
Topological Aspects of 1-Dimensional
Closed & Open Quantum Systems

Kevin Kavanagh
M.Sc.

Thesis presented for the degree of

Doctor of Philosophy
to the

Maynooth University
Department of Theoretical Physics

October 2022

Head of Department

Dr. J. K. Slingerland

Deputy Head of Department

Dr. Jiří Vala

Research Advisors

Dr. Graham Kells & Dr. J. K. Slingerland

1



To my family



Contents

1 Introduction 1
1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Changing Formalisms 7
2.1 Language of Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Creation & Annihilation Operators . . . . . . . . . . . . . . . . . . . 9
2.3 Open Systems & Third Quantization . . . . . . . . . . . . . . . . . . 10

2.3.1 Operators are to Superoperators as States are to Operators . . 11
2.3.2 Closed system dynamics . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Open system dynamics . . . . . . . . . . . . . . . . . . . . . . 14

3 Tensor Network Basics 17
3.1 Diagrams & Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Matrix Product States . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Density Matrix Renormalisation Group . . . . . . . . . . . . . . . . . 24

3.3.1 Creating MPS & MPO for Simulation . . . . . . . . . . . . . . 26

4 Majorana Based Topological Memories 31
4.1 Majorana Zero Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Topological Aspect of Majorana Fermions . . . . . . . . . . . . . . . 37
4.3 Topological Quantum Order . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 An Argument for No Phase Error . . . . . . . . . . . . . . . . 41
4.3.2 Time-Dependent Perturbations . . . . . . . . . . . . . . . . . 45
4.3.3 TQO Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 An Interacting Majorana Topological Memory . . . . . . . . . . . . . 47
4.4.1 Numerical Verification . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Spectral Correlations: Green’s Functions . . . . . . . . . . . . . . . . 51
4.5.1 Extension to Fermionic & Multi-particle Operators . . . . . . 53

5 Quantum Exclusion Process 57
5.1 Model and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Review of TASEP . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.2 Combining the TXY & TASEP Models . . . . . . . . . . . . . 61

i



5.1.3 TXY-TASEP Superoperator . . . . . . . . . . . . . . . . . . . 64
5.2 Non-Equilibrium Steady State . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Obtaining NESS from DMRG . . . . . . . . . . . . . . . . . . 66
5.2.2 NESS as a Perturbation of the Maximally Mixed State . . . . 71

5.3 Effect of Hamiltonian Processes on Lattice Currents . . . . . . . . . . 74
5.3.1 Continuity Equation: Currents, Sources and Sinks . . . . . . . 75
5.3.2 Steady State Current . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Quantum Effect on the Steady State Current . . . . . . . . . . 78
5.3.4 Role of the Quantum Phase Transition . . . . . . . . . . . . . 78

6 Liouvillian Gap of Dissipative Quantum Systems 83

6.1 The Liouvillian Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.1 Emergence of a Liouvillian Gap from XY Anisotropy and Bulk

Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.2 MPS obtained Egap versus E (2)1 . . . . . . . . . . . . . . . . . 87
6.1.3 Analysis of the s = 2 Spectrum . . . . . . . . . . . . . . . . . 88
6.1.4 Relaxation Rate Compared to Related Models . . . . . . . . . 88

6.2 Kernel Projection for the Liouvillian Gap . . . . . . . . . . . . . . . . 89
6.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Setup of Kernel Projection Method . . . . . . . . . . . . . . . 91

6.3 Kernel Projection Method for Dephasing . . . . . . . . . . . . . . . . 94
6.3.1 Weak quantum limit - Projection to the L kernel . . . . . . . 95
6.3.2 Strong quantum limit - Projection to the H kernel . . . . . . . 96
6.3.3 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Further Models of Dissipation . . . . . . . . . . . . . . . . . . . . . . 99
6.4.1 Symmetric Simple Exclusion Process . . . . . . . . . . . . . . 99
6.4.2 Totally asymmetric simple exclusion process . . . . . . . . . . 100

6.5 Block Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 The Meaning of Even and Odd Sector Gaps . . . . . . . . . . . . . . 105
6.7 Spectrum of the Odd Sectors . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusion 109

A Numerical MPS Methods: A Further Use Case 113

A.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 Lattice Implementation of DSF . . . . . . . . . . . . . . . . . . . . . 115
A.3 Comparison against Green’s Function Methods . . . . . . . . . . . . . 116
A.4 XX Dynamical Structure Factor . . . . . . . . . . . . . . . . . . . . . 118
A.5 Chiral Dynamical Structure Factor . . . . . . . . . . . . . . . . . . . 118

B Canonical Basis 121

ii



C TASEP & Its Quantum Embedding 123
C.1 Exclusion Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.2 TASEP Embedded in a Quantum Spin Chain . . . . . . . . . . . . . 130

D Performing the Gap Integral 135
D.1 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.2 Gap Integral as a Contour Integral . . . . . . . . . . . . . . . . . . . 138

Bibliography 143

iii



iv



Declaration

I declare that this thesis has not been submitted in whole, or in part, to this or
any other university for any other degree and is, except where otherwise stated, the
original work of the author.

Kevin Kavanagh, 16 February 2023

v



vi



Acknowledgements

It is difficult to believe that I will be submitting my thesis in a day. Over these past
years, these final steps have felt at times out of reach and at others frighteningly
close. While momentarily difficult to imagine, it is certainly impossible to conceive
of arriving at this point without all of the people along the way who brought me
here and helped me in some way.

Firstly, I must thank my supervisor Graham for providing me with this enormous
opportunity to pursue a PhD. His unending support, understanding and patience is
above anything that I could have expected before I began. You have always been
able to guide me through problems, both large and small. Ultimately I could not
have asked for a better supervisor. I hope you will believe me when I say that I could
not have done this without the support and guidance that you so readily provided.

I must thank Graham for also bringing together Shane and Luuk to complete our
research group. Shane has been a friend and a mentor for this entire endeavour. He
has helped me to make sense when I was not making any. He has always been able
to find the question that got to the heart of anything that was troubling us. All I’m
saying is that you are an excellent physicist, a devoted colleague and a great friend.
Luuk, I am glad to have had you to share the burden of the PhD with, especially
in the early days when we were both finding our feet. You gave me a valuable
perspective on the work we did together. I could not have asked for a better group
to work with and hope that we can continue to work together into the future.

I have to acknowledge that I have had the good fortune to have another su-
pervisor, Joost. His ideas and perspectives during our work together have been
invaluable. Ever since my first time at Maynooth he has taught me an incalculable
amount and been enthusiastic to help me at any time. Without his support I would
have never thought I could have started a PhD, much less so reach this point. There
are many more people at Maynooth that have made an impact on me over the years.
From the very beginning all of my other lecturers there: Paul, Jonivar, Charles, Jiří,
Brian and Prof. Heffernan. More recently all of the staff and other students: Suzie,
Monica, Peter, Alex, Babatunde, John, Aonghus, Darragh, Goran and Stephen. A
special thanks to Paul and Stephen for all of the help and inspiration you gave me
from the first time I arrived at Maynooth so many years ago.

From DIAS I must thank Eucharia, George, Werner, Marianne, Tony, Denjoe,

vii



Dion, Leron, Takaki, Mahul, Ronan, Mary, Helena, Grace, Pauline, Colette and
Michelle for making Burlington Road a great place to work over the years. More
recently also thanks to Venus, Giandomenico, Neetu, Saki, Elo, Jasmine and Giorgio
for making these last few stressful months more enjoyable. I hope you will all enjoy
DIAS as much as I have and improve the institute with your contributions. To all
of the people in other universities around Ireland that have inspired me and shared
part of this experience, especially Emma and Jonas, I thank you. I cannot forget
my friends and colleagues from Utrecht that I have worked with and have motivated
me to pursue a PhD.

A few immensely important people have not yet appeared. Ian, it feels as though
you have been there since before the beginning. I place a lot of value in the times we
worked together. You helped to pull together our paper with fresh insights when we
were unsure and helped me in other projects without hesitation. More so, I cherish
the time we spent together, all of that time in retrospect was a joyous reprieve that
made the difficult periods of this PhD much easier. I hope you and Niamh flourish
wherever you end up next. Domenico I could almost say the same to you, you
welcomed me on my return to Dublin like an old friend. Your advice, especially
for writing this thesis, has been essential. Your depth of knowledge at times was
astounding and gave me a greater appreciation of the work we did. I hope that I
can be even half as passionate and helpful as you have been.

Aaron. You have been with me since the very beginning, all the way back to
when you first tried to talk to me in Maynooth. I am immensely grateful for that
day. Since then, we have followed each other almost every step of the way to this
point. I want to say that I am indebted to you in an uncountable number of ways. I
cannot dream of a better person to have endured all of the tough times with and to
have savoured all of the sweet moments with. You have made me in the process a
better physicist and more importantly a better person. I only hope that our paths
continue to cross as we move forward.

Many thanks remain for my oldest friends who made my return to Dublin years
ago feel like I never left. Ailbhe, Luke, Jack, Eoin and Stephen you all kept Dublin
feeling like home. To my friends further afield: Damjan, Efi and Pieter. Without
your encouragement and friendship I may have completely lost confidence in being
able to finish this thesis. Your unwavering support stabilised me when I wavered.
You hosted me when I needed time away. When we were isolated by lockdowns and
by distance you all kept in touch to make those times feel less solitary.

Finally, I thank my family. My parents Pat and Carol, who ensured a future for
me that they may not have imagined before it began but stuck with me the entire
time. It is difficult to put into words the amount of gratitude I have for all that you
have done for me, that has allowed me to even believe that this was possible. To
my brothers Brian and Alan who gave support even when they did not understand

viii



what I was doing, thank you both. To Michelle, without you I would not be in this
position. Certainly, I would not be the person I am today without your love and
support. Thanks to Justin for always offering support when I needed it. Sam and
Cody, you have been a source of joy these past few years and I am grateful I could
be here during this time to see you grow up. Many more thanks are deserved for
the rest of my family: Nicola, Leanne, Demi, Khloe, Josh, Reece, Erin and Lorcan.
Thanks to all of you for being there one way or another over the years.

