCNN architectures were proposed as a methodology for a spatial

model that can be trained on point data and used for fast inference over a large

area. An in-depth comparative assessment of ML techniques was undertaken, with

the best results achieved using seasonally averaged Sentinel-2 3DLFCNN9×9 ob-

taining a weighted F1 and OA of 0.823 and 0.819, respectively, in a cross-platform

comparative assessment.

2. The challenges associated with undertaking a comparative assessment in a region

with frequent cloud cover were identified. The model coverage assessment revealed

that 100% model coverage could not be obtained using any of the Sentinel-2 or

Landsat-8 models with a requirement for a minimum of six observations. The

implementation of a fusion-based LCC technique was identified as a potential means

of overcoming some of these issues.
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Chapter 4

Satellite Sensor Fusion LCC

4.1 Introduction

This chapter explores the potential of implementing multi-sensor fusion techniques in

improving LCC accuracy using EO data. In particular, this detailed examination inves-

tigates how the application of a decision-level fusion approach can be used as an effective

means for sensor fusion where data availability varies across the assessed regions. In

Chapter 3, an in-depth comparative assessment of ML techniques for EO derived LCC

was conducted for the island of Ireland. This assessment was performed using data from

three satellite platforms, Sentinel-1, Sentinel-2 and Landsat-8. Through this comparative

assessment it was found that high-accuracy multi-temporal optical satellite models could

not be utilised across all areas of the assessed regions, due to the frequent cloud cover. As

a result, the area in which these high-accuracy multi-temporal models could be applied

was limited.

This chapter will examine whether or not the integration of data from multiple sen-

sors, termed sensor fusion, can overcome the limitation observed when performing LCC

using a single sensor. The assessment of sensor fusion techniques undertaken in this

chapter will be explored in two stages. The first stage will be a comparative assess-

ment between pixel-level fusion and decision-level fusion approaches. This comparative

assessment will examine how each fusion approach can be used to improve LCC accuracy

and will be undertaken in Section 4.2. Following this comparative assessment between
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fusion approaches, the second stage, detailed in Section 4.3, will examine sensor fu-

sion techniques suitable for the fusion of datasets where data from one or more satellite

platforms may not be available over part of the assessed region.

4.2 Sensor Fusion Comparative Assessment

Sensor fusion techniques using image data can be categorised into three broad categories;

pixel-level fusion, feature-level fusion and decision-level fusion (Chang and Bai, 2018;

Useya and Chen, 2018; Mahyouba et al., 2019). This comparative assessment was un-

dertaken using two of these techniques; pixel-level fusion and decision-level fusion. In

pixel-level fusion, data from each source is combined into a single image dataset. This

combined dataset is then used as the input variables to train a model. Decision-level fu-

sion on the other hand, involves the independent classification of data from each platform.

The output of this classification process is then combined and used for further analysis

(Zhang, 2010). Figure 4.1, provides an illustration of the workflow when implementing

both pixel-level and decision-level fusion.

Figure 4.1: Illustration of a pixel-level and decision-level fusion workflows.
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The third category of sensor fusion is feature-level fusion. In a feature-level fusion

approach, feature objects are extracted from each data source into a common format.

These features can be extracted as segmented objects derived from one or more of the

data sources or through the conversion of each data source into a common feature space.

These features can either be extracted as part of a preprocessing step and used as input

data for a ML model or they can be extracted within the model structure itself (Zhang,

2010). As outlined in Chapter 2, object-based feature-level fusion techniques are not

suitable for the generation of the CLC+ Backbone raster product. Feature-level fusion

techniques where the features are extracted within the model’s structure will also be

excluded from this comparative assessment as these fusion techniques require the design

of specific ML architectures for each of the sensor data combinations. Therefore in a

scenario where the available data varies across the application of such an approach may

be impractical.

4.2.1 Pixel-Level Fusion

The satellite data prepared as part of the comparative assessment undertaken in Chapter

3 was used to evaluate the pixel-level fusion techniques assessed in this chapter. In

Chapter 3, the satellite data from three platforms; Sentinel-1, Sentinel-2 and Landsat-8

were grouped into four temporally aggregated datasets; annually averaged, half-yearly

averaged, seasonally averaged, and monthly averaged. Eight combinations of the data

were prepared from the three available platforms. Table 4.1 lists the datasets used for

pixel-level fusion as part of this assessment. As highlighted in Chapter 3, there were

insufficient observations for the inclusion of seasonally averaged and monthly averaged

Landsat-8 data. Additionally, the seasonally averaged Sentinel-2 and Sentinel-1 data

used in this assessment for pixel-level fusion will not include data from the winter season

due to limited data availability. For the six monthly averaged datasets, the six months

selected for this dataset are April, May, June, July, September and October. The ML

techniques applied to the pixel-level fused datasets are listed in Table 4.2. The details of

each ML technique have been outlined in Chapter 3.
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Table 4.1: Datasets to be tested with pixel-level fusion techniques.

Platforms Names Temporal Data Preparation
Sentinel-2 and Landsat-8 Annually Averaged

Sentinel-2, Landsat-8 and Sentinel-1 Annually Averaged
Sentinel-2 and Sentinel-1 Annually Averaged
Sentinel-2 and Landsat-8 Half-yearly Averaged

Sentinel-2, Landsat-8 and Sentinel-1 Half-yearly Averaged
Sentinel-2 and Sentinel-1 Half-yearly Averaged
Sentinel-2 and Sentinel-1 Seasonally Averaged
Sentinel-2 and Sentinel-1 Six Monthly Averaged

Table 4.2: ML techniques to be assessed for use with pixel-level fused satellite data.

Technique Abbreviation
Random Forest RF
Support Vector

Machine
SVM

Artificial Neural Network ANN
Recurrent Neural Network

with Long-Short Term Memory
LSTM

Light Convolutional
Neural Network

LCNN

Light Fully Convolutional
Neural Network

LFCNN9×9

1D Convolutional
Neural Network

1DNN6

3D Light Fully Convolutional
Neural Network

3DLFCNN9×9
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4.2.2 Decision-Level Fusion

The first stage in decision-level fusion comprises the independent classification of data

from each platform. The models used to classify data from each independent platform

will be referred to as prior models, and the associated output will be referred to as

prior classification for the predictor of a single class or prior probability for the predicted

probability of each class. The prior models to be used as part of the assessment are listed

in Table 4.3. Each prior model will be given a simplified acronym for this assessment to

aid in interpreting the results.

Table 4.3: List of mono-platform satellite models (prior models) to be used for decision-
level fusion.

Platform Model Acronym

Sentinel-2
Annually Averaged
10m and 20m bands

3DLFCNN9×9
S2AN

Sentinel-2
Half-Yearly Averaged
10m and 20m bands

3DLFCNN9×9
S2HY

Sentinel-2
Seasonally Averaged
10m and 20m bands

3DLFCNN9×9
S2SE

Sentinel-2
Six Monthly Averaged
10m and 20m bands

1DCNN6
S2MO

Landsat-8
Annually Averaged

All Bands
LFCNN9×9

L8AN

Landsat-8
Half-Yearly Averaged

All Bands
3DLFCNN9×9

L8HY

Sentinel-1
Monthly Averaged

All Bands
1DCNN12

S1MO

An SVM will be employed to perform decision-level fusion combining the prior pre-

dicted probability from mono-platform models as input variables, providing a single fused

category as output. Preliminary experimentation using alternative methods of decision-

level fusion were examined, such as the use of ‘Weighted Majority Voting’, the use of ML

techniques such as ANN, SVM and RF and by employing ‘Baysian fusion’ techniques
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through the application of prior probability averaging and maximum prior probability

selection. The results of this preliminary analysis are presented in Appendix C.1.2.1. The

results of the preliminary assessment revealed that the application of prior probability

averaging and fusion using an SVM obtained the best results. While both techniques

obtained similar results, the use of an SVM model was selected for this comparative

assessment. While prior probability averaging obtained comparable results, SVM was se-

lected for this comparative assessment as it formed the basis of multiple fusion techniques

that will be examined in Section 4.3 of this Chapter.

4.2.3 Evaluation Process

As identified in Chapter 3, Section 3.3.3.3, an examination of the data revealed differ-

ences in the number of label points available to evaluate each model. This is further

exacerbated when applying sensor fusion techniques. A preliminary evaluation of the re-

sults of performing sensor fusion was undertaken. In this preliminary evaluation for each

fused model, the difference in weighted F1 and OA was calculated relative to mono-senor

models trained in Chapter 3. For each pixel-level fused model, the change in weighted F1

and OA was calculated relative to the best mono-sensor model prepared using the same

temporally prepared dataset. For the decision-level fusion models, the change in weighted

F1 and OA was calculated relative to the highest accuracy Sentinel-2 prior model used

in the fusion. The preliminary evaluation results are provided in Appendix C. Following

this preliminary assessment, a selection of the pixel-level and decision-level sensor fused

models that resulted in the greatest change in weighted F1 and OA relative to mono-

sensor models were chosen to be used in a comparative assessment between pixel-level

and decision-level fusion techniques.

The land cover labels generated during the comparative assessment in Chapter 3 were

used to calculate the weighted F1 and OA of both pixel-level fusion and decision-level

fusion techniques.
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4.2.4 Results

47 pixel-level fusion models and 101 decision-level fusion models were trained as part of

this comparative assessment. A selection of the highest accuracy sensor fused models will

be presented in this section. Tables 4.4 to 4.7 outline the results of a direct comparison

between the results of pixel-level fusion and decision-level fusion and the unfused models.

The results of unfused and pixel-level fusion models presented in Tables 4.4 to 4.7 were

selected as the models obtaining the highest test data weighted F1 score for their given

temporal dataset. For each comparison, the selection of decision-level fusion techniques

was limited to those where the highest accuracy prior models used in its generation was

the same as the non-fused model used in the comparison. As highlighted in Chapter 3

Section 3.3.3.3, the sample points available to each model differ due to differences in each

model’s data requirement. Therefore, the weighted F1 and OA for each model are only

comparable for model results presented within each table.

Table 4.4: Results of comparative assessment of fusion techniques for annually averaged
data. The highest test data weighted F1 and OA are highlighted with text in
bold.

Fusion
Type

Satellite Data /
Prior Models

Model Dataset
Results

F1 OA

Unfused
Annually Averaged

Sentinel-2 10m and 20m bands
LFCNN9×9

Validation 0.741 0.745
Test 0.733 0.732

Pixel-level Fused
Annually Averaged Sentinel-1 and
Sentinel-2 10m and 20m bands

SVM
Validation 0.736 0.736

Test 0.765 0.762

Decision-level Fused
S2AN, L8AN
and S1MO

SVM
Validation 0.776 0.777

Test 0.783 0.784

Table 4.5: Results of comparative assessment of fusion techniques for half-yearly averaged
data. The highest test data weighted F1 and OA are highlighted with text in
bold.

Fusion
Type

Satellite Data /
Prior Models

Model Dataset
Results

F1 OA

Unfused
Half-Yearly Averaged

Sentinel-2 10m and 20m bands
3DLFCNN9×9

Validation 0.750 0.752
Test 0.769 0.763

Pixel-level Fused
Half-Yearly Averaged Sentinel-1 and

Sentinel-2 10m and 20m bands
SVM

Validation 0.734 0.736
Test 0.774 0.772

Decision-level Fused
S2AN, S2HY

L8AN and S1MO
SVM

Validation 0.760 0.760
Test 0.794 0.793
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Table 4.6: Results of comparative assessment of fusion techniques for seasonally averaged
data. The highest test data weighted F1 and OA are highlighted with text in
bold.

Fusion
Type

Satellite Data /
Prior Models

Model Dataset
Results

F1 OA

Unfused
Seasonally Averaged

Sentinel-2 10m and 20m bands
3DLFCNN9×9

Validation 0.767 0.771
Test 0.784 0.780

Pixel-level Fused
Seasonally Averaged Sentinel-1 and

Sentinel-2 10m and 20m bands
3DLFCNN9×9

Validation 0.770 0.773
Test 0.780 0.778

Decision-level Fused
S2HY, S2SE

L8AN and S1MO
SVM

Validation 0.776 0.777
Test 0.801 0.800

Table 4.7: Results of comparative assessment of fusion techniques for six monthly aver-
aged data. The highest test data weighted F1 and OA are highlighted with
text in bold.

Fusion
Type

Satellite Data /
Prior Models

Model Dataset
Results

F1 OA

Unfused
Six-Monthly Averaged

Sentinel-2 10m and 20m bands
1DCNN6

Validation 0.753 0.748
Test 0.789 0.787

Pixel-level Fused
Six-Monthly Averaged Sentinel-1 and

Sentinel-2 10m and 20m bands
1DCNN6

Validation 0.742 0.7382
Test 0.796 0.793

Decision-level Fused
S2AN, S2MO

L8AN and S1MO
SVM

Validation 0.769 0.763
Test 0.832 0.832

The results presented in Tables 4.4 to 4.7, illustrate that the application of a decision-

level fusion outperforms pixel-level fusion in the assessed regions. In each comparison, the

application of the decision-level fusion results in a notable increase in weighted F1 and OA

results for both validation and test datasets relative to the unfused model. However, pixel-

level fusion obtained mixed results, with some models producing minor improvements on

the test dataset relative to the unfused model. However, there was a minor reduction in

OA and weighted F1 for the validation dataset in each instance. In each comparison, the

best pixel-level fusion results were obtained using Sentinel-1 and Sentinel-2 fused data.

The highest pixel-level fused weighted F1 score on the test dataset was obtained using

an SVM for the annually averaged and half-yearly averaged datasets. The results ob-

tained from this assessment indicate that the application of pixel-level fusion to include

Sentinel-1 or Landsat-8 for spatial models such as LFCNN9×9 or 3DLFCNN9×9 can

negatively impact classification results relative to unfused Sentinel-2 data. In Chapter 3,

the best mono-platform models for the annually averaged, half-yearly averaged and sea-

sonally averaged data were obtained using LFCNN9×9 and 3DLFCNN9×9 architectures.
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These results highlighted the importance of including spatial information when perform-

ing classification. The reduction in classification accuracy when utilising spatial models

with pixel-level fused data is likely a significant contributing factor to the overall lower

classification results obtained from pixel-level fusion techniques relative to decision-level

fusion techniques. However, the application of pixel-level fusion improved the classifica-

tion results obtained from point-based techniques such as SVM, RF and ANN relative

to the mono-sensor point-based techniques as outlined in Table 4.8. As illustrated in

the results presented in Table 4.8, the application of pixel-level fusion of Sentinel-1 and

Sentinel-2 data improved classification accuracy for all point-based techniques, excluding

one. The one exception was the application of an LSTM using six-monthly averaged

data, which obtained significantly poorer results after pixel-level fusion. The improve-

ment in classification accuracy through the fusion of Sentinel-1 and Sentinel-2 data for

LCC was also observed in the study by Mercier et al. (2019). However, in their study,

a RF model was the only ML technique examined. For each temporal range, the inclu-

sion of Landsat-8 data resulted in a reduction in classification accuracy relative to the

mono-platform Sentinel-2 models. One possible reason for this is that as a multispectral

sensor, there is little additional information provided by Landsat-8 that is not otherwise

provided by the Sentinel-2 data. In addition, with its lower spatial resolution of 30m, the

inclusion of Landsat-8 data at the pixel level would likely result in lower classification

accuracy around class boundaries. Carrasco et al. (2019) observed similar results with a

lower OA obtained from the fusion of Landsat-8 and Sentinel-2 data than with Sentinel-2

data alone. However, in their study, the fusion of Sentinel-1, Sentinel-2 and Landsat-8

data obtained the best classification results.
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Table 4.8: Results of comparative assessment of mono-platform and pixel-level fused data
with point-based ML techniques. The highest test data weighted F1 and OA
for each prepared dataset are highlighted with text in bold.

Temporal
Preparation

Variables
Model
Name

Validation Test
F1 OA F1 OA

Annually
Averaged

Sentinel-2
10and20m Bands

ANN 0.695 0.703 0.720 0.728
RF 0.663 0.670 0.670 0.676
SVM 0.686 0.693 0.732 0.735

Sentinel-1 and
Sentinel-2

10and20m Bands

ANN 0.701 0.704 0.737 0.733
RF 0.701 0.706 0.702 0.706
SVM 0.727 0.730 0.762 0.763

Half-Yearly
Averaged

Sentinel-2
10and20m Bands

ANN 0.709 0.713 0.734 0.721
RF 0.681 0.687 0.684 0.690
SVM 0.704 0.709 0.736 0.734

Sentinel-1 and
Sentinel-2

10and20m Bands

ANN 0.725 0.729 0.768 0.771
RF 0.703 0.708 0.727 0.730
SVM 0.734 0.737 0.779 0.781

Seasonally
Averaged

Sentinel-2
10and20m Bands

ANN 0.735 0.739 0.762 0.765
RF 0.705 0.712 0.723 0.729
SVM 0.736 0.739 0.757 0.761

Sentinel-1 and
Sentinel-2

10and20m Bands

ANN 0.749 0.752 0.768 0.771
RF 0.728 0.732 0.740 0.741
SVM 0.755 0.757 0.787 0.787

Six Monthly
Averaged

Sentinel-2
10and20m Bands

ANN 0.702 0.709 0.746 0.756
RF 0.721 0.728 0.747 0.753
SVM 0.732 0.734 0.789 0.789
LSTM 0.687 0.699 0.752 0.758

1DCNN6 0.757 0.755 0.791 0.789

Sentinel-1 and
Sentinel-2

10and20m Bands

ANN 0.728 0.730 0.781 0.775
RF 0.766 0.767 0.754 0.753
SVM 0.766 0.764 0.790 0.788
LSTM 0.630 0.645 0.679 0.708

1DCNN6 0.743 0.739 0.797 0.794

A distinct benefit of a decision-level fusion approach over pixel-level fusion is the

ability to include data which vary significantly in terms of data-formats into the final

analysis. For example, the fusion of the S2AN, S2MO, L8AN and S1MO prior models

involves two point-based prior models and two patch-to-point based prior models. In

addition, the two patch-to-point prior models are trained using annually averaged data

and the two point-based prior models are trained using monthly averaged data. This

enables the decision-level fused models to leverage unique information provided by each
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independent prior model.

For each decision-level fusion model, the results of fusion were compared to the prior

model with the highest F1 score used as input. Of the 101 combinations of prior models

assessed, only 4 combinations of prior models resulted in a reduction in the weighted F1

score relative to the compared unfused prior model. In each instance where there was a

reduction in the weighted F1, the prior model used for comparison was S2SE. Table 4.9

lists the four models that resulted in a reduction in weighted F1.

Table 4.9: Decision-level fusion models resulting in negative change in weighted F1 score.
Change is calculate relative to the unfused Sentinel-2 seasonally averaged
3DLFCNN9×9 (S2SE).

Prior Models Weighted F1 Change
S2SE, S2HY, S2AN and S1MO -0.003

S2SE, S2AN and S1MO -0.002
S2SE and S1MO -0.018
S2SE and L8AN -0.008

The largest reduction in weighted F1 for the test dataset was obtained through fusing

S2SE and S1MO prior probabilities with a change in weighted F1 of -0.018. In each

instance, the only negative weighted F1 were observed calculated relative to the S2SE

prior model, which was the highest accuracy mono-platform model trained as part of the

comparative assessment undertaken in Chapter 3.

Overall the results of this comparative assessment demonstrate the application of

decision-level fusion can outperform pixel-level fusion over the study-region under assess-

ment. These results corroborate the results obtained by Useya and Chen (2018) where

they observed that a decision-level fusion approach was more suitable for crop detec-

tion than a pixel-level fusion. However, in their study, the focus was on single image

composites and did not utilise time-series information.
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4.3 Variable Data Availability Fusion Assessment

A significant issue identified in Chapter 3, was that the coverage of each sensor was differ-

ent across the assessed regions. As a result, there are considerable variations in the data

available at any given point in the assessed regions. An additional observation in Chapter

3 was that the method of preparing the temporal data for a given model impacted the

model’s coverage. This issue is further exacerbated when a decision-level fusion tech-

nique is applied, as the fusion model’s coverage is dependent on the overlapping coverage

of each prior model. In Chapter 2, several techniques were identified which could be

used to manage missing data, such as gap filling, value replacement, or value imputation.

However, such techniques may not be appropriate in scenarios where there are significant

regions with missing data or a significant proportion of the data is missing at a given

point. The use of fusion methodologies suitable for the decision-level fusion of data with

variable prior model coverage will be assessed in this section. These methodologies will

be assessed with the aim of ensuring complete coverage over an assessed region while

maximising classification accuracy.

4.3.1 Fusion Techniques

A number of decision-level fusion techniques were evaluated that are best suited for

the fusion of datasets with variable input, as a means of overcoming the issue of variable

model coverage. Four decision-level fusion approaches were evaluated for this assessment;

Ordered Fusion, Voting Fusion, Probability Fusion, Multi-ML model Fusion. Variations

of these techniques were evaluated as part of this assessment. A full list of the fusion

approaches along with their variations are presented in Table 4.10.

4.3.1.1 Ordered Fusion

Ordered fusion, is a fusion technique also referred to as ‘cascading specialists’ (Wagner

et al., 2011). As identified in Chapter 3, each trained mono-platform model (prior model)

has differing classification accuracy and coverage. In ordered fusion, a single model is used

to assign the class at any given point. The aim of this fusion approach is to determine
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Table 4.10: List of decision-level fusion approaches and the variations of those techniques
that will be evaluated in variable data fusion assessment.

Fusion Approach Variation of Technique

Ordered Fusion

� Full Model Ordered

– F1 Ordered

– OA Ordered

� Class Ordered

� Probability Thresholding Ordered (PTO)

Probability Fusion

� Max Probability

– Model F1 Weighted Max Probability

– Class F1 Weighted Max Probability

� Average Probability

– Model F1 Weighted Average Probability

– Class F1 Weighted Average Probability

Voting Fusion Weighted Voting
Multi-ML Model Fusion N/A

which prior model is to be used for classification at any given point. This process is

achieved by performing classification using each prior model in a defined order (Wagner

et al., 2011). After performing classification using the first model in the order, some

points may not have been classified as they were outside that model’s coverage. The

next prior model in the order is then utilised to perform classification within its coverage.

This process is repeated with each model in order until all points are classified. Figure

4.2, provides an illustrative example of the steps involved in an ordered fusion approach.

For this assessment, the use order for each model was determined by the classification

results of the validation dataset.
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The order of classification is not limited to entire models, with the possibility of

ordering sub-components of models by class or probability ranges. Three approaches

to Ordered Fusion were assessed, Full Model Ordered, Class Ordered and Probability

Thresholding Ordered (PTO).

Full Model Ordered

In a full model ordered fusion approach, the order of classification is determined by the

models’ weighted F1 or OA. Figure 4.2 provides an illustrative example of the full model

ordered classification process.

Figure 4.2: Example illustration of Full Model Ordered fusion.

Class Ordered

Each prior model used in this assessment outputs multiclass prior classification. In a

class ordered approach, the prior classification of each model is subdivided by class.

Each model’s prior classification class (MC) is then assigned an ordering using the class
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F1 score for that model. Each MC prediction is then used in order and only classifies

the points for the given class. The process of subdividing by class is designed to leverage

the differences in each model’s classification accuracy for each class. Figure 4.3, provides

an illustrative example of class ordered classification process.

Figure 4.3: Example illustration of Class Order Fusion.

Probability Thresholding Ordered (PTO)

As outlined in Chapter 3, classifications made with a higher class probability tend to have

a higher classification accuracy. However, this relationship is not identical between each

model. Figures 4.4 and 4.5 illustrates the plot of the relationship between the accuracy of

prediction and probability threshold for two models. A probability thresholding approach

is proposed to take advantage of this relationship. Similar to the class ordered approach,

the prior classification of each model is subdivided. However, in the PTO approach, the

prior probability of a model is used to subdivide the model’s prior classification. Proba-
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bility threshold ranges were set at intervals of 0.01 such that each prior classification can

be divided into a maximum of 100 intervals. For each model, the OA was calculated at

each probability threshold interval, and an overall ranking was generated for the proba-

bility range subsections from each model. Classification is then performed in order using

the ranked probability range subsections.

Figure 4.4: Probability threshold vs accuracy and available sample points for Sentinel-2
seasonally averaged 3DLFCNN9×9.

Figure 4.5: Probability threshold vs accuracy and available sample points for Landsat-8
half-yearly averaged 3DLFCNN9×9.

4.3.1.2 Voting Fusion

Voting fusion is a fusion technique where, each prior model (P ) generates a discrete

classification (dp) as a vote and the final label ascribed is the class with the most votes

(Gravina et al., 2017). A decision can only be guaranteed where there is an odd number

of prior models for the classification of classes (Wagner et al., 2011). Therefore, each
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class will be weighted (w) by the models OA from the validation dataset to reduce the

likelihood of a tie in the vote. In a weighted voting fusion approach, the class (c) that

receives the most votes (v) for a given sample (x) is given by (Wagner et al., 2011):

vc(x) =
P∑

p=1

wpdp,c(x) (4.1)

4.3.1.3 Probability Fusion

Probability Fusion, also referred to as ‘Bayesian fusion’ techniques explicitly utilise the

prior probability of each prior model to assign classification (Le Bris et al., 2019; Gravina

et al., 2017). Two approaches to probability fusion were examined as part of this assess-

ment, Max Probability and Average Probability.

Max Probability

Max probability fusion is a technique where the final classification is determined by the

highest prior probability of any of the prior models for a given location. Additionally, a

variation of the technique was explored by applying a weight to the model’s prior proba-

bility before identifying the class with the max probability. Two approaches to applying

the weight were examined; a single weight applied to all prior probabilities in the model

using the model’s weighted F1 score and an independent weight applied to each class

prior probability using the class F1 score. The validation datasets were used to calculate

the F1 score weights for each model.

Average probability Fusion

Average probability fusion calculates the average of each prior probability (a) for each

prior model (P ) to calculate a final classification. As with max probability fusion, this

fusion approach can be weighted (w) by the model’s weighted F1 or class F1 score.

Therefore, the total weighted support (µc) for each class (c) is given by (Wagner et al.,

2011):
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µc(x) =

P∑
p=1

wpap,c(x)

P
(4.2)

4.3.1.4 Multi-ML model Fusion

The application of ML models such as SVMs for decision-level fusion, as outlined in Sec-

tion 4.2, can significantly improve classification accuracy in comparison to the individual

prior models. One modelling strategy to exploit ML models over an area with variable

data availability is to train a unique SVM model for each combination of the available

input dataset. During inference, the model chosen to be used for inference is based on

the available prior models at that point. This approach of applying an SVM in a region

with missing data was also examined by Salberg and Jenssen (2012).

4.3.2 Assessment Criteria

This assessment will be performed on three combinations of prior models. The use of three

different combinations of prior models was undertaken to provide a better understanding

of the application of fusion techniques with different datasets. The combination of prior

models will be referred to as fusion sets. Table 4.11 outlines the prior models included

in each fusion set.

Table 4.11: List of fusion sets used in the variable data availability fusion assessment.

Set Name Description

Sentinel-2 Only
Prior models trained
on Sentinel-2 data

Mono-Platform
Prior models trained using
data from a single platform

SVM Fused
Decision-level sensor fused

models performed using an SVM

Examination of the prior models in each fusion set revealed that it was not possible

to classify all sample points using the Sentinel-2 Only fusion set. Therefore, the sample

points to be classified by each fusion set were reduced such that all fusion sets could

classify the same sample points. This process was undertaken to ensure the results of
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each model could be compared to a common baseline complete dataset. This reduction

in sample points was achieved by ensuring all sample points could be classified using the

S2AN prior model. This reduced dataset will be referred to as the S2AN-reduced dataset

for this assessment. While the S2AN prior model was capable of classifying all sample

points in the S2AN-reduced dataset, other prior models were only suitable for classifying

a percentage of this dataset. Table 4.12 outlines the percentage of sample points in the

S2AN-reduced dataset that could be classified by each non-fused prior model following

criteria for a minimum of six observations set out in the CLC+ Backbone technical spec-

ifications. A second dataset was generated to simulate the impact of a reduced number

of Sentinel-2 observations. The reduction of Sentinel-2 observations was simulated by

identifying the sample points that do not meet the minimum of six observations criteria

if a random 25% of the Sentinel-2 observation points were removed. This dataset will be

referred to as the 25%-reduced dataset. The impact of this process on the percentage of

sample points that Sentinel-2 prior models can classify is outlined in Table 4.13.

Table 4.12: Percentage of sample points that can be classified by non-fused prior models
in the S2AN-reduced dataset.

Prior Model Percentage Cover
S1MO 100%
S2AN 100%
S2HY 77.86%
S2SE 83.15%
S2MO 36.98%
L8AN 18.41%
L8HY 9.07%

Table 4.13: Percentage of sample points that can be classified by non-fused prior models
in the 25%-reduced dataset.

Prior Model Percentage Cover
S2AN 84.51%
S2HY 54.65%
S2SE 50.66%
S2MO 15.08%
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4.3.3 Results

The results of applying the assessed fusion techniques on the S2AN-reduced dataset are

presented in Table 4.14. For context, the results of applying the Sentinel-2 annually

averaged LFCNN9×9 model (S2AN) is included in Table 4.14.

Table 4.14: Fusion assessment results using the S2AN-reduced dataset. The highest test
data weighted F1 and OA for each fusion set are highlighted with text in
bold.

Set Name
Fusion

Technique
Validation Test
F1 OA F1 OA

Sentinel-2
Annually Averaged
LFCNN9×9 (S2AN)

None 0.729 0.735 0.731 0.736

Sentinel-2
Only

F1 Ordered 0.747 0.750 0.770 0.773
OA Ordered 0.752 0.753 0.773 0.774

Class F1 Ordered 0.769 0.772 0.761 0.765
PTO 0.756 0.759 0.768 0.773

Weighted Voting 0.761 0.763 0.782 0.784
Max Probability 0.753 0.756 0.772 0.777

Model F1 Weighted Max Probability 0.754 0.758 0.774 0.778
Class F1 Weighted Max Probability 0.743 0.753 0.766 0.774

Average Probability 0.766 0.769 0.783 0.786
Model F1 Weighted Average Probability 0.767 0.771 0.784 0.786
Class F1 Weighted Average Probability 0.765 0.771 0.777 0.783

Mono-Platform

F1 Ordered 0.752 0.753 0.773 0.774
OA Ordered 0.751 0.755 0.781 0.783

Class F1 Ordered 0.770 0.771 0.754 0.754
PTO 0.760 0.763 0.765 0.769

Weighted Voting 0.766 0.769 0.785 0.787
Max Probability 0.750 0.754 0.769 0.772

Model F1 Weighted Max Probability 0.754 0.758 0.772 0.775
Class F1 Weighted Max Probability 0.746 0.754 0.756 0.764

Average Probability 0.766 0.768 0.790 0.791
Model F1 Weighted Average Probability 0.770 0.772 0.789 0.791
Class F1 Weighted Average Probability 0.764 0.769 0.784 0.788

SVM Fused

F1 Ordered 0.775 0.777 0.791 0.792
OA Ordered 0.780 0.782 0.777 0.776

Class F1 Ordered 0.792 0.795 0.765 0.765
PTO 0.774 0.778 0.798 0.799

Weighted Voting 0.773 0.774 0.799 0.798
Max Probability 0.778 0.782 0.794 0.795

Model F1 Weighted Max Probability 0.777 0.781 0.798 0.799
Class F1 Weighted Max Probability 0.755 0.764 0.787 0.792

Average Probability 0.779 0.781 0.805 0.805
Model F1 Weighted Average Probability 0.779 0.781 0.805 0.805
Class F1 Weighted Average Probability 0.769 0.774 0.805 0.807

Multi-ML model 0.771 0.773 0.793 0.792
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The results presented in this section contain the weighted F1 score and OA of each

technique for the validation and test datasets. The full results of performing each fusion

technique used in this assessment are presented in Appendix C. The results presented

in Table 4.14 demonstrate that the application of each of the average probability fusion

techniques on the SVM Fused fusion set obtained the highest weighted F1 score of 0.805.

The application of a class F1 weighted average probability fusion approach obtained

a marginally higher OA of 0.807 than the model F1 weighted and unweighted average

probability fusion techniques. In addition, the application of the model F1 weighted and

unweighted average probability fusion approaches obtained the highest classification re-

sults for the Sentinel-2 only, and Mono-Platform Fusion sets, respectively. These results

indicated that the application of weightings did not significantly improve classification

accuracy. In section 3.5.1 the relationship between prediction probability and classifi-

cation accuracy was established. Therefore, further application of weights to the prior

probabilities may not be necessary.

Overall the application of order based techniques was outperformed by average prob-

ability fusion. In addition, the results revealed no clear best order based methodology.

Model OA ordering obtained better results than other order fusion techniques in the

Sentinel-2 and mono-platform fusion sets. However, in the SVM fused fusion set, the

Model F1 order and PTO fusion techniques outperformed the Model OA ordered ap-

proach. One potential reason for this inconsistency and the relatively poor performance

of the ordered fusion techniques relative to other assessed fusion techniques is the difficulty

in reliably calculating a comparable order ranking between each model. As identified in

Chapter 3, there is a significant reduction in the number of samples available to compute

the accuracy metrics when performing a comparative assessment between models with

differing coverage. This issue is further exacerbated when calculating class-specific F1

scores. This difficulty is a likely contributing fact to the poor performance of the Class

F1 ordered fusion approach. In this assessment, the validation dataset was used to deter-

mine model order. As this dataset has fewer overall sample points than the test dataset,

this issue is likely further exacerbated by the issue demonstrated in Chapter 3. During a
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preliminary examination of fusion techniques, the use of the training dataset to calculate

the model order was examined as a dataset with more sample points. However, it was

observed that for most techniques, the use of the validation dataset outperformed the

use of the training dataset when calculating the model order.

Table 4.15, provides the results of performing the coverage assessment on the 25%-

reduced dataset. Due to the reduced Sentinel-2 coverage, the Sentinel-2 only fusion set

could not classify all data points and therefore was not used in this assessment. Addi-

tionally, SVM fused models alone could not classify all sample points for the same reason.

Therefore, a joint mono-platform and SVM fused fusion set was assessed.

Table 4.15: Fusion assessment results using the 25%-reduced dataset. The highest test
data weighted F1 and OA for each fusion set are highlighted with text in
bold.

Set Name
Fusion

Technique
Validation Test
F1 OA F1 OA

Mono-Platform

F1 Ordered 0.727 0.731 0.760 0.761
OA Ordered 0.738 0.742 0.764 0.765

Class F1 Ordered 0.747 0.750 0.734 0.733
PTO 0.738 0.741 0.745 0.747

Weighted Voting 0.746 0.749 0.766 0.768
Max Probability 0.725 0.728 0.744 0.747

Model F1 Weighted Max Probability 0.727 0.731 0.745 0.748
Class F1 Weighted Max Probability 0.720 0.728 0.735 0.743

Average Probability 0.748 0.750 0.762 0.763
Model F1 Weighted Average Probability 0.748 0.750 0.763 0.763
Class F1 Weighted Average Probability 0.734 0.740 0.761 0.764

SVM Fused
and

Mono-Platform

F1 Ordered 0.758 0.759 0.780 0.780
OA Ordered 0.757 0.759 0.778 0.778

Class F1 Ordered 0.774 0.776 0.771 0.772
PTO 0.753 0.756 0.776 0.778

Weighted Voting 0.757 0.758 0.788 0.787
Max Probability 0.753 0.756 0.779 0.780

Model F1 Weighted Max Probability 0.753 0.756 0.784 0.786
Class F1 Weighted Max Probability 0.738 0.745 0.771 0.776

Average Probability 0.759 0.760 0.791 0.791
Model F1 Weighted Average Probability 0.760 0.760 0.791 0.790
Class F1 Weighted Average Probability 0.756 0.759 0.791 0.792

Multi-ML model 0.751 0.753 0.780 0.779
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The results of the 25%-reduced dataset assessment presented in Table 4.15 convey

similar results to those obtained for the S2AN-reduced dataset in Table 4.14. In Ta-

ble 4.15, the highest weighted F1 score of 0.791 was obtained by each of the average

probability fusion techniques. The application of class F1 weighted average probability

fusion obtained the highest OA of 0.792. As with the assessment on the S2AN-reduced

dataset, the application of weightings to average probability fusion only resulted in a

minor improvement and was not consistent across fusion sets. One notable difference in

the 25%-reduced dataset assessment is that the best results for the mono-sensor fusion

set was obtained with the use of a voting fusion approach with a minor improvement over

Model F1 Weighted Average Probability fusion results.

Overall examination of the results reveals that applying unweighted average proba-

bility fusion with SVM fused models is the most suitable technique. While not obtaining

the highest classification accuracy in the assessment, only minor differences were ob-

served with the inclusion of weightings. Additionally, as already highlighted, errors in

the calculation of weightings based on the test or validation data may negatively impact

the classification results. The results of this assessment also demonstrate that applying

unweighted average probability fusion with SVM fused models can outperform the use

of voting fusion as utilised in the study by Useya and Chen (2018) and the use of a

Multi-ML model approach as utilised in the study by Salberg and Jenssen (2012).

4.3.3.1 Limiting SVM Fused Average Computational Cost

While the application of average probability fusion with SVM fused models was identified

as a suitable methodology for fusion over the assessed region, with over 101 models to

fuse, its application is computationally expensive. With each SVM fused model utilising

a combination of prior models, the number of prior model combinations (T ) can be

calculated by the following formula (Heumann et al., 2016):

T =
n∑

k=2

nCk =
n∑

k=2

n!

k!(n− k)!
(4.3)
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Where (n) denotes the total number of prior models and (k) denotes the number of prior

models to be combined. For the seven mono-sensor prior models, there are a total of

120 model combinations that can be generated. As a number of those combinations only

combine prior models using the same sensor, only 101 combinations were generated. If

additional sensors were included in the fusion, the number of combinations would increase

significantly and thus the computational requirement. For the combination of eight mod-

els, there would be 247 possible combinations, and for nine, there would be 502. This

significant increase makes the application of a full combination SVM probability averaged

approach computationally expensive for the fusion of data from multiple satellites.

With the aim of limiting the impact of this issue, an exploratory analysis was per-

formed to identify if comparable results could be obtained by averaging a significantly

lower number of models. For this purpose, three methodologies were examined to reduce

the number of SVM model prior probability outputs to be averaged; Top F1 Filtering ap-

proach, a Max Model per Point Filtering approach and a Dual-SVM Averaging approach.

Top F1 Filtering

In the top F1 filtering approach, the SVM fused models to be averaged were limited to

the models that were used in the Model F1 Order fusion approach. The assumption

of this approach is that these models are the highest accuracy SVM models while still

providing full coverage over the assessed region.

Max Model per Point Filtering

Under this approach for each point, a maximum number of SVM fused models were used

to generate an average. Three max values were examined 3, 5 and 10. The models to be

used for each point were the models with the highest weighted F1 score.

Dual-SVM Averaging

Under the dual-SVM averaging approach, the models to be averaged were limited to SVM

160



models that had utilised just two prior models as an input. In a dual-SVM averaging

approach, the formula in Equation 4.3 to calculate the total number of combinations to

be averaged can be simplified to:

T =
n!

2(n− 2)!
(4.4)

The results of limiting the number of SVM fused models to be averaged are displayed

in Table 4.16. The averaging of all 101 SVM fused model prior probabilities will be

referred to as full-SVM averaging. These results revealed that applying the dual-SVM

averaging approach can produce a comparable weighted F1 score to the application of full-

SVM averaging while only requiring 14 SVM fused models to be averaged. An additional

benefit to this approach is that the number of SVM fused model prior probabilities to

be averaged is known prior to training. For the assessed regions, only 14 SVM fused

model prior probabilities needed to be trained when employing dual-SVM averaging.

In contrast, the use of the top F1 filtering and max model per point filter approaches

require the training of an SVM fused model for each prior model combination before

identification of the SVM fused model prior probabilities to be averaged. Therefore,

the use of a dual-SVM averaging approach can significantly reduce the complexity of

the fusion workflow. One possible reason that the application of a dual-SVM averaging

approach can obtain results comparable to full-SVM averaging is that with each SVM

using pairs of prior models, sufficient information about the relationship between each

prior model is extracted to be used in the averaging fusion. In addition, as the prior

models are not weighted or filtered by F1 or OA, this approach is not impacted by

the miscalculation of weights as identified in Section 4.3.3. To further corroborate the

results presented in Table 4.16, the application of the dual-SVM averaging approach was

compared to the top 6 SVM fused models. The results of this comparative assessment is

presented in Table 4.17. The result of this assessment demonstrates that the application

of the dual-SVM averaging approach can obtain comparable results to both the target

SVM fused model and a full-SVM averaging approach using all prior models used to

generate the target SVM.

161



Table 4.16: Model filtering assessment results on S2AN-reduced dataset. The highest test
data weighted F1 and OA for each target model assessment are highlighted
with text in bold.

Filtering
Technique

Validation Test
F1 OA Models used F1 OA Models used

Full-SVM averaging 0.779 0.781 101 0.805 0.805 101
Top F1 filtering 0.775 0.777 11 0.787 0.786 11

3 Max model per point 0.771 0.774 38 0.794 0.794 40
5 Max model per point 0.769 0.772 52 0.793 0.793 53
10 Max model per point 0.772 0.776 72 0.798 0.797 72
Dual-SVM averaging 0.771 0.773 14 0.805 0.804 14

Table 4.17: Results of comparative assessment of Full-SVM averaging and Dual-SVM av-
eraging to and SVM model using five different combinations of prior models.
The highest test data weighted F1 and OA for each target model assessment
are highlighted with text in bold.

Target Model
Fusion

Technique
Validation Test
F1 OA F1 OA

S2AN S2MO L8AN
L8HY S1MO

Target model 0.821 0.819 0.842 0.846
Full-SVM averaging 0.790 0.787 0.841 0.845
Dual-SVM averaging 0.806 0.803 0.841 0.844

S2AN S2HY S2SE
L8HY S1MO

Target model 0.809 0.810 0.805 0.805
Full-SVM averaging 0.796 0.796 0.811 0.809
Dual-SVM averaging 0.782 0.782 0.812 0.809

S2HY S2SE L8AN
L8HY S1MO

Target model 0.810 0.810 0.803 0.802
Full-SVM averaging 0.800 0.801 0.809 0.807
Dual-SVM averaging 0.793 0.793 0.821 0.817

S2HY S2SE
L8HY S1MO

Target model 0.805 0.805 0.806 0.805
Full-SVM averaging 0.796 0.796 0.805 0.804
Dual-SVM averaging 0.786 0.786 0.810 0.808

S2AN S2HY
S2MO L8AN

Target model 0.771 0.765 0.822 0.822
Full-SVM averaging 0.781 0.775 0.829 0.830
Dual-SVM averaging 0.792 0.788 0.822 0.823
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4.3.4 Confusion Matrix and Classification Examples

Figure 4.6 displays the confusion matrix for the full-SVM averaging approach. Figures

4.7 and 4.8, provide illustrative examples of the classification results from full-SVM av-

eraging approach alongside classification from the best mono-platform models generated

in Chapter 3. Examining the images presented in Figures 4.7 and 4.8, reveals that the

application of the Full-SVM averaging fusion approach results in relatively minor changes

over the given areas. One potential reason is that the S2SE model is the highest-accuracy

mono-platform model. Therefore, the application of sensor fusion did not significantly

improve the classification of the given areas. Additionally, as previously presented in

Table 4.9, the application of some SVM fused models results in a reduction in classifica-

tion accuracy relative to the S2SE model. The application of Full-SVM averaging fusion

approach appears to result in rougher boundaries between classes and with the addition

of smaller fragmented class segments than present in the data classified with the S2SE

model. With similar small fragmented features present in the S1MO classified map, its

inclusion in the fused data may be a significant contributing factor to its occurrence.

Despite this issue, the inclusion of S1MO appears to aid in correcting areas originally

misclassified as Sparsely Vegetated in both the S2SE and L8HY classification maps. In

Figure 4.8, several areas are misclassified as Sparsely Vegetated in the classification maps

from S2SE and L8HY models. However, these areas appear to be correctly classified in

both the S1MO and Full-SVM fused classification maps.
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Figure 4.6: Confusion matrix for the full-SVM averaging approach on the SVM Fused
fusion set.
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(a) Sentinel-2 true colour image. (b) Label

(c) Landsat-8 half-yearly averaged
3DLFCNN9×9 (L8HY).

(d) Sentinel-1 monthly averaged 1DCNN12
(S1MO).

(e) Sentinel-2 seasonally averaged
3DLFCNN9×9 (S2SE).

(f) Full-SVM averaging fusion approach.

Figure 4.7: Classification examples over Glengarriff harbour, Co Cork that were gener-
ated from the three highest accuracy mono-platform models and using the
Full-SVM Averaging Fusion approach.
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(a) Sentinel-2 true colour image. (b) Label

(c) Landsat-8 half-yearly averaged
3DLFCNN9×9 (L8HY).

(d) Sentinel-1 monthly
averaged 1DCNN12 (S1MO).

(e) Sentinel-2 seasonally averaged
3DLFCNN9×9 (S2SE).

(f) Full-SVM averaging fusion approach.

Figure 4.8: Classification examples over Dunboyne, Co. Meath that were generated from
the three highest accuracy mono-platform models and using the Full-SVM
averaging fusion approach.
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4.4 Conclusion

This chapter demonstrates that the accuracy of satellite-derived classification can be im-

proved by applying decision-level sensor fusion techniques. A comparative assessment

evaluating the performance of pixel-level fusion and decision-level fusion using a SVM

was performed. In this assessment, decision-level fusion obtained higher classification

accuracy. The evaluation also revealed that a decision-level fusion approach is more

suitable for fusing distinctly different datasets. An assessment of multiple decision-level

fusion techniques was undertaken to determine their suitability in the context of variable

data availability. The results of this assessment demonstrated that the highest accuracy

results could be obtained by generating a SVM fused model for each combination of prior

models before applying average probability fusion. While the inclusion of weights to

average probability fusion obtained slightly higher classification results, this increase in

classification accuracy was minor and not consistent across each dataset used in the ex-

perimental evaluation. One significant issue identified in this assessment was that for the

seven prior models, 101 SVM fused combinations were generated. As a result, the appli-

cation of average probability fusion on the SVM fused models would be computationally

prohibitive. However, during this assessment, comparable results could be obtained using

average probability fusion on SVM models, which only utilised two prior models each.

Therefore, only 14 SVM fused models would need to be trained.

Key contributions:

1. The undertaking of a comparative assessment demonstrated that decision-level fu-

sion could outperform pixel-level fusion. For example, A 1DCNN6 architecture

trained with pixel-level fused of six monthly averaged Sentinel-1 and Sentinel-2

data obtained an F1 and OA of 0.796 and 0.793, respectively. However, in the

same comparative assessment, the decision level fusion of four prior models, S2AN,

S2MO, L8AN and S1MO, using an SVM obtained a weighted F1 and OA of 0.832.

In particular decision-level fusion was observed to be suitable for the fusion of data

with significantly different compositions. The results of this comparative assess-
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ment revealed that the application of decision-level fusion is an appropriate means

of fusing data in a scenario where data availability varies across the assessed region

and was examined further in the variable data availability fusion assessment.

2. The application of average probability fusion for each combination of SVM fused

model (Full-SVM averaging) was demonstrated to obtain high accuracy classifica-

tion for fusion over an area with variable data availability. Applying prior proba-

bility weightings using the model’s class F1 score obtained the highest test dataset

weighted F1 and OA of 0.805 and 0.807, respectively. However, the benefit of apply-

ing weights to the prior probabilities was not deemed sufficient, given the potential

risk posed by identified issues when calculating the weightings. Therefore, the ap-

plication of unweighted average probability fusion was recommended for performing

data fusion. Full-SVM averaging provides a robust methodology for the fusion of

the data, which can be applied to the fusion of any combination of EO data cap-

tured over an assessed region. This technique is particularly suited for application

on the island of Ireland, where frequent cloud cover results in significant variation

in the availability of optical satellite data.

3. The application of dual-SVM averaging was proposed as a lower computation ap-

proach of fusion that can obtain comparable results to full-SVM averaging. Using

a dual-SVM averaging approach, a test dataset weighted F1 and OA of 0.805 and

0.804, respectively, was obtained. The lower computation requirement may be even

more consequential where data from a significant number of satellite platforms is

to be included in the analysis.
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Chapter 5

Combined Satellite-Aerial Data

Fusion

5.1 Introduction

In this chapter, a decision-level fusion approach combining both satellite and aerial data

is examined. The approach extends the work of Chapters 3 and 4 by leveraging the

complementary strengths of each platform. In particular, this chapter will examine how

the inclusion of high-resolution aerial data can be used to improve the classification

accuracy of satellite-derived LCC.

The spatial resolution of the data used for performing classification was identified as a

significant factor impacting classification accuracy in both the literature review conducted

in Chapter 2 and the comparative assessment of satellite-derived LCC undertaken in

Chapter 3. In Chapter 2, it was identified that high-resolution imagery enabled accurate

delineation of class boundaries and was required to identify specific land cover classes.

However, as the size of the region under consideration grows, obtaining high spatial

resolution imagery can be challenging (Zhu et al., 2010). This issue is further exacerbated

where analysis requires the capture and collation of multi-temporal RS information. One

of the key findings in Chapter 3, was the requirement for multi-temporal data in order

to produce high accuracy satellite-derived LCC. Therefore, mono-temporal high spatial
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resolution data alone would be insufficient for the classification of land cover types that

are inherently temporal such as the Periodically Herbaceous class. Given the challenges of

obtaining multi-temporal high-resolution data, the application of a sensor fusion approach

has the potential to leverage information from high spatial resolution aerial data along

with the multi-temporal information of the satellite data. Chapter 4 demonstrated that

applying a decision-level fusion approach enabled the fusion of data from varying sources

possessing differing spatial, spectral and temporal resolutions. An additional benefit of

utilising a decision-level fusion approach is that this technique enables multi-satellite

sensor fusion to be performed independent of satellite-aerial fusion.

As reported in Chapter 3, frequent cloud cover can significantly hinder the collection

of useful optical useful satellite data. The ‘Very High Resolution Image Mosaic 2018’

dataset released by Copernicus on the 7th October 2021 provides an almost complete

coverage 2m resolution dataset across Europe. However, the imagery used to generate

this dataset was captured over a three year period between 2017-2019 (Copernicus, 2022).

The overall aim of this thesis, as outlined in Chapter-1, is to examine methodologies that

enable the generation of higher-quality, annual LCC datasets. Therefore, capturing all

data relevant to generating a LCC within the target year is essential. Light aircraft and

UAVs have the potential to offer a suitable and effective alternative to high-resolution

satellites with their inherent ability to fly below most instances of cloud in Ireland.

This Chapter is laid out as follows; Section 5.2 will outline the data and methodology

used to classify the aerial data in order to examine how decision-level satellite-aerial fusion

can improve LCC. Section 5.3 will describe the decision-level fusion technique under

examination and outline how this technique will be evaluated. Section 5.4 will report on

the results of this assessment. Finally, Section 5.5 will provide an in-depth discussion

of the results and highlight the key findings of this decision-level fusion technique.

5.2 Aerial Data Classification

The proposed methodology involves the application of a decision-level fusion approach

for the fusion of aerial and satellite prior classifications. The required prior satellite clas-
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sifications were computed using the technique discussed in Chapters 3 & 4. To perform

satellite-aerial decision-level fusion, independent classification of aerial data was required.

5.2.1 Aerial Data

The aerial imagery used as part of this assessment was captured using a Nikon D800E

Camera mounted on a Cessna 172 light aircraft using a sensor pod mounted on the right-

wing strut. The sensor pod is a bespoke sensor housing designed to enable various RS

cameras and sensors to be fitted to the aircraft, allowing researchers to adjust and con-

figure the sensors prior to flight (Cahalane et al., 2017). Figure 5.1 displays this wing

strut mounted sensor pod.

Figure 5.1: Cessna 172 with sensor pod wing attachment.

Optical data was captured across six different sites. LiDAR data was also captured

over two of these survey areas. However, since LiDAR data was only captured over

two sites there was insufficient data available to reliably train, validate and test the

accuracy of its use in a ML model. As such, this LiDAR data was only used during the

georectification process (see below). The location and date of each survey are listed in

Table 5.1. The spatial resolution of each survey is provided as the survey’s GSD. The

location of the survey areas to be used in this assessment are delineated in Figure 5.2.
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Table 5.1: Aerial survey details.

Site Date captured Area (km2) Survey GSD
Sroughan 2016-08-16 2.11 0.07m

Horsepasstown 2016-08-16 2.18 0.08m
Twomilebridge 2016-08-16 3.51 0.06m

Rathdown Upper 2016-07-28 1.76 0.06m

Maynooth
2018-09-03

and
2018-08-21

6.72 0.04m

Waterford Airport 2018-09-13 4.812 0.05m

Figure 5.2: The location of aerial survey sites. Base map: Microsoft Bing Imagery
(www.bing.com/maps/aerial).

The photogrammetric software Agisoft Metashape V was used to convert the individ-

ual images captured over each survey area into a single merged georectified image. The

photogrammetric process uses tie point matching to identify common points between im-

ages, which are then used to generate a 3-dimensional surface. This surface is then used

to correct relief displacement resulting in an orthorectified mosaic (Lillesand et al., 2014;
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Förstner and Wrobel, 2016). During orthorectification, ground control points were used

to georectify the image. For the Waterford and Maynooth surveys, ground control points

were selected from high accuracy LiDAR data captured concurrently as part of these sur-

veys. For the remaining sites, ground control points were selected from features visible in

both the aerial-survey and Microsoft Bing imagery (www.bing.com/maps/aerial). Each

image was resampled to 0.25m GSD, once orthorectified, using cubic interpolation. Dur-

ing resampling, the minimum and maximum extents of each orthorectified image were set

to be divisible by 10, therefore matching the grid structure of the satellite data generated

in Chapter 3. The aerial resolution image data comprises pixels that are 0.25m resolution

and so divide evenly into the 10m resolution grid structure of the satellite data. Ensur-

ing that aerial data’s raster grid structure aligns to and subdivides the satellite raster

grid structure was undertaken to facilitate resampling steps that were performed later in

the fusion process. No significant increase in classification accuracy was observed during

initial experimentation using higher resolution imagery for the given classes. It is worth

noting that the selected resolution is similar to very high-resolution satellite platforms

such as WorldView-3 and Pléiades Neo, possessing pixel resolutions of 0.31m and 0.30m

GSD respectively (AIRBUS, 2022; ESA, 2022). Therefore, it is expected that comparable

results should be obtainable from these platforms.

5.2.2 Labelled Data

Chapter 4 described how decision-level fusion was performed using prior models, each of

which used the same classification structure. However, as the aerial data used in this

assessment was captured over a single time period, it would not be possible to reliably

differentiate some of the land cover classes such as Periodically Herbaceous and Perma-

nent Herbaceous. For this reason, a simplified version of the satellite classification schema

outlined in Chapter 3 was used for the classification of aerial data. The aerial classifica-

tion schema was designed such that each aerial class directly corresponded to one or more

satellite classes. For example, both the Woody Coniferous and Woody Broadleaved satel-

lite classes were simplified to theWoody Vegetation aerial class. This form of decision-level
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fusion will be referred to as class-corresponding fusion. Table 5.2, lists the classes that

were used for the labelling of aerial data along with the corresponding satellite classes.

Table 5.2: Aerial classes along with the definitions and corresponding satellite classes.

Aerial Classes Description
Corresponding
Satellite class

Woody
Vegetation

Any perennial woody plants.
Woody Coniferous

and
Woody Broadleaved

Herbaceous
Vegetation

Annual, biennial or perennial plants
that do not have a persistent woody
stem above the ground. This includes

both managed and unmanaged vegetation
such as grasslands and arable crops

visible during the time of data capture.

Permanent Herbaceous,
Periodically Herbaceous

and
Sparsely Vegetated

Non-Vegetated

Consolidated and unconsolidated
materials as well as bare soils.

Examples include rock formations,
quarries, mineral extraction sites,

open-pit mines, screes, sand, bare soil.

Periodically Herbaceous,
Non-Vegetated

and
Sparsely Vegetated

Sealed

All impervious and sealed surfaces.
Artificial surfaces such as buildings
and artificial constructions, asphalt,

concrete, tarmacadam.

Sealed

Water

Water in a liquid state of aggregation
regardless of location, shape, salinity
and origin, both natural or artificial.
This includes rivers, canals, natural

lakes, fishponds, man-made reservoirs,
pools, irrigation ponds.

Water

Labels for each survey region were manually digitised as vector data using the open-

source geographic information software QGIS. Where available, additional datasets such

as open street maps and Prime2 were used as reference material for labelling the data.

Figure 5.3, illustrates labels over the Maynooth and Waterford Airport survey areas.

174



(a) Waterford Airport.

(b) Maynooth.

Figure 5.3: Aerial Labels for a) Maynooth and b) Waterford Airport sites.

The vector labels for each site, once generated, were converted to raster format with

a spatial resolution of 0.25m GSD with an equal extent to the orthorectified aerial data

for that site. Non-overlapping label patches with a dimension of 100×100 pixels were

extracted with corresponding image patches of 284×284 pixels. For this assessment,

the Maynooth site was used as the test site for the evaluation of aerial classification

results and the remaining sites were used for training and validation. Validation data

was generated as a random 10% sample of the non-test data.
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5.2.3 ML Architecture

A UNET architecture was employed to perform classification of the aerial data. UNET

is a fully convolutional neural network first proposed by Ronneberger et al. (2015). For

this assessment, the architecture was modified to take an input image patch of 284×284

pixels and output an image patch 100×100 pixels. With the spatial resolution consis-

tent between input data and output classification, the area upon which classification is

performed is significantly smaller than the area covered by the input data. For this ar-

chitecture, the input data covers an area of 71m2 and the output area covers an area of

25m2. Figure 5.4, provides an illustrative example of the structure of the UNET archi-

tecture used in this assessment. As with the ANN base architectures in Chapter 3, this

model was trained using a binary cross-entropy loss function, and Adam was used for

gradient-based optimisation with a learning rate of 0.0001. An early stopping operation

was utilised to prevent overfitting by halting training where there was no improvement

in the validation accuracy after 15 epochs.

Figure 5.4: Illustration of Modified UNET architecture.

176



5.3 Satellite-Aerial Class-Corresponding Fusion

The methodology proposed in this assessment performs fusion in three steps; i) interpo-

lation of satellite prior probabilities to 0.25m GSD, ii) fusion of aerial and interpolated

satellite data, and iii) the resampling of the fused data to the output 10m GSD. Figure

5.5 provides an illustrative overview of the three steps involved in the proposed satellite-

aerial fusion methodology.

Figure 5.5: Illustration of satellite-aerial fusion steps.

The first step in the proposed satellite-aerial fusion methodology involves the inter-

polation of the satellite prior probability to 0.25m GSD. This step was achieved using a

cubic interpolation methodology.

Two approaches to class-corresponding fusion were examined to undertake the sec-

ond step in the proposed satellite-aerial fusion methodology; a class constrained fusion

(Class-Con Fusion) approach and a corresponding probability fusion (Cor-Prob Fusion)

approach.

5.3.1 Class Constrained Fusion (Class-Con Fusion)

Under the Class-Con Fusion approach, the aerial prior classification is used to constrain

the location where the satellite classification can be performed. This constrained ap-

proach assumes that the aerial data’s higher spatial resolution is better suited for the

classification of the simplified LCC. Under this approach, the prior satellite probabilities

were masked by the corresponding aerial prior class as listed in Table 5.2. For any given
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location, the satellite prior probability (Sp) for a given satellite class (Sc) is unchanged

where the satellite class is in the set of corresponding satellite classes for the aerial prior

classification (Ac) at that given location. Where the satellite class is not in the set of cor-

responding satellite classes for the aerial prior classification, the satellite prior probability

is set to zero. The fused class probability (S ′
p) for Class-Con Fusion is given by:

S ′
p =


Sp, Sc ∈ Ac

0, Sc /∈ Ac

(5.1)

The Sealed and Water classes have only one corresponding satellite class. Therefore,

the aerial classification is the sole contributor to their classification in the final output.

5.3.2 Corresponding Probability Fusion (Cor-Prob Fusion)

Corresponding probability fusion calculates the product of the satellite prior probability

and its corresponding aerial class probability (Ap) as defined in Table 5.2. For satellite

classes such with a single corresponding aerial class, the fused class probability is given

by:

S ′
p = Sp × Ap (5.2)

For satellite classes such as Periodically Herbaceous that have two corresponding aerial

classes, the maximum probability of the corresponding classes (Ap1) and (Ap2) was first

calculated. The product of the maximum aerial class probability and the corresponding

satellite prior probability was then calculated. The fused class probability with two

corresponding aerial classes is given by:

S ′
p = Sp ×max(Ap1, Ap2) (5.3)
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5.3.3 Classification and Resampling

Once fused, the class of each pixel was determined by the class with the highest proba-

bility, excluding the Sparsely Vegetated class. The class to be assigned to each 10m pixel

was determined as the mode of classes from the contributing pixels to be resampled. The

class description for the Sparsely Vegetated class provided in the CLC+ technical specifi-

cation is as follows; ‘Sparsely vegetated and unstable areas of stones, boulders, or rubble

on steep slopes where the vegetation layer consisting of herbaceous vegetation covers be-

tween 10% and 50% of the surface.’(Kleeschulte et al., 2019) The Sparsely Vegetated class

was originally defined for use with 10m resolution satellite datasets. However, at very

high spatial resolutions, Sparsely Vegetated areas can be considered as either Permanent

Herbaceous or Non-Vegetated. Therefore, the Sparsely Vegetated class was assigned to a

10m resolution pixel where over 50% contributing 0.25m pixels were Non-Vegetated and

between 10% and 50% were the Permanent Herbaceous class.

5.3.4 Assessment Methodology

Four satellite prior models were used to assess the performance of satellite-aerial fusion.

Three of the prior models were mono-sensor satellite models using Sentinel-1, Sentinel-

2 and Landsat-8. Each of these mono-sensor models were selected for this assessment

as the highest accuracy model for their respective sensor identified in Chapter 3. The

fourth satellite prior model used in this assessment is an SVM decision-level fused model

generated in Chapter 4. Table 5.3, lists the prior satellite models to be used for satellite-

aerial fusion. Each model will be given a unique acronym to aid in the interpretation of

the results.

Table 5.3: List of satellite prior models to be fused.

Satellite Source/Prior model Model Acronym
Monthly Averaged Sentinel-1 1DCNN12 S1MO
Seasonally Averaged Sentinel-2 3DLFCNN9×9 S2SE
Annually Averaged Landsat-8 LFCNN9×9 L8AN

S1MO, S2SE & L8AN SVM SVM-Fused
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(a) Maynooth.
(b) Waterford Airport.

Figure 5.6: Aggregated labels generated for satellite classification assessment in Chapter
3 over a) Maynooth and b) Waterford Airport.

With only two aerial surveys carried out in 2018, both of the Maynooth and Waterford

Airport sites were used to assess the impact of implementing satellite-aerial fusion. For

both sites, a new label dataset was generated to assess the results of performing satellite-

aerial fusion. Note that the labelled dataset generated over these regions in Chapter 3

has significant areas of missing data (see Figure 5.6) and, therefore, could not be used. In

the Waterford Airport region, the missing region was defined as Airports in the Coperni-

cus Urban Atlas dataset and Airports and associated land within the Copernicus Coastal

Zones dataset. This class definition does not clearly align to any of the CLC+ Backbone

raster product classes and so was excluded in the generation of a label dataset generated

for Chapters 3 and 4. Additionally, a visual inspection of the label datasets generated for

Chapters 3 and 4 lack the boundary delineation that would be appropriate for this assess-

ment. The new label datasets for this assessment were generated by modifying the labels

used to train the aerial UNET model and updating the land cover classes to correspond

to the satellite label classes. The updating of the class was achieved using the Chapter

3 label dataset as a reference, along with photo-interpretation of high-resolution aerial

imagery and Sentinel-2 imagery. The vector labels were converted to a 10m resolution

180



raster dataset following initial processing. Conversion to a 10m resolution was achieved

by first generating a 10m vector grid. For each square in the vector grid, the class with

the largest intersecting area from the vector dataset was assigned to that square. How-

ever, where Non-Vegetated has the largest intersecting area and Permanent Herbaceous

consists of between 10% and 50% of the intersecting area, the vector was assigned the

class Sparsely Vegetated. This gridded vector dataset was then converted to a raster for-

mat. The updated label dataset is illustrated in Figure 5.7.

(a) Maynooth.
(b) Waterford Airport.

Figure 5.7: Modified labels for satellite-aerial assessment over a) Maynooth and b) Wa-
terford Airport.
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5.4 Results

The results of performing classification using a UNET model on aerial data is first pre-

sented followed by the second set of results associated with the satellite-aerial fusion

techniques.

5.4.1 Aerial Classification Results

An accuracy of 92.16% and 92.50% was achieved for the training and validation datasets

respectively. However, a lower accuracy of 84.70% was obtained for the test data. Ta-

ble 5.4 lists the F1 score, weighted F1 and OA for each class of each site used in this

assessment.

Table 5.4: F1 and OA results of aerial data classification using UNET architecture.

Woody
Vegetation

Herbaceous
Vegetation

Non-
Vegetated

Sealed Water
Weighted

F1
OA

Maynooth 0.765 0.875 0.625 0.922 0.206 0.843 0.847
Waterford
Airport

0.938 0.983 0.780 0.957 N/A* 0.967 0.967

Sroughan 0.908 0.967 0.973 0.916 0.9972 0.9779 0.9775
Horsepasstown 0.953 0.974 0.910 0.954 0.999 0.976 0.976
Twomilebridge 0.963 0.967 0.911 0.971 0.920 0.962 0.962
Rathdown
Upper

0.767 0.896 0.920 0.710 0.993 0.924 0.923

* No Water is present at the Waterford Airport site.

As can be seen in Table 5.4, the lowest F1 score was obtained from the classification

of Water over the Maynooth Site. The output classification results over both Maynooth

and Waterford Airport are detailed in Figure 5.8.
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(a) Ground truth labels.

Maynooth. Waterford Airport.

(b) UNET classification output.

Figure 5.8: Classification output of UNET model for Maynooth and Waterford Airport
using aerial RGB Data.
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5.4.2 Satellite-Aerial Fusion Results

Table 5.5 lists the weighted F1 and OA for each satellite model. The results of performing

satellite-aerial class-corresponding fusion is displayed in Tables 5.6 and 5.7. Figure 5.9

illustrates the results of performing Class-Con satellite-aerial fusion using the S2SE prior

model.

Table 5.5: Results for satellite only classification. The highest weighted F1 and OA for
each site are highlighted with text in bold.

Satellite
model

Maynooth
Waterford
Airport

F1 OA F1 OA
S1MO 0.460 0.501 0.647 0.663
S2SE 0.654 0.647 0.612 0.640
L8AN 0.322 0.372 0.376 0.435

SVM-Fused 0.601 0.604 0.554 0.593

Table 5.6: Results for Class-Con satellite-aerial fusion. The highest weighted F1 and OA
for each site are highlighted with text in bold.

Satellite
prior model

Maynooth
Waterford
Airport

F1 OA F1 OA
S1MO 0.784 0.7688 0.8456 0.8331
S2SE 0.794 0.789 0.859 0.859
L8AN 0.697 0.681 0.691 0.630

SVM-Fused 0.763 0.755 0.791 0.755

Table 5.7: Results for Cor-Prob satellite-aerial fusion. The highest weighted F1 and OA
for each site are highlighted with text in bold.

Satellite
prior model

Maynooth
Waterford
Airport

F1 OA F1 OA

S1MO 0.767 0.752 0.837 0.823
S2SE 0.766 0.769 0.852 0.853
L8AN 0.66 0.641 0.687 0.706

SVM-Fused 0.720 0.719 0.770 0.733
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(a) Ground truth labels.

(b) Satellite only classification.

(c) Satellite-aerial fused classification.

Figure 5.9: Results of performing Class-Con satellite-aerial fusion using S2SE prior clas-
sification.
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The results of this assessment reveal a notable increase in classification accuracy as

a result of satellite-aerial class-corresponding fusion for each satellite platform and each

fusion type. Overall the highest classification accuracy was obtained using the Class-Con

fusion approach with S2SE prior classification. The satellite-aerial fusion of S1MO prior

classification resulted in a significant increase in classification accuracy, with fused results

only marginally lower than with the S2SE prior model.

5.5 Discussion

This study demonstrates that, aerial data can be fused with satellite data to significantly

improve classification accuracy through the use of a decision-level fusion approach. To

further examine the impact of satellite-aerial fusion, the change in LCC relative to satellite

only classification was examined. The spatial location and distribution of the change in

LCC, as a result of satellite-aerial Class-Con fusion relative to the classification output

of the S2SE prior model is detailed in Figure 5.10. The classification change illustrated

in this image is divided into three categories. Table 5.8 lists the percentage change from

each category. The three categories of change are defined as follows:

� Positive Change : where the fusion corrected a previously misclassified pixel.

� Negative Change : where the fusion resulted in the misclassification of a previously

correctly classified pixel.

� Neutral Change : where both the prior classification and fused classification were

incorrect.

Table 5.8: Classification change due to satellite-aerial Class-Con fusion relative to satel-
lite only classification.

Maynooth Waterford Airport
Positive Change 15.81% 21.30%
Neutral Change 5.59% 3.42%
Negative Change 1.68% 0.66%
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(a) Maynooth. (b) Waterford.

Figure 5.10: Illustration of classification change due to satellite-aerial Class-Con fusion
relative to satellite-only S2SE classification.

The application of satellite-aerial fusion resulted in significant positive classification

change as can be seen in both Figure 5.10 and Table 5.8. Visual inspection of Figures

5.9 and 5.10 reveals that a significant proportion of the change occurs at the boundary

of existing classes and with the classification of small linear features misclassified by the

satellite data. However, there are examples of larger areas that experienced positive

change as a result of satellite-aerial fusion, such as the reclassification of the Sparsely

Vegetated class to the Permanent Herbaceous class in the Waterford Airport site.

One notable observation in this assessment is the relatively poor performance of the

SVM-Fused satellite prior model. In Chapter 4, it was observed that the application of

SVM decision-level fusion could obtain significantly higher classification accuracy over

mono-platform models. However, the SVM-Fused model before satellite-aerial fusion

resulted in lower classification accuracy than the S2SE model for both sites and the

S1MO model for the Waterford site. The application of satellite-aerial fusion resulted

in a significant improvement in the classification accuracy for the SVM-Fused model.
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However, for both Class-Con and Cor-Prob Fusion the use of the S2SE and S1MO models

outperformed the SVM-Fused model. The application of L8AN resulted in the lowest

classification accuracy of both the satellite only classification and the satellite-aerial fused

classification. Landsat-8 has the lowest spatial resolution of the three assessed satellite

platforms, with a spatial resolution of 30m. This lower spatial resolution is likely a

contributing factor to its lower classification results. Additionally, as the L8AN model

utilised annually averaged data, it may be less suitable to differentiate temporal classes

such as Periodically Herbaceous and Permanent Herbaceous. The L8AN model is used as

one of the prior input models for the SVM-Fused model. Therefore, the poor classification

result of the L8AN models over the assessed sites is likely a contributing factor to the

results obtained by the SVM-Fused model.

This assessment demonstrated how, through the use of a decision-level fusion ap-

proach, aerial data could be used to refine satellite derived LCC. This assessment is not

unique in the application of fusion techniques for the fusion of medium and high-resolution

imagery. As highlighted in the literature review, the majority of studies performing fusion

between medium and high-resolution imagery perform pixel-level fusion. The study by

Wendl et al. (2018) preformed decision-level fusion using Sentinel-2 multi-temporal im-

agery and 1.5m resolution mono-temporal Spot-6 satellite data. Alongside the difference

in platform and resolution, the use of differing but relatable class schemas between the

models to be fused is an important finding in this PhD study. The study by Wendl et al.

(2018) demonstrates how high-resolution imagery can be used to improve classification

results obtained from medium resolution multi-temporal imagery. While not examined in

this study, it is proposed that very high-resolution satellite platforms such as WorldView-

3 and Pléiades Neo, with a resolution of 0.31m and 0.30m GSD respectively (AIRBUS,

2022; ESA, 2022) could be used as an alternative to aerial imagery. However, further

examination of this topic would be required.
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5.5.1 Spatially Derived Sparsely Vegetated Class

The most notable example of reclassification over a large area as a result of satellite-aerial

fusion was observed in the Waterford Airport Site. The reclassification occurred over an

area originally misclassified as Sparsely Vegetated. This area was reclassified as Permanent

Herbaceous as a result of the fusion process. Examination of the high-resolution imagery

in this area reveals a significant proportion of visible bare ground between the vegetation,

as visible in Figure 5.11, which may explain the satellite misclassification. However,

with the area predominantly vegetated, the Permanent Herbaceous class is the correct

classification for this area.

(a) Waterford Airport satellite classi-
ficaion.

(b) Permanent Herbaceous area with some visible
bare ground.

Figure 5.11: Example of Permanent Herbaceous with some visible bare ground resulting
in misclassification as Sparsely Vegetated.

This change in class is a result of the assignment of the Sparsely Vegetated class based

on the proportions of Permanent Herbaceous or Non-Vegetated classified pixels during

resampling of the fused data from 0.25m data to 10m. The decision to use this approach

to derive the Sparsely Vegetated class was partially driven by issues encountered when

deriving the class based on the satellite prior probability as with other classes. Initial

assessments using the satellite prior probability in a similar manner to the Herbaceous
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Vegetated class resulted in some noticeable misclassifications after fusion. Figure 5.12

illustrates a location which was misclassified as Sparsely Vegetated as a result of Class-

Con fusion where the Sparsely Vegetated class was determined by the satellite prior

probability. This misclassification occurred most frequently in urban areas. The mix of

artificial surfaces and vegetation in these areas may result in similar spectral properties

of the Sparsely Vegetated class at a 10m resolution. Therefore, a higher prior probability

from satellite models would be expected for the Sparsely Vegetated class than for the

Periodically Herbaceous or Permanent Herbaceous classes.

(a) Aerial imagery. (b) Sparsely vegetated class
derived by class proba-
bility.

(c) Sparsely vegetated class
derived by proportion of
Permanent Herbaceous
or Non-Vegetated class
during resampling.

Figure 5.12: Comparison of sparsely vegetated class derived by (b probability vs (c pro-
portion of Permanent Herbaceous or Non-Vegetated class during resampling.

It is noted that in regions under assessment, there are very few examples of areas

that should be defined as Sparsely Vegetated. To fully assess the accuracy of defining

Sparsely Vegetated class through this methodology, additional surveys over areas con-

taining significant Sparsely Vegetated cover would be required to fully assess the benefit

of this technique.

5.5.2 Aerial Data Classification Issues

With the implementation of satellite-aerial fusion resulting in a significant change in

classification accuracy over the test regions under assessment, any errors in aerial classi-
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fication can significantly impact the fusion results.

5.5.2.1 Misclassification of Water

During this assessment, the classification of Water over the Maynooth site resulted in the

lowest aerial class F1 score. Examination of the locations misclassified over the Maynooth

site highlighted a potential reason for this result. Over the Maynooth site, the two main

water bodies are the Royal Canal running through the town and a small reservoir to the

North-West of the site. Figure 5.13 displays the two water bodies in the Maynooth site

along with examples of other water bodies included as part of the training dataset. The

appearance of water in the Rathdown Upper site or Horsepasstown site differs signifi-

cantly from the appearance of the canal or reservoir water in the Maynooth site, as can

be seen in Figure 5.13. The reservoir in particular, contains significant vegetation cover

within the water body.

(a) Maynooth Canal. (b) Maynooth Reservoir.

(c) Rathdown Upper. (d) Horsepasstown.

Figure 5.13: Examples of four water bodies from the aerial dataset with notably different
appearances.
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The noticeable difference in visual appearance between the water bodies in the training

sites and the water bodies in the Maynooth site is likely a contributing factor to the poor

classification results. Additional surveys over canals and similar water bodies would be

required to overcome this issue and to ensure the model is suitably trained for their

classification. Examination of the satellite only classification reveals the satellite models

also misclassified these water bodies. Therefore, the misclassification in the aerial data

is not expected to have a significant negative impact on the final classification results.

Aerial misclassification such as this is particularly important when employing Class-Con

fusion. Under Class-Con fusion both the Water and Sealed classes are 100% determined

by the aerial classification results. Therefore, any misclassification in the aerial data

disproportionally impacts the final classification. For instance, Figure 5.14 provides an

example of the misclassification of Herbaceous Vegetation as Water in the aerial data.

(a) Aerial RGB. (b) Aerial UNET classification.

(c) Class-Con fusion. (d) Cor-Prob fusion.

Figure 5.14: Example of b) UNET misclassification and its impact on c) Class-Con fusion
and d) Cor-Prob fusion.

As a result of the aerial misclassification, the application of the Class-Con Fusion
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resulted in misclassification in the fused data. However, while the application of Cor-

Prob fusion resulted in a lower weighted F1 score for the Maynooth site, as is visible in

Figure 5.14, its application is less prone to the issue of aerial misclassification.

5.5.2.2 Misclassification of Non-Vegetated areas

The second-lowest aerial classification F1 score obtained on the Maynooth test site was for

the Non-Vegetated class. This was also the lowest F1 score for the Waterford Airport site.

Examining these results reveals that a major contribution to this is the misclassification

over arable land. In these instances, Non-Vegetated cover was misclassified as Herbaceous

Vegetation. The misclassification of Non-Vegetated land cover as Herbaceous Vegetation

over arable cropland can be seen in Figure 5.15. Vegetation is visible, at various stages

in crop development, in each field as depicted in Figure 5.15. This issue is likely to be

prevalent in dynamic cultivated land, especially at the start of the growth season when

crops are beginning to sprout and bear leaves. While this issue impacts the calculated

F1 score for the aerial classification, it is not expected to negatively impact the fusion

results with both classes related to the Periodically Herbaceous class.

Figure 5.15: Non-Vegetation misclassification examples for Maynooth top and Waterford
bottom.
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5.6 Conclusion

This chapter demonstrates how high-resolution aerial data can be fused with medium

resolution satellite data to improve classification in comparison to satellite only classi-

fication. A decision-level fusion approach was used with differing but comparable class

schemas for each platform. Aerial classification was performed using a modified UNET

model for the classification of five land cover classes. In contrast, satellite prior models

were trained to classify eight land cover classes. Overall, higher classification results were

obtained using a Class-Con fusion approach with the S2SE prior model. However, it

is recognised that under the Class-Con fusion approach, the classification of the Sealed

and Water classes is solely derived from the aerial model. Examination of the results

reveals that the classification of the Sealed class is noticeably better with aerial data than

with any of the assessed satellite models. Under this approach, the classification of the

inherently temporal classes is derived based on the multi-temporal satellite data.

Some issues with the classification of water bodies using aerial data were observed

over the Maynooth site. While it is excepted that this issue may negatively impact classi-

fication accuracy, these water bodies were also misclassified by the satellite models. As a

result, the misclassification of the aerial data had no negative impact on the classification

result.

Key contributions:

1. The demonstration of the class constrained (Class-Con) decision-level fusion ap-

proach for the fusion of satellite and aerial data. The application of Class-Con

fusion improved the weighted F1 score from 0.654 to 0.794 over the Maynooth site

and 0.647 to 0.859 over the Waterford Airport site. This approach to fusion enables

the incorporation of mono-temporal data to improve classification in a situation

with an inherently temporal class. Due to the prohibitive cost of aerial surveys,

capturing and including aerial data would otherwise be unviable. This approach

to data decision-level fusion can also be utilised for the fusion of high-resolution

satellite data along with the multi-temporal satellite data.
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2. The assignment of the sparsely vegetated class during resampling to 10m GSD was

also proposed as a potential methodology to more accurately represent classes which

are derived based on a proportion of other classes. While further examination would

be required, this approach to the classification of the sparsely vegetated class may be

more appropriate than the use of multi-temporal multi-spectral medium resolution

satellite data.
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Chapter 6

Conclusion

6.1 Introduction

The generation of high accuracy and frequently updated LCC products pose many chal-

lenges. This thesis set out to demonstrate techniques that could be utilised to increase

the classification accuracy of an annually generated LCC product using the specification

for the generation of the CLC+ Backbone raster product as a guideline. Through the

undertaking of the literature review, gaps in the current knowledge were identified. Based

on these gaps in knowledge, three research questions were identified:

Question 1: What ML techniques are suitable for mono-platform satellite-derived annual

LCC on the island of Ireland?

In North Atlantic regions such as on the island of Ireland, frequent cloud cover limits

the availability of satellite optical data. As a result, it may not always be possible to cap-

ture sufficient optical satellite data to generate accurate LCC products. By addressing

this research question, the extent to which frequent cloud cover impacts the generation

of LCC products on the island of Ireland could be examined. In addition, addressing this

question provided an opportunity to perform a comparative assessment of ML techniques

to determine their suitability for the generation of the CLC+ Backbone raster product

on the island of Ireland.
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Question 2: How can a multi-sensor satellite data fusion approach be employed where

frequent cloud cover results in differences in sensor data availability over the area that is

being assessed?

The use of data from multiple sensors (sensor fusion) has been demonstrated in many

studies to improve the accuracy of LCC. However, due to frequent cloud cover, over a

large region, there will inevitably be differences in the availability of data from optical

satellite platforms. In addressing this question, practical applications of sensor fusion

were examined, suitable for a scenario where the availability of input data varies across

the assessed region.

Question 3: Can aerial data be used to further improve the accuracy of multi-sensor

satellite-derived LCC?

During the literature review, few studies were identified examining the fusion of aerial

and satellite data for LCC. The ability of aerial data to capture high spatial resolution

imagery has the potential to significantly improve classification accuracy, particularly

around class boundaries where mixed spectral information from medium spatial resolu-

tion satellites may result in misclassification. In addition, light aircraft have the ability

to fly beneath cloud cover, which is a trait particularly useful on the island of Ireland.

By addressing this research question, this thesis aimed to examine how the benefits of

aerial data can be used to improve satellite derive LCC products.

A concise summary of the contributions of this thesis will be provided in Section 6.2 and

potential future work to be carried out will be outlined in Section 6.3. Final Remarks

will then be provided in Section 6.4.

197



6.2 Main Findings

The contributions of this thesis will be discussed in terms of how they address this thesis’s

three research questions.

6.2.1 Research Question 1: Suitability of ML for Mono-platform

Satellite-derived Annual LCC

Figure 6.1: Conceptual illustration for mono-platform satellite LCC.

The LFCNN and 3DLFCNN architectures were proposed in Chapter 3 as part of

the assessment of ML techniques for the generation of an annual LCC product. These

architectures were observed to outperform the point-based techniques such as SVMs,

RFs and ANNs on similar datasets. An additional benefit of the proposed architectures

is that their application resulted in a substantial reduction in computation time for the

classification of large image patches, making them ideal for generating LCC datasets over

a large area.

Another contribution of the assessment undertaken in Chapter 3 was the confirmation

of results obtained by Carrasco et al. (2019). In both their and this study, it was found

that the number of observations used to generate an averaged dataset and the number

of temporal splits in the averaged datasets significantly increases classification accuracy.

Finally, in Chapter 3, to assess mono-platform suitability, the percentage area of each
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region where each model could be employed (model coverage) was assessed based on the

requirement for a minimum of six observation and manually digitised cloud masks. This

assessment revealed that none of the assessed techniques were identified to have 100%

coverage over all regions. The various LCC modelling techniques explored and developed

during the course of this research highlight the critical influence and impact of cloud

cover on satellite RS products over North European countries such as Ireland.

6.2.2 Research Question 2: Multi-sensor Satellite data Fusion

using Sensor Data Inputs that Vary in Terms of Avail-

ability

Figure 6.2: Conceptual illustration for multi-platform satellite LCC.

To evaluate multi-sensor satellite data fusion techniques, a two-part assessment was

undertaken in Chapter 4. The first part was a comparative assessment of pixel-level and

decision-level fusion techniques. The assessment results demonstrated that the applica-

tion of decision-level fusion could produce better classification results over the assessed

region, corroborating the results of a study by Useya and Chen (2018).

The second part of this assessment was the evaluation of several decision-level fusion

techniques suitable for fusion over a region with variable data availability. The averaging

of prior probabilities from each combination of SVM fused model (Full-SVM averaging)
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obtained the highest classification results in this assessment. However, with seven prior

models, a total of 101 SVM fused models were trained and used during inference. The

averaging of only SVM fusion models that were generated using pairs of prior models

(Dual-SVM averaging) was proposed as a means of limiting the number of SVM models

to be trained. It was observed that the Dual-SVM averaging approach could obtain

comparable results to Full-SVM averaging while only requiring the training of 14 SVM

fused models. The proposed approach to fusion was demonstrated not only to be suitable

for the generation of high accuracy classification products but may also be suitable for

the inclusion of data from additional EO platforms not evaluated in this assessment.

6.2.3 Research Question 3: Satellite-Aerial Data Fusion

Figure 6.3: Conceptual illustration for multi-platform satellite and aerial LCC.

The use of a decision-level fusion approach for the fusion of satellite and aerial data

was examined in Chapter 5. A single aerial survey lacks the temporal information neces-

sary to classify the inherently temporal land cover classes in the CLC+ Backbone raster

product. Therefore, a class-corresponding decision-level fusion approach was proposed. A

simplified classification structure was derived for the aerial dataset. This simplified clas-

sification structure was designed such that each aerial class directly corresponded to one

or more satellite classes used in Chapters 3 and 4. Two variations of class-corresponding

decision-level fusion were examined; a class constrained fusion approach and a correspond-
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ing probability fusion approach. The application of the class constrained fusion approach

obtained higher classification accuracy in this assessment. Additionally, the use of high-

resolution imagery for assigning the sparsely vegetated class during resampling to 10m

GSD was also proposed. However, insufficient data was available to comprehensively

evaluate this technique. The results of this assessment demonstrated that the proposed

satellite-aerial fusion methodology could be implemented as a practical approach that

increased classification accuracy over the assessed regions.

6.2.4 Summary of Contributions

1. The proposal and evaluation of the LFCNN and 3DLFCNN architectures. The

application of proposed architectures have the following advantages:

� These ML architectures are suitable for training on sparse point data but

can be used for inference of an image output without modification of the

architecture.

� They are computationally faster inference time over large areas than other

assessed point-based ML techniques.

� The LFCNN and 3DLFCNN architectures produce the highest classification

accuracies of the mono-platform ML techniques, which were evaluated in this

study.

2. The proposal and evaluation of Full-SVM fused averaging and Dual-SVM fused

averaging approaches. These proposed fusion methodologies provided the following

contributions:

� These methodologies are suitable for performing multi-sensor data fusion over

an area where data available from each platform may differ at each given

location.

� Full-SVM fused averaging obtained the highest classification accuracy of the

assessed sensor fusion techniques.
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� Dual-SVM fused averaging provides a lower computational cost alternative to

Full-SVM fused averaging with a minimal reduction in classification accuracy.

3. The proposal and evaluation of a satellite-aerial decision-level fusion approach suit-

able for the fusion of models with differing but relatable classification schemas

‘class-corresponding fusion’. The application of the proposed satellite-aerial fusion

technique had the following benefits:

� The proposed fusion methodology enables the fusion of mono-temporal aerial

data with multi-temporal multi-modal satellite data.

� The application of the proposed fusion methodology resulted in LCC accuracy

improvements in the assessed sites relative to classification performed using

satellite data alone.

� The proposed fusion methodology enabled the assignment of the Sparsely

Vegetated class based on the proportion of Permanent Herbaceous and Non-

Vegetated in contributing pixels when resampling the fused data from 0.25m

to 10m. This approach to classifying the Sparsely Vegetated class reduced

classification error over the assessed sites.

4. Critically assessing and confirmation of the following studies by:

� Carrasco et al. (2019) who identified the relationship between classification

accuracy and the number of temporal splits and observation count per split.

� Useya and Chen (2018) who demonstrated that decision-level fusion can out-

perform pixel-level techniques for LCC.

6.3 Recommendations and Future Work

The work undertaken in this thesis examined a broad range of ML and sensor fusion

techniques for LCC. However, through this work, several topics were identified that re-

quire further research and analysis in order to ensure the efficient and timely production

of high-quality LCC maps.
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6.3.1 Refinement of LFCNN architecture

In Chapter 3, the LFCNN structure was demonstrated to be suitable for high accuracy

classification, rapid inference over large areas and training on sparse point data sources.

However, there are some limitations to the evaluation undertaken in this thesis that could

be addressed in future studies.

An issue identified in Chapter 3 was the difficulty of training a 3DLFCNN architecture

using the six-monthly Sentinel-2 data. One possible reason for this issue is the number of

trainable variables in the models. The difficulty in training models with a large number of

training variables may also explain the difficulty in training LFCNN models with an input

patch size greater than 9×9 pixels. This issue may be overcome by simply increasing

the size of the training dataset. Alternative approaches to address this issue include

modification of the architecture to result in fewer training variables or the application

of techniques such as ‘transfer learning’. Transfer learning is the process of pre-training

a network or part of a network on an independent dataset before training on the target

dataset (Xu et al., 2017).

A significant limitation of the comparative assessment undertaken in Chapter 3 was

the lack of a comparison between the LFCNN architecture and other patch-to-patch fully

convolutional neural networks. However, due to the issue of obtaining sufficient fully

segmented labelled data over the assessed region, it was not possible to train a patch-to-

patch fully convolutional neural networks during the comparative assessment undertaken

in Chapter 3.

6.3.2 Decision-level vs Feature-level Fusion

While not examined in this thesis, the application of feature-level fusion has significant

advantages when performing sensor fusion. In Chapter 4, the utilisation of decision-

level fusion was demonstrated to be a practical and high-accuracy methodology for the

fusing of data from diverse sources. However, there is a significant degree of information

loss in the application of decision-level fusion. In comparison, in both pixel-level and

feature-level fusion, significantly more information about the relationship between the
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data from each sensor is retained. The primary drawback of the application of feature-

level fusion in a region with variable data availability is the requirement to design a

specific model architecture for each combination of sensor data to be fused. Additionally,

The application of feature-level fusion poses many of the same issues identified during

the application of pixel-level fusion, such as the limited number of overlapping sample

points. However, further examination would be required to determine if decision-level

fusion is more suitable than feature-level fusion over the assessed regions.

6.3.3 Satellite-Aerial Fusion for Sparsely Vegetated Regions

When examining the implementation of satellite-aerial fusion in Chapter 5, the assign-

ment of the sparsely vegetated class during resampling to 10m GSD was examined. Under

this approach, it was assumed that at a spatial resolution greater than 1m, Sparsely vege-

tated regions can be re-classified as either Herbaceous Vegetation or Non-vegetated. When

resampling to a 10m resolution, the assignment of the Sparsely Vegetated class was then

determined based on the proportions of Herbaceous Vegetation and Non-vegetated pix-

els to be resampled. While this approach to defining the Sparsely Vegetated class was

utilised in Chapter 5, it was acknowledged that the regions where this technique was

employed were largely devoid of sparsely vegetated cover. Therefore, further studies in

regions with significant areas of sparse vegetation are required to fully understand the

impact of implementing the proposed satellite-aerial fusion technique.

6.3.4 Alternative Label Data Sources

A significant challenge identified throughout the undertaking of this thesis was obtaining

sufficient and accurate labels to train and evaluate the ML models. During this assess-

ment, an aggregated data source methodology was used for the generation of a label

datasets. However, it was recognised that this process was not ideal, not only due to

identified miss-labelling but due to issues in the correlation between the original label

data source and the aggregated label. The primary example of this issue is the lack of

a Periodically Vegetated class in the original data source. Therefore, the source for the
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Periodically Vegetated class in both the Copernicus Coastal Zones 2018 and Copernicus

Urban Atlas 2018 datasets was Arable land. While periodic vegetation is commonly a

result of arable agriculture, the definition of this class encompasses other instances of

periodic vegetation which may occur outside of an agricultural setting. Given the chal-

lenges posed by aggregated data sources to generate label data suitable for the CLC+

Backbone raster product classification schema, the generation of a bespoke label dataset

for this purpose would be required. This process would ensure that for each class, a

profile of its spectral, spatial and temporal fingerprint could be generated.

6.3.5 Fusion of Alternative Data Sources

The fusion of sensor data with distinctly different characteristics was examined in this

thesis. However, there is a significant number of alternative EO data sources that could

be included in a multi-sensor ML fusion analysis for LCC. In theory, the application

of a decision-level fusion approach can enable the fusion of almost any additional EO

platform data regardless of its spectral or temporal properties. However, some issues may

arise where there is significant variations in the spatial characteristics of the platforms.

Studies have examined the fusion of low-resolution satellite data such as the Moderate

Resolution Imaging Spectroradiometer (MODIS), which has a spatial resolution of 250m

to 1km (NASA, 2022) and Visible Infrared Imaging Radiometer Suite (VIIRS), which has

a spatial resolution between 250m to 750m (NASA, 2021b) with medium resolution data

such as Landsat-8 or Sentinel-2 using pixel-level fusion techniques (Shen et al., 2013; Jia

et al., 2014; Shen et al., 2022). However, further research would be required to examine

how data from these platforms could be used to improve the generation of an annual

LCC product.

The inclusion of a variety of high and very high-resolution sensors and platforms

could also be explored. As outlined in Chapter 5, very high-resolution satellite data

from platforms such as WorldView-3 and Pléiades Neo may provide comparable results

to aerial RGB data. Additionally, both of these satellite platforms provide multispectral

data that is likely to improve classification results over RGB imagery. There are also
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a variety of additional sensor data that can be captured from aerial or UAV platforms,

such as multispectral, hyperspectral or LiDAR data, providing additional information

to improve classification accuracy. Determining the benefit of including this additional

information in the generation of a CLC+ Backbone raster product is an area where

significant research could be conducted.

6.3.6 Recommendations for the practical implementation of an-

nual LCC on the island of Ireland.

Several considerations are needed when examining the practical challenges of generating

an annual national land cover dataset for the island of Ireland. These considerations

include the spatial resolution of the data, the choice of an appropriate land cover schema,

and the challenges of obtaining sufficient label data to generate and validate the accuracy

of the dataset.

The spatial resolution of a LCC product significantly impacts many other character-

istics of the product, including the choice of classification schema and the data source

used for its generation. The national land cover dataset scheduled to be released in 2022

is intended as a high-resolution dataset incorporating high-resolution satellite and aerial

data. However, the cost of data capture and the time requirement for its generation and

validation impede the generation of an annual product at this resolution. Given this chal-

lenge, the generation of a medium-resolution LCC product of around 10m may be more

suitable for an annual product. A product of this resolution would facilitate the use of

medium-resolution satellites such as Sentinel-1, Sentinel-2 or Landsat-8 in its generation.

The choice of classification schema is one of the most important considerations in

the generation of any LCC product. The choice of classification schema not only needs

to consider the intended use of the product but also needs to be reliably and accurately

discernible using the data used for its generation. Where a classification schema is chosen

that is unsuitable for the spatial, spectral or temporal resolution of the input data sub-

stantial misclassification may occur. Therefore, the choice of classification schema should

account for the limitations of EO data and only include classes that can be accurately clas-
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sified from the given EO sources. The Woody shrub/brush class is an example of a class

in the CLC+ backbone dataset that is challenging to classify using medium-resolution

satellite data alone. Preliminary analysis in Chapter 3 using Sentinel-1, Sentinel-2, and

Landsat-8 revealed that it was not possible to accurately classify the Woody shrub/brush

class. It was concluded that as a class primarily defined based on height, height infor-

mation would be required for its classification. If the Woody shrub/brush class was to

be included, elevation information would be required from high-resolution SAR satellite

sources such as TerraSAR-X or from tri-stereo capable optical satellite platforms such

as Pléiades or WorldView-3. Alternatively, aerial platforms capturing LiDAR data or

height derived from aerial photogrammetry could also be used as the source of height in-

formation. While multiple observations would be required for the derivation of inherently

temporal classes, such as the Periodically Herbaceous class, a single height measurement

for the year would be appropriate for the purpose of defining theWoody shrub/brush class.