I suspect that all of these names have not captured the full collection of people
that are in my life, or who have passed through it, who contributed to my journey
here. It may be unlikely that I can know every person that has influenced me all
along the way, but nonetheless I thank you all.

ix



x



Abstract

We consider the p-wave superconductor in one spatial dimension from two perspec-
tives. Firstly as a closed system and secondly as an open system.

As a closed system, we analyse the p-wave superconductor as a candidate platform
which can host Majorana bound states. In particular, we consider how interaction
driven errors could spoil the encoding of protected qubit states constructed from
these bound states. We present a generic analysis of how the property of topo-
logical quantum order (TQO) suppresses an interaction driven dephasing process.
We use this to quantify the extent of correlation between spectral densities from
different topological sectors. Our key result, verified numerically for the p-wave su-
perconductor, is that despite mismatched bulk spectra the TQO property ensures
that interaction driven phase errors are suppressed up to a time which scales with
system length.

As an open system, we bring the model into contact with various environments.
We do so to understand the interplay of quantum and classical transport phenomena.
Our key result in this case is that there is, in general, a strong dependence on
the superconductor pairing and the boundary dissipation rates in the final non-
equilibrium steady states. Further, we demonstrate that under weak dissipation
topological properties of the closed system manifest themselves in a key aspect of
the open quantum system dynamics, the Liouvillian gap. We find that this indicator
of relaxation time retains information of these properties robustly for a number of
dissipative processes.
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Chapter 1

Introduction

The foundation of this thesis is the study of one dimensional many-body quantum
systems. We will be particularly interested in the topological aspects of models
which share a common core. That core is the one dimensional p-wave superconduc-
tor, and in this thesis, we consider it from two principal perspectives. Firstly, as a
closed system, we investigate its feasibility as a topological quantum memory when
particle interactions are introduced for a time-dependent system. Secondly, as an
open system, we explore how its inherent quantum effects impact stochastic/classical
transport processes and the survival of its closed system features to various environ-
ments. These models, taken from either view, provide a rich platform upon which we
can study diverse aspects of condensed matter physics in a relatively simple setting.

As a closed, non-interacting system the p-wave superconductor has been proposed
as a topological platform which supports unpaired Majorana zero modes (MZM) at
its boundaries [Kit01]. These zero energy modes can be used to encode a qubit, the
quantum analogue of a classical bit of information [NC00], into the ground state of
the system. Since two such MZM constitute a single fermionic degree of freedom
that costs zero energy to occupy, their presence necessitates a degenerate ground
state. A qubit encoded via this degenerate ground state is tolerant against local
noise processes [Kit03] due to the non-local configuration of the constituent MZM.
Furthermore, the zero energy Majorana modes are isolated energetically from non-
Majorana excitations by a finite energy gap.

The p-wave superconductor is one example of topological states of matter [Pac12;
Sta16] which have come to represent a promising direction in the attainment of
quantum computation. More precisely the p-wave superconductor in 1-dimension
belongs to a class of symmetry protected topological (SPT) models. This is due
to the topological features relying on the presence of symmetries to be manifest.
While these models do not have inherent bulk topological features they may have
non-trivial boundary states. These non-trivial boundary states are those that may
prove useful in the pursuit of topological quantum computation.

The importance of platforms based on topological states of matter stems from
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their potential to circumvent the inherent fragility of quantum information and the
compounded errors associated with logic gate imperfections [Con+19]. While there
has been a vast proliferation of proposed quantum computation platforms since the
field’s inception [Den+02; Nay+08; Ali+11; SD12; SL13; ST13], utilising topological
states of matter remains an encouraging route to obtaining fault-tolerant quantum
computation [Kit03; BHM10].

However, these statements are true only in the case of zero temperature, without
difficult to simulate electron density-density interactions. In a real implementation,
interactions and undesired excitations are inevitable. There, it is conceivable that
the resultant energy spectrum in interacting regimes can allow for a dynamically
generated error process that is undetectable. In this thesis, we will show how the
property of topological quantum order (TQO) [WN90; Wen90; HW05; Zen+19],
is robust enough to protect against such interaction-driven error processes - and
then use this analysis to make strong statements about how robust the topological
degeneracy is above the gap.

To demonstrate this claim we utilise a number of techniques, some of which are
especially relevant (unique) to one spatial dimension. For example, on a mathemat-
ical level we produce a proof against the destructive error processes that can arise in
an interacting p-wave superconductor hosting MZM. This proof rests on the result
that local observables on the states that make up the qubit space are equal, up to
exponentially small corrections in the spatial separation of the Majorana, and that
the disturbances introduced to such an interacting system can still only propagate
at some finite speed [Con+19; Coo+21b]. We then produce numerical verification
of this same fact using tensor network methods [Orú19] which were originally born
out of the study of one dimensional many-body quantum systems. Specifically, we
leverage a time-evolution technique based on matrix product states (MPS), and
operators (MPO), called the time dependent variation principle (TDVP) [Hae+11;
Pae+19] to calculate Green’s functions of local operators, which then allows us to
make concrete verifiable statements about the low energy spectrum. In particular,
we demonstrate that errors are indeed systematically suppressed up to a time that
scales with the system size. Crucially, these errors are symptomatic of local opera-
tors becoming non-local under time evolution, rather than interaction-driven error
processes for systems with TQO.

The second strand of this thesis focuses on how quantum effects can influence
classical or stochastic transport phenomena [Sti01]. To address this issue we ex-
amine models of one dimensional transport that combine quantum and classical
processes, investigating the salient features of this amalgamation. We are particu-
larly interested in the effect that quantum processes can have on the eventual steady
states and associated relaxation rates [BP02]. Our main result is that while simple
kinetic terms (e.g coherent hopping) in the quantum Hamiltonian have negligible
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effects generally [TWV12], once superconductor pairing is present the behaviour of
the combined system is radically altered [Kav+22a]. Specifically, we find that pair-
creation and annihilation will result in a finite relaxation rate for all system sizes,
and thus superconductivity will generally drive the system rapidly to its eventual
steady state. Perhaps more intriguing is the fact that, when the quantum processes
are relatively strong with respect to the classical processes, the steady state relax-
ation rate has an explicit dependence on the topological nature of the Hamiltonian.
These effects can enhance steady-state currents, and we provide a unique way of
understanding these issues via continuity equations with sources.

To arrive at these results we employ a variety of approaches. To treat classical and
quantum processes on the same footing we make use of Kraus operators [NC00] and
open quantum system methods, the dynamics of which are encoded via a Lindblad
master equation; also referred to as the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [GKS76; Lin76]. Further, to extract the steady states and
relaxation rates of the systems studied we use variants of MPS and time dependent
tensor network methods adapted to the open system contextz. Throughout this
analysis, we also employ a method called third (or operator) quantisation [Pro08] -
making particular use of what is called the canonical representation [Kel15a; Kel15b]
to investigate the problem. The latter allows us to focus our efforts on specific
relevant sectors, and we present here techniques to numerically and analytically
calculate the relaxation rates in a variety of regimes.

1.1 Structure

The structure of the thesis is as follows.

To begin we will describe some of the different formalisms that are employed
throughout the thesis to describe the systems of interest, this discussion com-
prises Chapter 2. We describe the generic p-wave superconductor and how it is
related to the Heisenberg spin model by application of the Jordan-Wigner trans-
formation [JW28]. We end this chapter with an overview of the third quantisation
framework.

Next, in Chapter 3 we give an overview of the tensor network techniques that are
common to the numerical methods employed in the remaining chapters. The key
techniques included are matrix product states (MPS), the construction of matrix
product operators (MPO) from a Hamiltonian as an example and time evolution
using density matrix renormalisation group (DMRG).

Chapter 4 then introduces the notion of Majorana zero modes in more concrete
terms and the notion of topology in this setting. Following this, we provide the full
analysis of topological protection of a Majorana-based qubit against a dynamically
generated phase error process. This is achieved by leveraging the property of topo-
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logical quantum order to produce a proof against such an error process. Later, we
provide numerical verification and Green’s function analysis. This numerical verifi-
cation relies on a couple of tensor network techniques that are summarised in the
prior chapter. The main tools we need here are MPS and DMRG. Specific to this
topic we also apply Green’s function techniques to demonstrate the key aspect of
the TQO property. Specifically, TQO implies that the expectation values of local
observables, on the degenerate ground state space, are equal up to an exponentially
small correction that depends on the spatial separation between the Majorana. By
probing the Green’s functions of local observables we can analyse this statement
quantitatively, and then leverage the result to infer implications for the many-body
spectrum.

Afterwards, with a good understanding of the features of the p-wave superconduc-
tor model, we introduce the totally asymmetric simple exclusion process (TASEP)
at the beginning Chapter 5. The main focus of the remainder of this chapter is the
properties of the steady state of the full TXY-TASEP model, in particular making
a comparative study against the classical steady-states of TASEP that are already
well understood. The TXY-TASEP model is a combination of the transverse XY
(TXY) Hamiltonian, i.e. the p-wave model expressed as a spin chain, subject to
dissipation in the form of a classical stochastic hopping process, the TASEP model.
Crucially, we observe a striking dependence on the superconductor pairing in the
character of the final steady states. We end this chapter with a study of the effects of
pair creation/annihilation on the steady-state current and, in particular, if current
can be enhanced by superconductor pairing.

Note that the technical details of combining the p-wave superconductor and the
TASEP model are reserved for Appendix C. The principal notion therein is to express
both models in spin language such that they can be viewed as components of a
Lindblad master equation. The result is a p-wave superconductor (expressed as the
transverse XY model) that has been opened up to an environment, modelled by
the TASEP. By noticing this it becomes rather direct to trade TASEP for other
dissipative processes.

Finally, Chapter 6 begins with a preliminary discussion on the Liouvillian gap,
the quantity that determines the relaxation rate. With this in mind, we provide nu-
merical evidence of the topological fingerprints that can be observed in the behaviour
of this gap for the TXY-TASEP model. To make this observation concrete, we con-
sider simpler models, exploiting the Lindbladian setting to exchange TASEP for
other dissipative processes such as the Symmetric Simple Exclusion Process (SSEP)
and on-site dephasing.