In practice, a classification schema for an annual LCC product could be based on the

schema used for the CLC+ Backbone raster product but exclude the Woody shrub/brush

class. Under this approach, the use of multitemporal medium-resolution data could be

used for the classification of all classes of the annual product. For each year that the

CLC+ Backbone raster product is to be updated, height data could then be captured

and used to reclassify classes such as Woody Broadleaved or Woody Coniferous based on

a defined height threshold.

The use of very high-resolution aerial data was successfully demonstrated in this

thesis as a means of improving satellite-derived LCC in complex non-homogenous regions.

However, the capture of sufficient aerial data for its application across the island of Ireland

is prohibitively expensive. The use of very high-resolution satellite data from platforms

such as WorkdView-3 and Pléiades Neo could also be used for this purpose. Alternatively,

the capture of very high-resolution data could be targeted to known non-homogenous

areas identified from the medium-resolution satellite data where its application would

result in the greatest improvement in classification accuracy. Additionally, this data

does not need to be captured each year as many of the features may not change year to
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year. Instead, medium-resolution satellite data could be used to identify regions where

significant change may of occurred since the previous surveys, enabling the targeted

capture of additional data.

In this thesis, obtaining sufficient and appropriate labelled data was one of the largest

challenges encountered when attempting to perform LCC using ML techniques. The

production of an annual LCC product using ML techniques would require the generation

of an updated labelled dataset for each year. The generation of sufficient land cover

labels is exceptionally time-consuming. This is further exacerbated by the generation of

fully segmented labels used for the training of patch-to-patch based CNN architectures.

Considering this time requirement the generation and annual updating of a point-based

label dataset would be recommended. This dataset could be used in conjunction with

patch-to-point based CNN architectures for classification such as the LFCNN architecture

proposed in this thesis. To further reduce the burden of annually updating labels, the

use of LCC or EO data from previous years may also aid in the identification of potential

training labels for each year. New label datasets would be required to retrain/refine

ML models for each year to account for annual variations in land cover spectral and

temporal signatures. Using the previous year’s LCC data as a reference and EO data

to identify change, it may be possible to indicate the suitability of existing labels and

identify potential locations for new LCC labels. However, manual verification of this

label data would still be required to ensure data quality.

The collection of in situ data and the manual photointerpretation of imagery are time

expensive procedures. Therefore, the application of such manual procedures in an an-

nually generated product should be limited with classification primarily performed using

ML from EO data. While there are a wide array of ML techniques, the utilisation of

CNN based architectures for optical data has been demonstrated to increase classifica-

tion accuracy relative to other ML techniques. The increased classification accuracy of

CNN was not only demonstrated in this thesis but also identified in several studies pre-

sented in the literature view of this thesis. As identified above, a patch-to-point based

CNN architecture may be more suitable due to the challenge of obtaining sufficient fully
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segmented label data. However, point-based techniques would be recommended where

classification is performed using Sentinel-1 data. If no inherently temporal LCC classes

are present in the classification schema, the use of annually averaged EO data may be

suitable. However, for the classification of inherently temporal LCC classes such as Peri-

odically Herbaceous, the use of multi-temporal data and temporal ML techniques would

be required. For optical data, the use of 3D CNN architectures would be recommended,

while a 1D CNN architecture would be required for classification using Sentilel-1 data.

The increased classification accuracy that can be obtained from utilising muti-sensor

data fusion techniques has been demonstrated in this thesis. Therefore, the application

of sensor fusion in the generation of any annual LCC product would be recommended. In

particular, the application of decision-level fusion techniques would be recommended with

its simple but robust workflows that were demonstrated to outperform pixel-level fusion

in this thesis. This relatively simplistic workflow is particularly suitable for generating

an annual updated LCC product where production time is limited. In addition, the

utilisation of a decision-level fusion workflow ensures that alternative EO data sources,

where available, could be incorporated into the generation of the annual product with

minimal change to the production workflow. The use of a simple probability averaging

approach to fusion could be used for decision-level fusion. However, as demonstrated in

this thesis, the application of a Full-SVM or Dual-SVM averaging approach would result

in higher classification accuracy in the generated product.

6.3.7 Future LCC Requirements

With the increased demand for up-to-date LCC datasets, the type of LCC product and

the manner by which it is produced is likely to change over time. As highlighted in

Chapter 1, there is currently a demand for the generation of annual LCC products.

While in this thesis, it was assumed that an annual product would follow the annual

calendar for specific land cover classes, this may not always be the best practice. For the

annual classification of crop types or agricultural practices, defining the annual period

based on growing seasons may be more appropriate.
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While this thesis focused on data captured within a target year, there is potential for

using some inter-annual data to further improve classification accuracy and reduce com-

putational cost. One such method would be to use inter-annual data to identify potential

changes between years. Under this approach, only regions undergoing substantial change

in their spectral, spatial or temporal characteristics would be reclassified. Progressing

beyond the generation of an annual LCC product, dynamic LCC products may poten-

tially provide near real-time updates to LCC. In a dynamic LCC product, updates to

the product are added as new EO data is captured. This product could identify changes

in LCC in near real-time. However, the generation of such a product would pose its

own challenges, such as determining an appropriate class schema and the thresholds that

would determine at which point classification change would be recorded.

6.4 Final Remarks

Producing accurate, timely LCC maps provides a crucial reference layer to a range of end-

users, including farmers, land owners, urban planners and government policymakers, that

not only helps optimise land use and food production but also the big global challenges

facing our world, including climate change and sustainability. High-quality LCC products

can also be used as a base layer for detecting and categorising change over time at the

forest, farm, peatland and urban parcel level, which, in turn, can be developed to explore

novel methodologies for mapping human activity in terms of land management.

The topics covered in this thesis present novel techniques to improve classification

accuracy when performing LCC using EO data. Foremost of these contributions were;

� The proposed LFCNN and 3DLFCNN architectures for high accuracy classification

and rapid large scale inference.

� The proposed Full-SVM Fused averaging and Dual-SVM averaging approaches for

fusion in situations where there is differences in sensor data availability over the

area that is being assessed.
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� The proposed class-corresponding fusion of aerial and satellite enabling the fusion

of mono-temporal aerial data with multi-temporal multi-modal satellite data.

Through these contributions, this thesis adds to current knowledge, providing prac-

tical and robust techniques which can be utilised for the generation of an annual LCC

product. While the techniques presented in this thesis demonstrated the versatility of

EO and ML for LCC, this field is rapidly developing, and significant advancements in

the field are likely to occur in the years to come.
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Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., and Sousa, J. J.

(2017). Hyperspectral imaging: A review on uav-based sensors, data processing and

applications for agriculture and forestry. Remote Sensing, 9(11):1110.

Agency, E. E. (2019). Framework service contract for the copernicus land monitoring

services – clc+ backbone production, including raster and vector products based on

satellite input data from 2017/2018/2019.

Aggarwal, C. C. (2018). Neural networks and deep learning, volume 10. Springer, York-

town Heights, NY, USA.

Aguilera, M. A. Z. (2020). Classification of land-cover through machine learning algo-

rithms for fusion of sentinel-2a and planetscope imagery. In 2020 IEEE Latin American

GRSS & ISPRS Remote Sensing Conference (LAGIRS), pages 246–253. IEEE.
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Appendix A

Satellite Data

Contents
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All satellite image names provided in Appendix A correspond to the file name when

downloaded from the Copernicus Open Access Hub (scihub.copernicus.eu/dhus) in the

case of Sentinel-1 and Sentinel-2 data and from the USGS Earth Explorer website (earth-

explorer.usgs.gov) for Landsat-8 data.

A.1 Sentinel-1 Images

Table A.1: Sentinel-1 Satellite Images used in Chapter 3 comparative assessment.

S1B IW GRDH 1SDV 20180712T064611 20180712T064636 011774 015A92 D13D

S1B IW GRDH 1SDV 20181021T180615 20181021T180640 013254 018809 77F6

S1B IW GRDH 1SDV 20180101T064607 20180101T064632 008974 01003F E604

S1A IW GRDH 1SDV 20180325T180647 20180325T180712 021175 02466F 950E

S1B IW GRDH 1SDV 20180518T180607 20180518T180632 010979 0141A2 20F5

S1B IW GRDH 1SDV 20180302T064605 20180302T064630 009849 011CFA 74C7
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20181004T064615 20181004T064640 012999 018024 10F1

S1A IW GRDH 1SDV 20181120T180657 20181120T180722 024675 02B652 9AF6

S1A IW GRDH 1SDV 20180921T180657 20180921T180722 023800 0298AF A5CE

S1A IW GRDH 1SDV 20180617T180652 20180617T180717 022400 026CF2 8E66

S1A IW GRDH 1SDV 20180217T180647 20180217T180712 020650 0235CA B143

S1A IW GRDH 1SDV 20180418T180649 20180418T180714 021525 025169 4635

S1B IW GRDH 1SDV 20181220T180613 20181220T180638 014129 01A3FE 3CC3

S1B IW GRDH 1SDV 20180822T180613 20180822T180638 012379 016D27 5F2A

S1B IW GRDH 1SDV 20180805T064613 20180805T064638 012124 01652F CBBC

S1B IW GRDH 1SDV 20180118T180605 20180118T180630 009229 010898 C99A

S1B IW GRDH 1SDV 20181203T064614 20181203T064639 013874 019B8D 96B0

S1B IW GRDH 1SDV 20180501T064607 20180501T064632 010724 013964 DF26

S1B IW GRDH 1SDV 20180206T064605 20180206T064630 009499 01116E DF3E

S1B IW GRDH 1SDV 20181109T064615 20181109T064640 013524 019064 F336

S1A IW GRDH 1SDV 20180723T180654 20180723T180719 022925 027CB9 187F

S1B IW GRDH 1SDV 20180407T064606 20180407T064631 010374 012E32 1FE6

S1B IW GRDH 1SDV 20180606T064609 20180606T064634 011249 014A4E B213

S1B IW GRDH 1SDV 20180910T064614 20180910T064639 012649 017570 E8BB

S1B IW GRDH 1SDV 20181109T064640 20181109T064705 013524 019064 EEEC

S1B IW GRDH 1SDV 20180703T182154 20180703T182219 011650 0156CE ED22

S1A IW GRDH 1SDV 20181115T064736 20181115T064801 024595 02B363 310D

S1B IW GRDH 1SDV 20180326T064630 20180326T064655 010199 01287E 94F2

S1B IW GRDH 1SDV 20180805T064638 20180805T064703 012124 01652F BCF8

S1B IW GRDH 1SDV 20181028T064640 20181028T064705 013349 018AED 3E83

S1B IW GRDH 1SDV 20200208T064643 20200208T064708 020174 026302 6B8F

S1B IW GRDH 1SDV 20180922T064640 20180922T064705 012824 017ACC 2269

S1B IW GRDH 1SDV 20180419T064631 20180419T064656 010549 0133C5 00DD
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20181121T064640 20181121T064705 013699 0195F0 108A

S1B IW GRDH 1SDV 20180104T182153 20180104T182218 009025 0101F7 0B16

S1A IW GRDH 1SDV 20180320T064726 20180320T064751 021095 0243D9 617A

S1A IW GRDH 1SDV 20180718T064732 20180718T064757 022845 027A2D F242

S1B IW GRDH 1SDV 20180305T182152 20180305T182217 009900 011EBB FA0B

S1B IW GRDH 1SDV 20181203T064639 20181203T064704 013874 019B8D 09AC

S1A IW GRDH 1SDV 20180519T064729 20180519T064754 021970 025F6A C74E

S1B IW GRDH 1SDV 20181016T064640 20181016T064705 013174 01857C 8C04

S1B IW GRDH 1SDV 20180817T064638 20180817T064703 012299 016A99 E044

S1B IW GRDH 1SDV 20180410T182150 20180410T182215 010425 012FDA 4ECC

S1A IW GRDH 1SDV 20180119T064727 20180119T064752 020220 022805 2644

S1B IW GRDH 1SDV 20180901T182158 20180901T182223 012525 0171AC 9113

S1A IW GRDH 1SDV 20180306T181430 20180306T181455 020898 023D9E C517

S1B IW GRDH 1SDV 20181215T064639 20181215T064704 014049 01A143 0D06

S1B IW GRDH 1SDV 20181227T064639 20181227T064704 014224 01A711 C19E

S1A IW GRDH 1SDV 20180916T064735 20180916T064800 023720 02960A 1D0E

S1B IW GRDH 1SDV 20181004T064640 20181004T064705 012999 018024 2997

S1B IW GRDH 1SDV 20180910T064639 20180910T064704 012649 017570 82BE

S1B IW GRDH 1SDV 20180405T181341 20180405T181406 010352 012D81 07A4

S1B IW GRDH 1SDV 20180504T182151 20180504T182216 010775 013B11 FADF

S1B IW GRDH 1SDV 20180204T181340 20180204T181405 009477 0110B8 4145

S1B IW GRDH 1SDV 20180407T064631 20180407T064656 010374 012E32 D172

S1B IW GRDH 1SDV 20180218T064630 20180218T064655 009674 01172A 8A8C

S1B IW GRDH 1SDV 20181206T182158 20181206T182223 013925 019D49 ABD7

S1B IW GRDH 1SDV 20180618T064635 20180618T064700 011424 014FB3 2ED2

S1B IW GRDH 1SDV 20180501T064632 20180501T064657 010724 013964 1914

S1B IW GRDH 1SDV 20180314T064630 20180314T064655 010024 0122D0 A696
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1A IW GRDH 1SDV 20180105T181431 20180105T181456 020023 0221C8 46C5

S1B IW GRDH 1SDV 20180525T064633 20180525T064658 011074 0144BE B5AE

S1B IW GRDH 1SDV 20180513T064632 20180513T064657 010899 013F0E 277B

S1B IW GRDH 1SDV 20180724T064637 20180724T064702 011949 015FE6 9EC5

S1B IW GRDH 1SDV 20180817T064703 20180817T064728 012299 016A99 471C

S1B IW GRDH 1SDV 20180419T064631 20180419T064656 010549 0133C5 00DD

S1A IW GRDH 1SDV 20180704T181416 20180704T181441 022648 027435 4422

S1B IW GRDH 1SDV 20180314T064630 20180314T064655 010024 0122D0 A696

S1B IW GRDH 1SDV 20180618T064700 20180618T064725 011424 014FB3 A91A

S1A IW GRDH 1SDV 20180505T181412 20180505T181437 021773 025929 6F13

S1B IW GRDH 1SDV 20180910T064639 20180910T064704 012649 017570 82BE

S1B IW GRDH 1SDV 20180525T064633 20180525T064658 011074 0144BE B5AE

S1B IW GRDH 1SDV 20180218T064655 20180218T064720 009674 01172A 1F11

S1A IW GRDH 1SDV 20180119T064727 20180119T064752 020220 022805 2644

S1A IW GRDH 1SDV 20181207T181419 20181207T181444 024923 02BEDC 878A

S1B IW GRDH 1SDV 20180501T064632 20180501T064657 010724 013964 1914

S1B IW GRDH 1SDV 20180405T181341 20180405T181406 010352 012D81 07A4

S1B IW GRDH 1SDV 20181028T064640 20181028T064705 013349 018AED 3E83

S1B IW GRDH 1SDV 20180805T064638 20180805T064703 012124 01652F BCF8

S1B IW GRDH 1SDV 20180504T182151 20180504T182216 010775 013B11 FADF

S1A IW GRDH 1SDV 20180105T181431 20180105T181456 020023 0221C8 46C5

S1B IW GRDH 1SDV 20180803T181336 20180803T181401 012102 016488 63D5

S1B IW GRDH 1SDV 20180218T064630 20180218T064655 009674 01172A 8A8C

S1B IW GRDH 1SDV 20180407T064631 20180407T064656 010374 012E32 D172

S1B IW GRDH 1SDV 20181016T064640 20181016T064705 013174 01857C 8C04

S1B IW GRDH 1SDV 20200208T064643 20200208T064708 020174 026302 6B8F

S1B IW GRDH 1SDV 20180204T181340 20180204T181405 009477 0110B8 4145
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1A IW GRDH 1SDV 20180718T064732 20180718T064757 022845 027A2D F242

S1B IW GRDH 1SDV 20180922T064640 20180922T064705 012824 017ACC 2269

S1A IW GRDH 1SDV 20180519T064729 20180519T064754 021970 025F6A C74E

S1B IW GRDH 1SDV 20180604T181332 20180604T181357 011227 0149AF 8F00

S1B IW GRDH 1SDV 20181215T064639 20181215T064704 014049 01A143 0D06

S1B IW GRDH 1SDV 20180618T064635 20180618T064700 011424 014FB3 2ED2

S1A IW GRDH 1SDV 20181008T181420 20181008T181445 024048 02A0BD 3278

S1B IW GRDH 1SDV 20180305T182152 20180305T182217 009900 011EBB FA0B

S1B IW GRDH 1SDV 20181206T182158 20181206T182223 013925 019D49 ABD7

S1B IW GRDH 1SDV 20180908T181338 20180908T181403 012627 0174C9 BB2C

S1B IW GRDH 1SDV 20180513T064632 20180513T064657 010899 013F0E 277B

S1A IW GRDH 1SDV 20180916T064735 20180916T064800 023720 02960A 1D0E

S1B IW GRDH 1SDV 20180724T064637 20180724T064702 011949 015FE6 9EC5

S1A IW GRDH 1SDV 20180306T181430 20180306T181455 020898 023D9E C517

S1B IW GRDH 1SDV 20180901T182158 20180901T182223 012525 0171AC 9113

S1B IW GRDH 1SDV 20181203T064639 20181203T064704 013874 019B8D 09AC

S1B IW GRDH 1SDV 20180419T064656 20180419T064721 010549 0133C5 F1FF

S1B IW GRDH 1SDV 20180703T182154 20180703T182219 011650 0156CE ED22

S1B IW GRDH 1SDV 20180326T064630 20180326T064655 010199 01287E 94F2

S1B IW GRDH 1SDV 20181121T064640 20181121T064705 013699 0195F0 108A

S1A IW GRDH 1SDV 20181115T064736 20181115T064801 024595 02B363 310D

S1B IW GRDH 1SDV 20180104T182153 20180104T182218 009025 0101F7 0B16

S1B IW GRDH 1SDV 20181107T181338 20181107T181403 013502 018FC0 3C68

S1B IW GRDH 1SDV 20180410T182150 20180410T182215 010425 012FDA 4ECC

S1B IW GRDH 1SDV 20181227T064639 20181227T064704 014224 01A711 C19E

S1B IW GRDH 1SDV 20180817T064638 20180817T064703 012299 016A99 E044

S1B IW GRDH 1SDV 20181109T064640 20181109T064705 013524 019064 EEEC
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20181016T064705 20181016T064730 013174 01857C 1B2F

S1A IW GRDH 1SDV 20180320T064726 20180320T064751 021095 0243D9 617A

S1B IW GRDH 1SDV 20181004T064640 20181004T064705 012999 018024 2997

S1B IW GRDH 1SDV 20180123T181405 20180123T181430 009302 010AFB E818

S1B IW GRDH 1SDV 20181004T064615 20181004T064640 012999 018024 10F1

S1B IW GRDH 1SDV 20180501T064607 20180501T064632 010724 013964 DF26

S1A IW GRDH 1SDV 20180318T181455 20180318T181520 021073 024324 DDCB

S1A IW GRDH 1SDV 20180926T181510 20180926T181535 023873 029AFC E7D9

S1B IW GRDH 1SDV 20180324T181405 20180324T181430 010177 0127D0 EE1F

S1B IW GRDH 1SDV 20180910T064614 20180910T064639 012649 017570 E8BB

S1B IW GRDH 1SDV 20180223T065411 20180223T065436 009747 0119A3 9310

S1B IW GRDH 1SDV 20180628T181424 20180628T181449 011577 015482 FD4E

S1A IW GRDH 1SDV 20180529T181504 20180529T181529 022123 026458 1370

S1B IW GRDH 1SDV 20181203T064614 20181203T064639 013874 019B8D 96B0

S1B IW GRDH 1SDV 20180407T064606 20180407T064631 010374 012E32 1FE6

S1B IW GRDH 1SDV 20180216T181405 20180216T181430 009652 01167C FEEA

S1B IW GRDH 1SDV 20181109T064615 20181109T064640 013524 019064 F336

S1B IW GRDH 1SDV 20180606T064609 20180606T064634 011249 014A4E B213

S1B IW GRDH 1SDV 20180206T064605 20180206T064630 009499 01116E DF3E

S1B IW GRDH 1SDV 20181026T181429 20181026T181454 013327 018A40 A84E

S1A IW GRDH 1SDV 20180728T181507 20180728T181532 022998 027F08 6C09

S1A IW GRDH 1SDV 20180423T181502 20180423T181527 021598 02539D 185D

S1B IW GRDH 1SDV 20180302T064605 20180302T064630 009849 011CFA 74C7

S1A IW GRDH 1SDV 20181125T181510 20181125T181535 024748 02B901 FA1F

S1B IW GRDH 1SDV 20180805T064613 20180805T064638 012124 01652F CBBC

S1B IW GRDH 1SDV 20180101T064607 20180101T064632 008974 01003F E604

S1B IW GRDH 1SDV 20180712T064611 20180712T064636 011774 015A92 D13D
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20180827T181427 20180827T181452 012452 016F63 FAAA

S1A IW GRDH 1SDV 20180505T181412 20180505T181437 021773 025929 6F13

S1B IW GRDH 1SDV 20181227T064639 20181227T064704 014224 01A711 C19E

S1B IW GRDH 1SDV 20180604T181332 20180604T181357 011227 0149AF 8F00

S1B IW GRDH 1SDV 20180901T182158 20180901T182223 012525 0171AC 9113

S1B IW GRDH 1SDV 20181004T064640 20181004T064705 012999 018024 2997

S1B IW GRDH 1SDV 20181107T181338 20181107T181403 013502 018FC0 3C68

S1B IW GRDH 1SDV 20180218T064655 20180218T064720 009674 01172A 1F11

S1B IW GRDH 1SDV 20181206T182158 20181206T182223 013925 019D49 ABD7

S1B IW GRDH 1SDV 20180922T064640 20180922T064705 012824 017ACC 2269

S1A IW GRDH 1SDV 20180306T181430 20180306T181455 020898 023D9E C517

S1B IW GRDH 1SDV 20180817T064638 20180817T064703 012299 016A99 E044

S1A IW GRDH 1SDV 20180105T181406 20180105T181431 020023 0221C8 B853

S1B IW GRDH 1SDV 20180419T064656 20180419T064721 010549 0133C5 F1FF

S1A IW GRDH 1SDV 20180519T064729 20180519T064754 021970 025F6A C74E

S1B IW GRDH 1SDV 20180410T182150 20180410T182215 010425 012FDA 4ECC

S1B IW GRDH 1SDV 20180405T181341 20180405T181406 010352 012D81 07A4

S1B IW GRDH 1SDV 20181028T064640 20181028T064705 013349 018AED 3E83

S1B IW GRDH 1SDV 20180803T181336 20180803T181401 012102 016488 63D5

S1B IW GRDH 1SDV 20180419T064631 20180419T064656 010549 0133C5 00DD

S1B IW GRDH 1SDV 20181016T064640 20181016T064705 013174 01857C 8C04

S1B IW GRDH 1SDV 20180326T064630 20180326T064655 010199 01287E 94F2

S1B IW GRDH 1SDV 20180618T064635 20180618T064700 011424 014FB3 2ED2

S1B IW GRDH 1SDV 20180204T181340 20180204T181405 009477 0110B8 4145

S1B IW GRDH 1SDV 20180501T064632 20180501T064657 010724 013964 1914

S1A IW GRDH 1SDV 20180105T181431 20180105T181456 020023 0221C8 46C5

S1B IW GRDH 1SDV 20181121T064640 20181121T064705 013699 0195F0 108A
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20200208T064643 20200208T064708 020174 026302 6B8F

S1B IW GRDH 1SDV 20180305T182152 20180305T182217 009900 011EBB FA0B

S1A IW GRDH 1SDV 20181001T182219 20181001T182248 023946 029D66 36E8

S1B IW GRDH 1SDV 20180703T182154 20180703T182219 011650 0156CE ED22

S1B IW GRDH 1SDV 20181215T064639 20181215T064704 014049 01A143 0D06

S1B IW GRDH 1SDV 20180908T181338 20180908T181403 012627 0174C9 BB2C

S1A IW GRDH 1SDV 20181207T181419 20181207T181444 024923 02BEDC 878A

S1A IW GRDH 1SDV 20180916T064735 20180916T064800 023720 02960A 1D0E

S1B IW GRDH 1SDV 20180805T064638 20180805T064703 012124 01652F BCF8

S1A IW GRDH 1SDV 20180802T182217 20180802T182246 023071 028139 1952

S1A IW GRDH 1SDV 20181008T181420 20181008T181445 024048 02A0BD 3278

S1B IW GRDH 1SDV 20180724T064637 20180724T064702 011949 015FE6 9EC5

S1A IW GRDH 1SDV 20180718T064732 20180718T064757 022845 027A2D F242

S1B IW GRDH 1SDV 20180104T182153 20180104T182218 009025 0101F7 0B16

S1B IW GRDH 1SDV 20181109T064640 20181109T064705 013524 019064 EEEC

S1B IW GRDH 1SDV 20181016T064705 20181016T064730 013174 01857C 1B2F

S1B IW GRDH 1SDV 20180513T064632 20180513T064657 010899 013F0E 277B

S1B IW GRDH 1SDV 20180407T064631 20180407T064656 010374 012E32 D172

S1B IW GRDH 1SDV 20180910T064639 20180910T064704 012649 017570 82BE

S1B IW GRDH 1SDV 20181203T064639 20181203T064704 013874 019B8D 09AC

S1A IW GRDH 1SDV 20180306T181405 20180306T181430 020898 023D9E D33E

S1B IW GRDH 1SDV 20180218T064630 20180218T064655 009674 01172A 8A8C

S1B IW GRDH 1SDV 20180314T064630 20180314T064655 010024 0122D0 A696

S1A IW GRDH 1SDV 20181106T182219 20181106T182248 024471 02AED0 BE52

S1A IW GRDH 1SDV 20180203T182213 20180203T182242 020446 022F4C 081D

S1B IW GRDH 1SDV 20180817T064703 20180817T064728 012299 016A99 471C

S1A IW GRDH 1SDV 20180320T064726 20180320T064751 021095 0243D9 617A
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1A IW GRDH 1SDV 20181115T064736 20181115T064801 024595 02B363 310D

S1A IW GRDH 1SDV 20180704T181416 20180704T181441 022648 027435 4422

S1B IW GRDH 1SDV 20180525T064633 20180525T064658 011074 0144BE B5AE

S1A IW GRDH 1SDV 20180119T064727 20180119T064752 020220 022805 2644

S1B IW GRDH 1SDV 20180618T064700 20180618T064725 011424 014FB3 A91A

S1B IW GRDH 1SDV 20180504T182151 20180504T182216 010775 013B11 FADF

S1A IW GRDH 1SDV 20180603T182213 20180603T182242 022196 0266A5 CE5D

S1A IW GRDH 1SDV 20180802T182217 20180802T182246 023071 028139 1952

S1B IW GRDH 1SDV 20180305T182127 20180305T182152 009900 011EBB 4F55

S1B IW GRDH 1SDV 20180419T064656 20180419T064721 010549 0133C5 F1FF

S1B IW GRDH 1SDV 20180604T181332 20180604T181357 011227 0149AF 8F00

S1B IW GRDH 1SDV 20180817T064703 20180817T064728 012299 016A99 471C

S1A IW GRDH 1SDV 20180704T181416 20180704T181441 022648 027435 4422

S1A IW GRDH 1SDV 20181001T182219 20181001T182248 023946 029D66 36E8

S1A IW GRDH 1SDV 20180105T181406 20180105T181431 020023 0221C8 B853

S1B IW GRDH 1SDV 20180504T182126 20180504T182151 010775 013B11 9F2C

S1A IW GRDH 1SDV 20180306T181405 20180306T181430 020898 023D9E D33E

S1A IW GRDH 1SDV 20180916T064735 20180916T064800 023720 02960A 1D0E

S1B IW GRDH 1SDV 20180703T182154 20180703T182219 011650 0156CE ED22

S1B IW GRDH 1SDV 20180305T182152 20180305T182217 009900 011EBB FA0B

S1B IW GRDH 1SDV 20180901T182133 20180901T182158 012525 0171AC B2A5

S1A IW GRDH 1SDV 20180519T064729 20180519T064754 021970 025F6A C74E

S1A IW GRDH 1SDV 20180718T064732 20180718T064757 022845 027A2D F242

S1B IW GRDH 1SDV 20180803T181336 20180803T181401 012102 016488 63D5

S1B IW GRDH 1SDV 20180908T181338 20180908T181403 012627 0174C9 BB2C

S1B IW GRDH 1SDV 20180218T064655 20180218T064720 009674 01172A 1F11

S1A IW GRDH 1SDV 20181207T181419 20181207T181444 024923 02BEDC 878A
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20181206T182158 20181206T182223 013925 019D49 ABD7

S1B IW GRDH 1SDV 20180703T182129 20180703T182154 011650 0156CE A750

S1B IW GRDH 1SDV 20180504T182151 20180504T182216 010775 013B11 FADF

S1A IW GRDH 1SDV 20181008T181420 20181008T181445 024048 02A0BD 3278

S1A IW GRDH 1SDV 20180119T064727 20180119T064752 020220 022805 2644

S1A IW GRDH 1SDV 20181106T182219 20181106T182248 024471 02AED0 BE52

S1B IW GRDH 1SDV 20180104T182128 20180104T182153 009025 0101F7 4CE4

S1B IW GRDH 1SDV 20180618T064700 20180618T064725 011424 014FB3 A91A

S1B IW GRDH 1SDV 20180901T182158 20180901T182223 012525 0171AC 9113

S1A IW GRDH 1SDV 20180203T182213 20180203T182242 020446 022F4C 081D

S1B IW GRDH 1SDV 20180204T181340 20180204T181405 009477 0110B8 4145

S1B IW GRDH 1SDV 20181016T064705 20181016T064730 013174 01857C 1B2F

S1B IW GRDH 1SDV 20180405T181341 20180405T181406 010352 012D81 07A4

S1B IW GRDH 1SDV 20181206T182133 20181206T182158 013925 019D49 A204

S1B IW GRDH 1SDV 20180410T182125 20180410T182150 010425 012FDA 5845

S1A IW GRDH 1SDV 20180505T181412 20180505T181437 021773 025929 6F13

S1B IW GRDH 1SDV 20180410T182150 20180410T182215 010425 012FDA 4ECC

S1B IW GRDH 1SDV 20180104T182153 20180104T182218 009025 0101F7 0B16

S1A IW GRDH 1SDV 20181115T064736 20181115T064801 024595 02B363 310D

S1A IW GRDH 1SDV 20180320T064726 20180320T064751 021095 0243D9 617A

S1B IW GRDH 1SDV 20181107T181338 20181107T181403 013502 018FC0 3C68

S1A IW GRDH 1SDV 20180603T182213 20180603T182242 022196 0266A5 CE5D

S1B IW GRDH 1SDV 20181206T182133 20181206T182158 013925 019D49 A204

S1B IW GRDH 1SDV 20180504T182151 20180504T182216 010775 013B11 FADF

S1B IW GRDH 1SDV 20180817T064703 20180817T064728 012299 016A99 471C

S1B IW GRDH 1SDV 20180326T064655 20180326T064720 010199 01287E 5DD2

S1B IW GRDH 1SDV 20180125T064656 20180125T064721 009324 010BB1 EF96
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20180829T064704 20180829T064729 012474 01700C BB46

S1B IW GRDH 1SDV 20180703T182154 20180703T182219 011650 0156CE ED22

S1B IW GRDH 1SDV 20181121T064705 20181121T064730 013699 0195F0 24E2

S1B IW GRDH 1SDV 20180724T064702 20180724T064727 011949 015FE6 BABD

S1A IW GRDH 1SDV 20181106T182219 20181106T182248 024471 02AED0 BE52

S1A IW GRDH 1SDV 20180916T064735 20180916T064800 023720 02960A 1D0E

S1A IW GRDH 1SDV 20180718T064732 20180718T064757 022845 027A2D F242

S1A IW GRDH 1SDV 20180519T064729 20180519T064754 021970 025F6A C74E

S1B IW GRDH 1SDV 20180504T182126 20180504T182151 010775 013B11 9F2C

S1B IW GRDH 1SDV 20180630T064701 20180630T064726 011599 015528 DCF6

S1B IW GRDH 1SDV 20180922T064705 20180922T064730 012824 017ACC 2CE2

S1B IW GRDH 1SDV 20180419T064656 20180419T064721 010549 0133C5 F1FF

S1A IW GRDH 1SDV 20180709T182215 20180709T182244 022721 027653 3086

S1B IW GRDH 1SDV 20180410T182150 20180410T182215 010425 012FDA 4ECC

S1A IW GRDH 1SDV 20180907T182219 20180907T182248 023596 029211 2537

S1B IW GRDH 1SDV 20180530T065504 20180530T065529 011147 014721 6233

S1A IW GRDH 1SDV 20180802T182217 20180802T182246 023071 028139 1952

S1A IW GRDH 1SDV 20180110T182213 20180110T182242 020096 022427 242B

S1B IW GRDH 1SDV 20181206T182158 20181206T182223 013925 019D49 ABD7

S1B IW GRDH 1SDV 20180305T182127 20180305T182152 009900 011EBB 4F55

S1B IW GRDH 1SDV 20180305T182152 20180305T182217 009900 011EBB FA0B

S1B IW GRDH 1SDV 20180703T182129 20180703T182154 011650 0156CE A750

S1A IW GRDH 1SDV 20180603T182213 20180603T182242 022196 0266A5 CE5D

S1A IW GRDH 1SDV 20180320T064726 20180320T064751 021095 0243D9 617A

S1A IW GRDH 1SDV 20180416T182211 20180416T182240 021496 025081 A4EC

S1A IW GRDH 1SDV 20180311T182212 20180311T182241 020971 023FF8 BAD8

S1B IW GRDH 1SDV 20180901T182133 20180901T182158 012525 0171AC B2A5
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1B IW GRDH 1SDV 20180104T182128 20180104T182153 009025 0101F7 4CE4

S1B IW GRDH 1SDV 20180901T182158 20180901T182223 012525 0171AC 9113

S1B IW GRDH 1SDV 20180218T064655 20180218T064720 009674 01172A 1F11

S1B IW GRDH 1SDV 20180618T064700 20180618T064725 011424 014FB3 A91A

S1B IW GRDH 1SDV 20180104T182153 20180104T182218 009025 0101F7 0B16

S1B IW GRDH 1SDV 20180410T182125 20180410T182150 010425 012FDA 5845

S1A IW GRDH 1SDV 20181115T064736 20181115T064801 024595 02B363 310D

S1A IW GRDH 1SDV 20181001T182219 20181001T182248 023946 029D66 36E8

S1A IW GRDH 1SDV 20180119T064727 20180119T064752 020220 022805 2644

S1A IW GRDH 1SDV 20180203T182213 20180203T182242 020446 022F4C 081D

S1B IW GRDH 1SDV 20181227T064704 20181227T064729 014224 01A711 481A

S1B IW GRDH 1SDV 20181016T064705 20181016T064730 013174 01857C 1B2F

S1B IW GRDH 1SDV 20180216T181340 20180216T181405 009652 01167C E516

S1B IW GRDH 1SDV 20180429T181355 20180429T181420 010702 0138B4 623A

S1B IW GRDH 1SDV 20180613T063822 20180613T063847 011351 014D75 B790

S1B IW GRDH 1SDV 20180414T063818 20180414T063843 010476 013175 07AC

S1B IW GRDH 1SDV 20181026T181339 20181026T181404 013327 018A40 CBCE

S1B IW GRDH 1SDV 20180719T063824 20180719T063849 011876 015DB8 C720

S1A IW GRDH 1SDV 20180728T181442 20180728T181507 022998 027F08 18A7

S1A IW GRDH 1SDV 20180926T181420 20180926T181445 023873 029AFC 286D

S1B IW GRDH 1SDV 20180108T063819 20180108T063844 009076 010399 CE40

S1B IW GRDH 1SDV 20181026T181404 20181026T181429 013327 018A40 27EE

S1A IW GRDH 1SDV 20180529T181414 20180529T181439 022123 026458 0E89

S1A IW GRDH 1SDV 20181125T181420 20181125T181445 024748 02B901 6C87

S1B IW GRDH 1SDV 20181116T063827 20181116T063852 013626 0193A6 BCAA

S1B IW GRDH 1SDV 20180213T063818 20180213T063843 009601 0114D5 C7EB

S1B IW GRDH 1SDV 20181011T063828 20181011T063853 013101 018347 ED4F
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Sentinel-1 Satellite Images used in Chapter 3 comparative assessment [continued].

S1A IW GRDH 1SDV 20180529T181439 20180529T181504 022123 026458 FD04

S1B IW GRDH 1SDV 20180628T181334 20180628T181359 011577 015482 7D1E

S1A IW GRDH 1SDV 20180728T181417 20180728T181442 022998 027F08 69D9

S1B IW GRDH 1SDV 20180123T181340 20180123T181405 009302 010AFB 4089

S1A IW GRDH 1SDV 20181125T181445 20181125T181510 024748 02B901 F660

S1B IW GRDH 1SDV 20180917T063827 20180917T063852 012751 017898 EC7B

S1B IW GRDH 1SDV 20180812T063825 20180812T063850 012226 016864 D252

S1B IW GRDH 1SDV 20180827T181337 20180827T181402 012452 016F63 6A72

S1B IW GRDH 1SDV 20181225T181337 20181225T181402 014202 01A65C 15FC

S1B IW GRDH 1SDV 20180309T063818 20180309T063843 009951 012073 39CA

S1B IW GRDH 1SDV 20180628T181359 20180628T181424 011577 015482 5A2D

S1B IW GRDH 1SDV 20181225T181402 20181225T181427 014202 01A65C 7D36

S1B IW GRDH 1SDV 20180429T181330 20180429T181355 010702 0138B4 9AEB

S1B IW GRDH 1SDV 20181210T063826 20181210T063851 013976 019EE7 2332

S1A IW GRDH 1SDV 20180926T181445 20180926T181510 023873 029AFC FFA2

S1B IW GRDH 1SDV 20180508T063819 20180508T063844 010826 013CB2 534A

S1B IW GRDH 1SDV 20180827T181402 20180827T181427 012452 016F63 A9F2
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A.2 Sentinel-2 Images

Table A.2: Sentinel-2 Satellite Images used in Chapter 3 comparative assessment.

S2B MSIL2A 20181224T113459 N0211 R080 T30UUF 20181224T122924

S2B MSIL2A 20181207T114449 N0211 R123 T30UUF 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UPV 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UPU 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UPA 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UNV 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UNU 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UNA 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UMU 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UMT 20181207T153404

S2B MSIL2A 20181130T115439 N0211 R023 T29UNV 20181130T155554

S2B MSIL2A 20181130T115439 N0211 R023 T29UNB 20181130T155554

S2B MSIL2A 20181130T115439 N0211 R023 T29UNA 20181130T155554

S2B MSIL2A 20181127T114419 N0211 R123 T29UNU 20181127T124838

S2B MSIL2A 20181127T114419 N0211 R123 T29UNT 20181127T124838

S2B MSIL2A 20181127T114419 N0211 R123 T29UMU 20181127T124838

S2B MSIL2A 20181127T114419 N0211 R123 T29UMT 20181127T154700

S2B MSIL2A 20181127T114419 N0211 R123 T29UMT 20181127T124838

S2B MSIL2A 20181120T115359 N0210 R023 T29UMV 20181120T161636

S2B MSIL2A 20181120T115359 N0210 R023 T29UMT 20181120T161636

S2B MSIL2A 20181120T115359 N0210 R023 T29ULT 20181120T161636

S2B MSIL2A 20181110T115359 N0210 R023 T29UPB 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UPA 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNV 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNU 20181110T160522
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20181110T115359 N0210 R023 T29UNT 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNB 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNA 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UMV 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UMU 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UMT 20181110T160522

S2B MSIL2A 20181104T113319 N0209 R080 T30UUF 20181104T143826

S2B MSIL2A 20181104T113319 N0209 R080 T29UPV 20181104T143826

S2B MSIL2A 20181104T113319 N0209 R080 T29UPA 20181104T143826

S2B MSIL2A 20181028T114349 N0209 R123 T30UUF 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPV 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPU 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPB 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPA 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNV 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNU 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNT 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNB 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNA 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMV 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMU 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMT 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMA 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29ULT 20181028T175230

S2B MSIL2A 20181021T115359 N0209 R023 T29UNV 20181021T174705

S2B MSIL2A 20181021T115359 N0209 R023 T29UNU 20181021T174705

S2B MSIL2A 20181021T115359 N0209 R023 T29UNB 20181021T174705
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20181021T115359 N0209 R023 T29UMU 20181021T174705

S2B MSIL2A 20181018T114349 N0209 R123 T30UUF 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPV 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPU 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPT 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPB 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPA 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNV 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNU 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNT 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNA 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UMV 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UMU 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UMT 20181018T143222

S2B MSIL2A 20181015T113319 N0209 R080 T30UUG 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T30UUF 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPV 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPU 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPB 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPA 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UNU 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UNT 20181015T163033

S2B MSIL2A 20181011T115359 N0209 R023 T29UMT 20181011T161453

S2B MSIL2A 20181011T115359 N0209 R023 T29ULT 20181011T161453

S2B MSIL2A 20181005T113319 N0208 R080 T30UUG 20181005T175906

S2B MSIL2A 20181005T113319 N0208 R080 T30UUF 20181005T175906

S2B MSIL2A 20180928T114349 N0208 R123 T29UPU 20180928T192024
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180928T114349 N0208 R123 T29UNV 20180928T192024

S2B MSIL2A 20180928T114349 N0208 R123 T29UNU 20180928T192024

S2B MSIL2A 20180928T114349 N0208 R123 T29UMU 20180928T192024

S2B MSIL2A 20180928T114349 N0208 R123 T29UMT 20180928T192024

S2B MSIL2A 20180921T115349 N0208 R023 T29UPA 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNV 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNU 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNB 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNA 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UMV 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UMT 20180921T194601

S2B MSIL2A 20180918T114339 N0208 R123 T29UPV 20180918T155828

S2B MSIL2A 20180918T114339 N0208 R123 T29UPU 20180918T155828

S2B MSIL2A 20180918T114339 N0208 R123 T29UNU 20180918T155828

S2B MSIL2A 20180918T114339 N0208 R123 T29UNT 20180918T155828

S2B MSIL2A 20180905T113309 N0208 R080 T29UPV 20180905T175148

S2B MSIL2A 20180905T113309 N0208 R080 T29UPU 20180905T175148

S2B MSIL2A 20180905T113309 N0208 R080 T29UPT 20180905T175148

S2B MSIL2A 20180901T115349 N0208 R023 T29UNU 20180901T201240

S2B MSIL2A 20180901T115349 N0208 R023 T29UNT 20180901T201240

S2B MSIL2A 20180901T115349 N0208 R023 T29UMU 20180901T201240

S2B MSIL2A 20180901T115349 N0208 R023 T29UMT 20180901T201240

S2B MSIL2A 20180829T114339 N0208 R123 T30UUF 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UPV 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UPU 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UPA 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UNV 20180829T204905
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180829T114339 N0208 R123 T29UNU 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UNB 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UNA 20180829T204905

S2B MSIL2A 20180819T114339 N0208 R123 T29UPT 20180819T180914

S2B MSIL2A 20180819T114339 N0208 R123 T29UNT 20180819T180914

S2B MSIL2A 20180816T113309 N0208 R080 T29UPU 20180816T170436

S2B MSIL2A 20180812T115359 N0208 R023 T29UNA 20180812T175844

S2B MSIL2A 20180809T114349 N0208 R123 T30UUG 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T30UUF 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UPV 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UPA 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UNV 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UMU 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UMT 20180809T181140

S2B MSIL2A 20180730T114349 N0208 R123 T29UPV 20180730T193722

S2B MSIL2A 20180730T114349 N0208 R123 T29UNV 20180730T193722

S2B MSIL2A 20180730T114349 N0208 R123 T29UNB 20180730T193722

S2B MSIL2A 20180730T114349 N0208 R123 T29UMT 20180730T193722

S2B MSIL2A 20180713T115359 N0208 R023 T29UMU 20180713T174201

S2B MSIL2A 20180713T115359 N0208 R023 T29UMT 20180713T174201

S2B MSIL2A 20180710T114349 N0208 R123 T30UUG 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPV 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPU 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPT 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPB 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPA 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UNV 20180710T173033
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180710T114349 N0208 R123 T29UNU 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UNT 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UMV 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UMU 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UMT 20180710T173033

S2B MSIL2A 20180707T113319 N0208 R080 T29UPU 20180707T154927

S2B MSIL2A 20180707T113319 N0208 R080 T29UPT 20180707T154927

S2B MSIL2A 20180703T115359 N0208 R023 T29UPB 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UPA 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNV 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNU 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNT 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNB 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNA 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UMV 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UMU 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UMT 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29ULT 20180703T180433

S2B MSIL2A 20180630T114349 N0208 R123 T30UUG 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T30UUF 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPV 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPU 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPT 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPB 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPA 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNV 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNU 20180630T173428
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180630T114349 N0208 R123 T29UNT 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNB 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNA 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UMV 20180630T173428

S2B MSIL2A 20181224T113459 N0211 R080 T30UUF 20181224T122924

S2B MSIL2A 20181207T114449 N0211 R123 T30UUF 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UPV 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UPU 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UPA 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UNV 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UNU 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UNA 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UMU 20181207T153404

S2B MSIL2A 20181207T114449 N0211 R123 T29UMT 20181207T153404

S2B MSIL2A 20181130T115439 N0211 R023 T29UNV 20181130T155554

S2B MSIL2A 20181130T115439 N0211 R023 T29UNB 20181130T155554

S2B MSIL2A 20181130T115439 N0211 R023 T29UNA 20181130T155554

S2B MSIL2A 20181127T114419 N0211 R123 T29UNU 20181127T124838

S2B MSIL2A 20181127T114419 N0211 R123 T29UNT 20181127T124838

S2B MSIL2A 20181127T114419 N0211 R123 T29UMU 20181127T124838

S2B MSIL2A 20181127T114419 N0211 R123 T29UMT 20181127T154700

S2B MSIL2A 20181127T114419 N0211 R123 T29UMT 20181127T124838

S2B MSIL2A 20181120T115359 N0210 R023 T29UMV 20181120T161636

S2B MSIL2A 20181120T115359 N0210 R023 T29UMT 20181120T161636

S2B MSIL2A 20181120T115359 N0210 R023 T29ULT 20181120T161636

S2B MSIL2A 20181110T115359 N0210 R023 T29UPB 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UPA 20181110T160522
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20181110T115359 N0210 R023 T29UNV 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNU 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNT 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNB 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UNA 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UMV 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UMU 20181110T160522

S2B MSIL2A 20181110T115359 N0210 R023 T29UMT 20181110T160522

S2B MSIL2A 20181104T113319 N0209 R080 T30UUF 20181104T143826

S2B MSIL2A 20181104T113319 N0209 R080 T29UPV 20181104T143826

S2B MSIL2A 20181104T113319 N0209 R080 T29UPA 20181104T143826

S2B MSIL2A 20181028T114349 N0209 R123 T30UUF 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPV 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPU 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPB 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UPA 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNV 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNU 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNT 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNB 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UNA 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMV 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMU 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMT 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29UMA 20181028T175230

S2B MSIL2A 20181028T114349 N0209 R123 T29ULT 20181028T175230

S2B MSIL2A 20181021T115359 N0209 R023 T29UNV 20181021T174705
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20181021T115359 N0209 R023 T29UNU 20181021T174705