In our analysis, we show how perturbing the kernel of the dissipator, where the
steady state resides, by the quantum processes allows one to produce an effective,
integrable XXZ spin chain. Further, this quantitatively explains why any supercon-
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ductivity in the Hamiltonian produces an open, constant (in system size) relaxation
gap as the excitation gap of the effective XXZ model corresponds to the relaxation
gap in this case. Importantly we also elucidate another approach, where we project
onto the kernel of the Hamiltonian commutator, and treat the dissipative terms
perturbatively. This method is what allows us to extract the precise form of the
relaxation gap when coherent effects are more dominant. It is in determining this
form that we are able to make the direct connection to the topological nature of the
relaxation gap. We then conclude by outlining how the methodology can be applied
to the TXY-TASEP - although the results, in this case, do not work out as cleanly.

Throughout both Ch. 5 and Ch. 6 we take a particular perspective on the study
of open quantum systems; namely, third quantisation. The technique rests upon a
transformation of operators and states used in the open quantum system framework.
In practice, this means that the entire Lindblad master equation becomes a single
operator (the Liouvillian) acting on a vectorised form of the density matrix. We
also take a particular convenient basis of Majorana operators called the canonical
representation to assist in these calculations.

Chapter 4 is based on the results of:

Dynamical phase error in interacting topological quantum memories [Coo+21a]
L. Coopmans, S. Dooley, I. Jubb, K. Kavanagh, and G. Kells
Phys. Rev. Research 3, 033105 (2021)

Chapter 5 and Chapter 6 are based on the results of:

Effects of quantum pair creation and annihilation on a classical exclu-
sion process: the transverse XY model with TASEP [Kav+22a]

K. Kavanagh, S. Dooley, J. K. Slingerland, G. Kells
New J. Phys. 24 023024 (2022)

Topological fingerprints in pairing-induced Liouvillian gaps [Kav+22b]
K. Kavanagh, J. K. Slingerland, S. Dooley, G. Kells
In preparation (2023)

Additional work that was completed in the duration of this PhD, but does not
appear in this thesis is contained in:

Entanglement entropy with Lifshitz fermions [HKV21]
D. Hartmann, K. Kavanagh, and S. Vandoren
SciPost Phys. 11, 031 (2021)

5



6



Chapter 2

Changing Formalisms

The purpose of this chapter is to allow the reader to familiarise themselves with a few
complementary modes of expressing and formulating quantum mechanical systems.
Each mode is relevant primarily to one strand of this thesis. Section 2.1, “Language
of Spins”, is relevant to the implementation of numerical implementations through-
out and in particular to those results appearing in Ch. 4 and in App. A. In the
former case the model in question, a p-wave superconductor or Kitaev chain [Kit01]
with and without interactions, is expressed in fermionic operators but the numerical
simulations use the equivalent spin formulation. In the latter case (App. A) we show
a model that is explicitly expressed in the language of spins. The fermionic formula-
tion in Section 2.2 briefly summarises the mapping between a Hamiltonian expressed
in the spin language described and explicit fermionic creation and annihilation op-
erators that are used in Ch. 4. In Section 2.3 we describe a perspective employed to
consider systems where it becomes necessary to work with linear operators acting
on other operators. These operators are promoted to the role of superoperator in
a framework commonly referred to as third quantization [Pro08]. Often such con-
siderations arise when one leaves the realm of closed quantum systems to explore
open quantum systems. We use this framework extensively in Ch. 5 and Ch. 6. It
is useful to note that the translation between these three formulations gives entirely
equivalent descriptions. We utilise them to leverage their individual strengths where
appropriate, whether for numerical gain or to extract structure that is otherwise not
immediately apparent.

2.1 Language of Spins

Much of the work contained in this thesis can be and has been verified by numeri-
cal simulation. These methods include exact diagonalization (for sufficiently small
systems) and tensor network methods (primarily MPS and DMRG approaches, de-
scribed in Ch. 3). These methods are most readily implemented where the physical
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system in question can be expressed as a system of spin-1
2

particles1. The paradig-
matic model in this setting is the Heisenberg spin chain. A Hamiltonian for a
Heisenberg spin chain is

Ĥ =
∑

α∈{x,y,z}

N∑

j=1

Jασ̂
α
j σ̂

α
j+1 + hασ̂

α
j , (2.1)

where σ̂αj , for α ∈ {x, y, z}, are Pauli matrices situated at lattice site j. In this
case the spin operators appear as nearest neighbours, Jα are the nearest neighbour
coupling strengths and hα are external magnetic fields. The Pauli matrices satisfy
the (anti-)commutation relations:

{σ̂αj , σ̂βk} = 2δjkδ
αβ1, (2.2)

[σ̂αj , σ̂
β
k ] = 2iδjkε

αβγσ̂γk , (2.3)

where εαβγ is the completely anti-symmetric Levi-Čivita symbol and δjk is the Kro-
necker delta.

Throughout this thesis we investigate various special cases of this Hamiltonian.
These special cases are tabulated in Table 2.1, by listing which couplings are relevant
i.e. non-zero. The acronym “TXY” refers to the transverse XY model, obtained by
setting Jz, hx, hy, identically to zero and keeping Jx ̸= Jy. This particular model can
be obtained by a Jordan-Wigner transformation of the Kitaev p-wave superconduc-
tor model, which is the focus of Ch. 4.

In the case of the “Open TXY” model the dissipative component of the model is
also expressible in the language of spins, though for that case the dissipation does
not enter as a piece of the Hamiltonian but rather it appears via operators, which
model a system’s coupling to an external environment, that comprise the dissipator
of a master equation. This master equation is called the Lindblad equation [GKS76;
Lin76] and is discussed further in Section 2.3. Nonetheless, by utilising the language
of spins we are able to combine the two models on the same footing.

Often, in the work that follows we translate the model at hand to a spin formula-
tion to leverage the numerical benefit of using tensor network methods. Although,
in several instances we begin with a fermionic description and return to that de-
scription for analytic results at times. The relevant numerical methods utilised are
summarised in Ch. 3.

1In the case of the tensor network methods used we can readily and with ease generalise the
method to higher spins.
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Parameters TXY/Kitaev Open TXY XXZ with fields
Jx/y ̸= 0 ̸= 0 ̸= 0
Jz ̸= 0 & 0 0 0
hx/y 0 0 hx ̸= 0, hy = 0

hz ̸= 0 ̸= 0 ̸= 0

Reference Chapter 4 Chapter 5 & 6 Appendix A

Table 2.1: This table collects the particular cases of the generic Hamiltonian (2.1)
that appear in this thesis with the common name(s) attributed to them and the
place they appear in the text. The acronym TXY is used in place of the transverse
XY spin model. Open refers to the presence of a dissipative process coupling to an
envrionment.

2.2 Creation & Annihilation Operators

Another familiar path to describing quantum mechanical systems is their second
quantized form. In this context, we describe the system by a Hamiltonian comprised
of particle creation/annihilation operators. One such example would be a tight
binding model of the form

Ĥ = −
N∑

j=1

(
wj ĉ

†
j ĉj+1 −∆j ĉ

†
j ĉ

†
j+1 + h.c.

)
−

N∑

j=1

µj

(
ĉ†j ĉj −

1

2

)
, (2.4)

where wj is the particle hopping strength, ∆j is the local pair creation/annihilation
strength and µj is the local particle density. The term appearing as “h.c.” simply
stands in place of the Hermitian conjugates of the previous terms. The creation
and annihilation operators, c(†), making this Hamiltonian satisfy the fermionic anti-
commutation relations given by:

{ĉi, ĉ†j} = δij, (2.5)

{ĉi, ĉj} = {ĉ†i , ĉ†j} = 0. (2.6)

A particularly useful feature of this Hamiltonian is that it can be readily trans-
formed via Jordan-Wigner [JW28] back to a transverse XY spin model. This trans-
formation is utilised in the process to obtain the numerical results presented in Ch. 4,
Ch. 5 and Ch. 6. Though in the latter cases this translation serves as a starting
point from which one can then employ the concepts described in the next section.

It is worth elucidating how we can translate this toy model to a special case of the
aforementioned Heisenberg Hamiltonian (2.1). We will implement a Jordan-Wigner
transformation by identifying the creation/annihilation operators with the products
of Pauli matrices that exactly reproduce the canonical anti-commutation relations

9



for fermion operators, (2.5). The identification necessary is

ĉ†j ≡
1

2

(
j−1∏

k=1

σ̂zk

)
(σ̂xj + iσ̂yj ), ĉj ≡

1

2

(
j−1∏

k=1

σ̂zk

)
(σ̂xj − iσ̂yj ), (2.7)

where, as before, σ̂αj are Pauli matrices at a particular lattice site indexed by j.
One can readily verify that by imposing the relations between the Pauli matrices
we recover the required anti-commutation relations for the fermion operators. Thus,
one can confirm that, by this definition, ĉ(†)j are indeed fermion creation/annihilation
operators corresponding to spinless fermion particles. Inserting these identifications
into the Hamiltonian (2.4) will yield

Ĥ → 1

2

N∑

j=1

(w +∆)σ̂xj σ̂
x
j+1 + (w −∆)σ̂yj σ̂

y
j+1 + µ

N∑

j=1

σ̂zj , (2.8)

up to a trivial term Nµ1. Given this form of the Hamiltonian, the following identi-
fications are apparent to realise the equivalence:

µ→ 2hz, w ±∆→ Jx/y, (2.9)

thereby recovering the spin model.

2.3 Open Systems & Third Quantization

Until this point what we have mentioned pertains to closed systems, i.e. those that
are considered in isolation. However, we wish to eventually capture the physics of
a system that is open to some kind of outside influence. In our context, we will be
examining a system of fermions as just described which has additional dissipative
processes included. Rather than a Hamiltonian operator dictating the state of the
system and its evolution, an open system needs additional structure.