S2B MSIL2A 20181021T115359 N0209 R023 T29UNB 20181021T174705

S2B MSIL2A 20181021T115359 N0209 R023 T29UMU 20181021T174705

S2B MSIL2A 20181018T114349 N0209 R123 T30UUF 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPV 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPU 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPT 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPB 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UPA 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNV 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNU 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNT 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UNA 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UMV 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UMU 20181018T143222

S2B MSIL2A 20181018T114349 N0209 R123 T29UMT 20181018T143222

S2B MSIL2A 20181015T113319 N0209 R080 T30UUG 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T30UUF 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPV 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPU 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPB 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UPA 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UNU 20181015T163033

S2B MSIL2A 20181015T113319 N0209 R080 T29UNT 20181015T163033

S2B MSIL2A 20181011T115359 N0209 R023 T29UMT 20181011T161453

S2B MSIL2A 20181011T115359 N0209 R023 T29ULT 20181011T161453

S2B MSIL2A 20181005T113319 N0208 R080 T30UUG 20181005T175906
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20181005T113319 N0208 R080 T30UUF 20181005T175906

S2B MSIL2A 20180928T114349 N0208 R123 T29UPU 20180928T192024

S2B MSIL2A 20180928T114349 N0208 R123 T29UNV 20180928T192024

S2B MSIL2A 20180928T114349 N0208 R123 T29UNU 20180928T192024

S2B MSIL2A 20180928T114349 N0208 R123 T29UMU 20180928T192024

S2B MSIL2A 20180928T114349 N0208 R123 T29UMT 20180928T192024

S2B MSIL2A 20180921T115349 N0208 R023 T29UPA 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNV 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNU 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNB 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UNA 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UMV 20180921T194601

S2B MSIL2A 20180921T115349 N0208 R023 T29UMT 20180921T194601

S2B MSIL2A 20180918T114339 N0208 R123 T29UPV 20180918T155828

S2B MSIL2A 20180918T114339 N0208 R123 T29UPU 20180918T155828

S2B MSIL2A 20180918T114339 N0208 R123 T29UNU 20180918T155828

S2B MSIL2A 20180918T114339 N0208 R123 T29UNT 20180918T155828

S2B MSIL2A 20180905T113309 N0208 R080 T29UPV 20180905T175148

S2B MSIL2A 20180905T113309 N0208 R080 T29UPU 20180905T175148

S2B MSIL2A 20180905T113309 N0208 R080 T29UPT 20180905T175148

S2B MSIL2A 20180901T115349 N0208 R023 T29UNU 20180901T201240

S2B MSIL2A 20180901T115349 N0208 R023 T29UNT 20180901T201240

S2B MSIL2A 20180901T115349 N0208 R023 T29UMU 20180901T201240

S2B MSIL2A 20180901T115349 N0208 R023 T29UMT 20180901T201240

S2B MSIL2A 20180829T114339 N0208 R123 T30UUF 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UPV 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UPU 20180829T204905
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180829T114339 N0208 R123 T29UPA 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UNV 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UNU 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UNB 20180829T204905

S2B MSIL2A 20180829T114339 N0208 R123 T29UNA 20180829T204905

S2B MSIL2A 20180819T114339 N0208 R123 T29UPT 20180819T180914

S2B MSIL2A 20180819T114339 N0208 R123 T29UNT 20180819T180914

S2B MSIL2A 20180816T113309 N0208 R080 T29UPU 20180816T170436

S2B MSIL2A 20180812T115359 N0208 R023 T29UNA 20180812T175844

S2B MSIL2A 20180809T114349 N0208 R123 T30UUG 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T30UUF 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UPV 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UPA 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UNV 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UMU 20180809T181140

S2B MSIL2A 20180809T114349 N0208 R123 T29UMT 20180809T181140

S2B MSIL2A 20180730T114349 N0208 R123 T29UPV 20180730T193722

S2B MSIL2A 20180730T114349 N0208 R123 T29UNV 20180730T193722

S2B MSIL2A 20180730T114349 N0208 R123 T29UNB 20180730T193722

S2B MSIL2A 20180730T114349 N0208 R123 T29UMT 20180730T193722

S2B MSIL2A 20180713T115359 N0208 R023 T29UMU 20180713T174201

S2B MSIL2A 20180713T115359 N0208 R023 T29UMT 20180713T174201

S2B MSIL2A 20180710T114349 N0208 R123 T30UUG 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPV 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPU 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPT 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UPB 20180710T173033
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180710T114349 N0208 R123 T29UPA 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UNV 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UNU 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UNT 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UMV 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UMU 20180710T173033

S2B MSIL2A 20180710T114349 N0208 R123 T29UMT 20180710T173033

S2B MSIL2A 20180707T113319 N0208 R080 T29UPU 20180707T154927

S2B MSIL2A 20180707T113319 N0208 R080 T29UPT 20180707T154927

S2B MSIL2A 20180703T115359 N0208 R023 T29UPB 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UPA 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNV 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNU 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNT 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNB 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UNA 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UMV 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UMU 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29UMT 20180703T180433

S2B MSIL2A 20180703T115359 N0208 R023 T29ULT 20180703T180433

S2B MSIL2A 20180630T114349 N0208 R123 T30UUG 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T30UUF 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPV 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPU 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPT 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPB 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UPA 20180630T173428
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180630T114349 N0208 R123 T29UNV 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNU 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNT 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNB 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UNA 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UMV 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UMU 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UMT 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UMA 20180630T173428

S2B MSIL2A 20180627T113319 N0208 R080 T30UUF 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPV 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPU 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPT 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPB 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPA 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UNU 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UNT 20180627T145107

S2B MSIL2A 20180623T115359 N0208 R023 T29UPV 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UPA 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNV 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNU 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNT 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNB 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNA 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UMV 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UMU 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UMT 20180623T160332
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180623T115359 N0208 R023 T29UMA 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29ULT 20180623T160332

S2B MSIL2A 20180610T114349 N0208 R123 T30UUF 20180610T141940

S2B MSIL2A 20180607T113319 N0208 R080 T30UUF 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UPV 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UPU 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UPB 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UPA 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UNU 20180607T141809

S2B MSIL2A 20180603T115359 N0208 R023 T29UPB 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UPA 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UNU 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UNA 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UMU 20180603T131029

S2B MSIL2A 20180531T114349 N0208 R123 T29UNV 20180531T141540

S2B MSIL2A 20180531T114349 N0208 R123 T29UNU 20180531T141540

S2B MSIL2A 20180531T114349 N0208 R123 T29UMU 20180531T141540

S2B MSIL2A 20180528T113319 N0208 R080 T30UUF 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPV 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPU 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPB 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPA 20180528T125036

S2B MSIL2A 20180524T115359 N0208 R023 T29UPB 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UPA 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNV 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNU 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNT 20180524T180956
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180524T115359 N0208 R023 T29UNB 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNA 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMV 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMU 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMT 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMA 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29ULT 20180524T180956

S2B MSIL2A 20180518T113319 N0207 R080 T29UPU 20180518T133554

S2B MSIL2A 20180518T113319 N0207 R080 T29UPT 20180518T133554

S2B MSIL2A 20180518T113319 N0207 R080 T29UNT 20180518T133554

S2B MSIL2A 20180511T114349 N0207 R123 T29UNU 20180511T151544

S2B MSIL2A 20180511T114349 N0207 R123 T29UNT 20180511T151544

S2B MSIL2A 20180511T114349 N0207 R123 T29UMU 20180511T151544

S2B MSIL2A 20180511T114349 N0207 R123 T29UMT 20180511T151544

S2B MSIL2A 20180508T113319 N0207 R080 T29UPV 20180508T171644

S2B MSIL2A 20180508T113319 N0207 R080 T29UPU 20180508T171644

S2B MSIL2A 20180428T113319 N0207 R080 T30UUF 20180428T115508

S2B MSIL2A 20180428T113319 N0207 R080 T29UPV 20180428T115508

S2B MSIL2A 20180428T113319 N0207 R080 T29UPU 20180428T115508

S2B MSIL2A 20180428T113319 N0207 R080 T29UPA 20180428T115508

S2B MSIL2A 20180421T114349 N0207 R123 T30UUF 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T30UUF 20180421T120446

S2B MSIL2A 20180421T114349 N0207 R123 T29UPV 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UPU 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UPT 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UPB 20180421T120446

S2B MSIL2A 20180421T114349 N0207 R123 T29UPA 20180421T134219

260



Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180421T114349 N0207 R123 T29UPA 20180421T120446

S2B MSIL2A 20180421T114349 N0207 R123 T29UNV 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNU 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNT 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNA 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNA 20180421T120446

S2B MSIL2A 20180421T114349 N0207 R123 T29UMV 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UMU 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UMT 20180421T134219

S2B MSIL2A 20180418T113319 N0207 R080 T29UPU 20180418T115417

S2B MSIL2A 20180404T115359 N0207 R023 T29UMT 20180404T121623

S2A MSIL2A 20181222T114501 N0211 R123 T30UUF 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T30UUE 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UPT 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UPA 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UNT 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UNA 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UMT 20181222T124907

S2A MSIL2A 20181209T113441 N0211 R080 T30UUF 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UPV 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UPU 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UPT 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UNU 20181209T123027

S2A MSIL2A 20181129T113421 N0211 R080 T29UPV 20181129T123450

S2A MSIL2A 20181129T113421 N0211 R080 T29UPU 20181129T123450

S2A MSIL2A 20181125T115411 N0211 R023 T29UNV 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UNU 20181125T123933
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20181125T115411 N0211 R023 T29UNT 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UNB 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UNA 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UMV 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UMU 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UMT 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29ULT 20181125T123933

S2A MSIL2A 20181122T114401 N0211 R123 T30UUF 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UPV 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UPB 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UPA 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UNV 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UNB 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UNA 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UMV 20181122T125119

S2A MSIL2A 20181112T114341 N0210 R123 T29UPV 20181112T130301

S2A MSIL2A 20181112T114341 N0210 R123 T29UPU 20181112T130301

S2A MSIL2A 20181112T114341 N0210 R123 T29UNV 20181112T130301

S2A MSIL2A 20181112T114341 N0210 R123 T29UNU 20181112T130301

S2A MSIL2A 20181105T115401 N0209 R023 T29UMT 20181105T124023

S2A MSIL2A 20181030T113321 N0209 R080 T30UUF 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T30UUD 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPV 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPU 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPB 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPA 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UNU 20181030T122802
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20181026T115401 N0209 R023 T29UPA 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNV 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNU 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNT 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNA 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UMV 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UMU 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UMT 20181026T124013

S2A MSIL2A 20181020T113321 N0209 R080 T29UPU 20181020T123439

S2A MSIL2A 20181016T115401 N0209 R023 T29UNV 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UNU 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UNB 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UNA 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UMU 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UMT 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29ULT 20181016T143216

S2A MSIL2A 20181010T113321 N0209 R080 T30UUF 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPV 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPU 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPT 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPB 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPA 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UNU 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UNT 20181010T141708

S2A MSIL2A 20181006T115401 N0208 R023 T29UPB 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UPA 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UNV 20181006T125746
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20181006T115401 N0208 R023 T29UNT 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UNB 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UNA 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UMV 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UMU 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UMT 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UMA 20181006T125746

S2A MSIL2A 20180923T114341 N0208 R123 T30UUF 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UPV 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UPA 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNV 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNU 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNT 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNB 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNA 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UMV 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UMU 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UMT 20180923T143521

S2A MSIL2A 20180913T114351 N0208 R123 T29UPT 20180913T144400

S2A MSIL2A 20180903T114351 N0208 R123 T30UUF 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPV 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPU 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPT 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPA 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UNV 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UNU 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UNT 20180903T143544
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180903T114351 N0208 R123 T29UMT 20180903T143544

S2A MSIL2A 20180831T113321 N0208 R080 T30UUF 20180831T150101

S2A MSIL2A 20180831T113321 N0208 R080 T30UUF 20180831T145610

S2A MSIL2A 20180831T113321 N0208 R080 T29UPB 20180831T150101

S2A MSIL2A 20180831T113321 N0208 R080 T29UPB 20180831T145610

S2A MSIL2A 20180831T113321 N0208 R080 T29UPA 20180831T150101

S2A MSIL2A 20180824T114351 N0208 R123 T29UPV 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UPU 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UPA 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UNV 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UNA 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UMV 20180824T150935

S2A MSIL2A 20180728T115401 N0208 R023 T29UMT 20180728T150735

S2A MSIL2A 20180725T114351 N0208 R123 T30UUF 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPV 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPU 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPB 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPA 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UNT 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UNB 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UNA 20180725T140825

S2A MSIL2A 20180712T113321 N0208 R080 T29UNT 20180712T141314

S2A MSIL2A 20180705T114351 N0208 R123 T30UUG 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UPU 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UPT 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UNU 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UNT 20180705T142104
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180705T114351 N0208 R123 T29UNB 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UNA 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UMT 20180705T142104

S2A MSIL2A 20180702T113321 N0208 R080 T30UUG 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T30UUF 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPV 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPU 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPT 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPB 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPA 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UNU 20180702T141901

S2A MSIL2A 20180628T115401 N0208 R023 T29UPV 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UPB 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UPA 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNV 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNU 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNT 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNB 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNA 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMV 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMU 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMT 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMA 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29ULT 20180628T125228

S2A MSIL2A 20180625T114351 N0208 R123 T30UUF 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UPV 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UPU 20180625T173707
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180625T114351 N0208 R123 T29UPB 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UPA 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNV 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNU 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNT 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNB 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNA 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMV 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMU 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMT 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMA 20180625T173707

S2A MSIL2A 20180622T113321 N0208 R080 T30UUF 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPV 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPU 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPT 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPB 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPA 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UNU 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UNT 20180622T123307

S2A MSIL2A 20180612T113321 N0208 R080 T29UPU 20180612T143029

S2A MSIL2A 20180608T115401 N0208 R023 T29UPV 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UPB 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UPA 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UNV 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UNA 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UMV 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UMU 20180608T160042

267



Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180608T115401 N0208 R023 T29ULT 20180608T160042

S2A MSIL2A 20180605T114351 N0208 R123 T30UUG 20180605T124913

S2A MSIL2A 20180605T114351 N0208 R123 T29UMT 20180605T124913

S2A MSIL2A 20180529T115401 N0208 R023 T29UPV 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UPB 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UPA 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UNV 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UNU 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UNB 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UNA 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UMV 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UMU 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UMT 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29ULT 20180529T125059

S2A MSIL2A 20180526T114351 N0208 R123 T29UPV 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UPB 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UPA 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UNV 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UNB 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UNA 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UMV 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UMA 20180526T173701

S2A MSIL2A 20180523T113321 N0208 R080 T30UUF 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPV 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPU 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPT 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPB 20180523T181029
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180523T113321 N0208 R080 T29UPA 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UNU 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UNT 20180523T181029

S2A MSIL2A 20180519T115401 N0207 R023 T29UNU 20180519T154451

S2A MSIL2A 20180519T115401 N0207 R023 T29UMT 20180519T154451

S2A MSIL2A 20180516T114351 N0207 R123 T30UUF 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPV 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPU 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPT 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPB 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPA 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNV 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNU 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNT 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNB 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNA 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMV 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMU 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMT 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMA 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29ULT 20180516T120702

S2A MSIL2A 20180513T113321 N0207 R080 T30UUG 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T30UUF 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T29UPU 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T29UPT 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T29UPA 20180513T133943

S2A MSIL2A 20180506T114351 N0207 R123 T29UPV 20180506T120844
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180506T114351 N0207 R123 T29UPU 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UPA 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNV 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNU 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNT 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNA 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UMV 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UMU 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UMT 20180506T120844

S2A MSIL2A 20180429T115401 N0207 R023 T29UNV 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UNU 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UNT 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UMU 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UMT 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UMA 20180429T121704

S2A MSIL2A 20180426T114351 N0207 R123 T29UPV 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UPU 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UPB 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UPB 20180426T120422

S2A MSIL2A 20180426T114351 N0207 R123 T29UPA 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UNV 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UNB 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UNA 20180426T134253

S2A MSIL2A 20180419T115401 N0207 R023 T29UMV 20180419T121634

S2A MSIL2A 20180419T115401 N0207 R023 T29UMU 20180419T121634

S2A MSIL2A 20180419T115401 N0207 R023 T29UMT 20180419T121634

S2A MSIL2A 20180419T115401 N0207 R023 T29ULT 20180419T121634
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180403T113321 N0207 R080 T29UPT 20180403T151646

S2B MSIL2A 20180630T114349 N0208 R123 T29UMT 20180630T173428

S2B MSIL2A 20180630T114349 N0208 R123 T29UMA 20180630T173428

S2B MSIL2A 20180627T113319 N0208 R080 T30UUF 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPV 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPU 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPT 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPB 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UPA 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UNU 20180627T145107

S2B MSIL2A 20180627T113319 N0208 R080 T29UNT 20180627T145107

S2B MSIL2A 20180623T115359 N0208 R023 T29UPV 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UPA 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNV 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNU 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNT 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNB 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UNA 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UMV 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UMU 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UMT 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29UMA 20180623T160332

S2B MSIL2A 20180623T115359 N0208 R023 T29ULT 20180623T160332

S2B MSIL2A 20180610T114349 N0208 R123 T30UUF 20180610T141940

S2B MSIL2A 20180607T113319 N0208 R080 T30UUF 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UPV 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UPU 20180607T141809
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180607T113319 N0208 R080 T29UPB 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UPA 20180607T141809

S2B MSIL2A 20180607T113319 N0208 R080 T29UNU 20180607T141809

S2B MSIL2A 20180603T115359 N0208 R023 T29UPB 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UPA 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UNU 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UNA 20180603T131029

S2B MSIL2A 20180603T115359 N0208 R023 T29UMU 20180603T131029

S2B MSIL2A 20180531T114349 N0208 R123 T29UNV 20180531T141540

S2B MSIL2A 20180531T114349 N0208 R123 T29UNU 20180531T141540

S2B MSIL2A 20180531T114349 N0208 R123 T29UMU 20180531T141540

S2B MSIL2A 20180528T113319 N0208 R080 T30UUF 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPV 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPU 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPB 20180528T125036

S2B MSIL2A 20180528T113319 N0208 R080 T29UPA 20180528T125036

S2B MSIL2A 20180524T115359 N0208 R023 T29UPB 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UPA 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNV 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNU 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNT 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNB 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UNA 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMV 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMU 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMT 20180524T180956

S2B MSIL2A 20180524T115359 N0208 R023 T29UMA 20180524T180956
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180524T115359 N0208 R023 T29ULT 20180524T180956

S2B MSIL2A 20180518T113319 N0207 R080 T29UPU 20180518T133554

S2B MSIL2A 20180518T113319 N0207 R080 T29UPT 20180518T133554

S2B MSIL2A 20180518T113319 N0207 R080 T29UNT 20180518T133554

S2B MSIL2A 20180511T114349 N0207 R123 T29UNU 20180511T151544

S2B MSIL2A 20180511T114349 N0207 R123 T29UNT 20180511T151544

S2B MSIL2A 20180511T114349 N0207 R123 T29UMU 20180511T151544

S2B MSIL2A 20180511T114349 N0207 R123 T29UMT 20180511T151544

S2B MSIL2A 20180508T113319 N0207 R080 T29UPV 20180508T171644

S2B MSIL2A 20180508T113319 N0207 R080 T29UPU 20180508T171644

S2B MSIL2A 20180428T113319 N0207 R080 T30UUF 20180428T115508

S2B MSIL2A 20180428T113319 N0207 R080 T29UPV 20180428T115508

S2B MSIL2A 20180428T113319 N0207 R080 T29UPU 20180428T115508

S2B MSIL2A 20180428T113319 N0207 R080 T29UPA 20180428T115508

S2B MSIL2A 20180421T114349 N0207 R123 T30UUF 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T30UUF 20180421T120446

S2B MSIL2A 20180421T114349 N0207 R123 T29UPV 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UPU 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UPT 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UPB 20180421T120446

S2B MSIL2A 20180421T114349 N0207 R123 T29UPA 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UPA 20180421T120446

S2B MSIL2A 20180421T114349 N0207 R123 T29UNV 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNU 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNT 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNA 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UNA 20180421T120446
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2B MSIL2A 20180421T114349 N0207 R123 T29UMV 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UMU 20180421T134219

S2B MSIL2A 20180421T114349 N0207 R123 T29UMT 20180421T134219

S2B MSIL2A 20180418T113319 N0207 R080 T29UPU 20180418T115417

S2B MSIL2A 20180404T115359 N0207 R023 T29UMT 20180404T121623

S2A MSIL2A 20181222T114501 N0211 R123 T30UUF 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T30UUE 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UPT 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UPA 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UNT 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UNA 20181222T124907

S2A MSIL2A 20181222T114501 N0211 R123 T29UMT 20181222T124907

S2A MSIL2A 20181209T113441 N0211 R080 T30UUF 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UPV 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UPU 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UPT 20181209T123027

S2A MSIL2A 20181209T113441 N0211 R080 T29UNU 20181209T123027

S2A MSIL2A 20181129T113421 N0211 R080 T29UPV 20181129T123450

S2A MSIL2A 20181129T113421 N0211 R080 T29UPU 20181129T123450

S2A MSIL2A 20181125T115411 N0211 R023 T29UNV 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UNU 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UNT 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UNB 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UNA 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UMV 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UMU 20181125T123933

S2A MSIL2A 20181125T115411 N0211 R023 T29UMT 20181125T123933
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20181125T115411 N0211 R023 T29ULT 20181125T123933

S2A MSIL2A 20181122T114401 N0211 R123 T30UUF 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UPV 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UPB 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UPA 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UNV 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UNB 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UNA 20181122T125119

S2A MSIL2A 20181122T114401 N0211 R123 T29UMV 20181122T125119

S2A MSIL2A 20181112T114341 N0210 R123 T29UPV 20181112T130301

S2A MSIL2A 20181112T114341 N0210 R123 T29UPU 20181112T130301

S2A MSIL2A 20181112T114341 N0210 R123 T29UNV 20181112T130301

S2A MSIL2A 20181112T114341 N0210 R123 T29UNU 20181112T130301

S2A MSIL2A 20181105T115401 N0209 R023 T29UMT 20181105T124023

S2A MSIL2A 20181030T113321 N0209 R080 T30UUF 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T30UUD 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPV 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPU 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPB 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UPA 20181030T122802

S2A MSIL2A 20181030T113321 N0209 R080 T29UNU 20181030T122802

S2A MSIL2A 20181026T115401 N0209 R023 T29UPA 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNV 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNU 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNT 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UNA 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UMV 20181026T124013
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20181026T115401 N0209 R023 T29UMU 20181026T124013

S2A MSIL2A 20181026T115401 N0209 R023 T29UMT 20181026T124013

S2A MSIL2A 20181020T113321 N0209 R080 T29UPU 20181020T123439

S2A MSIL2A 20181016T115401 N0209 R023 T29UNV 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UNU 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UNB 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UNA 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UMU 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29UMT 20181016T143216

S2A MSIL2A 20181016T115401 N0209 R023 T29ULT 20181016T143216

S2A MSIL2A 20181010T113321 N0209 R080 T30UUF 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPV 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPU 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPT 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPB 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UPA 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UNU 20181010T141708

S2A MSIL2A 20181010T113321 N0209 R080 T29UNT 20181010T141708

S2A MSIL2A 20181006T115401 N0208 R023 T29UPB 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UPA 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UNV 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UNT 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UNB 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UNA 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UMV 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UMU 20181006T125746

S2A MSIL2A 20181006T115401 N0208 R023 T29UMT 20181006T125746
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20181006T115401 N0208 R023 T29UMA 20181006T125746

S2A MSIL2A 20180923T114341 N0208 R123 T30UUF 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UPV 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UPA 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNV 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNU 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNT 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNB 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UNA 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UMV 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UMU 20180923T143521

S2A MSIL2A 20180923T114341 N0208 R123 T29UMT 20180923T143521

S2A MSIL2A 20180913T114351 N0208 R123 T29UPT 20180913T144400

S2A MSIL2A 20180903T114351 N0208 R123 T30UUF 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPV 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPU 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPT 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UPA 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UNV 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UNU 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UNT 20180903T143544

S2A MSIL2A 20180903T114351 N0208 R123 T29UMT 20180903T143544

S2A MSIL2A 20180831T113321 N0208 R080 T30UUF 20180831T150101

S2A MSIL2A 20180831T113321 N0208 R080 T30UUF 20180831T145610

S2A MSIL2A 20180831T113321 N0208 R080 T29UPB 20180831T150101

S2A MSIL2A 20180831T113321 N0208 R080 T29UPB 20180831T145610

S2A MSIL2A 20180831T113321 N0208 R080 T29UPA 20180831T150101
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180824T114351 N0208 R123 T29UPV 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UPU 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UPA 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UNV 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UNA 20180824T150935

S2A MSIL2A 20180824T114351 N0208 R123 T29UMV 20180824T150935

S2A MSIL2A 20180728T115401 N0208 R023 T29UMT 20180728T150735

S2A MSIL2A 20180725T114351 N0208 R123 T30UUF 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPV 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPU 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPB 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UPA 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UNT 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UNB 20180725T140825

S2A MSIL2A 20180725T114351 N0208 R123 T29UNA 20180725T140825

S2A MSIL2A 20180712T113321 N0208 R080 T29UNT 20180712T141314

S2A MSIL2A 20180705T114351 N0208 R123 T30UUG 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UPU 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UPT 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UNU 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UNT 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UNB 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UNA 20180705T142104

S2A MSIL2A 20180705T114351 N0208 R123 T29UMT 20180705T142104

S2A MSIL2A 20180702T113321 N0208 R080 T30UUG 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T30UUF 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPV 20180702T141901
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180702T113321 N0208 R080 T29UPU 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPT 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPB 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UPA 20180702T141901

S2A MSIL2A 20180702T113321 N0208 R080 T29UNU 20180702T141901

S2A MSIL2A 20180628T115401 N0208 R023 T29UPV 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UPB 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UPA 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNV 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNU 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNT 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNB 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UNA 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMV 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMU 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMT 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29UMA 20180628T125228

S2A MSIL2A 20180628T115401 N0208 R023 T29ULT 20180628T125228

S2A MSIL2A 20180625T114351 N0208 R123 T30UUF 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UPV 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UPU 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UPB 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UPA 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNV 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNU 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNT 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UNB 20180625T173707
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180625T114351 N0208 R123 T29UNA 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMV 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMU 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMT 20180625T173707

S2A MSIL2A 20180625T114351 N0208 R123 T29UMA 20180625T173707

S2A MSIL2A 20180622T113321 N0208 R080 T30UUF 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPV 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPU 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPT 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPB 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UPA 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UNU 20180622T123307

S2A MSIL2A 20180622T113321 N0208 R080 T29UNT 20180622T123307

S2A MSIL2A 20180612T113321 N0208 R080 T29UPU 20180612T143029

S2A MSIL2A 20180608T115401 N0208 R023 T29UPV 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UPB 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UPA 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UNV 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UNA 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UMV 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29UMU 20180608T160042

S2A MSIL2A 20180608T115401 N0208 R023 T29ULT 20180608T160042

S2A MSIL2A 20180605T114351 N0208 R123 T30UUG 20180605T124913

S2A MSIL2A 20180605T114351 N0208 R123 T29UMT 20180605T124913

S2A MSIL2A 20180529T115401 N0208 R023 T29UPV 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UPB 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UPA 20180529T125059
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180529T115401 N0208 R023 T29UNV 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UNU 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UNB 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UNA 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UMV 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UMU 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29UMT 20180529T125059

S2A MSIL2A 20180529T115401 N0208 R023 T29ULT 20180529T125059

S2A MSIL2A 20180526T114351 N0208 R123 T29UPV 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UPB 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UPA 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UNV 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UNB 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UNA 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UMV 20180526T173701

S2A MSIL2A 20180526T114351 N0208 R123 T29UMA 20180526T173701

S2A MSIL2A 20180523T113321 N0208 R080 T30UUF 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPV 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPU 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPT 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPB 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UPA 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UNU 20180523T181029

S2A MSIL2A 20180523T113321 N0208 R080 T29UNT 20180523T181029

S2A MSIL2A 20180519T115401 N0207 R023 T29UNU 20180519T154451

S2A MSIL2A 20180519T115401 N0207 R023 T29UMT 20180519T154451

S2A MSIL2A 20180516T114351 N0207 R123 T30UUF 20180516T120702
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180516T114351 N0207 R123 T29UPV 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPU 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPT 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPB 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UPA 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNV 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNU 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNT 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNB 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UNA 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMV 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMU 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMT 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29UMA 20180516T120702

S2A MSIL2A 20180516T114351 N0207 R123 T29ULT 20180516T120702

S2A MSIL2A 20180513T113321 N0207 R080 T30UUG 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T30UUF 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T29UPU 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T29UPT 20180513T133943

S2A MSIL2A 20180513T113321 N0207 R080 T29UPA 20180513T133943

S2A MSIL2A 20180506T114351 N0207 R123 T29UPV 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UPU 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UPA 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNV 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNU 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNT 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UNA 20180506T120844
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Sentinel-2 Satellite Images used in Chapter 3 comparative assessment [continued].

S2A MSIL2A 20180506T114351 N0207 R123 T29UMV 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UMU 20180506T120844

S2A MSIL2A 20180506T114351 N0207 R123 T29UMT 20180506T120844

S2A MSIL2A 20180429T115401 N0207 R023 T29UNV 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UNU 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UNT 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UMU 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UMT 20180429T121704

S2A MSIL2A 20180429T115401 N0207 R023 T29UMA 20180429T121704

S2A MSIL2A 20180426T114351 N0207 R123 T29UPV 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UPU 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UPB 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UPB 20180426T120422

S2A MSIL2A 20180426T114351 N0207 R123 T29UPA 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UNV 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UNB 20180426T134253

S2A MSIL2A 20180426T114351 N0207 R123 T29UNA 20180426T134253

S2A MSIL2A 20180419T115401 N0207 R023 T29UMV 20180419T121634

S2A MSIL2A 20180419T115401 N0207 R023 T29UMU 20180419T121634

S2A MSIL2A 20180419T115401 N0207 R023 T29UMT 20180419T121634

S2A MSIL2A 20180419T115401 N0207 R023 T29ULT 20180419T121634

S2A MSIL2A 20180403T113321 N0207 R080 T29UPT 20180403T151646
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A.3 Landsat-8 Images

Table A.3: Landsat-8 Satellite Images used in Chapter 3 comparative assessment.

LC08 L2SP 207022 20180607 20200831 02 T1

LC08 L2SP 207022 20180420 20200901 02 T1

LC08 L2SP 205022 20180217 20200902 02 T1

LC08 L2SP 207022 20180725 20200831 02 T1

LC08 L2SP 206022 20180429 20200901 02 T1

LC08 L2SP 207022 20180215 20200902 02 T1

LC08 L2SP 207022 20180506 20200901 02 T1

LC08 L2SP 205022 20180625 20200831 02 T1

LC08 L2SP 205022 20180524 20200901 02 T1

LC08 L2SP 207022 20180319 20200901 02 T1

LC08 L2SP 206022 20181022 20200830 02 T1

LC08 L2SP 206022 20181123 20200830 02 T1

LC08 L2SP 206022 20180904 20200831 02 T1

LC08 L2SP 206022 20180702 20200831 02 T1

LC08 L2SP 207022 20180810 20200831 02 T1

LC08 L2SP 205022 20180201 20200902 02 T1

LC08 L2SP 205022 20180929 20200830 02 T1

LC08 L2SP 206022 20181006 20200830 02 T1

LC08 L2SP 206022 20180616 20200831 02 T1

LC08 L2SP 207023 20180522 20200901 02 T1

LC08 L2SP 208023 20180222 20200902 02 T1

LC08 L2SP 207023 20180506 20200901 02 T1

LC08 L2SP 208022 20180427 20200901 02 T1

LC08 L2SP 207023 20181130 20200830 02 T1

LC08 L2SP 207023 20180810 20200831 02 T1
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Landsat-8 Satellite Images used in Chapter 3 comparative assessment [continued].

LC08 L2SP 208023 20180630 20200831 02 T1

LC08 L2SP 208023 20180529 20200901 02 T1

LC08 L2SP 207023 20180607 20200831 02 T1

LC08 L2SP 208022 20180630 20200831 02 T1

LC08 L2SP 208022 20180529 20200901 02 T1

LC08 L2SP 208023 20180206 20200902 02 T1

LC08 L2SP 207023 20180404 20200901 02 T1

LC08 L2SP 208023 20180513 20200901 02 T1

LC08 L2SP 207023 20180623 20200831 02 T1

LC08 L2SP 207023 20180420 20200901 02 T1

LC08 L2SP 207023 20180215 20200902 02 T1

LC08 L2SP 208023 20180614 20200831 02 T1

LC08 L2SP 206023 20180429 20200901 02 T1

LC08 L2SP 207024 20181130 20200830 02 T1

LC08 L2SP 206024 20181022 20200830 02 T1

LC08 L2SP 208023 20180614 20200831 02 T1

LC08 L2SP 206024 20181006 20200830 02 T1

LC08 L2SP 207023 20180215 20200902 02 T1

LC08 L2SP 207023 20180927 20200830 02 T1

LC08 L2SP 207024 20180506 20200901 02 T1

LC08 L2SP 207024 20180404 20200901 02 T1

LC08 L2SP 207023 20181130 20200830 02 T1

LC08 L2SP 208023 20180529 20200901 02 T1

LC08 L2SP 208023 20180206 20200902 02 T1

LC08 L2SP 206024 20180429 20200901 02 T1

LC08 L2SP 207023 20180506 20200901 02 T1

LC08 L2SP 208023 20180222 20200902 02 T1
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Landsat-8 Satellite Images used in Chapter 3 comparative assessment [continued].

LC08 L2SP 207023 20180810 20200831 02 T1

LC08 L2SP 207024 20180725 20200831 02 T1

LC08 L2SP 207024 20180623 20200831 02 T1

LC08 L2SP 207023 20180623 20200831 02 T1

LC08 L2SP 206024 20180702 20200831 02 T1

LC08 L2SP 206023 20181022 20200830 02 T1

LC08 L2SP 207023 20180420 20200901 02 T1

LC08 L2SP 207023 20180725 20200831 02 T1

LC08 L2SP 208023 20180630 20200831 02 T1

LC08 L2SP 207023 20180522 20200901 02 T1

LC08 L2SP 206023 20181006 20200830 02 T1

LC08 L2SP 207024 20180522 20200901 02 T1

LC08 L2SP 207023 20180607 20200831 02 T1

LC08 L2SP 207024 20180607 20200831 02 T1

LC08 L2SP 206023 20180702 20200831 02 T1

LC08 L2SP 207024 20180420 20201015 02 T1

LC08 L2SP 208023 20180513 20200901 02 T1

LC08 L2SP 207024 20180810 20200831 02 T1

LC08 L2SP 206024 20180107 20200902 02 T1

LC08 L2SP 207023 20180404 20200901 02 T1

LC08 L2SP 207024 20180927 20200830 02 T1

LC08 L2SP 207022 20180319 20200901 02 T1

LC08 L2SP 208022 20180206 20200902 02 T1

LC08 L2SP 207022 20180506 20200901 02 T1

LC08 L2SP 208022 20180427 20200901 02 T1

LC08 L2SP 208022 20180529 20200901 02 T1

LC08 L2SP 208022 20180630 20200831 02 T1
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Landsat-8 Satellite Images used in Chapter 3 comparative assessment [continued].

LC08 L2SP 207022 20180725 20200831 02 T1

LC08 L2SP 208022 20180614 20200831 02 T1

LC08 L2SP 208022 20180513 20200901 02 T1

LC08 L2SP 207022 20180522 20201015 02 T1

LC08 L2SP 207022 20180623 20200831 02 T1

LC08 L2SP 207022 20180420 20200901 02 T1

LC08 L2SP 207022 20180810 20200831 02 T1

LC08 L2SP 207023 20181130 20200830 02 T1

LC08 L2SP 206024 20180107 20200902 02 T1

LC08 L2SP 206024 20181107 20200830 02 T1

LC08 L2SP 207023 20180725 20200831 02 T1

LC08 L2SP 206023 20180328 20200901 02 T1

LC08 L2SP 207024 20180623 20200831 02 T1

LC08 L2SP 206024 20180702 20200831 02 T1

LC08 L2SP 206023 20180803 20200831 02 T1

LC08 L2SP 206024 20180904 20200831 02 T1

LC08 L2SP 207024 20180420 20201015 02 T1

LC08 L2SP 207023 20180607 20200831 02 T1

LC08 L2SP 206024 20181006 20200830 02 T1

LC08 L2SP 206024 20181022 20200830 02 T1

LC08 L2SP 207023 20180623 20200831 02 T1

LC08 L2SP 207024 20181130 20200830 02 T1

LC08 L2SP 207024 20180927 20200830 02 T1

LC08 L2SP 206023 20181022 20200830 02 T1

LC08 L2SP 206023 20180429 20200901 02 T1

LC08 L2SP 206024 20180819 20200831 02 T1

LC08 L2SP 207023 20180215 20200902 02 T1
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Landsat-8 Satellite Images used in Chapter 3 comparative assessment [continued].

LC08 L2SP 206023 20180904 20200831 02 T1

LC08 L2SP 207024 20180522 20200901 02 T1

LC08 L2SP 206023 20180819 20200831 02 T1

LC08 L2SP 206024 20180429 20200901 02 T1

LC08 L2SP 207024 20180215 20200902 02 T1

LC08 L2SP 207023 20180420 20200901 02 T1

LC08 L2SP 207024 20180607 20200831 02 T1

LC08 L2SP 207024 20180725 20200831 02 T1

LC08 L2SP 206024 20180803 20200831 02 T1

LC08 L2SP 207023 20180506 20200901 02 T1

LC08 L2SP 207024 20180506 20200901 02 T1

LC08 L2SP 207024 20180810 20200831 02 T1

LC08 L2SP 206023 20180702 20200831 02 T1

LC08 L2SP 206024 20180328 20200901 02 T1

LC08 L2SP 206024 20181209 20200830 02 T1

LC08 L2SP 207024 20180404 20200901 02 T1

LC08 L2SP 207023 20180810 20200831 02 T1

LC08 L2SP 207023 20180404 20200901 02 T1

LC08 L2SP 206023 20181006 20200830 02 T1

LC08 L2SP 207023 20180927 20200830 02 T1

LC08 L2SP 207023 20180522 20200901 02 T1

LC08 L2SP 207023 20180506 20200901 02 T1

LC08 L2SP 207023 20180215 20200902 02 T1

LC08 L2SP 207024 20180927 20200830 02 T1

LC08 L2SP 206024 20180904 20200831 02 T1

LC08 L2SP 207024 20180607 20200831 02 T1

LC08 L2SP 206024 20180429 20200901 02 T1
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Landsat-8 Satellite Images used in Chapter 3 comparative assessment [continued].

LC08 L2SP 207023 20180623 20200831 02 T1

LC08 L2SP 207023 20180810 20200831 02 T1

LC08 L2SP 208024 20180716 20200831 02 T1

LC08 L2SP 206024 20180803 20200831 02 T1

LC08 L2SP 207023 20180420 20200901 02 T1

LC08 L2SP 207023 20180522 20200901 02 T1

LC08 L2SP 208024 20180630 20200831 02 T1

LC08 L2SP 208023 20180614 20200831 02 T1

LC08 L2SP 208024 20180206 20200902 02 T1

LC08 L2SP 207024 20180522 20200901 02 T1

LC08 L2SP 206024 20181022 20200830 02 T1

LC08 L2SP 207024 20180506 20200901 02 T1

LC08 L2SP 207024 20180623 20200831 02 T1

LC08 L2SP 206024 20180819 20200831 02 T1

LC08 L2SP 206024 20181006 20200830 02 T1

LC08 L2SP 207024 20180725 20200831 02 T1

LC08 L2SP 207023 20180607 20200831 02 T1

LC08 L2SP 207024 20180215 20200902 02 T1

LC08 L2SP 207024 20180810 20200831 02 T1

LC08 L2SP 207023 20180725 20200831 02 T1

LC08 L2SP 206024 20181209 20200830 02 T1

LC08 L2SP 207024 20180420 20201015 02 T1

LC08 L2SP 208023 20180206 20200902 02 T1

LC08 L2SP 208023 20180630 20200831 02 T1

LC08 L2SP 207024 20180404 20200901 02 T1

LC08 L2SP 207024 20181130 20200830 02 T1

LC08 L2SP 207023 20180927 20200830 02 T1
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Landsat-8 Satellite Images used in Chapter 3 comparative assessment [continued].

LC08 L2SP 206024 20180702 20200831 02 T1

LC08 L2SP 207024 20180215 20200902 02 T1

LC08 L2SP 207024 20181130 20200830 02 T1

LC08 L2SP 208024 20181105 20200830 02 T1

LC08 L2SP 207024 20180404 20200901 02 T1

LC08 L2SP 208024 20180206 20200902 02 T1

LC08 L2SP 207024 20180420 20201015 02 T1

LC08 L2SP 208024 20180614 20200831 02 T1

LC08 L2SP 207024 20180607 20200831 02 T1

LC08 L2SP 208024 20180529 20200901 02 T1

LC08 L2SP 207024 20180522 20200901 02 T1

LC08 L2SP 208024 20180513 20201015 02 T1

LC08 L2SP 208024 20181121 20200830 02 T1

LC08 L2SP 207024 20180927 20200830 02 T1

LC08 L2SP 207024 20180810 20200831 02 T1

LC08 L2SP 207024 20180506 20200901 02 T1

LC08 L2SP 207024 20180725 20200831 02 T1

LC08 L2SP 207024 20180623 20200831 02 T1

LC08 L2SP 208024 20180716 20200831 02 T1

LC08 L2SP 208024 20180630 20200831 02 T1

LC08 L2SP 207024 20180709 20200831 02 T1

LC08 L2SP 205023 20180625 20200831 02 T1

LC08 L2SP 206023 20180718 20200831 02 T1

LC08 L2SP 206022 20180531 20200831 02 T1

LC08 L2SP 205023 20180201 20200902 02 T1

LC08 L2SP 206023 20180531 20200831 02 T1

LC08 L2SP 205023 20180711 20200831 02 T1
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Chapter 3 Results
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B.1 Sentinel-1 Results

Table B.1: Sentinel-1 Model Results.

Sealed
Coniferous
Forest

Broadleaved
Forest

Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Single Date

Train 0.320 0.490 0.223 0.385 0.117 0.359 0.024 0.909 0.362 0.400
Validation 0.284 0.401 0.270 0.361 0.104 0.340 0.024 0.904 0.344 0.377

Test 0.317 0.470 0.219 0.358 0.106 0.272 0.025 0.933 0.345 0.380

RF
Single Date

Train 0.318 0.499 0.305 0.383 0.200 0.359 0.174 0.908 0.399 0.419
Validation 0.273 0.443 0.335 0.382 0.181 0.368 0.192 0.929 0.393 0.412

Test 0.284 0.450 0.263 0.317 0.076 0.254 0.183 0.928 0.349 0.367

SVM
Single Date

Train 0.299 0.456 0.281 0.386 0.116 0.327 0.186 0.904 0.374 0.395
Validation 0.244 0.464 0.287 0.294 0.143 0.385 0.278 0.907 0.378 0.392

Test 0.302 0.456 0.284 0.370 0.122 0.246 0.164 0.939 0.366 0.385

ANN
Annual Average

Train 0.461 0.604 0.271 0.473 0.290 0.297 0.417 0.963 0.473 0.490
Validation 0.387 0.554 0.244 0.408 0.292 0.270 0.382 0.966 0.439 0.453

Test 0.492 0.614 0.266 0.433 0.275 0.195 0.396 0.974 0.457 0.479

RF
Annual Average

Train 0.456 0.584 0.462 0.496 0.341 0.449 0.321 0.954 0.513 0.520
Validation 0.413 0.498 0.459 0.518 0.344 0.459 0.339 0.971 0.504 0.511

Test 0.489 0.594 0.505 0.447 0.270 0.224 0.266 0.975 0.477 0.482

SVM
Annual Average

Train 0.436 0.583 0.408 0.482 0.291 0.409 0.258 0.952 0.483 0.495
Validation 0.405 0.525 0.387 0.480 0.323 0.396 0.209 0.966 0.468 0.479

Test 0.453 0.561 0.441 0.464 0.216 0.192 0.231 0.973 0.447 0.455
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Sentinel-1 Model Results [continued].

Sealed
Coniferous
Forest

Broadleaved
Forest

Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Half-Year Average

Train 0.432 0.611 0.473 0.472 0.302 0.439 0.354 0.963 0.510 0.518
Validation 0.374 0.563 0.482 0.459 0.270 0.425 0.362 0.971 0.491 0.501

Test 0.469 0.669 0.487 0.438 0.334 0.220 0.329 0.978 0.495 0.505

RF
Half-Year Average

Train 0.487 0.675 0.543 0.489 0.477 0.489 0.350 0.963 0.564 0.569
Validation 0.396 0.596 0.484 0.456 0.458 0.477 0.365 0.971 0.529 0.534

Test 0.505 0.709 0.519 0.471 0.392 0.280 0.274 0.979 0.522 0.533

SVM
Half-Year Average

Train 0.473 0.640 0.528 0.467 0.437 0.450 0.274 0.954 0.534 0.543
Validation 0.405 0.623 0.516 0.469 0.454 0.460 0.303 0.966 0.530 0.539

Test 0.484 0.732 0.575 0.465 0.480 0.263 0.256 0.975 0.536 0.545

ANN
Season Average

Train 0.502 0.755 0.579 0.468 0.348 0.352 0.469 0.970 0.558 0.568
Validation 0.420 0.720 0.525 0.429 0.318 0.373 0.461 0.945 0.525 0.535

Test 0.537 0.759 0.646 0.466 0.407 0.186 0.398 0.976 0.551 0.569

RF
Season Average

Train 0.498 0.765 0.625 0.506 0.500 0.498 0.413 0.963 0.601 0.605
Validation 0.446 0.723 0.634 0.478 0.503 0.532 0.412 0.971 0.592 0.597

Test 0.509 0.765 0.643 0.457 0.416 0.256 0.391 0.980 0.556 0.563

SVM
Season Average

Train 0.500 0.768 0.615 0.470 0.490 0.501 0.440 0.964 0.598 0.600
Validation 0.452 0.747 0.619 0.449 0.497 0.512 0.478 0.966 0.593 0.597

Test 0.545 0.784 0.661 0.480 0.498 0.323 0.451 0.978 0.593 0.599

1DCNN
Season Average

Train 0.536 0.782 0.632 0.479 0.557 0.511 0.505 0.973 0.625 0.626
Validation 0.437 0.767 0.627 0.484 0.552 0.567 0.541 0.971 0.620 0.623

Test 0.553 0.788 0.655 0.504 0.628 0.322 0.503 0.980 0.620 0.629
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Sentinel-1 Model Results [continued].