Third quantization for our purposes is introduced to handle operators which act
on operators in a manner that allows them to be treated as we would treat operators
that act on vectors. This arises when we begin to study open systems described via
a Lindblad master equation in Ch. 5 and Ch. 6. There, rather than a state vector,
the state of a system is described by a density matrix. Then the action of the
Hamiltonian, for example, on the density matrix is essentially a operator acting on
another operator. Ultimately, for numerical simulation we would prefer to deal with
matrices encoded as matrix product operators (the Hamiltonian) acting on matrix
product states (the density matrix). To achieve this we need to use the conceptual
core of third quantization which is the Choi-Jamiołkowski isomorphism [Jam72;
Cho75]. The remainder of this chapter summarises our use of this isomorphism.
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2.3.1 Operators are to Superoperators as States are to Op-

erators

To begin we clarify some of the terminology that has been used up to this point when
we have referred to states and operators of a quantum system. We then introduce
a less common concept of the superoperator. Firstly, states of finite-dimensional
quantum systems are represented as elements of a complex Hilbert space, |Ψ⟩ ∈ Cd.
Given an orthonormal basis {|i⟩}di=1 for the Hilbert space, a state can be written as

|Ψ⟩ =
d∑

i=i

ψi |i⟩ =




ψ1

...
ψd


 ∈ Cd, (2.10)

where ψi = ⟨i|ψ⟩ are the complex amplitudes.

Next, operators are linear maps, usually written explicitly in their matrix repre-
sentation, that take states to states2,

Â : Cd → Cd, Â |ψ⟩ = |ψ′⟩ . (2.11)

Given a basis {|i⟩}, a linear operator can also be written as

Â =
d∑

i,j=1

aij |i⟩ ⊗ ⟨j| =




a11 . . . a1d
...

...
ad1 . . . add


 ∈ Cd×d. (2.12)

The set of linear operators form a d2-dimensional complex Hilbert space where we
use the Hilbert-Schmidt inner product between operators as given by ⟨Â, B̂⟩ =

Tr
(
Â†B̂

)
. In this finite dimensional space this is identical to the Frobenius inner

product on two matrices.

The Choi-Jamiołkowski isomorphism [Jam72; Cho75] is a way of vectorizing the
matrix that represents an operator Â. Given a basis {|i⟩}, the isomorphism is the
mapping

|i⟩ ⊗ ⟨j| iso−→ |i⟩ ⊗ |j⟩ = | ij⟩⟩, (2.13)

where we use the “double ket”, | ·⟩⟩ notation to denote an object after the mapping.
Applied to the operator Â, the isomorphism effectively flattens the d×d matrix into

2The hat over a symbol indicates that it is a linear operator.
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a vector of length d2, which we denote as |Â⟩⟩,

Â
Choi−→ |Â⟩⟩ =

d∑

i,j=1

aij |i⟩ ⊗ |j⟩ =




a11
...
a1d
...
ad1
...
add




∈ Cd2 . (2.14)

Note that, after the Choi isomorphism, the inner product on the operator space
becomes the usual vector inner product in Cd2

⟨Â, B̂⟩ = Tr
(
Â†B̂

)
Choi−→ ⟨⟨Â|B̂⟩⟩. (2.15)

Note that the vectorization satisfies further useful identities such as

|ÂB̂Ĉ⟩⟩ = (ĈT ⊗ Â)|B̂⟩⟩, (2.16)

see [Šaf18] for further detail.

Superoperators are linear maps ˆ̂O that take operators to operators3. If the op-
erators are vectorized then the superoperator is represented by a d2 × d2 complex
matrix:

ˆ̂O : Cd2 → Cd2 , ˆ̂O|Â⟩⟩ = |Â′⟩⟩, (2.17)

or, more explicitly, given a vectorized orthonormal basis {|n⟩⟩}d2n=1 for the operator
space:

ˆ̂O =
d2∑

m,n=1

on,m|n⟩⟩ ⊗ ⟨⟨m| =




o1,1 . . . o1,d2
...

...
od2,1 . . . od2,d2


 ∈ Cd2×d2 . (2.18)

2.3.2 Closed system dynamics

A closed quantum system in a pure quantum state evolves by the Schrödinger equa-
tion [Sch26]

d

dt
|Ψ⟩ = − i

ℏ
Ĥ |Ψ⟩ , (2.19)

where Ĥ is the Hamiltonian. For a finite dimensional system, we interpret the
right hand side as a matrix multiplication applied to the state vector. However, a
closed quantum system in a mixed state evolves via the (Liouville-)von Neumann

3The double hat above a symbol indicates that it is a superoperator, in other words a linear
operator on operators.
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equation [BP02]
d

dt
ρ̂ = − i

ℏ
[Ĥ, ρ̂], (2.20)

where the state of the system is encoded by the density matrix ρ̂. The commutator
on the right hand side is a combination of matrix multiplication applied to ρ̂ from
the left and from the right.

Yet, since the commutator is a linear function of the density operator ρ̂ it is
possible to represent the equation of motion as a single matrix multiplication from
the left which acts upon the vectorized density vector, |ρ̂⟩⟩, such that

d

dt
|ρ̂⟩⟩ = − i

ℏ
ˆ̂H|ρ̂⟩⟩. (2.21)

Notice the similarity to the pure state evolution here, suggesting that if we can
obtain this form we can use all of the tools available to us to analyse closed systems.
How then do we convert the Liouville-von Neumann equation (2.20)? We start by
choosing an orthonormal basis {|i⟩}di=1 for the state space. Once this is in place, we
can work out an expression for the superoperator ˆ̂H in terms of the Hamiltonian Ĥ.
Start by writing ρ̂ and Ĥ in that basis as:

ρ̂ =
d∑

i,j=1

ρij |i⟩ ⊗ ⟨j| , Ĥ =
d∑

k,l=1

Hkl |k⟩ ⊗ ⟨l| . (2.22)

Then, substituting into the right hand side of Eq. 2.20 we obtain

− i
ℏ
[Ĥ, ρ̂] = − i

ℏ
∑

i,j,k

Hkiρij |k⟩ ⊗ ⟨j|+
i

ℏ
∑

i,j,l

Hjlρij |i⟩ ⊗ ⟨l|

Choi−→ − i
ℏ
∑

i,j,k

Hkiρij |k⟩ ⊗ |j⟩+
i

ℏ
∑

i,j,l

Hjlρij |i⟩ ⊗ |l⟩

= − i
ℏ

(
Ĥ ⊗ 1̂− 1̂⊗ ĤT

)
|ρ̂⟩⟩. (2.23)

The equality in the last line is most easily verified by working backwards from the
last line to the previous line. For example,

[
Ĥ ⊗ 1̂

]
|ρ̂⟩⟩ =

[(
d∑

k,l=1

Hkl |k⟩ ⟨l|
)
⊗
(

d∑

j=1

|j⟩ ⟨j|
)](

d∑

i,j=1

ρij |i⟩ ⊗ |j⟩
)
,

=
∑

i,j,k

Hkiρij |k⟩ ⊗ |j⟩ , (2.24)

and similarly for
[
1̂⊗ ĤT

]
|ρ̂⟩⟩. Thus, the superoperator is represented by the Her-

mitian matrix
ˆ̂H = Ĥ ⊗ 1̂− 1̂⊗ ĤT . (2.25)

13



2.3.3 Open system dynamics

So far, we have brought pure and mixed quantum state time evolution into a su-
peroperator form. However, in both cases we have only considered evolution of a
closed system. Once we wish to introduce any type of dissipation or environmental
interaction the situation necessitates a different evolution equation. The result is an
evolution equation that is in fact the most general way of mapping density matri-
ces to density matrices [BP02]. In particular, will be using the master equation in
Lindblad form (for detail on obtaining this see, e.g., Ref. [Sch07])

d

dt
ρ̂ = − i

ℏ
[Ĥ, ρ̂] +

∑

µ

(
2L̂µρ̂L̂

†
µ − L̂†

µL̂µρ̂− ρ̂L̂†
µL̂µ

)
, (2.26)

where the operators L̂µ are called Lindblad operators. Again, since the right hand
side is linear in the density operator ρ̂, it must be possible to write the master
equation as

d

dt
|ρ̂⟩⟩ =

(−i
ℏ

ˆ̂H + ˆ̂L
)
|ρ̂⟩⟩, (2.27)

where, in the previous section we have already worked out the superoperator ˆ̂H
for the Hamiltonian part. What is the Lindblad part ˆ̂L in terms of the Lindblad
operators? Writing Lµ =

∑d
k,l=1 l

(µ)
kl |k⟩⊗⟨l| and their combination appearing in the

sum of Eq. 2.26 as ˆ̂Lµ we find

ˆ̂Lµ =
∑

ijkl

(
2l

(µ)
ki l

(µ)∗
lj ρij |k⟩ ⊗ ⟨l| − l(µ)ki l

(µ)∗
kl ρij |l⟩ ⊗ ⟨j| − l(µ)kl l

(µ)∗
kj ρij |i⟩ ⊗ ⟨l|

)

Choi−→
∑

ijkl

(
2l

(µ)
ki l

(µ)∗
lj ρij |k⟩ ⊗ |l⟩ − l(µ)ki l

(µ)∗
kl ρij |l⟩ ⊗ |j⟩ − l(µ)kl l

(µ)∗
kj ρij |i⟩ ⊗ |l⟩

)

=
(
2L̂µ ⊗ L̂∗

µ − L̂†
µL̂µ ⊗ 1̂− 1̂⊗ L̂Tµ L̂∗

µ

)
|ρ̂⟩⟩. (2.28)

Again, the equality in the last line is most easily proved by working backwards from
the last line to the previous line and taking care of the bookkeeping of indices. For
example,

[
L̂µ ⊗ L̂∗

µ

]
|ρ̂⟩⟩ =

[(
d∑

k,k′=1

l
(µ)
kk′ |k⟩ ⟨k′|

)
⊗
(

d∑

l,l′=1

l
(µ)∗
ll′ |l⟩ ⟨l′|

)](
d∑

i,j=1

ρij |i⟩ ⊗ |j⟩
)

=
∑

i,j,k,l

l
(µ)
ki l

(µ)∗
lj ρij |k⟩ ⊗ |l⟩ , (2.29)

and similarly for
[
L̂†
µL̂µ ⊗ 1̂

]
|ρ̂⟩⟩ and

[
1̂⊗ L̂Tµ L̂∗

µ

]
|ρ̂⟩⟩. So we see that the Lindblad

superoperator is the matrix

ˆ̂L =
∑

µ

(
2L̂µ ⊗ L̂∗

µ − L̂†
µL̂µ ⊗ 1̂− 1̂⊗ L̂Tµ L̂∗

µ

)
. (2.30)
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Adding this resultant matrix to that obtained from the commutator superoperator
yields the complete Liouvillian superoperator. Critically, we can often treat this in
a similar manner to a closed system Hamiltonian. However, a price must be paid
as generically this Liouvillian in matrix form will correspond to a non-Hermitian
matrix. Moreover, it is a much larger object of size 4N × 4N rather than 2N × 2N

in the case of a closed system Hamiltonian defined on the same number of sites.
Nonetheless, for numerical simulation we can encode the Liouvillian superoperator
as a matrix product operator (MPO) so that we are able to leverage the methods
(e.g. DMRG) that employ MPO. These tensor network concepts are summarised
next in Ch. 3.
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Chapter 3

Tensor Network Basics

In this chapter we describe some key ideas behind the topic of tensor networks. We
begin with the notation and diagrams used to represent such networks. Afterwards
we give an overview on matrix product states (MPS) and the density matrix renor-
malisation group (DMRG) which underpin the majority of the numerical methods
that will appear in later chapters.