Sealed
Coniferous
Forest

Broadleaved
Forest

Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Monthly Average

Train 0.666 0.810 0.683 0.632 0.735 0.775 0.770 0.994 0.758 0.758
Validation 0.488 0.815 0.592 0.371 0.565 0.685 0.586 0.980 0.637 0.642

Test 0.559 0.806 0.668 0.421 0.635 0.410 0.364 0.958 0.609 0.606

RF
Monthly Average

Train 0.544 0.789 0.646 0.548 0.597 0.595 0.461 0.968 0.647 0.651
Validation 0.460 0.761 0.673 0.495 0.552 0.590 0.419 0.971 0.620 0.626

Test 0.509 0.781 0.673 0.467 0.538 0.366 0.413 0.978 0.595 0.602

SVM
Monthly Average

Train 0.598 0.805 0.654 0.539 0.639 0.643 0.578 0.975 0.681 0.681
Validation 0.517 0.800 0.673 0.521 0.602 0.725 0.658 0.980 0.686 0.689

Test 0.536 0.802 0.691 0.506 0.672 0.484 0.416 0.976 0.641 0.645

LSTM
Monthly Average

Train 0.522 0.767 0.615 0.492 0.525 0.504 0.436 0.965 0.607 0.609
Validation 0.483 0.740 0.597 0.490 0.543 0.526 0.427 0.966 0.602 0.604

Test 0.537 0.773 0.642 0.475 0.527 0.425 0.409 0.978 0.600 0.602

1DCNN
Monthly Average

Train 0.670 0.827 0.676 0.610 0.681 0.769 0.731 0.989 0.744 0.744
Validation 0.577 0.833 0.625 0.571 0.576 0.754 0.593 0.975 0.691 0.694

Test 0.544 0.800 0.663 0.558 0.649 0.639 0.405 0.925 0.654 0.653
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B.2 Sentinel-2 Results

Table B.2: Sentinel-2 Model Results.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Annual Average

10m bands

Train 0.587 0.772 0.628 0.533 0.386 0.590 0.428 0.969 0.616 0.625
Validation 0.547 0.778 0.562 0.507 0.338 0.605 0.397 0.966 0.593 0.609

Test 0.558 0.766 0.680 0.580 0.229 0.531 0.339 0.980 0.586 0.600

ANN
Annual Average

10m and 20m bands

Train 0.694 0.848 0.698 0.555 0.598 0.761 0.488 0.981 0.708 0.713
Validation 0.640 0.885 0.726 0.516 0.613 0.731 0.427 0.971 0.695 0.703

Test 0.649 0.877 0.741 0.636 0.631 0.794 0.394 0.986 0.720 0.728

ANN
Annual Average

All bands

Train 0.701 0.863 0.700 0.527 0.598 0.758 0.577 0.982 0.716 0.722
Validation 0.649 0.880 0.687 0.508 0.602 0.733 0.504 0.970 0.697 0.704

Test 0.625 0.879 0.745 0.596 0.583 0.803 0.462 0.985 0.714 0.721

RF
Annual Average

10m bands

Train 0.547 0.749 0.623 0.552 0.442 0.565 0.439 0.962 0.614 0.617
Validation 0.524 0.778 0.574 0.514 0.405 0.595 0.481 0.960 0.608 0.613

Test 0.558 0.784 0.670 0.583 0.337 0.544 0.505 0.979 0.621 0.621

RF
Annual Average

10m and 20m bands

Train 0.600 0.844 0.696 0.569 0.500 0.698 0.421 0.961 0.667 0.673
Validation 0.551 0.884 0.693 0.502 0.478 0.701 0.484 0.975 0.663 0.670

Test 0.563 0.874 0.732 0.612 0.443 0.671 0.466 0.980 0.670 0.676

RF
Annual Average

All bands

Train 0.615 0.839 0.698 0.582 0.497 0.714 0.457 0.960 0.675 0.681
Validation 0.557 0.874 0.694 0.524 0.457 0.706 0.524 0.975 0.667 0.674

Test 0.573 0.883 0.750 0.614 0.412 0.663 0.490 0.979 0.672 0.677

SVM
Annual Average

10m bands

Train 0.593 0.712 0.553 0.523 0.434 0.612 0.298 0.880 0.582 0.599
Validation 0.549 0.769 0.529 0.512 0.384 0.626 0.286 0.910 0.578 0.600

Test 0.588 0.761 0.622 0.561 0.341 0.593 0.439 0.952 0.610 0.618

SVM
Annual Average

10m and 20m bands

Train 0.662 0.818 0.685 0.533 0.614 0.758 0.465 0.900 0.684 0.690
Validation 0.632 0.857 0.673 0.487 0.651 0.731 0.487 0.922 0.685 0.692

Test 0.626 0.873 0.759 0.631 0.613 0.796 0.555 0.969 0.731 0.734

SVM
Annual Average

All bands

Train 0.652 0.829 0.686 0.547 0.612 0.770 0.478 0.902 0.689 0.695
Validation 0.628 0.859 0.680 0.497 0.678 0.742 0.506 0.931 0.695 0.701

Test 0.604 0.869 0.752 0.637 0.621 0.802 0.529 0.969 0.726 0.729
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

LCNN3×3
Annual Average

10m bands

Train 0.283 0.733 0.602 0.511 0.415 0.465 0.420 0.932 0.548 0.557
Validation 0.269 0.763 0.575 0.520 0.419 0.544 0.438 0.928 0.561 0.572

Test 0.323 0.772 0.662 0.547 0.345 0.327 0.508 0.971 0.555 0.552

LCNN3×3
Annual Average

10m and 20m bands

Train 0.587 0.846 0.660 0.523 0.520 0.732 0.379 0.957 0.657 0.664
Validation 0.549 0.876 0.706 0.524 0.535 0.735 0.414 0.962 0.670 0.678

Test 0.577 0.889 0.726 0.604 0.536 0.748 0.410 0.982 0.689 0.695

LCNN3×3
Annual Average

all bands

Train 0.581 0.843 0.671 0.541 0.515 0.721 0.394 0.956 0.659 0.664
Validation 0.603 0.876 0.703 0.526 0.543 0.723 0.439 0.967 0.679 0.685

Test 0.571 0.876 0.725 0.610 0.495 0.712 0.467 0.983 0.683 0.685

LCNN5×5
Annual Average

10m bands

Train 0.530 0.751 0.593 0.526 0.421 0.499 0.449 0.954 0.594 0.595
Validation 0.519 0.790 0.589 0.498 0.420 0.539 0.481 0.965 0.604 0.606

Test 0.572 0.802 0.659 0.568 0.295 0.386 0.463 0.977 0.590 0.587

LCNN5×5
Annual Average

10m and 20m bands

Train 0.613 0.848 0.666 0.520 0.563 0.738 0.467 0.967 0.678 0.681
Validation 0.598 0.888 0.713 0.530 0.607 0.739 0.464 0.971 0.695 0.700

Test 0.595 0.891 0.737 0.602 0.504 0.735 0.530 0.980 0.699 0.700

LCNN5×5
Annual Average

all bands

Train 0.462 0.834 0.621 0.496 0.357 0.679 0.307 0.939 0.593 0.603
Validation 0.486 0.862 0.649 0.488 0.390 0.723 0.274 0.943 0.611 0.625

Test 0.470 0.883 0.696 0.610 0.290 0.650 0.474 0.979 0.633 0.632

LCNN9×9
Annual Average

10m bands

Train 0.757 0.787 0.670 0.581 0.494 0.670 0.606 0.973 0.694 0.695
Validation 0.707 0.815 0.664 0.539 0.527 0.695 0.585 0.990 0.693 0.696

Test 0.709 0.816 0.704 0.611 0.445 0.593 0.562 0.986 0.680 0.680

LCNN9×9
Annual Average
10and20m bands

Train 0.733 0.857 0.663 0.504 0.606 0.769 0.633 0.964 0.718 0.721
Validation 0.773 0.896 0.686 0.464 0.597 0.757 0.676 0.970 0.729 0.735

Test 0.679 0.878 0.706 0.565 0.654 0.810 0.544 0.982 0.731 0.736

LCNN9×9
Annual Average

all bands

Train 0.577 0.831 0.627 0.536 0.359 0.729 0.394 0.965 0.632 0.649
Validation 0.605 0.876 0.621 0.487 0.400 0.732 0.365 0.980 0.641 0.660

Test 0.526 0.872 0.693 0.606 0.275 0.763 0.336 0.984 0.637 0.661

LCNN15×15
Annual Average

10m bands

Train 0.750 0.797 0.650 0.566 0.500 0.648 0.544 0.971 0.681 0.685
Validation 0.751 0.827 0.652 0.529 0.488 0.644 0.496 0.976 0.675 0.685

Test 0.731 0.821 0.693 0.620 0.469 0.574 0.461 0.979 0.672 0.677

LCNN15×15
Annual Average

10and20m

Train 0.700 0.852 0.666 0.561 0.592 0.739 0.609 0.968 0.713 0.716
Validation 0.713 0.864 0.657 0.521 0.597 0.752 0.657 0.971 0.718 0.723

Test 0.656 0.882 0.735 0.601 0.586 0.832 0.546 0.984 0.731 0.735

LCNN15×15
Annual Average

all bands

Train 0.606 0.835 0.611 0.474 0.443 0.745 0.407 0.963 0.640 0.650
Validation 0.629 0.873 0.647 0.441 0.446 0.724 0.459 0.980 0.655 0.667

Test 0.589 0.886 0.689 0.547 0.416 0.723 0.382 0.983 0.657 0.666
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

LCNN17×17
Annual Average

10m bands

Train 0.710 0.793 0.652 0.562 0.482 0.659 0.603 0.968 0.680 0.682
Validation 0.726 0.809 0.655 0.541 0.466 0.702 0.594 0.975 0.686 0.692

Test 0.724 0.824 0.706 0.611 0.400 0.565 0.612 0.982 0.677 0.679

LCNN17×17
Annual Average
10and20m bands

Train 0.672 0.840 0.656 0.566 0.559 0.757 0.568 0.972 0.702 0.704
Validation 0.658 0.883 0.705 0.530 0.536 0.765 0.603 0.980 0.710 0.714

Test 0.622 0.882 0.729 0.636 0.563 0.795 0.385 0.982 0.706 0.713

LCNN17×17
Annual Average

all bands

Train 0.700 0.851 0.664 0.555 0.553 0.752 0.555 0.969 0.703 0.709
Validation 0.727 0.875 0.691 0.514 0.575 0.739 0.583 0.966 0.712 0.721

Test 0.624 0.871 0.710 0.607 0.537 0.763 0.405 0.979 0.693 0.704
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Half-Year Average

10m bands

Train 0.676 0.802 0.665 0.559 0.576 0.707 0.547 0.976 0.690 0.693
Validation 0.554 0.794 0.635 0.509 0.605 0.732 0.547 0.977 0.668 0.673

Test 0.635 0.779 0.669 0.643 0.630 0.342 0.507 0.986 0.695 0.694

ANN
Half-Year Average
10m and 20m bands

Train 0.697 0.844 0.722 0.559 0.603 0.766 0.630 0.985 0.726 0.729
Validation 0.650 0.857 0.747 0.497 0.641 0.732 0.592 0.965 0.709 0.713

Test 0.673 0.825 0.724 0.640 0.712 0.270 0.593 0.986 0.734 0.721

ANN
Half-Year Average

all bands

Train 0.787 0.861 0.745 0.601 0.617 0.818 0.795 0.992 0.776 0.777
Validation 0.686 0.839 0.703 0.512 0.615 0.715 0.681 0.976 0.713 0.714

Test 0.706 0.821 0.709 0.653 0.706 0.172 0.586 0.986 0.736 0.725

RF
Half-Year Average

10m bands

Train 0.553 0.756 0.658 0.551 0.532 0.619 0.493 0.963 0.641 0.643
Validation 0.480 0.787 0.641 0.524 0.434 0.628 0.492 0.959 0.616 0.622

Test 0.569 0.710 0.651 0.594 0.552 0.174 0.464 0.980 0.647 0.636

RF
Half-Year Average
10m and 20m bands

Train 0.644 0.818 0.705 0.570 0.563 0.714 0.482 0.964 0.683 0.688
Validation 0.582 0.872 0.730 0.494 0.561 0.724 0.543 0.970 0.681 0.687
Validation 0.606 0.857 0.726 0.506 0.540 0.727 0.548 0.976 0.684 0.690

RF
Half-Year Average

all bands

Train 0.656 0.825 0.705 0.589 0.585 0.723 0.525 0.961 0.695 0.699
Validation 0.617 0.867 0.730 0.506 0.536 0.731 0.569 0.975 0.688 0.693

Test 0.660 0.825 0.699 0.630 0.603 0.167 0.485 0.980 0.691 0.678

SVM
Half-Year Average

10m bands

Train 0.563 0.764 0.655 0.522 0.502 0.623 0.455 0.960 0.631 0.635
Validation 0.537 0.766 0.644 0.524 0.511 0.630 0.550 0.959 0.639 0.642

Test 0.596 0.717 0.634 0.596 0.556 0.182 0.462 0.981 0.651 0.641

SVM
Half-Year Average
10m and 20m bands

Train 0.672 0.821 0.708 0.553 0.637 0.771 0.519 0.914 0.700 0.704
Validation 0.635 0.829 0.701 0.547 0.695 0.762 0.547 0.927 0.704 0.709

Test 0.663 0.838 0.723 0.684 0.723 0.366 0.563 0.973 0.736 0.734

SVM
Half-Year Average

all bands

Train 0.678 0.825 0.705 0.559 0.651 0.780 0.547 0.914 0.707 0.711
Validation 0.617 0.838 0.701 0.533 0.699 0.740 0.568 0.937 0.701 0.706

Test 0.645 0.834 0.732 0.675 0.718 0.309 0.557 0.977 0.730 0.727
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

3DLCNN3×3
Half-Year Average

10m bands

Train 0.453 0.804 0.656 0.520 0.449 0.500 0.393 0.941 0.593 0.599
Validation 0.409 0.854 0.672 0.492 0.434 0.540 0.438 0.931 0.599 0.606

Test 0.407 0.818 0.686 0.566 0.447 0.181 0.342 0.977 0.569 0.571

3DLCNN3×3
Half-Year Average
10m and 20m bands

Train 0.640 0.850 0.682 0.561 0.509 0.735 0.419 0.963 0.674 0.685
Validation 0.611 0.874 0.699 0.537 0.507 0.738 0.437 0.975 0.677 0.689

Test 0.648 0.885 0.725 0.665 0.627 0.711 0.504 0.982 0.721 0.726

3DLCNN3×3
Half-Year Average

allm bands

Train 0.621 0.822 0.675 0.549 0.570 0.755 0.404 0.959 0.670 0.681
Validation 0.628 0.846 0.732 0.557 0.606 0.760 0.487 0.961 0.697 0.706

Test 0.642 0.853 0.692 0.668 0.653 0.323 0.426 0.981 0.700 0.701

3DLCNN5×5
Half-Year Average

10m bands

Train 0.628 0.825 0.672 0.528 0.555 0.643 0.453 0.955 0.661 0.664
Validation 0.598 0.828 0.670 0.469 0.556 0.657 0.496 0.959 0.658 0.661

Test 0.655 0.835 0.706 0.571 0.608 0.609 0.421 0.967 0.678 0.683

3DLFCNN5×5
Half-Year Average
10m and 20m bands

Train 0.698 0.861 0.690 0.566 0.613 0.764 0.552 0.968 0.717 0.719
Validation 0.696 0.888 0.701 0.536 0.663 0.757 0.543 0.975 0.724 0.728

Test 0.704 0.897 0.767 0.651 0.686 0.779 0.554 0.982 0.753 0.756

3DLCNN5×5
Half-Year Average

all bands

Train 0.700 0.857 0.687 0.511 0.614 0.766 0.506 0.965 0.704 0.712
Validation 0.698 0.878 0.700 0.548 0.648 0.739 0.496 0.970 0.715 0.723

Test 0.707 0.889 0.748 0.595 0.681 0.755 0.562 0.983 0.741 0.747

3DLCNN9×9
Half-Year Average

10m bands

Train 0.760 0.842 0.670 0.570 0.591 0.741 0.625 0.972 0.723 0.725
Validation 0.716 0.874 0.693 0.553 0.624 0.769 0.610 0.970 0.729 0.733

Test 0.718 0.845 0.708 0.618 0.671 0.859 0.553 0.986 0.743 0.747

3DLCNN9×9
Half-Year Average
10m and 20m bands

Train 0.789 0.852 0.691 0.584 0.627 0.788 0.642 0.966 0.744 0.745
Validation 0.779 0.879 0.754 0.578 0.659 0.749 0.605 0.974 0.751 0.753

Test 0.760 0.885 0.757 0.676 0.735 0.707 0.569 0.980 0.764 0.765

3DLCNN9×9
Half-Year Average

all bands

Train 0.714 0.864 0.674 0.553 0.600 0.779 0.618 0.971 0.722 0.727
Validation 0.723 0.888 0.688 0.554 0.662 0.781 0.628 0.970 0.739 0.745

Test 0.711 0.887 0.747 0.640 0.710 0.826 0.547 0.986 0.757 0.763

3DLCNN3×3
Half-Year Average
10m and 20m bands

Train 0.598 0.849 0.605 0.442 0.489 0.686 0.380 0.957 0.629 0.643
Validation 0.590 0.883 0.631 0.403 0.476 0.704 0.360 0.975 0.633 0.651

Test 0.626 0.871 0.642 0.384 0.540 0.527 0.275 0.984 0.614 0.631

3DLCNN15×15
Half-Year Average
10m and 20m bands

Train 0.688 0.854 0.631 0.536 0.538 0.765 0.594 0.967 0.697 0.700
Validation 0.645 0.884 0.672 0.510 0.524 0.765 0.603 0.980 0.699 0.705

Test 0.709 0.873 0.686 0.638 0.642 0.785 0.564 0.982 0.735 0.738

3DLCNN15×15
Half-Year Average

allm bands

Train 0.509 0.841 0.631 0.529 0.434 0.635 0.421 0.963 0.623 0.631
Validation 0.511 0.883 0.635 0.460 0.440 0.658 0.479 0.975 0.632 0.639

Test 0.485 0.879 0.692 0.615 0.547 0.466 0.293 0.985 0.629 0.635
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Season Average

10m bands

Train 0.759 0.834 0.720 0.615 0.656 0.751 0.699 0.990 0.755 0.754
Validation 0.625 0.844 0.681 0.560 0.596 0.735 0.522 0.953 0.693 0.694

Test 0.635 0.823 0.713 0.584 0.671 0.677 0.554 0.980 0.711 0.711

ANN
Season Average

10m and 20m bands

Train 0.789 0.863 0.730 0.599 0.687 0.801 0.774 0.988 0.779 0.778
Validation 0.663 0.899 0.714 0.587 0.637 0.767 0.618 0.963 0.732 0.734

Test 0.690 0.872 0.752 0.613 0.697 0.804 0.659 0.985 0.761 0.762

ANN
Season Average

all bands

Train 0.702 0.843 0.711 0.557 0.671 0.738 0.585 0.983 0.726 0.729
Validation 0.642 0.894 0.738 0.510 0.671 0.739 0.508 0.968 0.712 0.719

Test 0.624 0.888 0.745 0.617 0.705 0.748 0.566 0.981 0.737 0.741

RF
Season Average

10m bands

Train 0.618 0.759 0.667 0.554 0.588 0.671 0.436 0.962 0.662 0.666
Validation 0.584 0.809 0.692 0.543 0.597 0.692 0.449 0.962 0.671 0.676

Test 0.609 0.792 0.698 0.593 0.565 0.674 0.456 0.980 0.678 0.683

RF
Season Average

10m and 20m bands

Train 0.677 0.825 0.714 0.583 0.610 0.736 0.476 0.961 0.702 0.707
Validation 0.627 0.868 0.727 0.554 0.627 0.759 0.491 0.962 0.705 0.712

Test 0.667 0.867 0.761 0.634 0.648 0.690 0.491 0.979 0.723 0.729

RF
Season Average

all bands

Train 0.679 0.830 0.704 0.582 0.627 0.736 0.508 0.963 0.706 0.711
Validation 0.629 0.877 0.753 0.531 0.609 0.754 0.505 0.962 0.705 0.711

Test 0.660 0.877 0.763 0.637 0.661 0.656 0.490 0.979 0.722 0.727

SVM
Season Average

10m bands

Train 0.634 0.780 0.662 0.534 0.583 0.683 0.459 0.961 0.666 0.670
Validation 0.595 0.786 0.670 0.497 0.625 0.705 0.509 0.963 0.674 0.677

Test 0.642 0.769 0.664 0.606 0.619 0.729 0.460 0.980 0.691 0.696

SVM
Season Average

10m and 20m bands

Train 0.706 0.822 0.693 0.557 0.611 0.773 0.561 0.964 0.714 0.717
Validation 0.718 0.855 0.725 0.541 0.653 0.802 0.610 0.957 0.736 0.739

Test 0.695 0.879 0.743 0.661 0.701 0.845 0.535 0.982 0.757 0.760

SVM
Season Average

all bands

Train 0.712 0.816 0.695 0.565 0.617 0.772 0.583 0.965 0.718 0.720
Validation 0.710 0.844 0.720 0.532 0.635 0.794 0.559 0.962 0.723 0.728

Test 0.694 0.881 0.736 0.666 0.684 0.834 0.568 0.984 0.757 0.760
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

3DLCNN3×3
Season Average

10m bands

Train 0.665 0.794 0.679 0.514 0.581 0.642 0.492 0.954 0.669 0.671
Validation 0.711 0.821 0.713 0.524 0.650 0.663 0.513 0.957 0.701 0.706

Test 0.634 0.806 0.693 0.570 0.597 0.655 0.540 0.977 0.691 0.693

3DLCNN3×3
Season Average

10m and 20m bands

Train 0.685 0.812 0.665 0.540 0.602 0.743 0.362 0.954 0.676 0.686
Validation 0.700 0.886 0.718 0.513 0.632 0.789 0.404 0.963 0.708 0.716

Test 0.671 0.875 0.752 0.624 0.668 0.806 0.366 0.983 0.722 0.733

3DLCNN3×3
Season Average

all bands

Train 0.689 0.823 0.656 0.549 0.599 0.764 0.469 0.968 0.694 0.700
Validation 0.711 0.865 0.710 0.560 0.711 0.779 0.514 0.979 0.735 0.739

Test 0.668 0.877 0.726 0.654 0.630 0.810 0.528 0.980 0.736 0.742

3DLCNN5×5
Season Average

10m bands

Train 0.679 0.804 0.661 0.534 0.526 0.674 0.469 0.962 0.668 0.671
Validation 0.652 0.838 0.692 0.558 0.593 0.702 0.477 0.967 0.690 0.693

Test 0.692 0.828 0.703 0.588 0.535 0.532 0.490 0.977 0.679 0.684

3DLCNN5×5
Season Average

10m and 20m bands

Train 0.726 0.834 0.694 0.535 0.633 0.762 0.532 0.968 0.714 0.718
Validation 0.757 0.857 0.710 0.554 0.675 0.781 0.559 0.973 0.738 0.743

Test 0.725 0.883 0.757 0.636 0.692 0.799 0.580 0.984 0.761 0.763

3DLCNN5×5
Season Average

all bands

Train 0.610 0.818 0.630 0.515 0.576 0.758 0.277 0.960 0.649 0.666
Validation 0.642 0.841 0.702 0.480 0.608 0.778 0.280 0.968 0.671 0.690

Test 0.617 0.867 0.691 0.656 0.579 0.803 0.452 0.979 0.707 0.715

3DLCNN9×9
Season Average

10m bands

Train 0.752 0.816 0.666 0.536 0.650 0.736 0.607 0.972 0.720 0.724
Validation 0.712 0.865 0.704 0.517 0.667 0.811 0.587 0.963 0.732 0.740

Test 0.734 0.804 0.676 0.599 0.678 0.783 0.608 0.978 0.738 0.743

3DLCNN9×9
Season Average

10m and 20m bands

Train 0.790 0.848 0.685 0.585 0.625 0.785 0.674 0.978 0.748 0.751
Validation 0.777 0.901 0.772 0.566 0.676 0.782 0.633 0.967 0.763 0.766

Test 0.778 0.884 0.760 0.684 0.736 0.818 0.677 0.981 0.794 0.795

3DLCNN9×9
Season Average

all bands

Train 0.695 0.845 0.661 0.497 0.650 0.776 0.593 0.964 0.712 0.717
Validation 0.739 0.879 0.711 0.479 0.667 0.777 0.614 0.979 0.734 0.740

Test 0.696 0.897 0.748 0.546 0.693 0.813 0.613 0.987 0.752 0.757

3DLCNN15×15
Season Average

10m bands

Train 0.749 0.815 0.642 0.496 0.611 0.715 0.599 0.969 0.702 0.708
Validation 0.723 0.836 0.709 0.500 0.638 0.749 0.633 0.967 0.723 0.729

Test 0.728 0.830 0.660 0.537 0.675 0.698 0.619 0.980 0.724 0.730

3DLCNN15×15
Season Average

10m and 20m bands

Train 0.763 0.847 0.652 0.579 0.614 0.785 0.681 0.973 0.738 0.738
Validation 0.809 0.899 0.717 0.588 0.699 0.765 0.635 0.956 0.762 0.760

Test 0.723 0.878 0.724 0.678 0.713 0.759 0.595 0.982 0.762 0.762

3DLCNN15×15
Season Average

all bands

Train 0.716 0.834 0.647 0.561 0.627 0.791 0.620 0.977 0.724 0.726
Validation 0.774 0.868 0.693 0.509 0.644 0.778 0.621 0.978 0.737 0.740

Test 0.710 0.880 0.729 0.669 0.713 0.733 0.467 0.983 0.743 0.747
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Six Monthly Average

10m bands

Train 0.746 0.749 0.481 0.597 0.709 0.784 0.441 0.907 0.681 0.697
Validation 0.641 0.725 0.439 0.466 0.635 0.700 0.320 0.855 0.599 0.618

Test 0.663 0.687 0.325 0.514 0.725 0.652 0.466 0.956 0.690 0.707

ANN
Six Monthly Average
10m and 20m bands

Train 0.777 0.894 0.770 0.646 0.769 0.824 0.569 0.991 0.783 0.785
Validation 0.671 0.870 0.741 0.531 0.640 0.758 0.432 0.955 0.702 0.709

Test 0.706 0.815 0.703 0.554 0.748 0.634 0.308 0.987 0.746 0.756

ANN
Six Monthly Average

all bands

Train 0.841 0.811 0.727 0.604 0.733 0.769 0.780 0.994 0.781 0.780
Validation 0.699 0.789 0.676 0.474 0.607 0.694 0.615 0.983 0.691 0.692

Test 0.688 0.761 0.670 0.506 0.750 0.567 0.493 0.985 0.744 0.741

RF
Six Monthly Average

10m bands

Train 0.649 0.792 0.661 0.592 0.663 0.712 0.353 0.951 0.676 0.684
Validation 0.581 0.825 0.727 0.533 0.687 0.722 0.358 0.939 0.677 0.685

Test 0.685 0.810 0.682 0.524 0.681 0.408 0.459 0.985 0.732 0.735

RF
Six Monthly Average
10m and 20m bands

Train 0.705 0.853 0.714 0.620 0.692 0.760 0.389 0.962 0.717 0.726
Validation 0.649 0.862 0.748 0.576 0.696 0.832 0.451 0.946 0.721 0.728

Test 0.724 0.869 0.750 0.544 0.674 0.400 0.427 0.985 0.747 0.753

RF
Six Monthly Average

all bands

Train 0.706 0.851 0.718 0.618 0.679 0.760 0.383 0.958 0.713 0.722
Validation 0.689 0.862 0.753 0.586 0.681 0.816 0.507 0.955 0.732 0.738

Test 0.734 0.880 0.756 0.567 0.664 0.368 0.411 0.986 0.748 0.753

SVM
Six Monthly Average

10m bands

Train 0.683 0.800 0.655 0.550 0.677 0.711 0.364 0.890 0.672 0.682
Validation 0.638 0.774 0.685 0.518 0.662 0.750 0.239 0.868 0.648 0.666

Test 0.721 0.774 0.654 0.511 0.724 0.130 0.519 0.976 0.727 0.735

SVM
Six Monthly Average
10m and 20m bands

Train 0.713 0.842 0.690 0.577 0.685 0.812 0.548 0.963 0.728 0.731
Validation 0.741 0.850 0.720 0.512 0.646 0.820 0.636 0.956 0.732 0.734

Test 0.744 0.890 0.723 0.617 0.742 0.651 0.561 0.985 0.790 0.789

SVM
Six Monthly Average

all bands

Train 0.772 0.852 0.709 0.611 0.753 0.835 0.584 0.902 0.754 0.758
Validation 0.794 0.833 0.747 0.554 0.727 0.808 0.605 0.875 0.745 0.750

Test 0.715 0.866 0.761 0.570 0.749 0.632 0.604 0.972 0.783 0.785

LSTM
Six Monthly Average

10m bands

Train 0.663 0.760 0.661 0.492 0.661 0.706 0.522 0.962 0.680 0.681
Validation 0.609 0.785 0.713 0.485 0.662 0.655 0.449 0.948 0.669 0.672

Test 0.667 0.753 0.692 0.442 0.593 0.229 0.551 0.987 0.706 0.707

LSTM
Six Monthly Average
10m and 20m bands

Train 0.708 0.863 0.686 0.547 0.659 0.785 0.429 0.983 0.710 0.717
Validation 0.638 0.848 0.747 0.500 0.638 0.793 0.348 0.965 0.687 0.699

Test 0.707 0.839 0.756 0.576 0.640 0.661 0.416 0.987 0.752 0.758

LSTM
Six Monthly Average

all bands

Train 0.774 0.858 0.693 0.558 0.696 0.817 0.729 0.988 0.760 0.762
Validation 0.696 0.875 0.720 0.482 0.630 0.792 0.667 0.982 0.727 0.731

Test 0.735 0.833 0.709 0.600 0.698 0.708 0.541 0.985 0.775 0.775
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Sentinel-2 Model Results [continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

1DCNN6
Six Monthly Average

10m bands

Train 0.730 0.838 0.679 0.585 0.660 0.732 0.461 0.964 0.710 0.713
Validation 0.667 0.810 0.671 0.560 0.623 0.772 0.598 0.947 0.703 0.705

Test 0.718 0.823 0.700 0.535 0.713 0.638 0.554 0.990 0.767 0.766

1DCNN6
Six Monthly Average
10m and 20m bands

Train 0.851 0.869 0.746 0.635 0.755 0.864 0.820 0.993 0.814 0.811
Validation 0.733 0.850 0.736 0.587 0.702 0.809 0.687 0.974 0.757 0.755

Test 0.755 0.831 0.696 0.579 0.757 0.667 0.643 0.985 0.791 0.789

1DCNN6
Six Monthly Average

all bands

Train 0.869 0.884 0.757 0.645 0.729 0.836 0.807 0.992 0.813 0.811
Validation 0.748 0.894 0.727 0.578 0.617 0.762 0.682 0.974 0.745 0.746

Test 0.714 0.874 0.734 0.561 0.740 0.661 0.540 0.985 0.778 0.777
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B.3 Landsat-8 Results

Table B.3: Landsat-8 Model Results.

Sealed
Coniferous
Forest

Broadleaved
Forest

Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Annual Average

Train 0.577 0.832 0.492 0.409 0.471 0.734 0.610 0.977 0.638 0.644
Validation 0.532 0.844 0.503 0.388 0.450 0.730 0.577 0.990 0.628 0.635

Test 0.566 0.853 0.656 0.426 0.489 0.737 0.481 0.978 0.652 0.652

RF
Annual Average

Train 0.590 0.799 0.583 0.518 0.362 0.658 0.410 0.955 0.614 0.626
Validation 0.564 0.815 0.604 0.510 0.322 0.633 0.466 0.970 0.614 0.628

Test 0.565 0.794 0.586 0.521 0.384 0.451 0.444 0.977 0.595 0.603

SVM
Annual Average

Train 0.569 0.801 0.570 0.509 0.374 0.687 0.448 0.959 0.619 0.626
Validation 0.591 0.845 0.577 0.454 0.360 0.681 0.460 0.971 0.621 0.633

Test 0.561 0.840 0.639 0.515 0.462 0.562 0.531 0.983 0.640 0.642

LCNN3×3
Annual Average

Train 0.499 0.784 0.534 0.459 0.283 0.673 0.439 0.951 0.581 0.590
Validation 0.526 0.800 0.522 0.429 0.400 0.634 0.471 0.980 0.598 0.606

Test 0.491 0.830 0.596 0.477 0.326 0.547 0.539 0.982 0.600 0.606

LCNN5×5
Annual Average

Train 0.545 0.808 0.548 0.449 0.366 0.689 0.497 0.955 0.610 0.618
Validation 0.554 0.804 0.546 0.402 0.486 0.678 0.481 0.966 0.618 0.628

Test 0.511 0.826 0.590 0.537 0.353 0.650 0.418 0.985 0.613 0.623

LCNN9×9
Annual Average

Train 0.727 0.836 0.646 0.479 0.558 0.748 0.665 0.974 0.705 0.707
Validation 0.667 0.817 0.610 0.462 0.515 0.738 0.606 0.985 0.677 0.681

Test 0.643 0.838 0.669 0.474 0.558 0.710 0.527 0.982 0.678 0.680

LCNN15×15
Annual Average

Train 0.518 0.769 0.456 0.380 0.280 0.702 0.608 0.963 0.583 0.597
Validation 0.486 0.805 0.449 0.320 0.322 0.655 0.605 0.980 0.576 0.592

Test 0.483 0.783 0.418 0.213 0.350 0.578 0.516 0.980 0.538 0.557
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Landsat-8 Model Results [continued].

Sealed
Coniferous
Forest

Broadleaved
Forest

Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN
Half-Year Average

Train 0.730 0.858 0.547 0.532 0.593 0.765 0.649 0.975 0.714 0.719
Validation 0.676 0.812 0.495 0.490 0.525 0.714 0.571 0.988 0.665 0.676

Test 0.674 0.812 0.597 0.605 0.688 0.180 0.330 0.973 0.680 0.680

RF
Half-Year Average

Train 0.643 0.808 0.636 0.529 0.546 0.684 0.394 0.969 0.664 0.674
Validation 0.705 0.771 0.627 0.492 0.576 0.720 0.460 0.971 0.674 0.687

Test 0.669 0.793 0.692 0.569 0.593 0.030 0.288 0.986 0.667 0.658

SVM
Half-Year Average

Train 0.619 0.802 0.615 0.520 0.577 0.765 0.401 0.874 0.657 0.668
Validation 0.701 0.826 0.637 0.613 0.636 0.772 0.491 0.896 0.702 0.710

Test 0.617 0.792 0.666 0.669 0.692 0.177 0.463 0.952 0.699 0.702

3DLFCNN3×3
Half-Year Average

Train 0.672 0.828 0.601 0.505 0.572 0.768 0.535 0.973 0.692 0.694
Validation 0.699 0.841 0.630 0.507 0.589 0.777 0.558 0.988 0.706 0.710

Test 0.676 0.831 0.694 0.636 0.703 0.224 0.435 0.983 0.717 0.718

3DLFCNN5×5
Half-Year Average

Train 0.591 0.800 0.584 0.405 0.555 0.711 0.547 0.965 0.656 0.659
Validation 0.633 0.800 0.589 0.321 0.568 0.739 0.534 0.977 0.655 0.660

Test 0.593 0.778 0.652 0.368 0.583 0.000 0.377 0.981 0.630 0.644

3DLFCNN9×9
Half-Year Average

Train 0.693 0.826 0.593 0.489 0.555 0.764 0.572 0.966 0.692 0.700
Validation 0.759 0.820 0.596 0.517 0.619 0.740 0.604 0.988 0.712 0.720

Test 0.695 0.841 0.675 0.626 0.694 0.177 0.525 0.986 0.726 0.715
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B.4 Sentinel-1 Results With Shrub

Table B.4: Sentinel-1 Model Results including shrub class.

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

ANN
Annual Average

Train 0.389 0.582 0.238 0.406 0.393 0.435 0.415 0.813 0.260 0.437 0.446
Validation 0.382 0.562 0.234 0.411 0.382 0.438 0.424 0.812 0.276 0.436 0.446

Test 0.476 0.611 0.297 0.457 0.377 0.108 0.410 0.844 0.298 0.442 0.458

RF
Annual Average

Train 0.408 0.598 0.296 0.422 0.503 0.456 0.424 0.819 0.292 0.469 0.473
Validation 0.382 0.555 0.271 0.400 0.495 0.439 0.411 0.826 0.269 0.450 0.453

Test 0.460 0.590 0.228 0.434 0.419 0.131 0.413 0.836 0.287 0.432 0.441

SVM
Annual Average

Train 0.322 0.569 0.222 0.403 0.373 0.336 0.382 0.801 0.250 0.409 0.423
Validation 0.330 0.565 0.240 0.414 0.359 0.325 0.387 0.805 0.264 0.413 0.427

Test 0.345 0.561 0.196 0.446 0.249 0.119 0.380 0.797 0.263 0.381 0.407

ANN
Half-Year Average

Train 0.523 0.735 0.380 0.372 0.567 0.491 0.448 0.855 0.266 0.516 0.515
Validation 0.521 0.723 0.402 0.389 0.562 0.495 0.462 0.857 0.283 0.522 0.521

Test 0.631 0.788 0.512 0.412 0.586 0.277 0.475 0.908 0.312 0.554 0.555

RF
Half-Year Average

Train 0.544 0.740 0.431 0.426 0.589 0.490 0.460 0.862 0.318 0.542 0.542
Validation 0.519 0.715 0.411 0.401 0.568 0.470 0.448 0.861 0.302 0.523 0.523

Test 0.618 0.764 0.497 0.422 0.491 0.243 0.463 0.861 0.315 0.528 0.536

SVM
Half-Year Average

Train 0.522 0.728 0.359 0.375 0.548 0.466 0.423 0.848 0.260 0.504 0.506
Validation 0.523 0.711 0.374 0.386 0.561 0.464 0.431 0.861 0.273 0.511 0.511

Test 0.619 0.769 0.494 0.441 0.584 0.247 0.449 0.910 0.313 0.546 0.550
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Sentinel-1 Model Results including shrub class [continued].

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

ANN
Season Average

Train 0.544 0.762 0.457 0.386 0.639 0.502 0.472 0.890 0.279 0.549 0.551
Validation 0.537 0.751 0.455 0.385 0.635 0.496 0.483 0.891 0.300 0.550 0.551

Test 0.655 0.794 0.533 0.412 0.582 0.197 0.469 0.878 0.300 0.547 0.558

RF
Season Average

Train 0.570 0.769 0.466 0.450 0.651 0.521 0.503 0.887 0.328 0.573 0.574
Validation 0.540 0.747 0.435 0.416 0.629 0.485 0.472 0.887 0.296 0.547 0.547

Test 0.663 0.787 0.533 0.454 0.613 0.217 0.473 0.911 0.328 0.564 0.571

SVM
Season Average

Train 0.544 0.760 0.399 0.396 0.610 0.470 0.467 0.864 0.272 0.533 0.535
Validation 0.537 0.748 0.423 0.404 0.619 0.452 0.480 0.876 0.286 0.539 0.539

Test 0.656 0.788 0.532 0.450 0.609 0.229 0.457 0.901 0.351 0.563 0.568

ANN
Monthly Average

Train 0.550 0.787 0.546 0.417 0.674 0.667 0.559 0.878 0.374 0.604 0.605
Validation 0.533 0.744 0.499 0.369 0.631 0.634 0.527 0.864 0.352 0.570 0.571

Test 0.622 0.796 0.557 0.383 0.548 0.344 0.511 0.884 0.279 0.553 0.562

RF
Monthly Average

Train 0.612 0.826 0.647 0.520 0.698 0.600 0.598 0.935 0.400 0.650 0.652
Validation 0.554 0.769 0.545 0.401 0.641 0.544 0.529 0.925 0.297 0.575 0.577

Test 0.618 0.783 0.556 0.412 0.387 0.151 0.502 0.828 0.262 0.511 0.536

SVM
Monthly Average

Train 0.537 0.796 0.515 0.379 0.638 0.533 0.517 0.917 0.271 0.566 0.569
Validation 0.542 0.769 0.505 0.356 0.620 0.544 0.517 0.913 0.270 0.554 0.558

Test 0.619 0.790 0.551 0.394 0.520 0.303 0.490 0.877 0.325 0.548 0.560

LSTM
Monthly Average

Train 0.567 0.815 0.511 0.436 0.662 0.548 0.533 0.916 0.286 0.585 0.581
Validation 0.541 0.775 0.513 0.452 0.641 0.542 0.524 0.907 0.292 0.572 0.568

Test 0.607 0.805 0.582 0.454 0.472 0.243 0.503 0.850 0.263 0.540 0.552
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B.5 Sentinel-2 Results With Shrub

Sentinel-2 Model Results including shrub class.

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

ANN
Annual Average
10m res bands

Train 0.501 0.664 0.299 0.422 0.690 0.506 0.478 0.928 0.328 0.536 0.536
Validation 0.469 0.651 0.309 0.427 0.685 0.499 0.474 0.935 0.320 0.531 0.531

Test 0.584 0.739 0.366 0.474 0.677 0.263 0.512 0.885 0.317 0.544 0.540
ANN Annual Average

10m and 20m
res bands

Train 0.577 0.810 0.493 0.462 0.798 0.692 0.676 0.941 0.429 0.652 0.653
Validation 0.552 0.795 0.479 0.460 0.766 0.681 0.650 0.926 0.440 0.637 0.638

Test 0.665 0.848 0.616 0.488 0.712 0.564 0.625 0.859 0.435 0.648 0.645
ANN

Annual Average
All bands

Train 0.613 0.836 0.532 0.475 0.827 0.732 0.717 0.949 0.417 0.675 0.678
Validation 0.561 0.803 0.496 0.460 0.779 0.712 0.684 0.936 0.403 0.646 0.648

Test 0.671 0.858 0.590 0.501 0.716 0.571 0.634 0.921 0.379 0.651 0.654
RF

Annual Average
10m bands

Train 0.520 0.684 0.409 0.443 0.706 0.565 0.528 0.932 0.353 0.571 0.573
Validation 0.464 0.661 0.377 0.424 0.691 0.519 0.496 0.938 0.328 0.545 0.547

Test 0.590 0.765 0.414 0.461 0.626 0.273 0.514 0.722 0.285 0.525 0.528
RF

Annual Average
10m and 20m bands

Train 0.578 0.787 0.473 0.460 0.737 0.664 0.609 0.929 0.410 0.626 0.627
Validation 0.540 0.765 0.438 0.430 0.728 0.635 0.586 0.931 0.386 0.603 0.605

Test 0.675 0.863 0.484 0.499 0.636 0.550 0.567 0.851 0.411 0.617 0.615
RF

Annual Average
all bands

Train 0.603 0.809 0.544 0.519 0.769 0.695 0.652 0.935 0.452 0.663 0.663
Validation 0.549 0.774 0.451 0.438 0.745 0.649 0.626 0.936 0.394 0.617 0.617

Test 0.682 0.861 0.500 0.495 0.665 0.524 0.586 0.857 0.417 0.623 0.621
SVM

Annual Average
10m bands

Train 0.459 0.648 0.301 0.392 0.660 0.541 0.505 0.915 0.313 0.525 0.532
Validation 0.427 0.631 0.313 0.420 0.666 0.560 0.512 0.923 0.310 0.528 0.535

Test 0.531 0.720 0.375 0.508 0.711 0.417 0.538 0.937 0.252 0.559 0.563
SVM

Annual Average
10m and 20m bands

Train 0.560 0.773 0.401 0.410 0.710 0.648 0.623 0.915 0.377 0.600 0.604
Validation 0.531 0.756 0.393 0.435 0.708 0.653 0.628 0.923 0.380 0.599 0.604

Test 0.675 0.864 0.553 0.523 0.699 0.590 0.603 0.924 0.376 0.647 0.647
SVM

Annual Average
all bands

Train 0.563 0.774 0.418 0.414 0.731 0.651 0.636 0.915 0.381 0.608 0.612
Validation 0.541 0.752 0.424 0.440 0.729 0.658 0.652 0.927 0.397 0.612 0.616

Test 0.681 0.862 0.543 0.520 0.694 0.583 0.589 0.922 0.396 0.645 0.645
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Sentinel-2 Model Results including shrub class [continued].

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

ANN
Half Year Average

10m bands

Train 0.591 0.799 0.468 0.466 0.785 0.612 0.638 0.952 0.408 0.636 0.632
Validation 0.553 0.766 0.463 0.469 0.766 0.591 0.619 0.953 0.403 0.622 0.618

Test 0.617 0.807 0.539 0.505 0.648 0.152 0.597 0.732 0.337 0.562 0.574
ANN

Half Year Average
10mand20m bands

Train 0.575 0.815 0.574 0.404 0.814 0.724 0.712 0.942 0.429 0.663 0.672
Validation 0.548 0.799 0.563 0.390 0.777 0.703 0.681 0.938 0.436 0.647 0.655

Test 0.628 0.834 0.614 0.428 0.762 0.547 0.633 0.962 0.359 0.644 0.654
ANN

Half Year Average
all bands

Train 0.587 0.848 0.526 0.461 0.843 0.733 0.714 0.954 0.468 0.680 0.683
Validation 0.551 0.816 0.527 0.472 0.800 0.707 0.701 0.946 0.466 0.664 0.667

Test 0.670 0.867 0.620 0.536 0.626 0.530 0.639 0.621 0.414 0.617 0.618
RF

Half Year Average
10m bands

Train 0.582 0.749 0.481 0.470 0.734 0.595 0.567 0.931 0.387 0.611 0.612
Validation 0.537 0.726 0.430 0.439 0.725 0.561 0.550 0.933 0.355 0.585 0.586

Test 0.609 0.802 0.546 0.442 0.649 0.449 0.532 0.788 0.328 0.576 0.577
RF

Half Year Average
10and20m bands

Train 0.604 0.812 0.505 0.486 0.758 0.681 0.640 0.928 0.429 0.648 0.649
Validation 0.563 0.785 0.478 0.452 0.738 0.640 0.623 0.931 0.415 0.625 0.626

Test 0.663 0.870 0.583 0.482 0.680 0.567 0.608 0.841 0.410 0.636 0.633
RF

Half Year Average
all bands

Train 0.591 0.780 0.447 0.456 0.745 0.649 0.628 0.925 0.403 0.624 0.625
Validation 0.546 0.755 0.427 0.429 0.729 0.635 0.612 0.927 0.385 0.604 0.605

Test 0.685 0.848 0.516 0.470 0.703 0.300 0.597 0.882 0.381 0.608 0.610
SVM

Half Year Average
10m bands

Train 0.551 0.738 0.409 0.402 0.697 0.573 0.555 0.917 0.326 0.574 0.579
Validation 0.527 0.713 0.427 0.426 0.695 0.579 0.553 0.921 0.317 0.573 0.577

Test 0.590 0.785 0.583 0.454 0.725 0.442 0.551 0.951 0.280 0.601 0.606
SVM

Half Year Average
10and20m bands

Train 0.593 0.802 0.453 0.420 0.741 0.663 0.663 0.915 0.398 0.626 0.629
Validation 0.574 0.780 0.479 0.452 0.732 0.664 0.663 0.921 0.416 0.630 0.632

Test 0.698 0.876 0.624 0.517 0.714 0.603 0.637 0.928 0.393 0.668 0.668
SVM

Half Year Average
all bands

Train 0.590 0.805 0.458 0.427 0.755 0.664 0.673 0.916 0.401 0.631 0.634
Validation 0.571 0.787 0.479 0.451 0.742 0.665 0.677 0.924 0.418 0.634 0.636

Test 0.701 0.870 0.628 0.515 0.706 0.570 0.623 0.927 0.404 0.663 0.663
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Sentinel-2 Model Results including shrub class [continued].

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

ANN
Season Average

10 and 20m bands

Train 0.653 0.867 0.604 0.504 0.844 0.731 0.747 0.943 0.458 0.703 0.703
Validation 0.609 0.835 0.562 0.481 0.788 0.638 0.699 0.927 0.434 0.666 0.666

Test 0.700 0.883 0.642 0.508 0.740 0.501 0.648 0.927 0.337 0.660 0.661
RF

Season Average
10m bands

Train 0.566 0.755 0.425 0.462 0.710 0.506 0.532 0.906 0.337 0.579 0.579
Validation 0.522 0.739 0.409 0.473 0.711 0.476 0.515 0.916 0.333 0.571 0.571

Test 0.652 0.812 0.566 0.489 0.710 0.491 0.530 0.916 0.329 0.615 0.615
RF

Season Average
10 and 20m bands

Train 0.673 0.854 0.632 0.580 0.812 0.713 0.701 0.932 0.497 0.709 0.707
Validation 0.608 0.830 0.512 0.506 0.790 0.652 0.641 0.932 0.416 0.654 0.653

Test 0.704 0.880 0.619 0.524 0.720 0.639 0.629 0.893 0.406 0.670 0.667
RF

Season Average
all bands

Train 0.647 0.844 0.561 0.536 0.801 0.676 0.682 0.923 0.447 0.678 0.677
Validation 0.608 0.823 0.487 0.509 0.790 0.629 0.652 0.931 0.412 0.650 0.650

Test 0.711 0.878 0.601 0.518 0.723 0.641 0.625 0.895 0.401 0.667 0.665
SVM

Season Average
10 and 20m bands

Train 0.622 0.785 0.513 0.469 0.781 0.635 0.678 0.889 0.385 0.638 0.638
Validation 0.573 0.765 0.505 0.481 0.792 0.619 0.693 0.902 0.392 0.642 0.640

Test 0.688 0.837 0.672 0.581 0.761 0.000 0.652 0.909 0.392 0.681 0.683
SVM Season Average
10 and 20m bands
no winter data

Train 0.618 0.836 0.497 0.471 0.756 0.652 0.677 0.897 0.377 0.640 0.641
Validation 0.611 0.829 0.504 0.508 0.764 0.645 0.677 0.911 0.411 0.652 0.652

Test 0.700 0.881 0.643 0.547 0.726 0.683 0.647 0.937 0.382 0.683 0.683
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Sentinel-2 Model Results including shrub class [continued].