Usually one traces the beginning of tensor network methods back to the work
White [Whi92] where the DMRG method was first described. However, the core
concept of an MPS is older and can be seen in the prior work of Derrida [DDM92]
(or [Nis] for a comprehensive history). Both origins are of great relevance to this
thesis as the DMRG concept and the numerical methods that arose in the intervening
years are present throughout. Moreover, not only the tensor network ideas but also
one of the models that presented matrix products ansätze (namely TASEP) appears
in Ch. 5 and Ch. 6.

We focus on the methods most relevant to our studies which are those pro-
duced for 1-dimensional systems. A great deal of work has been produced in the
intervening years since the work of White et. al. for various applications [Vid04;
Vid08; Has07; VMC08; Vid09; Eve11; EV11; Swi12a; Swi12b; Orú14; EV14; EV15;
Bao+15; Wen+16; Cze+16; FV17; Eve17; Pae+19]. However, the fundamental
motivation throughout these works is to overcome the difficulty in simulating many-
body systems. Specifically, to circumvent the exponential scaling of many-body
quantum systems. In this setting, the number of states in the Hilbert space for a
system of N particles with 2 internal degrees of freedom, N spins for example, the
total Hilbert space contains 2N states. Quickly this becomes much too large a num-
ber to simulate on a typical computer and if one wishes to perform time evolution or
examine systems with more internal degrees of freedom a computational bottleneck
rapidly approaches. Tensor networks can, in many cases, alleviate such a bottleneck.
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Figure 3.1: A simple graphical calculus diagram showing basic relations between
indices and contractions for some metric.

3.1 Diagrams & Notation

Before describing a particular tensor network it is first useful to understand the
notation and nomenclature used. The diagrammatic forms of tensor networks are
represented using the graphical tensor notation of Penrose [penrose07]. This di-
agrammatic notation is useful when the mathematical expressions used in physics
become cumbersome. At first this may seem to be a further abstraction but we
will see that for large expressions, which need extensive book-keeping of indices, the
diagrams can help conceptualise the manipulations made on the underlying objects.

Starting with a simple example we can look at some common objects that appear
in physics. Consider, for example, a metric tensor, gab. This is far from unwieldy
to work with but nonetheless we can replace it by a very simple diagram. We keep
track of the indices of the tensor by lines (or legs) that are attached to the body
of the tensor diagram. There is no universal consensus on how to draw the body
of a tensor so we can choose some shape or line to represent the tensor itself with
some labelling if necessary. Upper and lower indices appear as “legs” and “arms”
emanating from the tensor in this thesis and in a large portion of the literature.
The total number of these uncontracted, or free, limbs is called the “rank” of the
tensor network. Consider now the contraction of two metric tensors which produce
a Kronecker delta ∑

b

gabgbc = δac . (3.1)

Using Penrose’s graphical tensor notation, we can dispense with the summation
(as with Einstein summation convention) and replace the metrics with the lines
shown in Fig. 3.1. Additionally since there are no loops the combination of the
metrics in graphical notation is explicitly equivalent to a vertical line which is used
to denote a Kronecker delta. The joining and deformation of lines in graphical nota-
tion becomes analogous to contracting indices (or multiplying tensors) and forming
equalities between expressions with multiple such contractions and their simplifica-
tions.

While this may not yet seem worthwhile the real benefit is seen from more com-
plicated products of tensors with several repeated indices. For example, say we have
a rank (1,1) tensor (matrix) which we wish to contract with a vector. Usually we
may write this as, say, Γαβvα, whereas the graphical form can be drawn as Fig. 3.2.
Usually of course we discard a great deal of the labelling seen in the figure.
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Figure 3.2: (Left-to-right) A matrix-vector multiplication with explicit indices and
the graphical form with corresponding indices displayed, usually left implicit in the
diagram. The resultant vector in graphical and standard notation.
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Figure 3.3: An example of contracting an arbitrary set of tensors. In graphical
notation it is clear at a glance that the result should have two remaining upper
indices in standard notation, corresponding to the two free legs of the diagram.

We can dream up more complicated products and find their graphical represen-
tation quite readily and vice-versa. Take for instance,

∆αβγρΨab
αβΣ

cd
γ Ξ

e
abΩdρ = Φce, (3.2)

shown diagrammatically in Fig. 3.3.
Simplifying the LHS of this expression is already not obvious at a glance with

only five tensors. If we have 10 or 20 tensors it will become unwieldy to manage the
indices as we will see shortly for matrix product state. So instead this expression
can be drawn as shown in Fig. 3.3. After contracting the repeated indices we can
see immediately from the figure that in the end we have a rank (2,0) tensor without
need for examining all of the indices to verify which are summed or not summed.

3.2 Matrix Product States

The most ubiquitous tensor network is the matrix product state (MPS). The motiva-
tion in constructing such an object comes from the problem of simulating many-body
quantum systems alluded to earlier. Consider how one canonically defines a generic
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Figure 3.4: The tensor schematic for a state Ψi1...iN before being split into an MPS.

quantum state. In particular, suppose we want to determine some properties of an
N -site spin chain. If we are only concerned for the moment with the spin then we
can write the state as

|Ψ⟩ =
∑

i1...iN

ψi1...iN |i1 . . . iN⟩ , (3.3)

where the summation variables run over all the possible spin configurations. Fig-
ure 3.4 gives the relevant part of this description in diagrammatic form. Once
the basis is known, e.g. spin-1

2
({|↑⟩ , |↓⟩}) or equivalently the computational basis

({|0⟩ , |1⟩}), the actual information of the state is contained in the N -index tensor
ψi1...iN .

However, even if there are only two spin states then the number of variables in
the ψ-tensor is 2N . So for even quite small systems, say a one dimensional wire
with N = 50, we can have 1015 variables to worry about. Quickly then numerical
simulation becomes intractable. Circumventing this exponential scaling is one of
the benefits of utilising an MPS representation. From what we know so far we
can have a zoo of tensor networks which may contract into an (N, 0) rank tensor1.
While we note that a matrix product is not a unique representation [Per+07] for a
one dimensional quantum state it is nonetheless useful for most of the systems we
examine in this thesis.

Given a quantum state with the generic representation given above an MPS of
this state is the tensor network decomposition of the single (N, 0) rank ψ-tensor into
N rank 3 tensors. Depending on the system boundary conditions the end tensors
may be of lower rank. Taking the generic state described, we would like to do is to
decompose the ψi1...iN tensor into a network of N simpler objects. Figure 3.5 shows
the graphical form of the MPS representation of |Ψ⟩ for the case of N = 8 with
closed boundary conditions.

Notice that in the same way that the ψ tensor has N free legs so too does the
MPS state, where each free leg corresponds to a state vector index for the relevant

1To connect with the TN diagrams, the rank of a tensor enumerates the number of “legs”/“arms”
that a tensor has in its diagram and the number of free limbs in a tensor network is the rank of
that network corresponding to the number of free, uncontracted indices in the total expression.
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 i1...i8 =
A A A A A A A A

i1 i2 i3 i4 i5 i6 i7 i8

Figure 3.5: The tensor schematic for a state Ψi1...i8 after being split into an MPS.
In this case for only 8 sites.

lattice site. In all detail, the mathematical expression for this MPS is

|Ψ⟩ =
D∑

α0...αN+1=1

d∑

i1...iN=1

Ai1α0
α1

Ai2α1
α2

. . . AiN−1αN−1
αN

AiNαN
α0

|i1i2 . . . iN⟩ , (3.4)

usually the summation will be left implicit. Given the number of tensors and in-
dices required to fully express a matrix product in this manner, the diagrammatic
expressions for tensor network objects are generally preferred. We note that while
we have labelled the constituent tensors here (Eq. 3.4) with A implying that they
are all the same this is not generically the case. This may indeed be the case for
translationally invariant systems but at least, for example, MPS with open bound-
ary conditions break this as the end tensors must be of different rank to those in
the bulk of the state [McC07; Sch11]. We can see this if we break the summation
over α0, as this would leave an additional free index for the first and last A tensors.
This in principle would make these distinct tensors to this in the remainder of the
state. Moreover, a non-homogeneous state would automatically require a collection
of distinct constituent tensors to construct its MPS representation.

Ignoring the free indices (ik) the remaining indices are contracted in the same
way as a matrix product, hence the name. These contracted indices are known as
bonds and while the physical indices, ik, run over the on-site degrees of freedom, the
bond indices, αk, do not. The number of variables these bonds run over is known as
the bond dimension. Considering A0αk

αk+1
for example, these {αk, αk+1} correspond to

the dimensions of the A0 matrix. We denote the bond dimension using D. We can
achieve an exact representation for any such quantum state if we do not impose a
restriction on the size of D [Per+07; Orú14]. Indeed, any state expressible as (3.3)
is captured by such a MPS representation if D is unrestricted.

The computational gain in using this representation is to restrict the bond di-
mension and thus discard unnecessary information. This is done by focusing on a
class of states for which the bond dimension is effectively “small” 2. In fact it was
discovered that ground states and states at low-energy or of low entanglement fall
into a such a class of states with “small” bond dimension. How then does one know
what the bond dimension should or can be? We can get an understanding from the

2The meaning of small here is not precise, it effectively means that the bond dimension will
not scale exponentially in number of sites or can be restricted to allow for efficient yet accurate
simulations.
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construction of an MPS from a generic state. An iterated singular value decompo-
sition process is performed on an (N, 0) rank tensor N times, leaving one with an
MPS.

The usual prescription begins by performing a singular value decomposition be-
tween the first index of the large tensor and the remaining N − 1 indices. This
process is iterated until we are left with N constituent tensors corresponding to
each physical index/site (ik). The matrices which we obtain by this method will be
of dimension D ×D and unitary.

To be explicit, suppose we would like to split an N -site system into two pieces.
So the full Hilbert space, H, of the system is split into two subspaces, HA ⊗ HB.
The dimension of these subspaces is then dm and dN−m respectively where d is the
physical dimension. If we propose that the Hilbert spaces have orthonormal bases
|i⟩ , |j⟩ respectively then a state of the system may be expressed as

|Ψ⟩ =
∑

i,j

Ψij |i⟩ |j⟩ . (3.5)

The singular value decomposition of the matrix Ψ is given by

Ψ = UsV †, (3.6)

where U and V are unitary matrices of dimensions m×m and (N−m)×(N−m)

respectively. The matrix s then is a diagonal matrix of dimension m× (N −m). All
the entries of s are non-negative real numbers, where s11 ≥ s22 ≥ · · · ≥ smm. They
are the singular values of Ψ. Replacing Ψ in the original expression we have

|Ψ⟩ =
∑

i,j

∑

k

UikskkV
∗
kj |i⟩ |j⟩ =

∑

k

skk |ak⟩ |bk⟩ , (3.7)

where |ak⟩ and |bk⟩ are the transformed bases according to

|ak⟩ =
m∑

i

Uik |i⟩ , |bk⟩ =
N−m∑

j

V ∗
kj |j⟩ . (3.8)

The second form in the transformed bases is known as the Schmidt decomposition.
Pictorially, we can see the procedure in Fig. 3.6 for the case of N = 4. One should
understand here which legs correspond to which indices. The i index corresponds
to the left most leg in the diagram. The j index corresponds to the remaining 3
legs which in the procedure are grouped together as one index j running over the
concatenated set of i2, i3, i4. The k index corresponds to the bond between U , s and
V †.

To understand, consider the Schmidt decomposition as a superposition of many
states in which each term is comprised of a product of a basis state of A and a basis
state of B weighted by a value skk. From the distribution of the values of skk we
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Figure 3.6: Schematic representation of the first step in the single value decompo-
sition (SVD) procedure to obtain an MPS from a state tensor.

can gain some insight into the amount of entanglement between the two systems 3.
Suppose that there is one singular value s11 = 1, evidently this will correspond to
a product state |a1⟩ |b1⟩. On the other hand if all the singular values are equal,
skk = 1/

√
m ∀ k, then we have a maximally mixed state, an equal superposition of

all basis states.

It is known that for the class of states we are interested in, low energy and low
entanglement states, the size of these singular values typically decays rapidly for a
value of k much less than m [Per+07]. In fact for large matrices many of the singular
values will in fact be zero, particularly for the types of states which are of interest
to us. This leads one to conclude that a great deal of these singular values can
be discarded. If the singular values are identically zero or vanishingly small after
a certain k then most or all of the pertinent information about the state will be
retained. As such we restrict the sum to run up to D with the intention of removing
the zero or vanishingly small singular values

|Ψ⟩ → ˜|Ψ⟩ =
D≪m∑

k=1

skk |ak⟩ |bk⟩ . (3.9)

In the case of MPS the number of values which are kept is the bond dimension.
So in fact the number of variables is reduced from dN to poly(D,N). It must be
stressed that this D is chosen to be small enough to provide an efficient encoding
of the state but not so small as to render it an inaccurate representation. For an
exact faithful representation the bond dimension would be exponential in N . This
decomposition is a central component of the DMRG method. In essence what is
happening when the bond dimension is restricted is that we are restricting ourselves
to a subspace of the Hilbert space which contains the states that are of interest to
us, namely ground states of local gapped Hamiltonians. In comparison to the full
Hilbert space of such a Hamiltonian, the subspace containing these states will in
fact require a bond dimension which is not exponential in N but rather may be
constant or at least some well controlled polynomial in N . The appropriate value

3The entanglement we refer to here and throughout is the von Neumann entropy as defined by
SA ≡ −Tr(ρA log(ρA)), where ρA is the reduced density matrix on a subsystem A. Equivalently
this entropy can be defined directly from the singular values as SA ≡ −

∑
k(|s|2kk log

(
|s|2kk

)
).
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then of the bond dimension will depend on the states which we aim to represent
and the accuracy required to faithfully represent them. By construction an MPS
state supports local correlations, that is correlations which decay exponentially, and
lead to saturated entropy bounds at large scales. This is due to the nature of the
MPS being comprised of nearest neighbour interactions, which can be seen from the
structure of the network.

Another point of interest is that this prescription of splitting a state tensor with
multiple indices into several tensors each located at an individual site is also applied
to operators. These are matrix product operators. This is another key ingredient
in the DMRG method. In that context a local Hamiltonian may be decomposed
as a sum of nearest neighbour terms. Its action then on the state is equivalent to
a contraction of the MPS with the MPO. We will describe this further next as we
discuss a few of the aspect of the DMRG method.

3.3 Density Matrix Renormalisation Group

In this thesis the most widely used instance of a tensor network method is the
density matrix renormalisation group approach to access a system’s ground state
and time-evolution methods built upon the DMRG paradigm.

As already stated the basic concept of an MPS being used to represent a quan-
tum state is precisely that, a representation. However, the numerical efficacy of
the representation hinges upon the approximation made within the procedure via
SVD to decompose a quantum state into a product of relatively smaller component
objects. An exact representation of a state is predicated on having an unrestricted
bond dimension, D. However, by the argument of the previous section the SVD
procedure captures the vast majority of the salient features of relevant low-energy
states. This procedure in its original implementation by White [Whi92], now known
under the name density matrix renormalisation group (DMRG), restricts the bond
dimension via a bound on entanglement. The bound D′ ≤ D restricts the number
of singular values kept in the SVD, which as mentioned a large proportion of which
are zero for the types of states that are relevant i.e. ground-states, low-energy and
low-entanglement states. For these classes of states an MPS is a highly efficient rep-
resentation. We can quantify the accuracy of this representation by the truncation
error

|| |Ψ⟩ − |Ψ′⟩ || = 2
N∑

i=1

(ϵi(D)− ϵi(D′)), (3.10)

where ϵi(s) is the sum of the s largest singular values from the SVD at site i. This
can be seen as a downside indeed that there is a “baked in” error in the representation
of states. Nonetheless, one can view this as a quantifier of accuracy to be controlled
in numerical simulations. It should be stressed that for certain states, indeed the
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vast majority relevant to this thesis, that this truncation error will be kept at a very
low value. Equally, one should remain cognisant of the fact that in time-evolution
methods that entanglement grows and bond dimensions of time-evolved states should
reflect this in order to capture accurately the dynamics of a system. Some further
instances where the bond dimension must necessarily grow are, as mentioned, highly
entangled states and states near phase transitions.

Staying away from these problematic classes of states we can gain a great deal
from codifying states and Hamiltonians as MPS and matrix product operators
(MPO) respectively. Once a Hamiltonian is constructed as an MPO, which is readily
and efficiently done when the component operators are typical “local” operators, the
ground-state can be found by the DMRG method efficiently for far larger system
sizes than are accessible by typical exact diagonalisation (ED) approaches. For ex-
ample, at various points in this thesis we leverage MPS methods to access systems
of sizes around 100 sites or more for systems wherein ED methods would breakdown
at the scale of 12-15 sites. The variational method to determine the ground-state
from a given Hamiltonian MPO is given is great detail in [Sch11]. The core idea is a
repeated application of tensor contraction of the MPO with an initial state, which
may be a random MPS of fixed bond dimension, which is then subsequently returned
to the form of an MPS. At each step the updates on the MPS are determined by the
choices which minimize the energy driving the algorithm towards the ground-state.
The algorithm itself is explained in great detail in [Sch05; Sch11]. A schematic of
the basic conceptual procedure appears in Fig. 3.7. Further detail on DMRG and
other tensor network methods (e.g. PEPS, MERA) appears in [BC17].

As alluded to previously, time evolution can become complicated due to entan-
glement growth. As such the truncated bond dimension must necessarily grow with
respect to time to maintain a fixed truncation error which in turn increases computa-
tional costs. Nonetheless these errors and costs can be controlled and ultimately the
procedure remains conceptually simple. Say one has already obtained the ground-
state |ψ0⟩ in MPS form:

• Next, the MPO representing the exponentiation of the Hamiltonian is applied
to |ψ0⟩ and contracted. This constitutes a single time step, dt, such that
|ψ0(0)⟩ → |ψ0(dt)⟩.

• After contraction another SVD is performed on |ψ0(dt)⟩. This is where the
bond dimension can be adjusted “on-the-fly”.

• Reiterate the prior steps.

Indeed, a lot of technical details are skimmed over in this short description
but these are the basic steps. This method is reliant on the Trotterization of the
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exp(�⌧Ĥi,i+1)

<latexit sha1_base64="o6fpO+aPMYUw1lit1XkTpWIY1WE="></latexit>

(a) Local Time Evo-
lution

...
...