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

LCNN3×3
Annual Average

10m bands

Train 0.517 0.729 0.277 0.424 0.692 0.515 0.559 0.927 0.325 0.553 0.552
Validation 0.500 0.711 0.297 0.450 0.691 0.536 0.562 0.928 0.327 0.557 0.557

Test 0.604 0.776 0.338 0.515 0.660 0.295 0.594 0.827 0.365 0.560 0.556
LCNN3×3

Annual Average
10m and 20m bands

Train 0.589 0.828 0.454 0.425 0.743 0.657 0.662 0.933 0.378 0.629 0.631
Validation 0.585 0.820 0.468 0.458 0.744 0.654 0.672 0.937 0.409 0.638 0.640

Test 0.691 0.862 0.583 0.502 0.577 0.576 0.616 0.742 0.356 0.611 0.611
LCNN5×5

Annual Average
10m bands

Train 0.469 0.743 0.304 0.378 0.691 0.489 0.530 0.904 0.341 0.541 0.543
Validation 0.464 0.741 0.311 0.407 0.695 0.518 0.550 0.904 0.363 0.552 0.555

Test 0.575 0.772 0.315 0.474 0.633 0.212 0.545 0.762 0.387 0.528 0.529
LCNN5×5

Annual Average
10m and 20m bands

Train 0.562 0.819 0.364 0.409 0.738 0.631 0.625 0.929 0.334 0.600 0.607
Validation 0.544 0.811 0.364 0.442 0.739 0.636 0.632 0.934 0.335 0.603 0.609

Test 0.672 0.863 0.447 0.501 0.656 0.598 0.564 0.805 0.353 0.605 0.607
LCNN9×9

Annual Average
10and20m

Train 0.614 0.857 0.504 0.479 0.803 0.678 0.738 0.937 0.435 0.672 0.674
Validation 0.599 0.838 0.514 0.479 0.807 0.671 0.757 0.945 0.469 0.676 0.677

Test 0.722 0.880 0.648 0.471 0.657 0.419 0.673 0.853 0.412 0.643 0.648
LCNN15×15

Annual Average
10m

Train 0.591 0.827 0.525 0.402 0.829 0.658 0.775 0.946 0.434 0.666 0.675
Validation 0.545 0.798 0.502 0.397 0.819 0.646 0.762 0.949 0.414 0.649 0.658

Test 0.629 0.818 0.549 0.419 0.813 0.499 0.708 0.960 0.420 0.651 0.660
LCNN15×15

Annual Average
10and20m

Train 0.634 0.857 0.449 0.508 0.830 0.705 0.783 0.943 0.431 0.682 0.686
Validation 0.599 0.832 0.443 0.512 0.818 0.699 0.770 0.942 0.432 0.671 0.676

Test 0.721 0.862 0.665 0.499 0.774 0.267 0.709 0.917 0.412 0.658 0.667
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B.6 Landsat-8 Results With Shrub

Table B.5: Landsat-8 Model Results including shrub class.

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

ANN
Annual Average

Train 0.512 0.777 0.349 0.423 0.730 0.594 0.615 0.930 0.349 0.588 0.596
Validation 0.517 0.768 0.377 0.453 0.726 0.575 0.614 0.931 0.349 0.593 0.600

Test 0.630 0.772 0.473 0.500 0.670 0.148 0.554 0.906 0.317 0.595 0.600

RF
Annual Average

Train 0.561 0.805 0.468 0.484 0.740 0.626 0.603 0.929 0.412 0.627 0.626
Validation 0.508 0.785 0.394 0.450 0.714 0.576 0.549 0.928 0.334 0.584 0.584

Test 0.650 0.825 0.455 0.479 0.654 0.058 0.520 0.890 0.327 0.588 0.591

SVM
Annual Average

Train 0.508 0.783 0.328 0.399 0.706 0.571 0.564 0.918 0.320 0.568 0.571
Validation 0.498 0.770 0.364 0.440 0.703 0.562 0.571 0.925 0.318 0.575 0.578

Test 0.632 0.813 0.403 0.496 0.573 0.094 0.527 0.862 0.303 0.564 0.575

ANN
Half Year Average

Train 0.594 0.833 0.529 0.467 0.789 0.722 0.679 0.966 0.412 0.662 0.660
Validation 0.570 0.790 0.501 0.476 0.736 0.698 0.648 0.957 0.381 0.633 0.632

Test 0.681 0.849 0.581 0.493 0.759 0.026 0.624 0.941 0.318 0.658 0.664

RF
Half Year Average

Train 0.619 0.829 0.610 0.549 0.745 0.698 0.662 0.955 0.495 0.684 0.683
Validation 0.572 0.783 0.495 0.462 0.687 0.657 0.602 0.957 0.369 0.615 0.615

Test 0.676 0.844 0.564 0.523 0.690 0.073 0.588 0.906 0.350 0.642 0.640

SVM
Half Year Average

Train 0.540 0.812 0.437 0.422 0.674 0.647 0.620 0.938 0.351 0.602 0.603
Validation 0.552 0.786 0.456 0.477 0.679 0.637 0.622 0.953 0.360 0.608 0.609

Test 0.660 0.856 0.565 0.540 0.606 0.140 0.611 0.869 0.336 0.626 0.633
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Landsat-8 Model Results including shrub class [continued].

Broadleaved
Forest

Coniferous
Forest

Periodically
Herbaceous

Permanent
Herbaceous

Non-
vegetated

Sparsely
Vegetated

Sealed Water Shrub Weighted F1 OA%

LCNN3×3
Annual Average

Train 0.504 0.794 0.367 0.249 0.736 0.601 0.563 0.915 0.320 0.562 0.568
Validation 0.508 0.785 0.368 0.287 0.742 0.602 0.562 0.926 0.329 0.569 0.573

Test 0.660 0.816 0.372 0.399 0.572 0.113 0.491 0.861 0.293 0.546 0.552

LCNN5×5
Annual Average

Train 0.488 0.792 0.329 0.372 0.756 0.611 0.595 0.915 0.309 0.574 0.575
Validation 0.491 0.779 0.337 0.421 0.773 0.606 0.605 0.925 0.324 0.586 0.586

Test 0.660 0.800 0.415 0.456 0.641 0.138 0.532 0.829 0.276 0.565 0.562

LCNN9×9
Annual Average

Train 0.562 0.815 0.431 0.436 0.832 0.634 0.705 0.945 0.399 0.642 0.645
Validation 0.532 0.799 0.409 0.451 0.813 0.605 0.685 0.941 0.378 0.627 0.629

Test 0.649 0.810 0.483 0.416 0.741 0.046 0.637 0.913 0.309 0.611 0.617

LCNN15×15
Annual Average

Train 0.609 0.848 0.580 0.422 0.865 0.738 0.763 0.951 0.437 0.691 0.703
Validation 0.539 0.812 0.524 0.360 0.834 0.674 0.736 0.941 0.379 0.646 0.660

Test 0.641 0.821 0.608 0.376 0.764 0.153 0.670 0.915 0.330 0.635 0.653
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Appendix C

Chapter 4 Results

Contents

C.1 Sensor Fusion Comparative Results . . . . . . . . . . . . . . 314

C.1.1 Pixel-Level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 315

C.1.2 Decision-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . 325

C.2 Variable Data Fusion Assessment Results . . . . . . . . . . . 347

C.1 Sensor Fusion Comparative Results

The weighted F1 and OA of each model was calculated to assess the accuracy of both

pixel-level fusion and decision-level fusion techniques. Additionally, the difference in

Weighted F1 and OA relative to mono-senor models trained in Chapter 3 was calculated.

The results indicating the difference in F1 and OA will denote by ∆. For each pixel-

level fused model, ∆ F1 and OA was calculated relative to the best mono-sensor model

prepared using the same temporal splits. For the decision-level fusion models, the ∆ F1

and OA was calculated relative to the highest accuracy Sentinel-2 prior model used in

the fusion.
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C.1.1 Pixel-Level fusion

C.1.1.1 Fusion with Annually Averaged data

Table C.1: Results of Pixel-level Fusion using Annually Averaged data. ∆ result calculated relative to LFCNN9×9 using Annually
Averaged Sentinel-2 data.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN S1, and
S2 10m and 20m bands

Train 0.637 0.858 0.742 0.544 0.564 0.778 0.643 0.975 0.719 0.718
Train ∆ -0.096 +0.001 +0.079 +0.040 -0.043 +0.009 +0.011 +0.011 +0.001 -0.003
Validation 0.564 0.883 0.742 0.511 0.553 0.753 0.612 0.975 0.701 0.704

Validation ∆ -0.209 -0.013 +0.056 +0.047 -0.044 -0.004 -0.063 +0.006 -0.028 -0.031
Test 0.638 0.881 0.762 0.631 0.565 0.811 0.606 0.986 0.737 0.733

Test ∆ -0.041 +0.003 +0.056 +0.066 -0.089 +0.001 +0.061 +0.004 +0.005 -0.003

ANN L8
and

S2 10m and 20m bands

Train 0.784 0.875 0.721 0.605 0.617 0.833 0.745 0.991 0.772 0.776
Train ∆ +0.050 +0.019 +0.058 +0.101 +0.011 +0.064 +0.111 +0.027 +0.054 +0.055
Validation 0.720 0.878 0.692 0.529 0.613 0.755 0.585 0.970 0.722 0.727

Validation ∆ -0.053 -0.018 +0.008 +0.062 +0.016 -0.002 -0.090 +0.001 -0.008 -0.008
Test 0.661 0.881 0.739 0.598 0.627 0.752 0.505 0.987 0.723 0.725

Test ∆ -0.017 +0.004 +0.034 +0.029 -0.026 -0.051 -0.039 +0.006 -0.007 -0.010

ANN S1 and L8

Train 0.658 0.831 0.680 0.572 0.465 0.715 0.602 0.982 0.690 0.694
Train ∆ -0.076 -0.025 +0.017 +0.068 -0.141 -0.054 -0.032 +0.017 -0.028 -0.027
Validation 0.606 0.859 0.708 0.539 0.430 0.690 0.556 0.970 0.673 0.678

Validation ∆ -0.167 -0.037 +0.024 +0.073 -0.167 -0.067 -0.120 +0.001 -0.056 -0.057
Test 0.596 0.859 0.707 0.521 0.509 0.575 0.506 0.983 0.659 0.657

Test ∆ -0.082 -0.018 +0.003 -0.047 -0.144 -0.228 -0.039 +0.001 -0.070 -0.077

ANN S1, L8
and

S2 10m and 20m bands

Train 0.770 0.861 0.721 0.498 0.638 0.816 0.738 0.989 0.754 0.758
Train ∆ +0.036 +0.005 +0.058 -0.007 +0.032 +0.047 +0.104 +0.024 +0.036 +0.037
Validation 0.693 0.861 0.681 0.494 0.622 0.759 0.577 0.971 0.711 0.718

Validation ∆ -0.080 -0.035 -0.003 +0.027 +0.025 +0.002 -0.098 +0.001 -0.018 -0.017
Test 0.697 0.874 0.742 0.556 0.625 0.750 0.572 0.988 0.728 0.730

Test ∆ +0.019 -0.004 +0.038 -0.012 -0.028 -0.053 +0.028 +0.007 -0.002 -0.004
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Results of Pixel-level Fusion using Annually Averaged data. ∆ result calculated relative to LFCNN9×9 using Annually Averaged Sentinel-
2 data [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

SVM S1, and
S2 10m and 20m bands

Train 0.727 0.851 0.721 0.564 0.601 0.767 0.615 0.967 0.729 0.731
Train ∆ -0.005 -0.006 +0.057 +0.059 -0.006 -0.003 -0.018 +0.003 +0.011 +0.010
Validation 0.692 0.869 0.698 0.549 0.671 0.740 0.604 0.961 0.726 0.728

Validation ∆ -0.081 -0.027 +0.012 +0.085 +0.073 -0.017 -0.071 -0.008 -0.003 -0.006
Test 0.712 0.886 0.775 0.655 0.647 0.814 0.593 0.986 0.762 0.763

Test ∆ +0.033 +0.008 +0.069 +0.090 -0.007 +0.004 +0.049 +0.005 +0.030 +0.028

SVM L8
and

S2 10m and 20m bands

Train 0.671 0.836 0.690 0.552 0.608 0.764 0.480 0.917 0.695 0.700
Train ∆ -0.062 -0.020 +0.027 +0.048 +0.002 -0.005 -0.154 -0.048 -0.024 -0.021
Validation 0.650 0.852 0.683 0.521 0.671 0.758 0.497 0.940 0.701 0.708

Validation ∆ -0.123 -0.044 -0.001 +0.054 +0.073 +0.000 -0.179 -0.030 -0.028 -0.027
Test 0.603 0.879 0.756 0.636 0.611 0.778 0.565 0.974 0.727 0.729

Test ∆ -0.075 +0.002 +0.052 +0.067 -0.042 -0.025 +0.021 -0.008 -0.002 -0.005

SVM S1 and L8

Train 0.672 0.828 0.675 0.564 0.423 0.699 0.534 0.963 0.673 0.678
Train ∆ -0.062 -0.028 +0.012 +0.060 -0.183 -0.070 -0.100 -0.001 -0.046 -0.044
Validation 0.633 0.859 0.700 0.545 0.444 0.658 0.559 0.966 0.674 0.678

Validation ∆ -0.140 -0.037 +0.017 +0.078 -0.153 -0.100 -0.116 -0.004 -0.056 -0.057
Test 0.671 0.858 0.715 0.554 0.572 0.621 0.573 0.987 0.696 0.694

Test ∆ -0.007 -0.020 +0.010 -0.015 -0.081 -0.182 +0.028 +0.006 -0.034 -0.040

SVM S1, L8
and

S2 10m and 20m bands

Train 0.740 0.854 0.715 0.571 0.596 0.766 0.619 0.966 0.731 0.733
Train ∆ +0.006 -0.002 +0.052 +0.067 -0.011 -0.003 -0.015 +0.001 +0.012 +0.012
Validation 0.702 0.863 0.689 0.573 0.632 0.738 0.604 0.961 0.724 0.726

Validation ∆ -0.071 -0.033 +0.006 +0.106 +0.035 -0.020 -0.071 -0.008 -0.006 -0.009
Test 0.709 0.894 0.780 0.651 0.638 0.788 0.608 0.985 0.759 0.760

Test ∆ +0.031 +0.017 +0.075 +0.082 -0.015 -0.015 +0.063 +0.003 +0.029 +0.026
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Results of Pixel-level Fusion using Annually Averaged data. ∆ result calculated relative to LFCNN9×9 using Annually Averaged Sentinel-
2 data [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

RF S1, and
S2 10m and 20m bands

Train 0.659 0.844 0.723 0.589 0.519 0.722 0.556 0.961 0.700 0.702
Train ∆ -0.073 -0.013 +0.060 +0.085 -0.088 -0.048 -0.077 -0.004 -0.018 -0.019
Validation 0.609 0.884 0.729 0.548 0.506 0.739 0.594 0.980 0.701 0.706

Validation ∆ -0.164 -0.012 +0.043 +0.084 -0.091 -0.018 -0.081 +0.011 -0.027 -0.028
Test 0.663 0.876 0.754 0.626 0.497 0.689 0.513 0.980 0.702 0.706

Test ∆ -0.015 -0.003 +0.048 +0.060 -0.157 -0.121 -0.031 -0.002 -0.029 -0.030

RF L8
and

S2 10m and 20m bands

Train 0.626 0.846 0.697 0.574 0.501 0.710 0.431 0.962 0.674 0.681
Train ∆ -0.107 -0.010 +0.034 +0.070 -0.106 -0.059 -0.203 -0.003 -0.045 -0.040
Validation 0.591 0.869 0.706 0.515 0.463 0.716 0.504 0.975 0.672 0.680

Validation ∆ -0.182 -0.027 +0.022 +0.048 -0.134 -0.042 -0.171 +0.005 -0.057 -0.055
Test 0.573 0.883 0.745 0.621 0.425 0.663 0.444 0.980 0.670 0.676

Test ∆ -0.105 +0.006 +0.040 +0.053 -0.228 -0.140 -0.100 -0.002 -0.060 -0.058

RF S1 and L8

Train 0.621 0.805 0.666 0.580 0.444 0.666 0.532 0.963 0.662 0.668
Train ∆ -0.113 -0.051 +0.003 +0.075 -0.162 -0.103 -0.102 -0.002 -0.056 -0.053
Validation 0.586 0.833 0.696 0.551 0.442 0.667 0.518 0.970 0.662 0.669

Validation ∆ -0.187 -0.062 +0.013 +0.084 -0.156 -0.091 -0.158 +0.001 -0.067 -0.066
Test 0.644 0.804 0.678 0.521 0.460 0.495 0.457 0.980 0.633 0.634

Test ∆ -0.034 -0.074 -0.027 -0.047 -0.194 -0.309 -0.087 -0.002 -0.096 -0.100

RF S1, L8
and

S2 10m and 20m bands

Train 0.669 0.849 0.723 0.590 0.519 0.721 0.551 0.962 0.701 0.704
Train ∆ -0.064 -0.007 +0.060 +0.086 -0.088 -0.049 -0.083 -0.002 -0.017 -0.017
Validation 0.640 0.883 0.729 0.538 0.491 0.728 0.588 0.975 0.700 0.705

Validation ∆ -0.133 -0.013 +0.045 +0.071 -0.106 -0.029 -0.087 +0.005 -0.030 -0.030
Test 0.648 0.880 0.760 0.635 0.487 0.676 0.517 0.981 0.701 0.704

Test ∆ -0.030 +0.002 +0.055 +0.067 -0.166 -0.128 -0.027 -0.001 -0.029 -0.030
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Results of Pixel-level Fusion using Annually Averaged data. ∆ result calculated relative to LFCNN9×9 using Annually Averaged Sentinel-
2 data [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

LFCNN9×9 S1
and

S2 10m and 20m bands

Train 0.708 0.796 0.703 0.595 0.502 0.772 0.619 0.964 0.706 0.709
Train ∆ -0.025 -0.051 +0.041 +0.084 -0.082 +0.001 -0.019 +0.000 -0.005 -0.005
Validation 0.663 0.846 0.726 0.594 0.529 0.740 0.622 0.974 0.707 0.711

Validation ∆ -0.096 -0.063 +0.037 +0.118 -0.067 -0.015 -0.044 +0.013 -0.012 -0.016
Test 0.683 0.809 0.709 0.646 0.551 0.818 0.587 0.982 0.726 0.728

Test ∆ +0.004 -0.070 +0.003 +0.081 -0.103 +0.008 +0.043 +0.000 -0.005 -0.008

LFCNN9×9 L8
and

S2 10m and 20m bands

Train 0.703 0.846 0.710 0.581 0.539 0.783 0.520 0.979 0.707 0.716
Train ∆ -0.029 -0.001 +0.048 +0.071 -0.045 +0.012 -0.118 +0.015 -0.004 +0.002
Validation 0.707 0.891 0.758 0.538 0.594 0.747 0.419 0.975 0.699 0.715

Validation ∆ -0.052 -0.019 +0.069 +0.062 -0.002 -0.009 -0.248 +0.014 -0.020 -0.012
Test 0.668 0.869 0.732 0.622 0.661 0.805 0.423 0.982 0.727 0.734

Test ∆ -0.011 -0.009 +0.026 +0.057 +0.008 -0.005 -0.122 +0.000 -0.004 -0.001

LFCNN9×9
S1 and L8

Train 0.646 0.781 0.656 0.548 0.367 0.692 0.554 0.971 0.650 0.657
Train ∆ -0.086 -0.066 -0.005 +0.037 -0.217 -0.079 -0.084 +0.007 -0.061 -0.057
Validation 0.590 0.853 0.720 0.512 0.408 0.669 0.534 0.975 0.651 0.659

Validation ∆ -0.169 -0.056 +0.031 +0.036 -0.187 -0.086 -0.132 +0.014 -0.068 -0.067
Test 0.636 0.832 0.687 0.475 0.458 0.626 0.509 0.986 0.653 0.656

Test ∆ -0.042 -0.047 -0.019 -0.090 -0.196 -0.184 -0.035 +0.004 -0.078 -0.080

LFCNN9×9 S1, L8
and

S2 10m and 20m bands

Train 0.661 0.815 0.713 0.539 0.515 0.767 0.608 0.968 0.696 0.699
Train ∆ -0.071 -0.032 +0.051 +0.029 -0.069 -0.004 -0.030 +0.003 -0.015 -0.016
Validation 0.601 0.881 0.755 0.516 0.565 0.742 0.576 0.969 0.693 0.700

Validation ∆ -0.158 -0.028 +0.066 +0.040 -0.030 -0.014 -0.091 +0.007 -0.026 -0.026
Test 0.670 0.852 0.740 0.599 0.582 0.803 0.606 0.986 0.732 0.733

Test ∆ -0.008 -0.026 +0.034 +0.034 -0.072 -0.007 +0.062 +0.004 +0.001 -0.002
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C.1.1.2 Fusion with Half-Yearly Averaged data

Table C.2: Results of Pixel-level Fusion using Half-Yearly Averaged data. ∆ result calculated relative to 3DLCNN9×9 using Half-Yearly
averaged S2 data.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN S1
and

S2 10m and 20m bands

Train 0.769 0.870 0.751 0.620 0.606 0.816 0.742 0.990 0.770 0.773
Train ∆ -0.020 +0.018 +0.060 +0.035 -0.020 +0.028 +0.100 +0.025 +0.026 +0.028
Validation 0.697 0.865 0.718 0.556 0.613 0.752 0.612 0.965 0.725 0.729

Validation ∆ -0.082 -0.014 -0.036 -0.021 -0.045 +0.003 +0.007 -0.009 -0.026 -0.024
Test 0.730 0.884 0.768 0.653 0.704 0.798 0.618 0.986 0.768 0.771

Test ∆ -0.029 -0.002 +0.011 -0.023 -0.030 +0.091 +0.049 +0.007 +0.004 +0.006

ANN L8
and

S2 10m and 20m bands

Train 0.691 0.887 0.705 0.555 0.636 0.792 0.679 0.988 0.742 0.745
Train ∆ -0.099 +0.036 +0.014 -0.029 +0.010 +0.003 +0.036 +0.021 -0.002 +0.000
Validation 0.578 0.870 0.661 0.515 0.601 0.736 0.558 0.975 0.689 0.696

Validation ∆ -0.201 -0.010 -0.088 -0.058 -0.057 -0.013 -0.047 +0.001 -0.060 -0.056
Test 0.635 0.881 0.729 0.579 0.686 0.668 0.602 0.950 0.718 0.717

Test ∆ -0.125 -0.004 -0.028 -0.098 -0.048 -0.039 +0.032 -0.030 -0.046 -0.048

ANN S1, L8
and

S2 10m and 20m bands

Train 0.709 0.845 0.705 0.630 0.592 0.826 0.749 0.986 0.754 0.754
Train ∆ -0.080 -0.006 +0.014 +0.046 -0.035 +0.037 +0.106 +0.020 +0.010 +0.009
Validation 0.621 0.853 0.671 0.566 0.573 0.756 0.638 0.970 0.707 0.710

Validation ∆ -0.159 -0.026 -0.078 -0.007 -0.086 +0.007 +0.033 -0.004 -0.043 -0.042
Test 0.700 0.855 0.719 0.609 0.639 0.478 0.577 0.987 0.707 0.709

Test ∆ -0.059 -0.030 -0.038 -0.068 -0.096 -0.228 +0.007 +0.008 -0.057 -0.056

ANN S1 and L8

Train 0.727 0.843 0.648 0.569 0.590 0.783 0.682 0.978 0.727 0.729
Train ∆ -0.062 -0.008 -0.043 -0.015 -0.037 -0.006 +0.038 +0.012 -0.017 -0.016
Validation 0.701 0.856 0.634 0.500 0.540 0.781 0.599 0.960 0.698 0.707

Validation ∆ -0.079 -0.023 -0.115 -0.073 -0.119 +0.032 -0.007 -0.014 -0.052 -0.045
Test 0.692 0.871 0.706 0.543 0.697 0.296 0.514 0.986 0.682 0.692

Test ∆ -0.067 -0.013 -0.051 -0.134 -0.037 -0.410 -0.056 +0.007 -0.082 -0.073
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Results of Pixel-level Fusion using Half-Yearly Averaged data. ∆ result calculated relative to 3DLCNN9×9 using Half-Yearly averaged
S2 data [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

SVM S1
and

S2 10m and 20m bands

Train 0.737 0.858 0.731 0.583 0.632 0.776 0.636 0.964 0.741 0.743
Train ∆ -0.051 +0.005 +0.040 -0.001 +0.005 -0.011 -0.005 -0.001 -0.002 -0.002
Validation 0.695 0.862 0.696 0.567 0.682 0.758 0.624 0.960 0.733 0.736

Validation ∆ -0.085 -0.017 -0.058 -0.010 +0.023 +0.009 +0.019 -0.014 -0.018 -0.017
Test 0.748 0.884 0.768 0.680 0.701 0.822 0.653 0.985 0.780 0.781

Test ∆ -0.012 -0.001 +0.012 +0.004 -0.033 +0.115 +0.084 +0.006 +0.016 +0.016

SVM L8
and

S2 10m and 20m bands

Train 0.638 0.840 0.706 0.571 0.617 0.773 0.515 0.927 0.701 0.705
Train ∆ -0.151 -0.011 +0.016 -0.013 -0.009 -0.016 -0.129 -0.039 -0.043 -0.040
Validation 0.667 0.871 0.683 0.564 0.619 0.761 0.550 0.947 0.711 0.716

Validation ∆ -0.113 -0.008 -0.066 -0.009 -0.040 +0.012 -0.055 -0.027 -0.039 -0.036
Test 0.611 0.875 0.753 0.645 0.695 0.669 0.550 0.978 0.726 0.728

Test ∆ -0.148 -0.009 -0.004 -0.032 -0.039 -0.037 -0.020 -0.002 -0.038 -0.037

SVM S1, L8
and

S2 10m and 20m bands

Train 0.731 0.858 0.737 0.594 0.615 0.779 0.650 0.964 0.742 0.744
Train ∆ -0.058 +0.007 +0.047 +0.010 -0.012 -0.010 +0.006 -0.002 -0.002 -0.001
Validation 0.722 0.871 0.683 0.594 0.644 0.773 0.635 0.960 0.737 0.740

Validation ∆ -0.058 -0.008 -0.066 +0.021 -0.015 +0.024 +0.030 -0.014 -0.012 -0.012
Test 0.737 0.890 0.776 0.658 0.693 0.666 0.627 0.987 0.759 0.760

Test ∆ -0.022 +0.005 +0.019 -0.019 -0.041 -0.041 +0.058 +0.008 -0.005 -0.006

SVM S1 and L8

Train 0.662 0.838 0.678 0.582 0.518 0.721 0.565 0.963 0.692 0.695
Train ∆ -0.127 -0.013 -0.013 -0.002 -0.108 -0.068 -0.079 -0.003 -0.051 -0.050
Validation 0.601 0.862 0.711 0.547 0.521 0.723 0.568 0.960 0.688 0.692

Validation ∆ -0.178 -0.017 -0.037 -0.026 -0.138 -0.026 -0.038 -0.014 -0.061 -0.060
Test 0.702 0.867 0.718 0.597 0.568 0.282 0.595 0.986 0.682 0.685

Test ∆ -0.057 -0.018 -0.039 -0.080 -0.166 -0.424 +0.026 +0.007 -0.082 -0.080
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Results of Pixel-level Fusion using Half-Yearly Averaged data. ∆ result calculated relative to 3DLCNN9×9 using Half-Yearly averaged
S2 data [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

RF S1
and

S2 10m and 20m bands

Train 0.676 0.847 0.734 0.592 0.582 0.708 0.577 0.967 0.712 0.714
Train ∆ -0.113 -0.006 +0.043 +0.008 -0.045 -0.080 -0.065 +0.001 -0.031 -0.031
Validation 0.613 0.872 0.744 0.549 0.533 0.733 0.590 0.975 0.703 0.708

Validation ∆ -0.166 -0.008 -0.010 -0.028 -0.126 -0.016 -0.015 +0.001 -0.048 -0.045
Test 0.704 0.876 0.764 0.660 0.621 0.659 0.509 0.984 0.727 0.730

Test ∆ -0.056 -0.009 +0.007 -0.017 -0.114 -0.048 -0.060 +0.004 -0.037 -0.036

RF L8
and

S2 10m and 20m bands

Train 0.652 0.845 0.707 0.581 0.579 0.724 0.451 0.960 0.691 0.698
Train ∆ -0.138 -0.006 +0.017 -0.004 -0.048 -0.065 -0.193 -0.006 -0.053 -0.047
Validation 0.618 0.883 0.716 0.486 0.547 0.725 0.500 0.965 0.683 0.691

Validation ∆ -0.162 +0.004 -0.033 -0.087 -0.112 -0.024 -0.105 -0.009 -0.066 -0.061
Test 0.643 0.871 0.732 0.626 0.586 0.625 0.438 0.980 0.693 0.699

Test ∆ -0.116 -0.014 -0.025 -0.051 -0.148 -0.081 -0.131 +0.000 -0.071 -0.066

RF S1, L8
and

S2 10m and 20m bands

Train 0.689 0.844 0.732 0.606 0.589 0.720 0.559 0.965 0.715 0.718
Train ∆ -0.100 -0.007 +0.041 +0.022 -0.038 -0.069 -0.085 -0.001 -0.028 -0.027
Validation 0.640 0.873 0.733 0.541 0.556 0.736 0.613 0.980 0.711 0.715

Validation ∆ -0.140 -0.006 -0.015 -0.032 -0.103 -0.012 +0.008 +0.005 -0.039 -0.037
Test 0.694 0.875 0.757 0.668 0.623 0.614 0.484 0.982 0.719 0.721

Test ∆ -0.065 -0.010 +0.000 -0.010 -0.111 -0.093 -0.085 +0.002 -0.045 -0.044

RF S1 and L8

Train 0.644 0.820 0.683 0.590 0.524 0.649 0.497 0.965 0.674 0.678
Train ∆ -0.145 -0.031 -0.008 +0.006 -0.103 -0.140 -0.146 -0.002 -0.069 -0.067
Validation 0.621 0.832 0.688 0.551 0.500 0.689 0.496 0.970 0.672 0.678

Validation ∆ -0.158 -0.047 -0.060 -0.022 -0.159 -0.060 -0.109 -0.004 -0.078 -0.074
Test 0.696 0.818 0.690 0.571 0.518 0.155 0.358 0.983 0.623 0.627

Test ∆ -0.063 -0.066 -0.067 -0.106 -0.216 -0.551 -0.212 +0.004 -0.141 -0.138
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Results of Pixel-level Fusion using Half-Yearly Averaged data. ∆ result calculated relative to 3DLCNN9×9 using Half-Yearly averaged
S2 data [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

3DLFCNN9×9 S1
and

S2 10m and 20m bands

Train 0.757 0.853 0.718 0.595 0.543 0.780 0.640 0.968 0.728 0.734
Train ∆ -0.030 +0.008 +0.025 +0.009 -0.055 -0.008 -0.013 +0.001 -0.008 -0.005
Validation 0.762 0.875 0.744 0.578 0.605 0.766 0.657 0.962 0.738 0.744

Validation ∆ -0.018 -0.006 -0.018 -0.015 -0.052 +0.020 +0.058 -0.006 -0.005 -0.003
Test 0.773 0.887 0.769 0.664 0.688 0.769 0.630 0.985 0.773 0.775

Test ∆ +0.013 +0.002 +0.013 -0.012 -0.047 +0.062 +0.061 +0.006 +0.009 +0.010

3DLFCNN9×9 L8
and

S2 10m and 20m bands

Train 0.709 0.854 0.685 0.591 0.569 0.760 0.590 0.967 0.712 0.716
Train ∆ -0.078 +0.009 -0.008 +0.005 -0.029 -0.029 -0.063 +0.000 -0.025 -0.024
Validation 0.731 0.889 0.710 0.541 0.619 0.729 0.628 0.981 0.722 0.725

Validation ∆ -0.048 +0.008 -0.052 -0.052 -0.038 -0.017 +0.029 +0.014 -0.022 -0.021
Test 0.686 0.897 0.728 0.650 0.710 0.730 0.599 0.984 0.750 0.752

Test ∆ -0.073 +0.012 -0.029 -0.026 -0.025 +0.023 +0.030 +0.005 -0.014 -0.013

3DLFCNN9×9 S1, L8
and

S2 10m and 20m bands

Train 0.716 0.834 0.714 0.606 0.540 0.790 0.662 0.969 0.725 0.729
Train ∆ -0.072 -0.011 +0.021 +0.020 -0.058 +0.001 +0.009 +0.002 -0.012 -0.010
Validation 0.710 0.908 0.785 0.570 0.605 0.770 0.647 0.974 0.739 0.745

Validation ∆ -0.069 +0.027 +0.023 -0.023 -0.052 +0.024 +0.048 +0.007 -0.004 -0.001
Test 0.735 0.879 0.766 0.656 0.710 0.740 0.625 0.985 0.765 0.766

Test ∆ -0.025 -0.006 +0.010 -0.020 -0.025 +0.033 +0.056 +0.006 +0.001 +0.001

3DLFCNN9×9 S1 and L8

Train 0.669 0.815 0.686 0.577 0.451 0.741 0.577 0.971 0.682 0.690
Train ∆ -0.118 -0.029 -0.007 -0.009 -0.147 -0.048 -0.076 +0.004 -0.055 -0.049
Validation 0.656 0.868 0.687 0.586 0.492 0.737 0.582 0.974 0.691 0.700

Validation ∆ -0.123 -0.012 -0.075 -0.007 -0.166 -0.010 -0.016 +0.007 -0.052 -0.047
Test 0.697 0.843 0.719 0.570 0.633 0.324 0.592 0.987 0.687 0.686

Test ∆ -0.063 -0.042 -0.038 -0.106 -0.102 -0.383 +0.024 +0.008 -0.077 -0.079

322



C.1.1.3 Fusion with Seasonally Averaged data

Table C.3: Results of Pixel-level Fusion using Seasonally Averaged data. ∆ result calculated relative to 3DLCNN9×9 using Seasonally
averaged S2 data.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN S1
and

S2 10m and 20m bands

Train 0.844 0.855 0.745 0.610 0.702 0.838 0.809 0.992 0.800 0.800
Train ∆ +0.054 +0.007 +0.059 +0.025 +0.077 +0.053 +0.136 +0.014 +0.052 +0.049
Validation 0.726 0.867 0.700 0.563 0.642 0.825 0.695 0.968 0.749 0.752

Validation ∆ -0.051 -0.034 -0.072 -0.003 -0.034 +0.043 +0.062 +0.001 -0.013 -0.014
Test 0.734 0.868 0.760 0.641 0.725 0.816 0.582 0.987 0.768 0.771

Test ∆ -0.045 -0.015 +0.000 -0.043 -0.010 -0.003 -0.095 +0.007 -0.025 -0.024

SVM S1
and

S2 10m and 20m bands

Train 0.771 0.847 0.720 0.593 0.660 0.790 0.687 0.971 0.756 0.758
Train ∆ -0.020 -0.002 +0.035 +0.008 +0.035 +0.005 +0.014 -0.006 +0.008 +0.007
Validation 0.747 0.878 0.707 0.565 0.667 0.811 0.688 0.963 0.755 0.757

Validation ∆ -0.030 -0.023 -0.065 -0.002 -0.009 +0.029 +0.056 -0.005 -0.008 -0.009
Test 0.759 0.872 0.754 0.681 0.726 0.855 0.643 0.986 0.787 0.788

Test ∆ -0.020 -0.012 -0.006 -0.003 -0.010 +0.037 -0.035 +0.005 -0.006 -0.007

RF S1
and

S2 10m and 20m bands

Train 0.729 0.834 0.726 0.603 0.632 0.742 0.593 0.974 0.732 0.733
Train ∆ -0.062 -0.014 +0.040 +0.018 +0.007 -0.043 -0.080 -0.004 -0.016 -0.018
Validation 0.692 0.872 0.744 0.546 0.605 0.774 0.610 0.968 0.728 0.732

Validation ∆ -0.086 -0.029 -0.028 -0.021 -0.071 -0.008 -0.022 +0.000 -0.034 -0.033
Test 0.724 0.878 0.771 0.641 0.672 0.655 0.526 0.983 0.740 0.741

Test ∆ -0.054 -0.005 +0.011 -0.043 -0.063 -0.163 -0.152 +0.002 -0.054 -0.054

3DLFCNN9×9 S1
and

S2 10m and 20m bands

Train 0.778 0.847 0.715 0.591 0.639 0.792 0.728 0.973 0.756 0.759
Train ∆ -0.013 -0.005 +0.024 -0.002 +0.037 +0.007 +0.052 -0.001 +0.012 +0.011
Validation 0.787 0.899 0.787 0.549 0.662 0.814 0.672 0.961 0.764 0.769

Validation ∆ +0.012 -0.015 -0.001 -0.041 -0.016 +0.037 +0.047 +0.001 +0.003 +0.003
Test 0.782 0.877 0.749 0.697 0.728 0.816 0.642 0.986 0.789 0.791

Test ∆ +0.003 -0.007 -0.011 +0.013 -0.008 -0.002 -0.036 +0.005 -0.004 -0.004
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C.1.1.4 Fusion with Monthly Averaged data

Table C.4: Results of Pixel-level Fusion using Monthly Averaged data. ∆ result calculated relative to 1DCNN6 using Monthly averaged
S2.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

ANN S1
and

S2 10m and 20m bands

Train 0.730 0.838 0.724 0.588 0.780 0.837 0.708 0.990 0.772 0.773
Train ∆ -0.105 +0.003 +0.003 -0.042 -0.008 -0.027 -0.097 +0.000 -0.034 -0.029
Validation 0.585 0.845 0.667 0.561 0.743 0.773 0.659 0.974 0.728 0.730

Validation ∆ -0.072 +0.057 -0.019 -0.014 -0.033 -0.045 -0.057 -0.013 -0.026 -0.019
Test 0.746 0.884 0.766 0.541 0.743 0.612 0.511 0.987 0.781 0.775

Test ∆ -0.009 +0.054 +0.070 -0.038 -0.014 -0.054 -0.132 +0.002 -0.009 -0.013

SVM S1
and

S2 10m and 20m bands

Train 0.793 0.835 0.713 0.621 0.778 0.850 0.724 0.964 0.783 0.783
Train ∆ -0.042 -0.001 -0.007 -0.009 -0.010 -0.014 -0.080 -0.025 -0.023 -0.019
Validation 0.709 0.817 0.673 0.576 0.800 0.800 0.744 0.974 0.766 0.764

Validation ∆ +0.052 +0.029 -0.012 +0.001 +0.025 -0.018 +0.028 -0.013 +0.012 +0.016
Test 0.759 0.846 0.717 0.611 0.748 0.621 0.603 0.987 0.790 0.788

Test ∆ +0.004 +0.015 +0.021 +0.032 -0.008 -0.046 -0.040 +0.002 +0.000 +0.000

RF S1
and

S2 10m and 20m bands

Train 0.764 0.836 0.725 0.671 0.796 0.792 0.616 0.975 0.772 0.774
Train ∆ -0.071 +0.000 +0.004 +0.041 +0.008 -0.072 -0.189 -0.015 -0.033 -0.028
Validation 0.684 0.818 0.727 0.607 0.782 0.838 0.677 0.974 0.766 0.767

Validation ∆ +0.027 +0.030 +0.042 +0.032 +0.006 +0.020 -0.040 -0.013 +0.013 +0.019
Test 0.779 0.863 0.764 0.600 0.683 0.317 0.372 0.985 0.754 0.753

Test ∆ +0.024 +0.033 +0.068 +0.021 -0.074 -0.350 -0.271 +0.000 -0.036 -0.035

LSTM S1
and

S2 10m and 20m bands

Train 0.741 0.807 0.655 0.179 0.669 0.523 0.584 0.977 0.642 0.669
Train ∆ -0.094 -0.028 -0.065 -0.451 -0.119 -0.341 -0.221 -0.013 -0.163 -0.133
Validation 0.575 0.784 0.540 0.216 0.740 0.531 0.538 0.974 0.630 0.645

Validation ∆ -0.082 -0.004 -0.146 -0.359 -0.035 -0.288 -0.178 -0.013 -0.124 -0.104
Test 0.765 0.840 0.700 0.000 0.568 0.230 0.478 0.980 0.679 0.708

Test ∆ +0.010 +0.009 +0.004 -0.579 -0.188 -0.437 -0.165 -0.005 -0.111 -0.080

1DCNN6 S1
and

S2 10m and 20m bands

Train 0.754 0.830 0.694 0.602 0.744 0.824 0.670 0.975 0.759 0.758
Train ∆ -0.081 -0.005 -0.027 -0.028 -0.044 -0.040 -0.134 -0.015 -0.047 -0.044
Validation 0.667 0.829 0.673 0.531 0.729 0.822 0.685 0.987 0.743 0.739

Validation ∆ +0.010 +0.041 -0.013 -0.044 -0.046 +0.004 -0.031 +0.000 -0.011 -0.009
Test 0.773 0.877 0.736 0.593 0.715 0.769 0.583 0.990 0.797 0.794

Test ∆ +0.018 +0.046 +0.040 +0.014 -0.041 +0.103 -0.060 +0.005 +0.007 +0.007
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C.1.2 Decision-Level Fusion

Table C.5: Prior Model List.