<latexit sha1_base64="oJ+YhBwZTTFT/Z9PDYoaz9An98M="></latexit>

(b) Single Time Step Tensor Diagram

sU V †

U
p

s0
p

s0V †

SVD
Truncate s

Tensor
Contract

<latexit sha1_base64="hUY96l346SEuisJKt9weSffT1dg="></latexit>

(c) Tensor Contraction and Truncation

Figure 3.7: Tensor diagram of the MPS time evolution procedure. (a) The expo-
nentiated local time evolution operator as an MPO. (b) A single time step dt for
an 8-site MPS. (c) The combined contraction and truncation step for each of the
operators appearing in (b).

imaginary-time evolution operator by which we mean

e−τĤ ≈
N/2∏

i=1

e−τĥi
N/2∏

i=1

e−τĥi+1 +O(τ 2). (3.11)

We provide a tensor diagram schematic of this process in Fig. 3.7. Given the local
Hamiltonian term, Ĥi,i+1, (Fig. 3.7(a)) contract these terms across the full initial
state, see Fig. 3.7(b). The individual contractions and bond dimension truncation
step is contained in Fig. 3.7(c). To achieve the full update procedure in a single shot,
one must convert the entire Trotterized time evolution into a single-layer MPO as
can be demonstrated schematically in Fig. 3.8.

3.3.1 Creating MPS & MPO for Simulation

As a final note we will describe how to set up an initial state as an MPS or a
Hamiltonian as an MPO for numerical simulation. In principle as described one
can generate the MPO associated with a Hamiltonian by creating the full matrix
representation of the total operator and use successive SVD transformations to ob-
tain the MPO representation at a desired accuracy determined by the number of
singular values retained. This is often presented as the approach to take but only
in principle. In practice, we can directly translate a local Hamiltonian to its MPO
formulation without any intermediate manipulations.

The apparent obstacle is to take a sum of (k-local) operators to a product of on-
site operators. For example to take the generic Heisenberg Hamiltonian (Eq. 2.1)
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Figure 3.8: Schematic procedure to convert a Trotterized time evolution single step
into a single layer MPO. The nearest neighbour evolution operator is first split via
SVD, then the resultant tensors are contracted in their vertical pairs to create the
on-site single layer MPO.

into a form that is explicitly a matrix product. More specifically we need a operator
valued matrix M which encodes the terms of the 2-local Hamiltonian terms in this
example. The solution is easier than it seems if one considers the expansion of
the terms in the Hamiltonian sum. Consider the expanded form of

∑N
j=1 Jxσ̂

x
j σ̂

x
j+1,

which when written explicitly is

N∑

j=1

Jxσ̂
x
j σ̂

x
j+1 = Jxσ̂

x
1 ⊗ σ̂x2 ⊗ I⊗ I⊗ . . .

+ I⊗ Jxσ̂x2 ⊗ σ̂x3 ⊗ I⊗ . . .
(3.12)

We want to find the matrices M the entries of which are operators such that Ĥ =

ÔMPO =
∏

iM
[i], where this product is the contraction of the bond indices of the

M [i] or a matrix multiplication on the bond indices. All we need to consider is an
arbitrary operator string as appears in the expansion above, e.g. I⊗ · · · ⊗ I⊗ Ôi ⊗
Ôi+1⊗· · ·⊗I, and the allowed combinations of the constituent operators, Ôi⊗Ôi+1. In
the generic Hamiltonian there are 7 distinct operators that can appear in an operator
string, {I, σ̂xi σ̂xi+1, σ̂

y
i σ̂

y
i+1, σ̂

z
i σ̂

z
i+1, σ̂

x
i , σ̂

y
i , σ̂

z
i }, with their associated coefficients. We

can encode these using 5 operator string states. Examining an arbitrary operator
string starting from the right, when we encounter a magnetic field term, say hxσ̂xi ,
we know that all operators to the left of this must be I. This goes for all such field
operators. For the nearest neighbour terms, e.g. Jzσ̂zi σ̂zi+1, we first encounter σ̂zi+1

from the right which leads us to conclude that a Jzσ̂zi immediately appears next in
the operator product. In effect we describe these transitions as transitions between
string states. We can thus enumerate the string states as follows, reading them from
right to left:
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Figure 3.9: Depiction of the finite state automata (FSA) to encode the MPO op-
erator valued matrix M [i] for the generic Heisenberg spin Hamiltonian (2.1). String
states are the numbered vertices, as enumerated in the text, and the appropriate
operators label the edges describing the string state transitions.

1. Only I to left,

2. One σ̂xi+1 to immediate left,

3. One σ̂yi+1 to immediate left,

4. One σ̂zi+1 to immediate left,

5. Either one of Jασ̂αi or only
∑

α hασ̂
α
i to left.

The transitions between these states are then given by the relevant operators, we
visualise this using a schematic inspired by finite state automata in Fig. 3.9.

From this diagram it becomes much easier to construct the matrix M [i] which,
using these rules, is given by

M [1] =

(∑

α

hασ
α Jyσ

y Jxσ
x Jzσ

z I

)
, (3.13)

M [i] =




I 0 0 0 0

σx 0 0 0 0

σy 0 0 0 0

σz 0 0 0 0∑
α hασ

α Jyσ
y Jxσ

x Jzσ
z I



, (3.14)

M [N ] =

(
I σx σy σz

∑

α

hασ
α

)T

, (3.15)
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where we have also included the first and last site boundary operator valued vec-
tors to complete the Hamiltonian sum. We note that we can proceed in the same
manner for next-nearest neighbour interaction terms and increasingly long-range
interactions. The FSA diagram requires intermediate states to “fill in” the space be-
tween the k-local operators and this leads to a more filled operator valued matrix but
nonetheless the process follows similarly. For further detail on these constructions
for MPO and more examples we refer to Ref. [McC07; CB08; Sch11].

In Appendix A we show a particular application that utilises exactly this MPO
construction to prepare the model for simulation. This XXZ spin model with exter-
nal fields has Green’s functions that are difficult to compute by hand yet are readily
accessed with these numerical methods. In particular, we can probe mixed spin-spin
correlation functions and their Fourier transformations all within the framework we
have described in this chapter.
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Chapter 4

Majorana Based Topological
Memories

In this chapter we will isolate a particular, often overlooked, issue that can arise in
the pursuit to realise topological quantum computing platforms derived from the use
of Majorana Zero Modes (MZM). Generically, topological schemes to protect and
manipulate quantum information are based on fractional excitations called anyons.
Majorana zero modes are a simple example of such excitations. In these approaches
information is stored in anyon pairs and, by moving them apart, one can encode
this information in a non-local way [Kit01; Den+02; Kit03; Kit06; Nay+08; ST13].
This is the key feature that allows topological memories to be robust against local
noise and decoherence processes.

In these topological platforms the computational space is a degenerate ground
state manifold that emerges when these quasi-particle excitations are far apart (see
Fig. 4.1). The degeneracy of this subspace is fundamentally important because it
protects against quantum memory corruption in the form of unwanted qubit rota-
tions, which arise via the accumulation of relative dynamical phases. If present such
a process could lead to an undetectable error. Other errors, such as bit-flip error,
have been studied in a similar context to that of this chapter previously [Con+19], as
such we focus on the dynamical phase error process in particular. This feature of the
ground state manifold arises from a more general property, sometimes called Topo-
logical Quantum Order (TQO) [WN90; Wen90; HW05; BHM10; Zen+19]. Among
other things, TQO implies that, for states within this manifold, the expectation
values of local observables are equal up to some exponentially small correction that
depends on the spatial separation between anyons.

However, in this pursuit we will first give a short description of Majorana zero
modes in Section 4.1. In particular, we show how unpaired Majorana arise beginning
with the Ising model transformed into a model of (Majorana) fermions for partic-
ular Hamiltonian parameters. Further, here we demonstrate the degeneracy of the
model’s ground state, an essential feature of the p-wave superconductor model. In
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Figure 4.1: Schematic view of a 2D topological memory consisting of 4 anyons,
generically labelled by ψi. Information is stored non-locally, and any local excitation,
denoted here by δ, occurring near one anyon must propagate through the system
for an error to occur.

Section 4.2 we elaborate on the topological aspect of the model and its phase tran-
sition. After these preliminaries, in Section 4.3 we present the error process that
we are interested in and the property of topological quantum order that protects
against it. In addition, we include here two notes on time-dependent perturbations
and inheritance of the TQO property between related models. The final Section 4.4
covers our numerical verification of the TQO protection for the p-wave interacting
superconductor model.

4.1 Majorana Zero Modes

A natural starting point in the quest to produce a quantum computing platform is
to ask how one encodes the most basic unit of quantum information, the qubit. We
will not give an account of all extant approaches to achieving this goal and will focus
on that approach which is relevant to this chapter alone. The core ideas necessary
to understand how Majorana excitations translate to encoding qubits begins with a
simple spin model that we can build upon and bring close to a realisable physical
platform.

As a first step consider the one dimensional Ising model [Isi25] on N lattice sites.
One can view this as an instance of the generic Hamiltonian described in Chapter 2
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with many of the couplings set to zero so that we have a Hamiltonian of the form

H = −J
N−1∑

j=1

σ̂zj σ̂
z
j+1 − hx

N∑

j=1

σ̂xj , (4.1)

where σ̂aj are the same Pauli matrices as previously described in Ch. 2, J > 0 is
the nearest neighbour coupling strength and hx > 0 is an external magnetic field in
the x-direction. This model is known to have a quantum phase transition (QPT)
[Sac11] at zero temperature. The point of the QPT is where the coupling matches
the field strength, i.e. J = hx. For larger coupling strength the model exhibits an
ordered phase and for larger magnetic field a disordered phase. To be more precise,
consider the ground state for the case of J ̸= 0, hx = 0. There, the groundstate is
doubly degenerate and takes the form of either the all up (

∣∣↑̄
〉
) or all down (

∣∣↓̄
〉
) spin

state. In the other case of J = 0, hx ̸= 0 the groundstate is unique and corresponds
to the state where all spins are aligned with the external magnetic field, in the x̂-
direction. The total magnetization defined as the expectation value of the sum of
local σ̂zj operators serves as the order parameter in this case where it is zero in the
disordered phase and non-zero in the ordered phase.