Platform Model Acronyms

Sentinel-2
Annually Averaged
10m and 20m bands

3DLFCNN9×9
S2AN

Sentinel-2
Half-Yearly Averaged
10m and 20m bands

3DLFCNN9×9
S2HY

Sentinel-2
Seasonally Averaged
10m and 20m bands

3DLFCNN9×9
S2SE

Sentinel-2
Six-Monthly Averaged
10m and 20m bands

3DLFCNN9×9
S2MO

Landsat-8
Annually Averaged

All Bands
LFCNN9×9

L8AN

Landsat-8
Half-Yearly Averaged

All Bands
3DLFCNN9×9

L8HY

Sentinel-1
Monthly Averaged

All Bands
1DCNN12

S1MO
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C.1.2.1 Preliminary analysis of Decision-Level fusion techniques

Table C.6: Preliminary analysis of decision-level fusion methodologies using all prior models

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

Weighted Voting
Train 0.822 0.844 0.712 0.610 0.657 0.816 0.708 0.987 0.778 0.781

Validation 0.783 0.861 0.733 0.612 0.678 0.830 0.719 0.987 0.782 0.783
Test 0.790 0.846 0.751 0.694 0.769 0.157 0.624 0.988 0.788 0.786

Max Probability
Train 0.805 0.853 0.712 0.604 0.690 0.822 0.761 0.992 0.788 0.790

Validation 0.735 0.905 0.752 0.655 0.667 0.813 0.705 0.987 0.782 0.786
Test 0.760 0.818 0.741 0.678 0.780 0.233 0.574 0.987 0.774 0.772

Average Probability
Train 0.830 0.852 0.716 0.622 0.688 0.821 0.747 0.991 0.792 0.794

Validation 0.776 0.875 0.733 0.650 0.679 0.822 0.717 0.987 0.786 0.788
Test 0.784 0.844 0.761 0.705 0.789 0.244 0.646 0.988 0.797 0.795

ANN
Train 0.973 0.911 0.880 0.828 0.863 0.924 0.904 0.999 0.914 0.914

Validation 0.739 0.881 0.689 0.603 0.711 0.832 0.702 0.994 0.776 0.777
Test 0.788 0.827 0.722 0.651 0.741 0.203 0.613 0.984 0.772 0.773

RF
Train 0.835 0.858 0.713 0.585 0.740 0.832 0.765 0.990 0.798 0.800

Validation 0.793 0.864 0.733 0.519 0.683 0.825 0.710 0.981 0.771 0.773
Test 0.800 0.847 0.748 0.638 0.764 0.256 0.678 0.987 0.790 0.789

SVM
Train 0.860 0.868 0.746 0.640 0.769 0.862 0.841 0.995 0.830 0.830

Validation 0.819 0.902 0.758 0.582 0.708 0.851 0.792 0.987 0.805 0.805
Test 0.794 0.853 0.771 0.661 0.754 0.346 0.691 0.985 0.796 0.797
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C.1.2.2 Sentinel-2 and Sentinel-1

Table C.7: Results of Decision-level Fusion Sentinel-2 and Sentinel-1 prior models using an SVM.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2AN
and

S1MO

Train 0.809 0.866 0.727 0.626 0.721 0.811 0.775 0.990 0.791 0.790
Train ∆ +0.076 +0.009 +0.064 +0.122 +0.114 +0.042 +0.142 +0.026 +0.073 +0.069
Validation 0.771 0.883 0.721 0.549 0.629 0.794 0.680 0.975 0.752 0.754

Validation ∆ -0.002 -0.013 +0.035 +0.085 +0.032 +0.037 +0.004 +0.005 +0.024 +0.019
Test 0.709 0.897 0.778 0.599 0.690 0.754 0.545 0.954 0.745 0.742

Test ∆ +0.031 +0.019 +0.072 +0.034 +0.037 -0.056 +0.001 -0.028 +0.013 +0.007

S2HY
and

S1MO

Train 0.839 0.864 0.743 0.641 0.756 0.841 0.830 0.991 0.814 0.814
Train ∆ +0.051 +0.029 +0.046 +0.056 +0.135 +0.047 +0.176 +0.024 +0.070 +0.069
Validation 0.760 0.855 0.728 0.544 0.640 0.807 0.690 0.970 0.749 0.750

Validation ∆ -0.014 +0.000 -0.041 -0.052 -0.017 +0.048 +0.069 +0.000 -0.001 -0.002
Test 0.793 0.840 0.722 0.646 0.735 0.482 0.649 0.981 0.770 0.771

Test ∆ +0.018 -0.008 +0.005 -0.055 -0.021 +0.168 +0.049 +0.000 +0.001 +0.008

S2SE
and

S1MO

Train 0.838 0.871 0.735 0.643 0.736 0.828 0.827 0.992 0.809 0.810
Train ∆ +0.048 +0.023 +0.050 +0.058 +0.112 +0.044 +0.153 +0.014 +0.061 +0.059
Validation 0.783 0.901 0.731 0.526 0.663 0.819 0.682 0.973 0.762 0.764

Validation ∆ +0.006 +0.001 -0.040 -0.041 -0.013 +0.037 +0.049 +0.005 -0.001 -0.001
Test 0.770 0.882 0.773 0.617 0.730 0.786 0.657 0.957 0.776 0.775

Test ∆ -0.008 -0.002 +0.013 -0.067 -0.006 -0.032 -0.020 -0.023 -0.018 -0.021

S2MO
and

S1MO

Train 0.858 0.853 0.747 0.643 0.799 0.880 0.860 0.989 0.826 0.823
Train ∆ +0.023 +0.017 +0.026 +0.013 +0.012 +0.016 +0.055 -0.001 +0.020 +0.020
Validation 0.622 0.806 0.679 0.543 0.729 0.836 0.675 0.975 0.737 0.731

Validation ∆ -0.035 +0.018 -0.006 -0.032 -0.046 +0.018 -0.041 -0.013 -0.019 -0.019
Test 0.756 0.863 0.735 0.591 0.766 0.723 0.631 0.980 0.800 0.796

Test ∆ +0.001 +0.033 +0.039 +0.012 +0.010 +0.056 -0.012 -0.005 +0.009 +0.007
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Results of Decision-level Fusion Sentinel-2 and Sentinel-1 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2HY,S2AN
and

S1MO

Train 0.833 0.852 0.742 0.624 0.731 0.834 0.822 0.990 0.804 0.804
Train ∆ +0.045 +0.017 +0.045 +0.040 +0.110 +0.039 +0.168 +0.023 +0.061 +0.059
Validation 0.768 0.860 0.736 0.542 0.657 0.776 0.681 0.970 0.749 0.749

Validation ∆ -0.006 +0.005 -0.034 -0.054 +0.000 +0.017 +0.060 +0.000 -0.002 -0.003
Test 0.790 0.844 0.721 0.667 0.756 0.495 0.663 0.960 0.775 0.773

Test ∆ +0.014 -0.005 +0.004 -0.034 +0.000 +0.182 +0.063 -0.020 +0.005 +0.010

S2SE,S2AN
and

S1MO

Train 0.835 0.859 0.726 0.632 0.726 0.816 0.814 0.991 0.801 0.800
Train ∆ +0.045 +0.010 +0.040 +0.047 +0.101 +0.031 +0.140 +0.013 +0.052 +0.049
Validation 0.794 0.884 0.743 0.554 0.662 0.816 0.712 0.973 0.769 0.770

Validation ∆ +0.016 -0.017 -0.029 -0.012 -0.014 +0.034 +0.080 +0.005 +0.007 +0.005
Test 0.781 0.893 0.779 0.655 0.745 0.836 0.667 0.959 0.792 0.791

Test ∆ +0.003 +0.009 +0.019 -0.029 +0.010 +0.018 -0.011 -0.021 -0.001 -0.004

S2MO,S2AN
and

S1MO

Train 0.869 0.856 0.756 0.685 0.839 0.888 0.871 0.994 0.844 0.844
Train ∆ +0.034 +0.021 +0.035 +0.055 +0.052 +0.024 +0.067 +0.004 +0.037 +0.042
Validation 0.740 0.841 0.692 0.517 0.766 0.806 0.732 0.975 0.765 0.763

Validation ∆ +0.083 +0.053 +0.007 -0.058 -0.009 -0.012 +0.016 -0.013 +0.010 +0.013
Test 0.802 0.872 0.751 0.600 0.743 0.778 0.698 0.987 0.819 0.818

Test ∆ +0.047 +0.041 +0.055 +0.021 -0.014 +0.111 +0.055 +0.002 +0.028 +0.030

S2SE,S2HY
and

S1MO

Train 0.854 0.859 0.736 0.651 0.759 0.850 0.858 0.992 0.822 0.822
Train ∆ +0.057 +0.025 +0.049 +0.069 +0.144 +0.061 +0.180 +0.015 +0.074 +0.072
Validation 0.821 0.879 0.742 0.552 0.712 0.846 0.748 0.969 0.786 0.787

Validation ∆ +0.040 +0.001 -0.041 -0.045 +0.040 +0.055 +0.117 +0.006 +0.022 +0.019
Test 0.800 0.841 0.735 0.643 0.747 0.575 0.708 0.981 0.786 0.787

Test ∆ +0.012 +0.001 +0.010 -0.052 -0.004 +0.187 +0.021 -0.002 +0.001 +0.006

S2MO, S2HY
and

S1MO

Train 0.869 0.847 0.744 0.672 0.815 0.894 0.872 0.993 0.837 0.835
Train ∆ +0.030 +0.016 +0.020 +0.044 +0.041 +0.028 +0.070 +0.003 +0.032 +0.034
Validation 0.722 0.849 0.705 0.448 0.717 0.853 0.747 0.971 0.757 0.753

Validation ∆ +0.076 +0.055 +0.013 -0.123 -0.038 +0.040 +0.038 -0.014 +0.009 +0.010
Test 0.811 0.841 0.701 0.588 0.782 0.677 0.698 0.988 0.817 0.816

Test ∆ +0.059 +0.038 +0.031 +0.005 +0.022 +0.081 +0.052 +0.003 +0.029 +0.029

S2MO,S2SE
and

S1MO

Train 0.868 0.848 0.749 0.684 0.834 0.897 0.873 0.994 0.842 0.843
Train ∆ +0.033 +0.014 +0.028 +0.054 +0.047 +0.033 +0.069 +0.004 +0.036 +0.040
Validation 0.744 0.841 0.692 0.500 0.748 0.824 0.734 0.987 0.765 0.763

Validation ∆ +0.086 +0.053 +0.007 -0.075 -0.028 +0.005 +0.018 +0.000 +0.010 +0.013
Test 0.816 0.862 0.752 0.588 0.733 0.764 0.711 0.985 0.818 0.817

Test ∆ +0.061 +0.031 +0.056 +0.009 -0.024 +0.097 +0.068 +0.000 +0.027 +0.029
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Results of Decision-level Fusion Sentinel-2 and Sentinel-1 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2SE,S2HY,S2AN
and

S1MO

Train 0.852 0.858 0.745 0.649 0.729 0.845 0.845 0.990 0.816 0.816
Train ∆ +0.056 +0.023 +0.058 +0.067 +0.114 +0.057 +0.168 +0.014 +0.069 +0.065
Validation 0.805 0.857 0.741 0.579 0.657 0.844 0.746 0.969 0.777 0.776

Validation ∆ +0.023 -0.020 -0.042 -0.018 -0.015 +0.053 +0.115 +0.006 +0.012 +0.009
Test 0.807 0.837 0.718 0.686 0.761 0.558 0.680 0.945 0.782 0.781

Test ∆ +0.019 -0.003 -0.006 -0.009 +0.009 +0.170 -0.008 -0.037 -0.003 +0.000

S2MO,S2HY,S2AN
and

S1MO

Train 0.865 0.850 0.754 0.677 0.818 0.899 0.867 0.993 0.839 0.838
Train ∆ +0.025 +0.019 +0.031 +0.049 +0.043 +0.032 +0.066 +0.003 +0.034 +0.037
Validation 0.732 0.866 0.699 0.500 0.747 0.836 0.727 0.971 0.764 0.759

Validation ∆ +0.086 +0.072 +0.007 -0.071 -0.008 +0.023 +0.018 -0.014 +0.016 +0.017
Test 0.799 0.841 0.708 0.594 0.782 0.677 0.698 0.987 0.816 0.815

Test ∆ +0.046 +0.038 +0.038 +0.011 +0.022 +0.081 +0.052 +0.002 +0.027 +0.028

S2MO,S2SE,S2HY
and

S1MO

Train 0.860 0.845 0.747 0.678 0.815 0.896 0.868 0.993 0.836 0.835
Train ∆ +0.021 +0.014 +0.023 +0.050 +0.041 +0.030 +0.067 +0.003 +0.031 +0.034
Validation 0.732 0.836 0.667 0.475 0.731 0.836 0.727 0.971 0.751 0.746

Validation ∆ +0.086 +0.042 -0.026 -0.097 -0.024 +0.023 +0.018 -0.014 +0.003 +0.003
Test 0.810 0.841 0.705 0.576 0.774 0.698 0.718 0.985 0.817 0.816

Test ∆ +0.057 +0.038 +0.035 -0.007 +0.014 +0.102 +0.072 +0.000 +0.029 +0.029

S2MO,S2SE,S2HY,S2AN
and

S1MO

Train 0.853 0.843 0.741 0.659 0.801 0.879 0.847 0.993 0.826 0.825
Train ∆ +0.014 +0.012 +0.018 +0.031 +0.027 +0.013 +0.046 +0.003 +0.021 +0.024
Validation 0.704 0.836 0.706 0.508 0.747 0.818 0.711 0.971 0.755 0.749

Validation ∆ +0.058 +0.042 +0.014 -0.063 -0.008 +0.006 +0.002 -0.014 +0.007 +0.007
Test 0.819 0.850 0.736 0.580 0.789 0.687 0.725 0.985 0.825 0.825

Test ∆ +0.066 +0.047 +0.066 -0.003 +0.029 +0.090 +0.079 +0.000 +0.036 +0.038
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C.1.2.3 Sentinel-2 and Landsat-8

Table C.8: Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2AN
and
L8AN

Train 0.816 0.874 0.712 0.567 0.632 0.786 0.716 0.980 0.761 0.763
Train ∆ +0.083 +0.018 +0.050 +0.062 +0.026 +0.016 +0.082 +0.016 +0.043 +0.043
Validation 0.772 0.871 0.677 0.535 0.588 0.754 0.671 0.980 0.733 0.737

Validation ∆ -0.001 -0.025 -0.007 +0.065 -0.010 -0.003 -0.004 +0.010 +0.003 +0.001
Test 0.742 0.879 0.731 0.630 0.665 0.818 0.674 0.984 0.766 0.768

Test ∆ +0.064 +0.001 +0.027 +0.062 +0.012 +0.014 +0.130 +0.002 +0.037 +0.035

S2HY
and
L8AN

Train 0.829 0.860 0.730 0.587 0.657 0.812 0.776 0.981 0.779 0.780
Train ∆ +0.041 +0.026 +0.033 +0.002 +0.036 +0.017 +0.120 +0.013 +0.035 +0.035
Validation 0.807 0.872 0.740 0.581 0.638 0.775 0.736 0.970 0.765 0.768

Validation ∆ +0.028 +0.017 -0.028 -0.010 -0.019 +0.016 +0.115 +0.000 +0.014 +0.016
Test 0.791 0.828 0.702 0.670 0.751 0.400 0.682 0.987 0.776 0.773

Test ∆ +0.016 -0.020 -0.017 -0.032 -0.005 +0.086 +0.082 +0.007 +0.008 +0.010

S2SE
and
L8AN

Train 0.806 0.823 0.688 0.499 0.651 0.784 0.694 0.983 0.743 0.744
Train ∆ +0.013 -0.024 +0.003 -0.088 +0.026 -0.002 +0.019 +0.006 -0.006 -0.007
Validation 0.794 0.886 0.759 0.531 0.714 0.796 0.625 0.973 0.765 0.767

Validation ∆ +0.013 -0.015 -0.012 -0.039 +0.038 +0.010 -0.007 +0.005 +0.000 +0.000
Test 0.776 0.862 0.749 0.635 0.708 0.836 0.700 0.987 0.784 0.785

Test ∆ -0.002 -0.021 -0.010 -0.049 -0.028 +0.019 +0.023 +0.007 -0.008 -0.009

S2MO
and
L8AN

Train 0.872 0.860 0.763 0.635 0.799 0.875 0.861 0.991 0.830 0.829
Train ∆ +0.035 +0.026 +0.043 +0.003 +0.012 +0.012 +0.055 +0.001 +0.023 +0.026
Validation 0.701 0.776 0.654 0.525 0.753 0.824 0.781 0.988 0.756 0.752

Validation ∆ +0.044 -0.012 -0.026 -0.051 -0.023 +0.005 +0.064 +0.000 +0.001 +0.003
Test 0.788 0.876 0.767 0.556 0.749 0.787 0.688 0.986 0.814 0.814

Test ∆ +0.033 +0.046 +0.071 -0.023 -0.007 +0.121 +0.046 +0.002 +0.024 +0.027
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Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2AN
and
L8HY

Train 0.808 0.840 0.698 0.558 0.663 0.795 0.673 0.980 0.760 0.760
Train ∆ +0.076 +0.001 +0.020 +0.054 +0.027 +0.014 +0.059 +0.007 +0.031 +0.030
Validation 0.785 0.884 0.699 0.519 0.618 0.784 0.649 0.988 0.745 0.747

Validation ∆ +0.007 -0.009 -0.017 +0.072 +0.001 +0.009 -0.040 +0.006 +0.004 +0.002
Test 0.779 0.882 0.762 0.656 0.726 0.291 0.651 0.988 0.781 0.778

Test ∆ +0.076 +0.015 +0.044 +0.057 +0.041 +0.019 +0.111 +0.002 +0.048 +0.046

S2HY
and
L8HY

Train 0.825 0.842 0.724 0.575 0.680 0.830 0.738 0.980 0.782 0.782
Train ∆ +0.025 +0.011 +0.020 -0.004 +0.039 +0.009 +0.062 +0.008 +0.021 +0.021
Validation 0.810 0.872 0.766 0.631 0.667 0.782 0.734 0.986 0.782 0.784

Validation ∆ +0.041 +0.003 -0.011 +0.039 +0.032 +0.024 +0.127 +0.000 +0.032 +0.032
Test 0.814 0.833 0.721 0.671 0.770 0.065 0.648 0.985 0.795 0.784

Test ∆ +0.009 -0.010 -0.010 -0.035 -0.004 -0.034 +0.050 +0.002 +0.002 +0.002

S2SE
and
L8HY

Train 0.820 0.840 0.687 0.572 0.668 0.818 0.741 0.983 0.775 0.775
Train ∆ +0.016 +0.004 +0.000 -0.015 +0.025 +0.013 +0.074 +0.000 +0.014 +0.012
Validation 0.771 0.883 0.772 0.567 0.655 0.814 0.708 0.981 0.775 0.775

Validation ∆ -0.014 -0.023 -0.019 -0.022 -0.017 +0.017 +0.057 +0.000 -0.003 -0.004
Test 0.818 0.875 0.778 0.693 0.757 0.297 0.704 0.989 0.809 0.807

Test ∆ +0.015 +0.012 +0.013 +0.022 +0.013 +0.075 +0.037 +0.002 +0.016 +0.019

S2MO
and
L8HY

Train 0.865 0.836 0.735 0.629 0.796 0.876 0.854 0.990 0.826 0.823
Train ∆ +0.017 +0.014 +0.005 +0.003 +0.002 +0.005 +0.044 +0.000 +0.010 +0.012
Validation 0.682 0.800 0.691 0.520 0.775 0.853 0.813 1.000 0.783 0.780

Validation ∆ +0.015 -0.016 -0.040 -0.051 -0.045 +0.014 +0.000 +0.000 -0.017 -0.016
Test 0.788 0.911 0.790 0.576 0.769 0.118 0.667 0.985 0.818 0.822

Test ∆ +0.022 +0.069 +0.068 +0.006 +0.001 +0.000 +0.010 +0.000 +0.016 +0.018

S2AN
and

L8HY,L8AN

Train 0.834 0.869 0.723 0.577 0.681 0.810 0.711 0.984 0.781 0.782
Train ∆ +0.102 +0.031 +0.045 +0.073 +0.045 +0.029 +0.097 +0.012 +0.052 +0.051
Validation 0.803 0.866 0.695 0.523 0.641 0.773 0.673 0.988 0.750 0.753

Validation ∆ +0.025 -0.028 -0.021 +0.077 +0.024 -0.002 -0.016 +0.006 +0.009 +0.007
Test 0.769 0.850 0.745 0.669 0.741 0.282 0.669 0.989 0.780 0.775

Test ∆ +0.066 -0.017 +0.027 +0.070 +0.056 +0.010 +0.130 +0.004 +0.047 +0.044

S2HY
and

L8HY,L8AN

Train 0.845 0.864 0.752 0.596 0.694 0.845 0.787 0.983 0.802 0.803
Train ∆ +0.045 +0.033 +0.048 +0.018 +0.053 +0.024 +0.111 +0.011 +0.042 +0.042
Validation 0.842 0.872 0.729 0.655 0.673 0.779 0.754 0.986 0.787 0.789

Validation ∆ +0.073 +0.003 -0.048 +0.064 +0.039 +0.022 +0.147 +0.000 +0.037 +0.036
Test 0.815 0.810 0.697 0.676 0.776 0.095 0.670 0.990 0.797 0.788

Test ∆ +0.010 -0.033 -0.034 -0.030 +0.001 -0.004 +0.072 +0.007 +0.004 +0.006
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Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2SE
and

L8HY,L8AN

Train 0.834 0.850 0.711 0.591 0.679 0.826 0.768 0.984 0.788 0.788
Train ∆ +0.030 +0.013 +0.023 +0.004 +0.036 +0.021 +0.101 +0.001 +0.027 +0.025
Validation 0.797 0.861 0.738 0.557 0.678 0.837 0.723 0.987 0.780 0.779

Validation ∆ +0.011 -0.046 -0.053 -0.031 +0.006 +0.040 +0.072 +0.006 +0.002 +0.000
Test 0.812 0.865 0.773 0.687 0.758 0.286 0.713 0.989 0.807 0.805

Test ∆ +0.010 +0.002 +0.008 +0.017 +0.014 +0.064 +0.046 +0.002 +0.014 +0.017

S2MO
and

L8HY,L8AN

Train 0.885 0.850 0.763 0.627 0.810 0.887 0.881 0.991 0.840 0.839
Train ∆ +0.037 +0.028 +0.034 +0.001 +0.017 +0.016 +0.070 +0.002 +0.024 +0.028
Validation 0.727 0.800 0.682 0.488 0.747 0.857 0.844 1.000 0.783 0.784

Validation ∆ +0.061 -0.016 -0.049 -0.084 -0.073 +0.018 +0.031 +0.000 -0.017 -0.012
Test 0.814 0.875 0.750 0.534 0.761 0.105 0.696 0.985 0.815 0.819

Test ∆ +0.048 +0.033 +0.028 -0.035 -0.007 -0.012 +0.040 +0.000 +0.013 +0.016

S2HY,S2AN
and
L8AN

Train 0.826 0.850 0.724 0.592 0.641 0.807 0.756 0.980 0.772 0.773
Train ∆ +0.038 +0.016 +0.026 +0.007 +0.020 +0.011 +0.100 +0.012 +0.029 +0.028
Validation 0.802 0.872 0.740 0.585 0.662 0.781 0.709 0.970 0.765 0.766

Validation ∆ +0.024 +0.017 -0.028 -0.006 +0.005 +0.022 +0.089 +0.000 +0.015 +0.014
Test 0.793 0.848 0.730 0.691 0.763 0.439 0.701 0.986 0.789 0.786

Test ∆ +0.017 -0.001 +0.012 -0.011 +0.006 +0.125 +0.101 +0.006 +0.020 +0.023

S2SE,S2AN
and
L8AN

Train 0.836 0.873 0.723 0.595 0.691 0.812 0.774 0.984 0.786 0.788
Train ∆ +0.043 +0.026 +0.039 +0.007 +0.066 +0.025 +0.099 +0.006 +0.038 +0.037
Validation 0.810 0.874 0.737 0.541 0.693 0.798 0.672 0.973 0.766 0.769

Validation ∆ +0.029 -0.027 -0.034 -0.029 +0.017 +0.012 +0.040 +0.005 +0.002 +0.002
Test 0.798 0.883 0.756 0.672 0.725 0.861 0.724 0.987 0.803 0.804

Test ∆ +0.020 +0.000 -0.003 -0.012 -0.010 +0.045 +0.047 +0.007 +0.010 +0.010

S2MO,S2AN
and
L8AN

Train 0.857 0.826 0.735 0.642 0.796 0.849 0.837 0.990 0.815 0.812
Train ∆ +0.020 -0.008 +0.014 +0.010 +0.009 -0.015 +0.031 +0.000 +0.008 +0.009
Validation 0.732 0.788 0.673 0.587 0.796 0.794 0.744 0.975 0.767 0.759

Validation ∆ +0.075 +0.000 -0.006 +0.011 +0.020 -0.024 +0.028 -0.013 +0.012 +0.009
Test 0.813 0.818 0.746 0.605 0.768 0.787 0.701 0.986 0.818 0.818

Test ∆ +0.058 -0.013 +0.050 +0.027 +0.012 +0.120 +0.058 +0.002 +0.029 +0.031

S2SE,S2HY
and
L8AN

Train 0.840 0.855 0.725 0.592 0.683 0.818 0.804 0.983 0.789 0.790
Train ∆ +0.041 +0.023 +0.037 +0.008 +0.068 +0.029 +0.124 +0.007 +0.041 +0.039
Validation 0.809 0.852 0.739 0.618 0.718 0.840 0.733 0.969 0.788 0.789

Validation ∆ +0.023 -0.026 -0.044 +0.016 +0.045 +0.044 +0.103 +0.006 +0.021 +0.019
Test 0.801 0.837 0.717 0.666 0.757 0.456 0.712 0.987 0.788 0.787

Test ∆ +0.013 -0.003 -0.007 -0.029 +0.006 +0.068 +0.024 +0.005 +0.003 +0.007
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Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2MO,S2HY
and
L8AN

Train 0.876 0.850 0.762 0.642 0.790 0.882 0.860 0.990 0.829 0.828
Train ∆ +0.034 +0.019 +0.039 +0.013 +0.016 +0.016 +0.058 +0.000 +0.024 +0.026
Validation 0.747 0.781 0.687 0.516 0.733 0.836 0.790 0.986 0.763 0.758

Validation ∆ +0.101 -0.012 +0.001 -0.055 -0.022 +0.023 +0.081 +0.000 +0.016 +0.017
Test 0.795 0.837 0.735 0.602 0.771 0.735 0.692 0.986 0.817 0.816

Test ∆ +0.043 +0.034 +0.066 +0.020 +0.011 +0.139 +0.047 +0.002 +0.030 +0.031

S2MO,S2SE
and
L8AN

Train 0.872 0.857 0.768 0.646 0.804 0.881 0.867 0.991 0.833 0.833
Train ∆ +0.035 +0.022 +0.047 +0.014 +0.017 +0.017 +0.061 +0.001 +0.026 +0.030
Validation 0.692 0.794 0.667 0.585 0.772 0.824 0.775 0.987 0.766 0.762

Validation ∆ +0.035 +0.006 -0.013 +0.009 -0.003 +0.005 +0.059 +0.000 +0.011 +0.013
Test 0.806 0.872 0.753 0.599 0.753 0.774 0.704 0.985 0.820 0.819

Test ∆ +0.051 +0.041 +0.057 +0.020 -0.003 +0.108 +0.061 +0.000 +0.030 +0.032

S2HY,S2AN
and
L8HY

Train 0.824 0.853 0.733 0.576 0.678 0.836 0.751 0.981 0.786 0.787
Train ∆ +0.023 +0.022 +0.028 -0.002 +0.038 +0.015 +0.075 +0.009 +0.026 +0.026
Validation 0.800 0.861 0.756 0.606 0.685 0.771 0.748 0.986 0.779 0.780

Validation ∆ +0.031 -0.008 -0.021 +0.014 +0.051 +0.014 +0.141 +0.000 +0.028 +0.028
Test 0.828 0.841 0.726 0.679 0.781 0.067 0.655 0.988 0.802 0.793

Test ∆ +0.023 -0.002 -0.005 -0.027 +0.007 -0.032 +0.057 +0.005 +0.010 +0.011

S2SE,S2AN
and
L8HY

Train 0.834 0.854 0.716 0.586 0.713 0.828 0.773 0.984 0.794 0.794
Train ∆ +0.030 +0.018 +0.029 -0.001 +0.070 +0.023 +0.106 +0.001 +0.033 +0.031
Validation 0.832 0.850 0.714 0.564 0.711 0.814 0.729 0.987 0.783 0.783

Validation ∆ +0.047 -0.057 -0.076 -0.025 +0.038 +0.017 +0.078 +0.006 +0.005 +0.004
Test 0.803 0.868 0.771 0.672 0.763 0.306 0.696 0.985 0.802 0.801

Test ∆ +0.000 +0.005 +0.007 +0.002 +0.020 +0.083 +0.029 -0.001 +0.009 +0.013

S2MO,S2AN
and
L8HY

Train 0.869 0.834 0.736 0.631 0.808 0.887 0.868 0.991 0.831 0.830
Train ∆ +0.021 +0.012 +0.006 +0.005 +0.015 +0.016 +0.058 +0.002 +0.016 +0.019
Validation 0.744 0.800 0.691 0.520 0.775 0.839 0.844 1.000 0.791 0.787

Validation ∆ +0.078 -0.016 -0.040 -0.051 -0.045 +0.000 +0.031 +0.000 -0.009 -0.008
Test 0.791 0.912 0.778 0.546 0.764 0.095 0.663 0.985 0.814 0.817

Test ∆ +0.025 +0.070 +0.056 -0.024 -0.005 -0.022 +0.007 +0.000 +0.012 +0.013

S2SE,S2HY
and
L8HY

Train 0.832 0.853 0.720 0.575 0.704 0.833 0.770 0.984 0.793 0.793
Train ∆ +0.026 +0.020 +0.029 -0.009 +0.078 +0.025 +0.106 +0.002 +0.034 +0.032
Validation 0.804 0.841 0.733 0.600 0.699 0.818 0.756 0.985 0.785 0.786

Validation ∆ +0.004 -0.052 -0.057 +0.000 +0.032 +0.038 +0.113 +0.007 +0.012 +0.012
Test 0.827 0.847 0.725 0.651 0.782 0.032 0.668 0.985 0.802 0.797

Test ∆ +0.011 +0.011 -0.003 -0.023 +0.026 +0.032 -0.003 -0.001 +0.004 +0.007
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Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2MO,S2HY
and
L8HY

Train 0.879 0.829 0.739 0.619 0.797 0.892 0.872 0.991 0.831 0.830
Train ∆ +0.025 +0.012 +0.006 -0.004 +0.019 +0.019 +0.064 +0.002 +0.017 +0.020
Validation 0.744 0.792 0.707 0.524 0.778 0.820 0.839 1.000 0.788 0.787

Validation ∆ +0.078 -0.017 -0.024 -0.042 -0.022 -0.014 +0.032 +0.000 -0.003 +0.000
Test 0.804 0.889 0.750 0.567 0.781 0.174 0.644 0.985 0.818 0.819

Test ∆ +0.041 +0.067 +0.044 -0.017 +0.011 +0.174 -0.009 +0.000 +0.017 +0.015

S2MO,S2SE
and
L8HY

Train 0.878 0.842 0.745 0.644 0.810 0.888 0.876 0.991 0.837 0.837
Train ∆ +0.030 +0.020 +0.015 +0.019 +0.017 +0.018 +0.065 +0.002 +0.022 +0.025
Validation 0.756 0.800 0.707 0.512 0.762 0.839 0.844 1.000 0.792 0.791

Validation ∆ +0.089 -0.016 -0.024 -0.060 -0.059 +0.000 +0.031 +0.000 -0.008 -0.004
Test 0.807 0.912 0.783 0.578 0.764 0.100 0.685 0.985 0.822 0.825

Test ∆ +0.041 +0.070 +0.061 +0.008 -0.005 -0.018 +0.029 +0.000 +0.020 +0.021

S2HY,S2AN
and

L8HY,L8AN

Train 0.834 0.855 0.743 0.590 0.671 0.842 0.767 0.981 0.792 0.792
Train ∆ +0.034 +0.024 +0.038 +0.011 +0.031 +0.020 +0.091 +0.009 +0.031 +0.031
Validation 0.804 0.872 0.719 0.591 0.634 0.756 0.741 0.986 0.764 0.765

Validation ∆ +0.034 +0.003 -0.058 +0.000 -0.001 -0.001 +0.134 +0.000 +0.013 +0.013
Test 0.827 0.808 0.713 0.684 0.785 0.071 0.670 0.989 0.802 0.794

Test ∆ +0.022 -0.035 -0.018 -0.022 +0.011 -0.028 +0.072 +0.006 +0.010 +0.011

S2SE,S2AN
and

L8HY,L8AN

Train 0.840 0.864 0.724 0.601 0.720 0.840 0.789 0.987 0.803 0.804
Train ∆ +0.036 +0.027 +0.037 +0.014 +0.077 +0.035 +0.122 +0.004 +0.042 +0.041
Validation 0.810 0.861 0.740 0.571 0.683 0.811 0.731 0.987 0.781 0.783

Validation ∆ +0.025 -0.046 -0.050 -0.017 +0.010 +0.014 +0.080 +0.006 +0.004 +0.004
Test 0.809 0.853 0.755 0.665 0.757 0.275 0.712 0.990 0.801 0.799

Test ∆ +0.007 -0.009 -0.009 -0.006 +0.013 +0.053 +0.045 +0.003 +0.008 +0.012

S2MO,S2AN
and

L8HY,L8AN

Train 0.893 0.855 0.768 0.640 0.813 0.889 0.877 0.991 0.844 0.844
Train ∆ +0.045 +0.033 +0.039 +0.014 +0.020 +0.019 +0.066 +0.002 +0.028 +0.032
Validation 0.711 0.800 0.706 0.558 0.781 0.857 0.871 1.000 0.800 0.799

Validation ∆ +0.044 -0.016 -0.026 -0.013 -0.040 +0.018 +0.059 +0.000 +0.000 +0.004
Test 0.815 0.853 0.744 0.558 0.779 0.095 0.674 0.985 0.816 0.819

Test ∆ +0.049 +0.011 +0.022 -0.011 +0.010 -0.022 +0.018 +0.000 +0.014 +0.016

S2SE,S2HY
and

L8HY,L8AN

Train 0.844 0.857 0.729 0.592 0.707 0.844 0.809 0.985 0.804 0.805
Train ∆ +0.039 +0.025 +0.038 +0.008 +0.081 +0.036 +0.145 +0.004 +0.045 +0.043
Validation 0.835 0.841 0.727 0.626 0.706 0.806 0.753 0.985 0.790 0.791

Validation ∆ +0.035 -0.052 -0.063 +0.026 +0.039 +0.026 +0.110 +0.007 +0.017 +0.016
Test 0.825 0.816 0.707 0.655 0.770 0.064 0.675 0.990 0.798 0.794

Test ∆ +0.010 -0.019 -0.021 -0.019 +0.013 +0.064 +0.004 +0.003 +0.000 +0.004

334



Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2MO,S2HY
and

L8HY,L8AN

Train 0.885 0.843 0.770 0.641 0.788 0.891 0.874 0.989 0.838 0.837
Train ∆ +0.030 +0.027 +0.036 +0.018 +0.010 +0.018 +0.066 +0.000 +0.024 +0.027
Validation 0.773 0.792 0.723 0.558 0.761 0.853 0.867 1.000 0.801 0.799

Validation ∆ +0.106 -0.017 -0.009 -0.008 -0.039 +0.019 +0.060 +0.000 +0.010 +0.013
Test 0.822 0.866 0.757 0.606 0.773 0.000 0.674 0.986 0.824 0.826

Test ∆ +0.059 +0.044 +0.051 +0.022 +0.003 +0.000 +0.022 +0.002 +0.022 +0.022

S2MO,S2SE
and

L8HY,L8AN

Train 0.876 0.852 0.757 0.630 0.809 0.881 0.883 0.991 0.838 0.837
Train ∆ +0.029 +0.030 +0.027 +0.004 +0.015 +0.011 +0.072 +0.002 +0.022 +0.026
Validation 0.739 0.800 0.699 0.524 0.771 0.839 0.844 1.000 0.791 0.791

Validation ∆ +0.073 -0.016 -0.033 -0.048 -0.049 +0.000 +0.031 +0.000 -0.008 -0.004
Test 0.825 0.882 0.771 0.591 0.764 0.100 0.703 0.985 0.825 0.828

Test ∆ +0.059 +0.040 +0.049 +0.022 -0.005 -0.018 +0.047 +0.000 +0.023 +0.024

S2SE,S2HY,S2AN
and
L8AN

Train 0.840 0.848 0.719 0.595 0.656 0.815 0.783 0.982 0.781 0.782
Train ∆ +0.040 +0.015 +0.031 +0.011 +0.041 +0.025 +0.103 +0.006 +0.033 +0.031
Validation 0.796 0.852 0.745 0.589 0.704 0.847 0.738 0.975 0.784 0.784

Validation ∆ +0.009 -0.026 -0.037 -0.012 +0.032 +0.051 +0.107 +0.012 +0.017 +0.014
Test 0.807 0.847 0.737 0.698 0.768 0.477 0.732 0.986 0.801 0.799

Test ∆ +0.018 +0.007 +0.013 +0.003 +0.017 +0.089 +0.045 +0.003 +0.016 +0.019

S2MO,S2HY,S2AN
and
L8AN

Train 0.861 0.851 0.740 0.624 0.787 0.880 0.855 0.991 0.821 0.820
Train ∆ +0.020 +0.020 +0.016 -0.005 +0.013 +0.014 +0.052 +0.002 +0.016 +0.019
Validation 0.737 0.813 0.701 0.546 0.756 0.831 0.773 0.986 0.771 0.765

Validation ∆ +0.091 +0.019 +0.015 -0.026 +0.000 +0.018 +0.065 +0.000 +0.024 +0.023
Test 0.801 0.859 0.755 0.622 0.783 0.722 0.679 0.985 0.822 0.822

Test ∆ +0.049 +0.056 +0.085 +0.039 +0.023 +0.126 +0.034 +0.000 +0.036 +0.037

S2MO,S2SE,S2HY
and
L8AN

Train 0.868 0.826 0.737 0.651 0.785 0.879 0.851 0.993 0.822 0.819
Train ∆ +0.026 -0.005 +0.013 +0.021 +0.011 +0.013 +0.049 +0.003 +0.016 +0.018
Validation 0.711 0.807 0.707 0.571 0.777 0.831 0.753 0.971 0.769 0.762

Validation ∆ +0.064 +0.013 +0.021 +0.000 +0.021 +0.018 +0.044 -0.014 +0.022 +0.020
Test 0.801 0.816 0.743 0.622 0.781 0.677 0.687 0.986 0.817 0.816

Test ∆ +0.049 +0.014 +0.073 +0.039 +0.020 +0.080 +0.041 +0.002 +0.030 +0.031

S2MO,S2SE,S2HY,S2AN
and
L8AN

Train 0.876 0.857 0.775 0.641 0.796 0.881 0.874 0.991 0.834 0.834
Train ∆ +0.034 +0.026 +0.051 +0.012 +0.022 +0.016 +0.071 +0.002 +0.029 +0.032
Validation 0.753 0.781 0.688 0.500 0.783 0.849 0.785 1.000 0.773 0.768

Validation ∆ +0.107 -0.012 +0.001 -0.071 +0.027 +0.036 +0.076 +0.014 +0.026 +0.027
Test 0.808 0.841 0.737 0.582 0.777 0.685 0.683 0.986 0.816 0.816

Test ∆ +0.056 +0.038 +0.068 -0.001 +0.017 +0.088 +0.038 +0.002 +0.029 +0.031
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Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2SE,S2HY,S2AN,
and
L8HY

Train 0.833 0.854 0.726 0.588 0.703 0.831 0.767 0.984 0.794 0.796
Train ∆ +0.027 +0.022 +0.035 +0.004 +0.077 +0.023 +0.103 +0.002 +0.035 +0.034
Validation 0.843 0.841 0.740 0.654 0.713 0.806 0.764 0.978 0.797 0.798

Validation ∆ +0.043 -0.052 -0.050 +0.054 +0.046 +0.026 +0.121 +0.000 +0.024 +0.024
Test 0.827 0.843 0.726 0.681 0.789 0.030 0.679 0.989 0.809 0.802

Test ∆ +0.011 +0.007 -0.002 +0.007 +0.032 +0.030 +0.008 +0.002 +0.010 +0.013

S2AN,S2HY,S2MO
and
L8HY

Train 0.849 0.829 0.731 0.632 0.797 0.888 0.854 0.989 0.825 0.824
Train ∆ -0.005 +0.012 -0.002 +0.009 +0.019 +0.015 +0.046 +0.000 +0.011 +0.014
Validation 0.756 0.816 0.709 0.522 0.771 0.853 0.867 1.000 0.799 0.795

Validation ∆ +0.089 +0.008 -0.023 -0.044 -0.029 +0.019 +0.060 +0.000 +0.007 +0.008
Test 0.810 0.878 0.745 0.631 0.785 0.091 0.648 0.985 0.823 0.824

Test ∆ +0.047 +0.055 +0.039 +0.047 +0.015 +0.091 -0.004 +0.000 +0.022 +0.020

S2HY,S2SE,S2MO
and
L8HY

Train 0.864 0.813 0.737 0.625 0.779 0.877 0.858 0.991 0.822 0.820
Train ∆ +0.010 -0.004 +0.003 +0.002 +0.001 +0.004 +0.050 +0.002 +0.008 +0.010
Validation 0.773 0.851 0.741 0.549 0.776 0.833 0.833 1.000 0.806 0.799

Validation ∆ +0.106 +0.043 +0.009 -0.017 -0.024 +0.000 +0.027 +0.000 +0.015 +0.013
Test 0.808 0.857 0.764 0.606 0.791 0.000 0.652 0.986 0.821 0.823

Test ∆ +0.045 +0.035 +0.058 +0.022 +0.021 +0.000 -0.001 +0.002 +0.020 +0.019

S2MO,S2SE,S2HY,S2AN
and
L8HY

Train 0.871 0.834 0.744 0.623 0.794 0.885 0.867 0.991 0.830 0.830
Train ∆ +0.017 +0.017 +0.010 +0.000 +0.016 +0.012 +0.058 +0.002 +0.016 +0.019
Validation 0.800 0.792 0.691 0.522 0.771 0.839 0.825 1.000 0.791 0.787

Validation ∆ +0.133 -0.017 -0.040 -0.044 -0.029 +0.005 +0.019 +0.000 -0.001 +0.000
Test 0.816 0.909 0.770 0.558 0.777 0.000 0.682 0.986 0.824 0.826

Test ∆ +0.053 +0.087 +0.065 -0.026 +0.006 +0.000 +0.029 +0.002 +0.022 +0.022

S2SE,S2HY,S2AN
and

L8HY,L8AN

Train 0.847 0.863 0.731 0.600 0.715 0.848 0.809 0.985 0.808 0.808
Train ∆ +0.042 +0.030 +0.040 +0.016 +0.088 +0.040 +0.146 +0.004 +0.049 +0.047
Validation 0.835 0.829 0.740 0.633 0.699 0.800 0.753 0.985 0.790 0.791

Validation ∆ +0.035 -0.064 -0.050 +0.033 +0.032 +0.020 +0.110 +0.007 +0.017 +0.016
Test 0.829 0.813 0.706 0.650 0.772 0.063 0.675 0.990 0.798 0.794

Test ∆ +0.013 -0.022 -0.022 -0.024 +0.015 +0.063 +0.004 +0.003 +0.000 +0.004

S2MO,S2HY,S2AN
and

L8HY,L8AN

Train 0.889 0.851 0.775 0.650 0.797 0.891 0.878 0.991 0.843 0.843
Train ∆ +0.035 +0.034 +0.042 +0.027 +0.019 +0.018 +0.070 +0.002 +0.029 +0.032
Validation 0.744 0.792 0.732 0.500 0.800 0.839 0.867 1.000 0.800 0.799

Validation ∆ +0.078 -0.017 +0.000 -0.066 +0.000 +0.005 +0.060 +0.000 +0.008 +0.013
Test 0.826 0.845 0.717 0.581 0.784 0.000 0.678 0.986 0.821 0.822

Test ∆ +0.063 +0.023 +0.011 -0.003 +0.014 +0.000 +0.025 +0.002 +0.019 +0.017
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Results of Decision-level Fusion Sentinel-2 and Landsat-8 prior models using an SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2MO,S2SE,S2HY
and

L8HY,L8AN

Train 0.889 0.843 0.769 0.639 0.789 0.891 0.883 0.989 0.840 0.839
Train ∆ +0.034 +0.027 +0.035 +0.016 +0.011 +0.018 +0.075 +0.000 +0.026 +0.028
Validation 0.727 0.816 0.716 0.558 0.778 0.839 0.848 1.000 0.797 0.795

Validation ∆ +0.061 +0.008 -0.016 -0.008 -0.022 +0.005 +0.041 +0.000 +0.006 +0.008
Test 0.826 0.866 0.755 0.574 0.769 0.000 0.682 0.986 0.822 0.824

Test ∆ +0.063 +0.044 +0.049 -0.010 -0.001 +0.000 +0.029 +0.002 +0.021 +0.020

S2MO,S2SE,S2HY,S2AN
and

L8HY,L8AN

Train 0.880 0.804 0.748 0.641 0.797 0.879 0.872 0.991 0.831 0.829
Train ∆ +0.026 -0.013 +0.014 +0.018 +0.019 +0.006 +0.064 +0.002 +0.017 +0.019
Validation 0.727 0.826 0.732 0.560 0.765 0.825 0.807 1.000 0.792 0.787

Validation ∆ +0.061 +0.018 +0.000 -0.006 -0.035 -0.008 +0.001 +0.000 +0.001 +0.000
Test 0.834 0.832 0.753 0.618 0.799 0.000 0.667 0.986 0.828 0.831

Test ∆ +0.072 +0.009 +0.048 +0.034 +0.028 +0.000 +0.014 +0.002 +0.026 +0.027
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C.1.2.4 Landsat-8 and Sentinel-1

Table C.9: Results of Decision-level Fusion Landsat-8 and Sentinel-1 prior models using an SVM.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

L8AN
and

S1MO

Train 0.812 0.872 0.725 0.634 0.715 0.810 0.801 0.991 0.795 0.796
Train ∆ +0.085 +0.036 +0.079 +0.156 +0.157 +0.062 +0.136 +0.017 +0.090 +0.089
Validation 0.726 0.847 0.667 0.536 0.622 0.800 0.715 0.975 0.737 0.739

Validation ∆ +0.060 +0.030 +0.056 +0.075 +0.107 +0.062 +0.109 -0.010 +0.060 +0.059
Test 0.723 0.859 0.731 0.579 0.669 0.710 0.610 0.954 0.732 0.731

Test ∆ +0.081 +0.021 +0.062 +0.105 +0.110 -0.001 +0.083 -0.028 +0.054 +0.051

L8HY
and

S1MO

Train 0.798 0.860 0.721 0.601 0.734 0.841 0.781 0.992 0.798 0.797
Train ∆ +0.105 +0.034 +0.128 +0.112 +0.179 +0.077 +0.209 +0.026 +0.106 +0.097
Validation 0.724 0.860 0.642 0.552 0.638 0.800 0.694 0.988 0.743 0.743

Validation ∆ -0.034 +0.040 +0.047 +0.035 +0.019 +0.060 +0.090 +0.000 +0.031 +0.024
Test 0.724 0.850 0.749 0.672 0.728 0.167 0.564 0.963 0.753 0.753

Test ∆ +0.029 +0.010 +0.074 +0.046 +0.033 -0.010 +0.038 -0.023 +0.027 +0.038

L8AN,L8HY
and

S1MO

Train 0.827 0.860 0.734 0.615 0.734 0.836 0.801 0.992 0.806 0.806
Train ∆ +0.134 +0.034 +0.141 +0.126 +0.179 +0.073 +0.229 +0.026 +0.115 +0.106
Validation 0.734 0.840 0.671 0.569 0.657 0.831 0.732 0.988 0.759 0.760

Validation ∆ -0.024 +0.020 +0.076 +0.052 +0.038 +0.092 +0.128 +0.000 +0.048 +0.040
Test 0.765 0.847 0.766 0.672 0.737 0.212 0.631 0.974 0.774 0.774

Test ∆ +0.070 +0.006 +0.091 +0.046 +0.042 +0.035 +0.106 -0.011 +0.048 +0.059
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C.1.2.5 Sentinel-2 Landsat-8 and Sentinel-1

Table C.10: Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2AN,L8AN
and

S1MO

Train 0.835 0.878 0.744 0.637 0.725 0.818 0.798 0.990 0.803 0.803
Train ∆ +0.102 +0.022 +0.082 +0.132 +0.119 +0.048 +0.164 +0.026 +0.085 +0.082
Validation 0.800 0.878 0.694 0.534 0.625 0.794 0.732 0.975 0.755 0.756

Validation ∆ +0.027 -0.018 +0.010 +0.065 +0.028 +0.037 +0.057 +0.005 +0.026 +0.021
Test 0.756 0.887 0.771 0.605 0.703 0.768 0.638 0.960 0.763 0.760

Test ∆ +0.077 +0.010 +0.066 +0.037 +0.050 -0.035 +0.094 -0.021 +0.034 +0.027

S2HY,L8AN
and

S1MO

Train 0.853 0.866 0.756 0.654 0.766 0.855 0.852 0.992 0.825 0.825
Train ∆ +0.065 +0.032 +0.059 +0.069 +0.145 +0.060 +0.195 +0.024 +0.081 +0.080
Validation 0.798 0.885 0.737 0.562 0.667 0.802 0.726 0.970 0.768 0.769

Validation ∆ +0.019 +0.031 -0.031 -0.029 +0.010 +0.043 +0.105 +0.000 +0.018 +0.017
Test 0.806 0.824 0.715 0.664 0.747 0.500 0.696 0.981 0.781 0.781

Test ∆ +0.031 -0.025 -0.003 -0.038 -0.009 +0.186 +0.096 +0.001 +0.012 +0.018

S2SE,L8AN
and

S1MO

Train 0.854 0.863 0.733 0.638 0.733 0.819 0.817 0.991 0.807 0.807
Train ∆ +0.061 +0.016 +0.049 +0.051 +0.108 +0.033 +0.142 +0.014 +0.058 +0.055
Validation 0.791 0.882 0.744 0.558 0.671 0.819 0.733 0.973 0.773 0.773

Validation ∆ +0.010 -0.018 -0.027 -0.012 -0.005 +0.033 +0.100 +0.005 +0.009 +0.006
Test 0.787 0.876 0.764 0.646 0.753 0.842 0.697 0.960 0.793 0.791

Test ∆ +0.009 -0.007 +0.005 -0.038 +0.018 +0.026 +0.019 -0.021 +0.000 -0.003

S2MO,L8AN
and

S1MO

Train 0.876 0.855 0.761 0.681 0.821 0.892 0.883 0.993 0.843 0.841
Train ∆ +0.039 +0.020 +0.040 +0.050 +0.034 +0.028 +0.077 +0.003 +0.036 +0.039
Validation 0.727 0.812 0.647 0.500 0.745 0.836 0.753 0.975 0.755 0.749

Validation ∆ +0.070 +0.024 -0.033 -0.075 -0.030 +0.018 +0.037 -0.013 +0.000 +0.000
Test 0.846 0.866 0.775 0.623 0.765 0.773 0.731 0.986 0.834 0.834

Test ∆ +0.090 +0.035 +0.079 +0.044 +0.008 +0.106 +0.088 +0.002 +0.045 +0.047
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Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2AN,L8HY
and

S1MO

Train 0.829 0.859 0.743 0.615 0.753 0.831 0.790 0.992 0.808 0.807
Train ∆ +0.097 +0.021 +0.065 +0.111 +0.117 +0.050 +0.175 +0.020 +0.079 +0.077
Validation 0.781 0.880 0.726 0.571 0.682 0.827 0.711 0.988 0.776 0.777

Validation ∆ +0.004 -0.014 +0.010 +0.125 +0.065 +0.053 +0.022 +0.006 +0.035 +0.031
Test 0.755 0.885 0.792 0.670 0.749 0.303 0.628 0.984 0.783 0.784

Test ∆ +0.052 +0.017 +0.074 +0.071 +0.063 +0.031 +0.089 -0.001 +0.050 +0.053

S2HY,L8HY
and S1MO

Train 0.850 0.854 0.763 0.630 0.760 0.867 0.827 0.992 0.825 0.825
Train ∆ +0.049 +0.023 +0.058 +0.052 +0.120 +0.045 +0.151 +0.020 +0.065 +0.064
Validation 0.750 0.850 0.726 0.551 0.650 0.819 0.767 0.986 0.766 0.767

Validation ∆ -0.019 -0.018 -0.051 -0.041 +0.015 +0.062 +0.160 +0.000 +0.016 +0.015
Test 0.824 0.826 0.725 0.694 0.782 0.128 0.686 0.983 0.806 0.803

Test ∆ +0.020 -0.017 -0.006 -0.012 +0.007 +0.029 +0.088 +0.000 +0.013 +0.021

S2SE,L8HY
and S1MO

Train 0.860 0.868 0.746 0.645 0.771 0.862 0.842 0.995 0.831 0.831
Train ∆ +0.056 +0.031 +0.059 +0.058 +0.128 +0.057 +0.175 +0.012 +0.069 +0.068
Validation 0.819 0.902 0.758 0.556 0.697 0.851 0.792 0.987 0.800 0.800

Validation ∆ +0.034 -0.004 -0.033 -0.033 +0.024 +0.053 +0.140 +0.006 +0.023 +0.021
Test 0.794 0.853 0.773 0.658 0.751 0.346 0.689 0.984 0.795 0.796

Test ∆ -0.009 -0.010 +0.008 -0.012 +0.008 +0.124 +0.023 -0.002 +0.002 +0.008

S2MO,L8HY,L8AN
and S1MO

Train 0.874 0.847 0.760 0.676 0.844 0.901 0.892 0.991 0.852 0.852
Train ∆ +0.027 +0.025 +0.031 +0.051 +0.051 +0.031 +0.082 +0.002 +0.037 +0.040
Validation 0.783 0.863 0.753 0.526 0.767 0.807 0.807 1.000 0.802 0.803

Validation ∆ +0.116 +0.046 +0.021 -0.045 -0.053 -0.032 -0.006 +0.000 +0.002 +0.008
Test 0.834 0.878 0.762 0.578 0.757 0.125 0.715 0.985 0.825 0.828

Test ∆ +0.068 +0.036 +0.040 +0.008 -0.012 +0.007 +0.059 +0.000 +0.023 +0.024

S2AN,L8HY,L8AN
and

S1MO

Train 0.844 0.863 0.746 0.617 0.749 0.833 0.809 0.993 0.813 0.812
Train ∆ +0.112 +0.025 +0.067 +0.113 +0.113 +0.052 +0.194 +0.021 +0.084 +0.082
Validation 0.769 0.878 0.711 0.559 0.657 0.838 0.744 0.988 0.773 0.773

Validation ∆ -0.008 -0.016 -0.005 +0.113 +0.040 +0.063 +0.055 +0.006 +0.032 +0.028
Test 0.768 0.877 0.789 0.678 0.750 0.308 0.654 0.987 0.789 0.790

Test ∆ +0.065 +0.009 +0.071 +0.079 +0.064 +0.036 +0.115 +0.001 +0.056 +0.059

S2HY,L8HY,L8AN
and

S1MO

Train 0.859 0.865 0.767 0.638 0.775 0.876 0.856 0.994 0.836 0.836
Train ∆ +0.059 +0.034 +0.062 +0.060 +0.135 +0.054 +0.180 +0.022 +0.075 +0.075
Validation 0.807 0.850 0.719 0.589 0.690 0.803 0.786 0.986 0.782 0.782

Validation ∆ +0.038 -0.018 -0.058 -0.002 +0.056 +0.045 +0.179 +0.000 +0.032 +0.030
Test 0.823 0.824 0.718 0.671 0.773 0.115 0.671 0.985 0.799 0.797

Test ∆ +0.018 -0.019 -0.013 -0.035 -0.002 +0.016 +0.074 +0.002 +0.006 +0.014
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Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2SE, L8AN,L8HY
and

S1MO

Train 0.871 0.866 0.751 0.654 0.770 0.863 0.848 0.994 0.834 0.834
Train ∆ +0.067 +0.030 +0.064 +0.067 +0.127 +0.058 +0.181 +0.011 +0.073 +0.071
Validation 0.811 0.861 0.740 0.607 0.709 0.851 0.812 0.987 0.803 0.803

Validation ∆ +0.026 -0.046 -0.050 +0.019 +0.036 +0.053 +0.160 +0.006 +0.026 +0.023
Test 0.798 0.853 0.767 0.669 0.764 0.314 0.700 0.987 0.800 0.801

Test ∆ -0.004 -0.009 +0.003 -0.001 +0.020 +0.092 +0.034 +0.000 +0.007 +0.014

S2MO, L8AN,L8HY
and

S1MO

Train 0.876 0.829 0.762 0.660 0.819 0.887 0.889 0.993 0.843 0.841
Train ∆ +0.028 +0.007 +0.032 +0.034 +0.026 +0.017 +0.078 +0.003 +0.027 +0.029
Validation 0.708 0.840 0.738 0.583 0.805 0.825 0.800 1.000 0.803 0.799

Validation ∆ +0.042 +0.024 +0.006 +0.012 -0.015 -0.013 -0.012 +0.000 +0.003 +0.004
Test 0.837 0.869 0.800 0.617 0.799 0.118 0.696 0.988 0.837 0.839

Test ∆ +0.070 +0.027 +0.078 +0.048 +0.030 +0.000 +0.039 +0.003 +0.034 +0.036

S2AN,S2HY, L8AN
and

S1MO

Train 0.845 0.862 0.748 0.622 0.729 0.836 0.828 0.990 0.808 0.807
Train ∆ +0.057 +0.028 +0.050 +0.037 +0.108 +0.040 +0.172 +0.022 +0.064 +0.063
Validation 0.796 0.850 0.726 0.556 0.648 0.793 0.733 0.970 0.760 0.760

Validation ∆ +0.017 -0.005 -0.042 -0.036 -0.009 +0.034 +0.113 +0.000 +0.009 +0.008
Test 0.807 0.835 0.724 0.683 0.768 0.519 0.730 0.982 0.794 0.793

Test ∆ +0.031 -0.013 +0.006 -0.018 +0.012 +0.205 +0.130 +0.002 +0.025 +0.030

S2AN,S2SE, L8AN
and

S1MO

Train 0.856 0.863 0.730 0.631 0.734 0.817 0.818 0.990 0.806 0.806
Train ∆ +0.063 +0.016 +0.046 +0.044 +0.109 +0.030 +0.143 +0.013 +0.057 +0.054
Validation 0.813 0.874 0.736 0.549 0.671 0.809 0.727 0.973 0.772 0.772

Validation ∆ +0.032 -0.027 -0.035 -0.021 -0.005 +0.024 +0.095 +0.005 +0.008 +0.005
Test 0.790 0.881 0.766 0.654 0.757 0.855 0.715 0.983 0.802 0.802

Test ∆ +0.012 -0.002 +0.007 -0.030 +0.021 +0.039 +0.037 +0.002 +0.010 +0.008

S2AN,S2MO, L8AN
and

S1MO

Train 0.880 0.862 0.773 0.694 0.831 0.900 0.891 0.993 0.851 0.850
Train ∆ +0.042 +0.028 +0.052 +0.062 +0.044 +0.036 +0.085 +0.003 +0.044 +0.047
Validation 0.769 0.812 0.667 0.531 0.768 0.836 0.760 0.975 0.770 0.765

Validation ∆ +0.112 +0.024 -0.013 -0.044 -0.008 +0.018 +0.043 -0.013 +0.016 +0.016
Test 0.842 0.862 0.764 0.634 0.773 0.773 0.712 0.986 0.833 0.832

Test ∆ +0.086 +0.031 +0.068 +0.056 +0.017 +0.106 +0.069 +0.002 +0.043 +0.045

S2HY,S2SE, L8AN
and

S1MO

Train 0.861 0.856 0.740 0.632 0.739 0.838 0.844 0.990 0.814 0.815
Train ∆ +0.061 +0.024 +0.052 +0.047 +0.123 +0.049 +0.165 +0.014 +0.066 +0.064
Validation 0.798 0.854 0.758 0.576 0.671 0.839 0.756 0.969 0.780 0.780

Validation ∆ +0.012 -0.023 -0.024 -0.026 -0.001 +0.043 +0.125 +0.006 +0.014 +0.011
Test 0.816 0.839 0.727 0.679 0.770 0.591 0.741 0.982 0.801 0.800

Test ∆ +0.027 -0.002 +0.003 -0.016 +0.019 +0.203 +0.053 +0.000 +0.016 +0.020
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Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2HY,S2MO, L8AN
and

S1MO

Train 0.870 0.845 0.748 0.663 0.811 0.887 0.870 0.993 0.834 0.833
Train ∆ +0.029 +0.014 +0.024 +0.033 +0.037 +0.022 +0.067 +0.003 +0.029 +0.032
Validation 0.703 0.818 0.686 0.533 0.756 0.818 0.737 0.971 0.756 0.752

Validation ∆ +0.057 +0.025 +0.000 -0.038 +0.000 +0.006 +0.028 -0.014 +0.009 +0.010
Test 0.839 0.850 0.737 0.585 0.785 0.758 0.705 0.986 0.828 0.827

Test ∆ +0.086 +0.047 +0.067 +0.002 +0.024 +0.161 +0.059 +0.002 +0.041 +0.042

S2SE,S2MO, L8AN
and

S1MO

Train 0.880 0.864 0.776 0.686 0.825 0.886 0.886 0.993 0.848 0.846
Train ∆ +0.043 +0.030 +0.056 +0.055 +0.038 +0.022 +0.080 +0.003 +0.041 +0.044
Validation 0.760 0.812 0.654 0.508 0.753 0.836 0.769 0.975 0.764 0.759

Validation ∆ +0.102 +0.024 -0.026 -0.067 -0.023 +0.018 +0.053 -0.013 +0.009 +0.009
Test 0.847 0.856 0.758 0.623 0.779 0.756 0.734 0.986 0.833 0.833

Test ∆ +0.091 +0.025 +0.062 +0.044 +0.022 +0.089 +0.091 +0.002 +0.044 +0.046

S2AN,S2HY, L8HY
and

S1MO

Train 0.856 0.854 0.759 0.641 0.781 0.869 0.846 0.994 0.832 0.832
Train ∆ +0.055 +0.023 +0.055 +0.063 +0.141 +0.048 +0.170 +0.022 +0.072 +0.071
Validation 0.800 0.878 0.724 0.598 0.718 0.800 0.780 0.986 0.788 0.789

Validation ∆ +0.031 +0.010 -0.052 +0.007 +0.083 +0.042 +0.173 +0.000 +0.037 +0.036
Test 0.832 0.827 0.722 0.680 0.766 0.133 0.689 0.985 0.804 0.802

Test ∆ +0.027 -0.016 -0.009 -0.026 -0.009 +0.034 +0.091 +0.002 +0.011 +0.020

S2AN,S2SE, L8HY
and

S1MO

Train 0.857 0.868 0.746 0.644 0.774 0.861 0.850 0.995 0.831 0.832
Train ∆ +0.053 +0.032 +0.059 +0.057 +0.131 +0.056 +0.183 +0.012 +0.070 +0.069
Validation 0.844 0.902 0.732 0.600 0.719 0.844 0.788 0.987 0.807 0.807

Validation ∆ +0.059 -0.004 -0.059 +0.012 +0.046 +0.047 +0.136 +0.006 +0.029 +0.028
Test 0.805 0.859 0.778 0.651 0.755 0.346 0.691 0.985 0.798 0.800

Test ∆ +0.003 -0.004 +0.013 -0.019 +0.011 +0.124 +0.024 -0.001 +0.005 +0.012

S2AN,S2MO, L8HY
and

S1MO

Train 0.873 0.845 0.763 0.677 0.840 0.906 0.897 0.993 0.853 0.851
Train ∆ +0.025 +0.023 +0.033 +0.051 +0.047 +0.036 +0.086 +0.003 +0.037 +0.040
Validation 0.727 0.840 0.714 0.522 0.815 0.857 0.807 1.000 0.802 0.799

Validation ∆ +0.061 +0.024 -0.017 -0.050 -0.006 +0.018 -0.006 +0.000 +0.002 +0.004
Test 0.827 0.885 0.781 0.593 0.781 0.118 0.717 0.988 0.832 0.835

Test ∆ +0.061 +0.043 +0.058 +0.024 +0.013 +0.000 +0.061 +0.003 +0.030 +0.031

S2HY,S2SE, L8HY
and

S1MO

Train 0.865 0.855 0.748 0.648 0.782 0.872 0.861 0.994 0.836 0.836
Train ∆ +0.060 +0.023 +0.057 +0.064 +0.156 +0.065 +0.198 +0.012 +0.077 +0.075
Validation 0.825 0.889 0.759 0.606 0.713 0.836 0.800 0.985 0.805 0.805

Validation ∆ +0.025 -0.003 -0.031 +0.006 +0.046 +0.056 +0.157 +0.007 +0.032 +0.031
Test 0.825 0.822 0.720 0.658 0.775 0.121 0.714 0.985 0.806 0.805

Test ∆ +0.009 -0.014 -0.008 -0.017 +0.019 +0.121 +0.043 -0.001 +0.007 +0.015

342



Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2HY,S2MO L8HY
and

S1MO

Train 0.871 0.824 0.757 0.648 0.812 0.888 0.869 0.992 0.837 0.836
Train ∆ +0.016 +0.007 +0.024 +0.025 +0.034 +0.015 +0.061 +0.003 +0.023 +0.025
Validation 0.727 0.816 0.714 0.565 0.765 0.853 0.814 0.985 0.791 0.787

Validation ∆ +0.061 +0.008 -0.017 -0.001 -0.035 +0.019 +0.007 -0.015 -0.001 +0.000
Test 0.840 0.845 0.741 0.601 0.797 0.000 0.701 0.986 0.831 0.833

Test ∆ +0.077 +0.023 +0.035 +0.018 +0.027 +0.000 +0.048 +0.002 +0.029 +0.029

S2SE,S2MO, L8HY
and

S1MO

Train 0.878 0.849 0.762 0.674 0.828 0.896 0.887 0.993 0.849 0.848
Train ∆ +0.030 +0.027 +0.032 +0.049 +0.035 +0.026 +0.076 +0.003 +0.034 +0.037
Validation 0.711 0.863 0.747 0.565 0.781 0.857 0.820 0.987 0.805 0.803

Validation ∆ +0.044 +0.046 +0.015 -0.006 -0.040 +0.018 +0.007 -0.013 +0.006 +0.008
Test 0.833 0.878 0.773 0.603 0.783 0.111 0.729 0.986 0.834 0.836

Test ∆ +0.067 +0.036 +0.051 +0.033 +0.014 -0.006 +0.073 +0.002 +0.032 +0.032

S2AN,S2HY
and

L8AN,L8HY, S1MO

Train 0.858 0.864 0.770 0.655 0.783 0.876 0.853 0.991 0.838 0.838
Train ∆ +0.057 +0.033 +0.065 +0.076 +0.142 +0.055 +0.178 +0.019 +0.077 +0.077
Validation 0.800 0.850 0.713 0.569 0.678 0.803 0.776 0.986 0.775 0.776

Validation ∆ +0.031 -0.018 -0.064 -0.022 +0.044 +0.045 +0.169 +0.000 +0.025 +0.023
Test 0.827 0.819 0.725 0.665 0.774 0.128 0.685 0.985 0.802 0.800

Test ∆ +0.022 -0.024 -0.006 -0.041 -0.001 +0.029 +0.087 +0.002 +0.009 +0.018

S2AN,S2SE
and

L8AN,L8HY, S1MO

Train 0.864 0.857 0.743 0.644 0.746 0.852 0.829 0.992 0.823 0.823
Train ∆ +0.060 +0.021 +0.056 +0.057 +0.103 +0.046 +0.162 +0.009 +0.062 +0.060
Validation 0.826 0.861 0.750 0.602 0.694 0.859 0.776 0.987 0.801 0.800

Validation ∆ +0.041 -0.046 -0.041 +0.014 +0.021 +0.062 +0.124 +0.006 +0.023 +0.021
Test 0.806 0.856 0.779 0.686 0.778 0.275 0.667 0.961 0.797 0.797

Test ∆ +0.004 -0.007 +0.015 +0.015 +0.035 +0.052 +0.000 -0.025 +0.004 +0.010

S2AN,S2MO
and

L8AN,L8HY, S1MO

Train 0.897 0.854 0.777 0.682 0.833 0.908 0.899 0.993 0.858 0.857
Train ∆ +0.049 +0.032 +0.048 +0.056 +0.040 +0.038 +0.089 +0.003 +0.043 +0.046
Validation 0.766 0.840 0.744 0.609 0.810 0.857 0.848 1.000 0.821 0.819

Validation ∆ +0.099 +0.024 +0.013 +0.037 -0.010 +0.018 +0.035 +0.000 +0.022 +0.024
Test 0.852 0.887 0.793 0.620 0.796 0.118 0.719 0.988 0.842 0.846

Test ∆ +0.086 +0.045 +0.070 +0.050 +0.027 +0.000 +0.063 +0.003 +0.040 +0.042

S2HY,S2SE
and

L8AN,L8HY, S1MO

Train 0.877 0.864 0.756 0.655 0.775 0.874 0.879 0.994 0.842 0.842
Train ∆ +0.072 +0.032 +0.065 +0.071 +0.149 +0.067 +0.215 +0.012 +0.083 +0.081
Validation 0.837 0.857 0.740 0.647 0.734 0.839 0.809 0.985 0.810 0.810

Validation ∆ +0.037 -0.035 -0.050 +0.047 +0.067 +0.059 +0.166 +0.007 +0.037 +0.035
Test 0.828 0.807 0.707 0.660 0.775 0.111 0.702 0.985 0.803 0.802

Test ∆ +0.012 -0.029 -0.021 -0.014 +0.019 +0.111 +0.031 -0.001 +0.004 +0.012
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Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2HY,S2MO
and

L8AN,L8HY, S1MO

Train 0.895 0.858 0.780 0.687 0.843 0.904 0.901 0.994 0.861 0.862
Train ∆ +0.041 +0.041 +0.047 +0.064 +0.065 +0.031 +0.093 +0.005 +0.047 +0.051
Validation 0.800 0.863 0.756 0.541 0.773 0.820 0.814 1.000 0.807 0.808

Validation ∆ +0.133 +0.054 +0.024 -0.025 -0.027 -0.014 +0.007 +0.000 +0.016 +0.021
Test 0.840 0.863 0.742 0.606 0.788 0.111 0.715 0.990 0.835 0.838

Test ∆ +0.077 +0.041 +0.037 +0.022 +0.018 +0.111 +0.063 +0.005 +0.034 +0.034

S2SE,S2MO
and

L8AN,L8HY, S1MO

Train 0.888 0.851 0.769 0.673 0.835 0.893 0.895 0.993 0.853 0.852
Train ∆ +0.040 +0.029 +0.040 +0.047 +0.042 +0.023 +0.084 +0.003 +0.037 +0.040
Validation 0.723 0.840 0.723 0.533 0.781 0.857 0.820 0.987 0.798 0.795

Validation ∆ +0.057 +0.024 -0.009 -0.038 -0.040 +0.018 +0.007 -0.013 -0.002 +0.000
Test 0.844 0.887 0.788 0.610 0.777 0.100 0.711 0.988 0.836 0.838

Test ∆ +0.078 +0.045 +0.065 +0.041 +0.009 -0.018 +0.055 +0.003 +0.034 +0.034

S2AN,S2HY,S2SE
and

L8AN, S1MO

Train 0.856 0.855 0.741 0.628 0.737 0.837 0.843 0.990 0.813 0.813
Train ∆ +0.056 +0.023 +0.053 +0.044 +0.122 +0.048 +0.163 +0.013 +0.065 +0.062
Validation 0.826 0.843 0.744 0.578 0.672 0.839 0.762 0.969 0.782 0.782

Validation ∆ +0.040 -0.034 -0.039 -0.024 -0.001 +0.043 +0.131 +0.006 +0.016 +0.012
Test 0.815 0.838 0.727 0.674 0.765 0.584 0.745 0.982 0.799 0.799

Test ∆ +0.026 -0.003 +0.003 -0.021 +0.014 +0.196 +0.058 +0.000 +0.015 +0.019

S2AN,S2HY,S2MO
and

L8AN, S1MO

Train 0.874 0.831 0.756 0.659 0.802 0.883 0.872 0.993 0.832 0.830
Train ∆ +0.032 +0.000 +0.032 +0.030 +0.028 +0.017 +0.069 +0.003 +0.027 +0.028
Validation 0.712 0.807 0.673 0.548 0.764 0.831 0.711 0.971 0.755 0.748

Validation ∆ +0.066 +0.013 -0.013 -0.023 +0.009 +0.018 +0.002 -0.014 +0.008 +0.007
Test 0.825 0.819 0.736 0.580 0.788 0.719 0.702 0.988 0.822 0.820

Test ∆ +0.072 +0.016 +0.067 -0.003 +0.027 +0.122 +0.057 +0.003 +0.035 +0.035

S2HY,S2SE,S2MO
and

L8AN, S1MO

Train 0.865 0.846 0.743 0.657 0.803 0.886 0.862 0.991 0.830 0.829
Train ∆ +0.024 +0.015 +0.019 +0.027 +0.029 +0.021 +0.059 +0.002 +0.024 +0.028
Validation 0.730 0.781 0.673 0.484 0.739 0.831 0.737 0.971 0.748 0.742

Validation ∆ +0.084 -0.012 -0.013 -0.088 -0.016 +0.018 +0.028 -0.014 +0.001 +0.000
Test 0.837 0.850 0.754 0.607 0.784 0.708 0.725 0.986 0.831 0.831

Test ∆ +0.085 +0.047 +0.084 +0.024 +0.023 +0.111 +0.079 +0.002 +0.044 +0.046

S2AN,S2HY,S2SE,S2MO
and

L8AN, S1MO

Train 0.861 0.844 0.738 0.662 0.805 0.885 0.860 0.991 0.829 0.828
Train ∆ +0.019 +0.013 +0.014 +0.032 +0.031 +0.020 +0.058 +0.002 +0.024 +0.027
Validation 0.730 0.800 0.687 0.500 0.747 0.831 0.737 0.971 0.755 0.748

Validation ∆ +0.084 +0.006 +0.001 -0.071 -0.008 +0.018 +0.028 -0.014 +0.008 +0.007
Test 0.836 0.850 0.754 0.599 0.784 0.716 0.740 0.986 0.832 0.832

Test ∆ +0.084 +0.047 +0.084 +0.016 +0.023 +0.120 +0.095 +0.002 +0.045 +0.047
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Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2AN,S2HY,S2SE
and

L8HY, S1MO

Train 0.856 0.871 0.761 0.657 0.778 0.869 0.865 0.994 0.839 0.840
Train ∆ +0.051 +0.038 +0.070 +0.073 +0.151 +0.062 +0.202 +0.012 +0.080 +0.078
Validation 0.832 0.889 0.754 0.612 0.732 0.839 0.800 0.985 0.809 0.810

Validation ∆ +0.032 -0.003 -0.035 +0.012 +0.066 +0.059 +0.157 +0.007 +0.036 +0.035
Test 0.832 0.823 0.719 0.660 0.771 0.054 0.707 0.985 0.805 0.805

Test ∆ +0.016 -0.013 -0.010 -0.014 +0.015 +0.054 +0.036 -0.001 +0.007 +0.015

S2AN,S2HY,S2MO
and

L8HY, S1MO

Train 0.869 0.812 0.759 0.651 0.804 0.885 0.869 0.992 0.835 0.833
Train ∆ +0.014 -0.005 +0.025 +0.028 +0.026 +0.012 +0.061 +0.003 +0.021 +0.023
Validation 0.714 0.816 0.699 0.511 0.754 0.871 0.814 0.985 0.783 0.778

Validation ∆ +0.048 +0.008 -0.033 -0.055 -0.046 +0.038 +0.007 -0.015 -0.008 -0.008
Test 0.833 0.854 0.750 0.582 0.794 0.000 0.700 0.985 0.828 0.831

Test ∆ +0.070 +0.032 +0.044 -0.002 +0.024 +0.000 +0.047 +0.000 +0.026 +0.027

S2HY,S2SE,S2MO
and

L8HY, S1MO

Train 0.877 0.863 0.771 0.687 0.833 0.911 0.892 0.994 0.857 0.858
Train ∆ +0.023 +0.046 +0.037 +0.064 +0.055 +0.038 +0.084 +0.005 +0.043 +0.047
Validation 0.800 0.863 0.741 0.541 0.763 0.839 0.828 1.000 0.807 0.808

Validation ∆ +0.133 +0.054 +0.009 -0.025 -0.037 +0.005 +0.021 +0.000 +0.016 +0.021
Test 0.830 0.891 0.746 0.563 0.781 0.000 0.723 0.988 0.829 0.832

Test ∆ +0.067 +0.069 +0.040 -0.021 +0.010 +0.000 +0.071 +0.003 +0.028 +0.028

S2AN,S2HY,S2SE,S2MO
and

L8HY, S1MO

Train 0.869 0.816 0.752 0.651 0.801 0.883 0.865 0.992 0.833 0.832
Train ∆ +0.014 -0.001 +0.019 +0.028 +0.023 +0.010 +0.057 +0.003 +0.019 +0.021
Validation 0.744 0.792 0.706 0.578 0.783 0.857 0.828 0.985 0.794 0.791

Validation ∆ +0.078 -0.017 -0.026 +0.012 -0.017 +0.024 +0.021 -0.015 +0.003 +0.004
Test 0.840 0.872 0.763 0.580 0.788 0.000 0.722 0.985 0.832 0.836

Test ∆ +0.077 +0.050 +0.057 -0.004 +0.018 +0.000 +0.070 +0.000 +0.031 +0.031

S2AN,S2HY,S2SE
and

L8AN,L8HY, S1MO

Train 0.855 0.855 0.752 0.632 0.748 0.862 0.841 0.991 0.825 0.825
Train ∆ +0.050 +0.023 +0.062 +0.048 +0.121 +0.054 +0.178 +0.010 +0.066 +0.064
Validation 0.816 0.841 0.730 0.623 0.692 0.832 0.809 0.985 0.796 0.796

Validation ∆ +0.016 -0.052 -0.059 +0.023 +0.026 +0.052 +0.166 +0.007 +0.023 +0.021
Test 0.832 0.827 0.731 0.676 0.791 0.100 0.715 0.988 0.813 0.811

Test ∆ +0.016 -0.009 +0.003 +0.002 +0.034 +0.100 +0.044 +0.001 +0.015 +0.022

S2AN,S2HY,S2MO
and

L8AN,L8HY, S1MO

Train 0.885 0.826 0.773 0.659 0.812 0.890 0.878 0.992 0.844 0.842
Train ∆ +0.030 +0.009 +0.039 +0.036 +0.034 +0.017 +0.070 +0.003 +0.029 +0.032
Validation 0.696 0.792 0.714 0.512 0.771 0.853 0.814 0.985 0.782 0.778

Validation ∆ +0.029 -0.017 -0.017 -0.054 -0.029 +0.019 +0.007 -0.015 -0.010 -0.008
Test 0.842 0.854 0.776 0.599 0.794 0.000 0.700 0.986 0.833 0.837

Test ∆ +0.079 +0.032 +0.070 +0.015 +0.024 +0.000 +0.047 +0.002 +0.032 +0.032
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Results of Decision-level Fusion of Sentinel-2 Landsat-8 and Sentinel-1 prior models using SVM [Continued].

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

S2HY,S2SE,S2MO
and

L8AN,L8HY, S1MO

Train 0.886 0.848 0.760 0.690 0.835 0.910 0.901 0.991 0.856 0.856
Train ∆ +0.032 +0.031 +0.027 +0.067 +0.057 +0.037 +0.093 +0.002 +0.042 +0.045
Validation 0.727 0.840 0.762 0.556 0.790 0.820 0.814 1.000 0.802 0.803

Validation ∆ +0.061 +0.032 +0.030 -0.010 -0.010 -0.014 +0.007 +0.000 +0.011 +0.017
Test 0.837 0.860 0.739 0.585 0.769 0.000 0.718 0.988 0.828 0.831

Test ∆ +0.074 +0.038 +0.033 +0.001 -0.001 +0.000 +0.066 +0.003 +0.026 +0.027

S2AN,S2HY,S2SE,S2MO
and

L8AN,L8HY, S1MO

Train 0.884 0.848 0.764 0.698 0.839 0.915 0.912 0.991 0.860 0.860
Train ∆ +0.030 +0.031 +0.030 +0.075 +0.061 +0.043 +0.104 +0.002 +0.045 +0.049
Validation 0.762 0.833 0.767 0.579 0.784 0.820 0.820 1.000 0.808 0.808

Validation ∆ +0.095 +0.025 +0.036 +0.013 -0.016 -0.014 +0.013 +0.000 +0.016 +0.021
Test 0.834 0.860 0.730 0.567 0.773 0.000 0.718 0.988 0.826 0.829

Test ∆ +0.071 +0.038 +0.024 -0.017 +0.003 +0.000 +0.066 +0.003 +0.024 +0.024
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C.2 Variable Data Fusion Assessment Results
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Table C.11: Results of Decision-level Fusion using the Sentinel Only Fusion Set on S2AN-reduced dataset.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

F1 Ordered
Train 0.779 0.859 0.696 0.579 0.619 0.795 0.649 0.968 0.745 0.747

Validation 0.776 0.875 0.735 0.564 0.642 0.763 0.623 0.975 0.747 0.750
Test 0.754 0.891 0.750 0.637 0.724 0.806 0.586 0.977 0.770 0.773

OA Ordered
Train 0.815 0.868 0.725 0.592 0.674 0.802 0.723 0.981 0.774 0.774

Validation 0.774 0.884 0.713 0.558 0.683 0.764 0.640 0.975 0.752 0.753
Test 0.735 0.878 0.734 0.631 0.719 0.832 0.649 0.984 0.773 0.774

Class F1 Ordered
Train 0.791 0.852 0.674 0.582 0.685 0.808 0.669 0.984 0.758 0.759

Validation 0.810 0.887 0.718 0.557 0.679 0.800 0.703 0.985 0.769 0.772
Test 0.727 0.869 0.717 0.649 0.732 0.819 0.547 0.989 0.761 0.765

PTO
Train 0.805 0.865 0.703 0.579 0.657 0.799 0.715 0.978 0.764 0.766

Validation 0.781 0.881 0.700 0.553 0.704 0.770 0.667 0.975 0.756 0.759
Test 0.730 0.888 0.747 0.611 0.744 0.816 0.594 0.985 0.768 0.773

Weighted Voting
Train 0.803 0.861 0.713 0.592 0.637 0.806 0.707 0.975 0.763 0.765

Validation 0.781 0.895 0.726 0.570 0.679 0.774 0.667 0.975 0.761 0.763
Test 0.766 0.893 0.749 0.638 0.725 0.823 0.656 0.981 0.782 0.784

Max Probability
Train 0.810 0.866 0.708 0.584 0.677 0.804 0.731 0.979 0.771 0.773

Validation 0.791 0.885 0.699 0.540 0.699 0.770 0.652 0.966 0.753 0.756
Test 0.742 0.889 0.747 0.617 0.750 0.818 0.599 0.985 0.772 0.777

Model F1 Weighted
Max Probability

Train 0.813 0.869 0.710 0.586 0.675 0.803 0.734 0.980 0.772 0.774
Validation 0.794 0.885 0.699 0.547 0.704 0.770 0.648 0.966 0.754 0.758

Test 0.744 0.888 0.745 0.620 0.750 0.817 0.611 0.985 0.774 0.778

Class F1 Weighted
Max Probability

Train 0.798 0.870 0.697 0.544 0.690 0.796 0.701 0.979 0.761 0.766
Validation 0.811 0.891 0.704 0.485 0.686 0.759 0.621 0.966 0.743 0.753

Test 0.739 0.894 0.733 0.594 0.745 0.826 0.574 0.985 0.766 0.774

Average Probability
Train 0.806 0.865 0.718 0.592 0.656 0.804 0.720 0.975 0.768 0.770

Validation 0.817 0.885 0.733 0.557 0.667 0.777 0.700 0.980 0.766 0.769
Test 0.754 0.888 0.756 0.646 0.742 0.828 0.644 0.983 0.783 0.786

Model F1 Weighted
Average Probability

Train 0.807 0.864 0.716 0.592 0.656 0.805 0.721 0.975 0.768 0.770
Validation 0.817 0.885 0.733 0.564 0.667 0.783 0.695 0.980 0.768 0.771

Test 0.755 0.888 0.756 0.646 0.741 0.829 0.644 0.983 0.783 0.786

Class F1 Weighted
Average Probability

Train 0.796 0.868 0.708 0.562 0.687 0.802 0.717 0.979 0.766 0.770
Validation 0.815 0.891 0.727 0.539 0.707 0.769 0.687 0.970 0.765 0.771

Test 0.756 0.894 0.743 0.614 0.745 0.831 0.623 0.982 0.777 0.783
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Table C.12: Results of Decision-level Fusion using the Mono-Platform Fusion Set on S2AN-reduced dataset.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

F1 Ordered
Train 0.815 0.868 0.725 0.592 0.674 0.802 0.723 0.981 0.774 0.774

Validation 0.774 0.884 0.713 0.558 0.683 0.764 0.640 0.975 0.752 0.753
Test 0.735 0.878 0.734 0.631 0.719 0.832 0.649 0.984 0.773 0.774

OA Ordered
Train 0.784 0.863 0.700 0.575 0.621 0.790 0.657 0.974 0.748 0.751

Validation 0.779 0.895 0.742 0.557 0.667 0.764 0.603 0.970 0.751 0.755
Test 0.763 0.889 0.754 0.638 0.717 0.829 0.656 0.980 0.781 0.783

Class F1 Ordered
Train 0.790 0.863 0.700 0.599 0.694 0.779 0.728 0.984 0.768 0.768

Validation 0.794 0.895 0.735 0.569 0.691 0.777 0.703 0.980 0.770 0.771
Test 0.737 0.886 0.766 0.644 0.704 0.768 0.551 0.943 0.754 0.754

PTO
Test 0.737 0.886 0.766 0.644 0.704 0.768 0.551 0.943 0.754 0.754

Validation 0.783 0.878 0.679 0.582 0.702 0.790 0.676 0.970 0.760 0.763
Test 0.750 0.877 0.751 0.625 0.726 0.797 0.584 0.983 0.765 0.769

Weighted Voting
Train 0.811 0.867 0.719 0.600 0.640 0.812 0.735 0.977 0.771 0.773

Validation 0.800 0.885 0.738 0.591 0.662 0.780 0.681 0.975 0.766 0.769
Test 0.766 0.891 0.753 0.647 0.734 0.825 0.656 0.982 0.785 0.787

Max Probability
Train 0.823 0.870 0.723 0.622 0.711 0.814 0.791 0.987 0.793 0.795

Validation 0.755 0.874 0.676 0.591 0.691 0.778 0.647 0.970 0.750 0.754
Test 0.751 0.882 0.758 0.631 0.731 0.791 0.591 0.985 0.769 0.772

Model F1 Weighted
Max Probability

Train 0.825 0.873 0.724 0.615 0.703 0.814 0.782 0.983 0.790 0.792
Validation 0.777 0.874 0.673 0.592 0.687 0.790 0.652 0.966 0.754 0.758

Test 0.748 0.885 0.754 0.636 0.734 0.803 0.603 0.983 0.772 0.775

Class F1 Weighted
Max Probability

Train 0.809 0.875 0.709 0.587 0.707 0.803 0.728 0.978 0.776 0.781
Validation 0.815 0.873 0.673 0.538 0.694 0.766 0.615 0.966 0.746 0.754

Test 0.741 0.883 0.730 0.607 0.736 0.796 0.531 0.981 0.756 0.764

Average Probability
Train 0.828 0.872 0.731 0.631 0.683 0.819 0.781 0.980 0.791 0.792

Validation 0.816 0.876 0.713 0.589 0.671 0.781 0.690 0.975 0.766 0.768
Test 0.762 0.896 0.778 0.652 0.744 0.821 0.660 0.983 0.790 0.791

Model F1 Weighted
Average Probability

Train 0.830 0.872 0.732 0.633 0.683 0.819 0.777 0.981 0.791 0.792
Validation 0.820 0.876 0.716 0.595 0.671 0.786 0.704 0.975 0.770 0.772

Test 0.761 0.898 0.778 0.648 0.743 0.823 0.659 0.984 0.789 0.791

Class F1 Weighted
Average Probability

Train 0.823 0.879 0.728 0.616 0.709 0.815 0.768 0.986 0.791 0.793
Validation 0.809 0.884 0.713 0.575 0.683 0.780 0.677 0.975 0.764 0.769

Test 0.760 0.893 0.756 0.648 0.745 0.824 0.637 0.982 0.784 0.788
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Table C.13: Results of Decision-level Fusion using the SVM Fused Fusion Set on the S2AN-reduced dataset.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

F1 Ordered
Train 0.863 0.889 0.764 0.652 0.758 0.855 0.840 0.989 0.826 0.826

Validation 0.806 0.882 0.710 0.585 0.715 0.802 0.712 0.975 0.775 0.777
Test 0.779 0.889 0.769 0.626 0.723 0.833 0.713 0.984 0.791 0.791

OA Ordered
Train 0.873 0.889 0.767 0.671 0.778 0.860 0.866 0.992 0.836 0.837

Validation 0.847 0.886 0.724 0.580 0.678 0.798 0.740 0.975 0.780 0.782
Test 0.780 0.887 0.754 0.601 0.711 0.774 0.716 0.985 0.777 0.776

Class F1 Ordered
Train 0.846 0.888 0.729 0.623 0.757 0.826 0.832 0.989 0.811 0.811

Validation 0.811 0.905 0.759 0.636 0.715 0.805 0.716 0.975 0.792 0.795
Test 0.771 0.895 0.757 0.586 0.717 0.694 0.710 0.985 0.765 0.765

PTO
Train 0.849 0.887 0.751 0.628 0.747 0.835 0.833 0.992 0.815 0.817

Validation 0.851 0.869 0.704 0.595 0.667 0.800 0.723 0.975 0.774 0.778
Test 0.784 0.887 0.766 0.648 0.744 0.836 0.720 0.983 0.798 0.799

Weighted Voting
Train 0.861 0.881 0.758 0.647 0.744 0.846 0.842 0.991 0.821 0.821

Validation 0.813 0.873 0.714 0.576 0.682 0.802 0.737 0.975 0.773 0.774
Test 0.795 0.895 0.782 0.640 0.739 0.808 0.737 0.985 0.799 0.798

Max Probability
Train 0.853 0.887 0.752 0.631 0.748 0.834 0.835 0.991 0.816 0.818

Validation 0.849 0.876 0.723 0.582 0.674 0.800 0.732 0.975 0.778 0.782
Test 0.779 0.882 0.758 0.643 0.743 0.835 0.717 0.983 0.794 0.795

Model F1 Weighted
Max Probability

Train 0.853 0.886 0.753 0.628 0.749 0.838 0.840 0.991 0.817 0.819
Validation 0.853 0.870 0.720 0.590 0.671 0.796 0.727 0.975 0.777 0.781

Test 0.786 0.885 0.765 0.640 0.741 0.839 0.729 0.984 0.798 0.799

Class F1 Weighted
Max Probability

Train 0.843 0.885 0.738 0.576 0.751 0.832 0.828 0.988 0.805 0.810
Validation 0.827 0.877 0.705 0.503 0.678 0.784 0.680 0.971 0.755 0.764

Test 0.770 0.888 0.754 0.607 0.734 0.852 0.693 0.982 0.787 0.792

Average Probability
Train 0.859 0.881 0.758 0.655 0.748 0.845 0.842 0.991 0.822 0.822

Validation 0.816 0.873 0.726 0.589 0.693 0.811 0.740 0.975 0.779 0.781
Test 0.798 0.896 0.779 0.655 0.744 0.831 0.742 0.985 0.805 0.805

Model F1 Weighted
Average Probability

Train 0.858 0.881 0.758 0.655 0.749 0.845 0.842 0.991 0.822 0.822
Validation 0.816 0.873 0.726 0.589 0.693 0.811 0.740 0.975 0.779 0.781

Test 0.800 0.896 0.779 0.655 0.744 0.831 0.744 0.985 0.805 0.805

Class F1 Weighted
Average Probability

Train 0.858 0.883 0.754 0.636 0.765 0.841 0.844 0.991 0.821 0.823
Validation 0.830 0.879 0.730 0.531 0.670 0.805 0.724 0.975 0.769 0.774

Test 0.796 0.893 0.776 0.647 0.738 0.858 0.738 0.984 0.805 0.807

Multi-ML model
Train 0.865 0.879 0.752 0.655 0.755 0.852 0.853 0.990 0.825 0.825

Validation 0.816 0.873 0.711 0.573 0.685 0.802 0.719 0.975 0.771 0.773
Test 0.780 0.893 0.770 0.632 0.728 0.815 0.728 0.985 0.793 0.792
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Table C.14: Results of Decision-level Fusion using the Mono-Platform Fusion Set on the 25%-reduced dataset.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

F1 Ordered
Train 0.772 0.849 0.701 0.584 0.641 0.787 0.694 0.976 0.752 0.753

Validation 0.739 0.853 0.705 0.560 0.639 0.761 0.557 0.970 0.727 0.731
Test 0.720 0.872 0.714 0.621 0.716 0.813 0.611 0.985 0.760 0.761

OA Ordered
Train 0.757 0.850 0.688 0.575 0.625 0.786 0.668 0.972 0.742 0.744

Validation 0.750 0.853 0.732 0.562 0.639 0.777 0.596 0.970 0.738 0.742
Test 0.736 0.880 0.731 0.623 0.711 0.813 0.606 0.982 0.764 0.765

Class F1 Ordered
Train 0.759 0.848 0.697 0.592 0.658 0.756 0.676 0.984 0.748 0.748

Validation 0.767 0.854 0.718 0.574 0.624 0.780 0.657 0.980 0.747 0.750
Test 0.712 0.875 0.753 0.610 0.695 0.720 0.527 0.944 0.734 0.732

PTO
Train 0.793 0.864 0.699 0.608 0.669 0.796 0.754 0.986 0.772 0.773

Validation 0.757 0.850 0.689 0.556 0.655 0.764 0.643 0.970 0.738 0.741
Test 0.728 0.871 0.733 0.607 0.714 0.761 0.544 0.965 0.745 0.747

Weighted Voting
Train 0.775 0.860 0.700 0.586 0.636 0.798 0.723 0.974 0.757 0.759

Validation 0.755 0.853 0.718 0.573 0.638 0.785 0.653 0.975 0.746 0.749
Test 0.735 0.876 0.726 0.634 0.723 0.812 0.614 0.981 0.766 0.768

Max Probability
Train 0.788 0.858 0.706 0.611 0.688 0.796 0.768 0.986 0.775 0.777

Validation 0.726 0.843 0.664 0.550 0.628 0.773 0.624 0.970 0.725 0.728
Test 0.727 0.877 0.740 0.600 0.714 0.738 0.548 0.978 0.744 0.747

Model F1 Weighted
Max Probability

Train 0.792 0.858 0.705 0.610 0.684 0.794 0.760 0.983 0.774 0.775
Validation 0.743 0.843 0.670 0.547 0.635 0.779 0.604 0.966 0.727 0.731

Test 0.726 0.877 0.734 0.600 0.714 0.752 0.547 0.977 0.745 0.748

Class F1 Weighted
Max Probability

Train 0.785 0.862 0.695 0.588 0.687 0.788 0.724 0.979 0.765 0.769
Validation 0.778 0.847 0.660 0.514 0.620 0.751 0.598 0.966 0.720 0.728

Test 0.715 0.871 0.713 0.580 0.716 0.768 0.491 0.980 0.735 0.743

Average Probability
Train 0.801 0.861 0.714 0.620 0.682 0.800 0.764 0.980 0.778 0.779

Validation 0.766 0.845 0.699 0.588 0.639 0.789 0.662 0.975 0.748 0.750
Test 0.735 0.883 0.745 0.629 0.729 0.767 0.609 0.978 0.762 0.763

Model F1 Weighted
Average Probability

Train 0.800 0.861 0.713 0.621 0.680 0.800 0.760 0.980 0.777 0.778
Validation 0.766 0.850 0.695 0.588 0.639 0.789 0.662 0.975 0.748 0.750

Test 0.734 0.883 0.745 0.627 0.729 0.770 0.609 0.979 0.763 0.763

Class F1 Weighted
Average Probability

Train 0.798 0.867 0.714 0.607 0.692 0.800 0.755 0.987 0.778 0.781
Validation 0.771 0.850 0.689 0.534 0.635 0.765 0.632 0.975 0.734 0.740

Test 0.730 0.882 0.739 0.623 0.733 0.787 0.581 0.977 0.761 0.764
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Table C.15: Results of Decision-level Fusion using the SVM Fused and Mono Platform Fusion Set on the 25%-reduced dataset.

Sealed
Woody

Coniferous
Woody

Broadleaved
Permanent
Herbaceous

Periodically
Herbaceous

Sparsely
Vegetated

Non-
vegetated

Water Weighted F1 OA%

F1 Ordered
Train 0.836 0.878 0.750 0.643 0.743 0.840 0.833 0.988 0.814 0.814

Validation 0.776 0.856 0.692 0.577 0.692 0.789 0.690 0.975 0.758 0.759
Test 0.763 0.882 0.748 0.624 0.719 0.818 0.692 0.982 0.780 0.780

OA Ordered
Train 0.821 0.876 0.738 0.639 0.740 0.831 0.824 0.988 0.807 0.807

Validation 0.781 0.869 0.707 0.566 0.685 0.781 0.680 0.970 0.757 0.759
Test 0.770 0.885 0.748 0.617 0.716 0.813 0.681 0.979 0.778 0.778

Class F1 Ordered
Train 0.808 0.871 0.706 0.616 0.741 0.819 0.820 0.988 0.796 0.796

Validation 0.775 0.882 0.734 0.621 0.705 0.796 0.685 0.975 0.774 0.776
Test 0.749 0.888 0.741 0.621 0.726 0.781 0.669 0.980 0.771 0.772

PTO
Train 0.821 0.872 0.734 0.615 0.721 0.819 0.812 0.989 0.798 0.799

Validation 0.800 0.856 0.705 0.577 0.644 0.784 0.667 0.970 0.753 0.756
Test 0.763 0.876 0.743 0.635 0.730 0.793 0.664 0.985 0.776 0.778

Weighted Voting
Train 0.833 0.873 0.741 0.640 0.730 0.828 0.833 0.989 0.808 0.808

Validation 0.783 0.847 0.696 0.585 0.674 0.785 0.693 0.975 0.757 0.758
Test 0.780 0.884 0.752 0.642 0.736 0.804 0.708 0.983 0.788 0.787

Max Probability
Train 0.828 0.875 0.739 0.622 0.732 0.819 0.824 0.990 0.803 0.805

Validation 0.815 0.840 0.696 0.586 0.648 0.774 0.676 0.970 0.753 0.756
Test 0.766 0.878 0.742 0.631 0.733 0.796 0.686 0.982 0.779 0.780

Model F1 Weighted
Max Probability

Train 0.831 0.874 0.739 0.618 0.734 0.821 0.826 0.988 0.804 0.805
Validation 0.815 0.844 0.692 0.594 0.644 0.774 0.671 0.970 0.753 0.756

Test 0.769 0.879 0.742 0.636 0.732 0.819 0.701 0.982 0.784 0.786

Class F1 Weighted
Max Probability

Train 0.821 0.871 0.724 0.578 0.735 0.821 0.819 0.986 0.794 0.798
Validation 0.800 0.853 0.689 0.514 0.648 0.756 0.653 0.971 0.738 0.745

Test 0.760 0.875 0.731 0.602 0.726 0.817 0.660 0.980 0.771 0.776

Average Probability
Train 0.834 0.871 0.740 0.640 0.733 0.828 0.831 0.989 0.808 0.808

Validation 0.781 0.841 0.705 0.581 0.678 0.793 0.711 0.975 0.759 0.760
Test 0.781 0.886 0.755 0.652 0.737 0.810 0.708 0.983 0.791 0.791

Model F1 Weighted
Average Probability

Train 0.833 0.872 0.741 0.640 0.734 0.828 0.831 0.989 0.808 0.808
Validation 0.781 0.841 0.705 0.581 0.678 0.793 0.711 0.975 0.759 0.760

Test 0.780 0.885 0.754 0.652 0.737 0.811 0.708 0.983 0.791 0.790

Class F1 Weighted
Average Probability

Train 0.831 0.872 0.743 0.630 0.747 0.824 0.832 0.991 0.808 0.809
Validation 0.794 0.854 0.709 0.561 0.667 0.782 0.689 0.975 0.756 0.759

Test 0.780 0.880 0.750 0.642 0.733 0.838 0.709 0.982 0.791 0.792

Multi-ML model
Train 0.836 0.873 0.741 0.646 0.744 0.837 0.841 0.989 0.813 0.813

Validation 0.774 0.847 0.693 0.570 0.670 0.783 0.680 0.975 0.751 0.753
Test 0.764 0.884 0.748 0.628 0.720 0.797 0.704 0.983 0.780 0.779
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Appendix D

Chapter 5 Aerial Surveys
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(a) Twomilebridge

(b) Rathdown Upper
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(c) Sroughan

(d) Horsepasstown
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