At this point we begin to bring this model towards one that can be seen as a
model of fermions in which we can define the aforementioned Majorana zero modes.
By using the same Jordan-Wigner transformation as in Eq. 2.7 one can produce a
similar fermionic Hamiltonian as in Ch. 2. Performing the calculation yields

H = −J
N−1∑

j=1

(
ĉ†j ĉj+1 + ĉ†j+1ĉj + ĉj+1ĉj + ĉ†j ĉ

†
j+1

)
+ 2hx

N∑

j=1

ĉ†j ĉj+1 −NhxI. (4.2)

Recall that Majorana fermions can be formally defined via self adjoint operators that
abide by the usual fermionic (anti-)commutation relations (2.5) [Maj08]. These we
define from the fermionic operators cj as

γ2j ≡ ĉj + ĉ†j, γ2j−1 ≡ −i
(
ĉj − ĉ†j

)
, (4.3)

giving the inverse relations

ĉ†j =
1

2
(γ2j−1 − iγ2j) , ĉj =

1

2
(γ2j−1 + iγ2j) . (4.4)

We can see that these relations produce manifestly self-adjoint γ operators. It is
directly checked using the fermionic commutation relations that the γ operators
inherit the fermionic relations, using directly (4.3), so that the following are true

{γ2m, γ2n} = δmn = {γ2m−1, γ2n−1}, {γ2m, γ2n−1} = 0. (4.5)
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Implicit in this definition of the Majorana operators is the notion that they constitute
two “half”-fermions since a single cj fermion operator is “split” into a superposition
of two constituent Majorana fermions. The odd/even labelled Majorana can be
considered as the real/imaginary components of a typical fermion. Regardless of
interpretation, a single lattice site j is effectively split into an odd and even labelled
site in the γ operators. This is the key viewpoint to realise a Majorana based qubit.
If the Majorana modes corresponding to γ2j and γ2j−1 can be spatially separated
then errors arising from local error processes should in effect be prevented. We will
make this point concrete as we continue.

The result of defining these Majorana fermions allows one to express the Hamil-
tonian of the Ising model as

H = −iJ
N−1∑

j=1

γ2jγ2j+1 + ihx

N∑

j=1

γ2j−1γ2j, (4.6)

by inserting the definitions directly and keeping note that the γ operators square to
the identity.

At this point it is prudent to consider the symmetries of the system we have
described. In the spin picture we have a manifest spin-flip symmetry, meaning that
the parity operator which flips all spins given by

P =
N∏

j=1

σ̂xj , (4.7)

leaves the Ising Hamiltonian (4.1) invariant. Written in γ operators via Jordan-
Wigner and the definitions of γ yields

P =
N∏

j=1

iγ2j−1γ2j. (4.8)

How do we interpret this operator then? In the spin picture this corresponded to
the symmetry of spin flipping at all sites. In the fermionic setting this corresponds
to the fermion parity. In other words, rather than spin parity we find the fermion
number parity i.e. whether there is an odd or even number of fermionic excitations
in the system. This splits the Hamiltonian spectrum into two distinct parity sectors
designated the odd/even sectors. This is made manifest by inspecting the fermion
Hamiltonian (4.2), one can see that while the ĉj ĉj+1 and ĉ†j ĉ

†
j+1 break fermion number

conservation they only do so in steps of 2 so that the parity of the fermion number
remains fixed at all times. Only operators with an odd number of fermion operators
in total will break this parity. For the majority of condensed matter systems of
interest such odd-fermion operators are not present to maintain fermionic parity, as
is the case here.
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Figure 4.2: Observe in the upper schematic for J = 0 the model is fully dimerized,
hence topologically trivial. In the lower schematic for hx = 0 the two end Majorana
become uncoupled from the rest of the lattice, referred to as the topological phase.

Returning now to the Majorana Hamiltonian (4.6) we can examine the limiting
cases of the couplings to see how the QPT of the Ising model relates to Majorana zero
modes. Recall that in the extreme case of J ̸= 0, hx = 0 that the spin model gave
a doubly degenerate groundstate. In the Majorana representation this corresponds
to inter-site couplings linked but intra-site couplings set to zero which leaves γ1 and
γN uncoupled from the bulk of the lattice. Since these together comprise a single
fermionic excitation we can see that by construction we have obtained a non-local
degree of freedom across the lattice. In this spirit this is deemed the topological
phase of the model. In contrast, the other case of J = 0, hx ̸= 0 produces a fully
dimerized system which has a unique ground state and hence is the topologically
trivial phase of the model. Schematically this can be seen in Fig. 4.2. Notice how,
in effect, the end Majorana, denoted γ1 and γ8, have become uncoupled from the
remainder of the lattice.

More strictly speaking these are described as strong zero modes and characterize
the topological order of the system. Away from this exact limit the MZM should
more precisely be referred to as Majorana bound states as, for finite size systems,
there can be some overlap of the Majorana and strictly speaking they are not zero
modes. By definition strong zero modes are those operators which commute with
the Hamiltonian in the thermodynamic limit, written formally as ψ such that

[H,ψ] = 0 +O(e−L
ξ ), (4.9)

where L = Nε, ε being the lattice spacing, and ξ ∈ R+ a constant length scale,
i.e. the correlation length of the system. However, for the finite size system that
we study in Sec. 4.3 & Sec. 4.4 the system is sufficiently large to consider the above
commutator as, for all practical purposes, equal to zero.

In addition, the zero mode can be defined via its mapping under the parity
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operator, P . The defining relation requires that

Pψ = −ψP , (4.10)

meaning that the zero mode maps a state in one parity sector to a state with opposite
parity. It is also required for existence that the zero mode operator has a well defined
normalization in the thermodynamic limit but this is automatically true for MZMs
since γ†γ = 1 by definition. If such a zero mode is present in a model then this
implies that the model has a degenerate spectrum. Given what we have stated up
to now, we can see immediately that, given a state |ϕ⟩ with energy eϕ, the expression

Hψ |ϕ⟩ = ψH |ϕ⟩ = ψeϕ |ϕ⟩ , (4.11)

indicates the degeneracy since by definition of ψ the two states |ϕ⟩ and ψ |ϕ⟩ are of
opposite parity. If this zero mode is localised/confined to a lattice boundary it is
referred to as an edge zero mode and can, in principle, be used to store information
in the context of topological quantum computation.

Using what we have learned up to this point we again consider the Ising model in
the Majorana language. Consider the topologically non-trivial Hamiltonian, where
hx = 0,

H = −iJ
N−1∑

j=1

γ2jγ2j+1. (4.12)

By inspection one can see that neither γ1 nor γ2N are included in the sum so it is
trivial to verify that these two boundary Majorana commute with the Hamiltonian.
Their relation to the parity operator, P , is also directly checked confirming their
status as zero modes and specifically edge zero modes. While this example is the
extreme case these zero modes exist for hx ̸= 0 so long as J > hx i.e. within
the topological non-trivial regime. In this regime one can construct boundary zero
modes systematically [Fen16; Pel+20].

Why then do we refer to these two regimes as topological and topologically trivial
having previously deemed them ordered and disordered phases for the Ising model?
In brief we stress that while the Ising and Kitaev models are formally equivalent, as
they can be mapped into one another by Jordan-Wigner transformation, the models
are physically inequivalent [GST14]. The phase transition in the Ising model is
precipitated by breaking spin reflection symmetry spontaneously whereas the Kitaev
model transition is associated to the occupancy of the fermionic mode constructed
from Majorana zero modes. These zero modes themselves are characteristic of a
symmetry protected topological (SPT) phase. Furthermore, consider the differences
between the degenerate ground states in each model. On the one hand, for the Ising
model the two ground states would require a local spin flip at every site to obtain
the all up state,

∣∣↑̄
〉
, from the all down state

∣∣↓̄
〉
. On the other hand, for the Kitaev
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model the degenerate ground states are those that only differ by the occupancy of
the Dirac fermionic zero mode that is constructed from the two boundary MZM,
γ1, γ8. These ground states only differ by the occupancy of this global fermion mode.
Furthermore, the topological phase transition is associated by a change in a discrete
topological invariant which we demonstrate in the following section.

4.2 Topological Aspect of Majorana Fermions

We now examine a slight generalization of the model in the previous section which
brings us closer to the model used for the remainder of this chapter. This is a toy
model for a spinless p-wave superconductor on an N -site lattice in one dimension.
Moreover, we make more concrete sense of the topological notions of the prior and en-
suing discussions. The model itself is usually referred to as the Kitaev model [Kit01]
with the Hamiltonian

H = −
N−1∑

j=1

(
wĉ†j ĉj+1 +∆ĉj ĉj+1 + h.c.

)
−

N∑

j=1

µ(ĉ†j ĉj+1 −
1

2
). (4.13)

For the moment all the parameters are uniform across the lattice, this is for conve-
nience and spatial dependence will be introduced at a later point. For now, similar
to before, w > 0 represents the kinetic term and µ the chemical potential. Finally,
∆ represents superconducting pairing. In principle this is complex valued, we can
make this explicit but for our purposes we take a real valued ∆ as the complex
phase can be removed by a global phase rotation [ST13]. In addition, a potential
profile and interactions can be introduced to bring the model into a more physically
realistic form but we leave this for later, see Sec. 4.4.

In a similar fashion to the fermion form of the Ising model this model has a
phase transition at µ = ±2w which is of the same character as the transition in
the Ising model. In fact, it is clear that the Kitaev model reduces to the Ising
model of the previous section (4.2) via the identification: µ = −2hx, w = J and
∆ = J . To determine the topological characteristics of this model we first Fourier
transform the bulk Hamiltonian and examine the spectrum of the result. The Fourier
transformation of the creation/annihilation operators used is

ĉj =
1√
N

N/2∑

k=−N/2

ĉke
−ikj, ĉ†j =

1√
N

N/2∑

k=−N/2

ĉ†ke
ikj. (4.14)

Performing this transformation, one obtains

H = −
∑

k

(µ+ 2w cos k)
(
ĉ†kĉk + ĉ†−kĉ−k

)
+2i∆sin k

(
ĉkĉ−k + ĉ†kĉ

†
−k

)
+Nµ. (4.15)
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This is readily arranged into the form

H =
∑

k

C†
kHkCk +

1

2
NµI, (4.16)

where Ck ≡
(
ĉkĉ

†
−k

)T
. Decomposing the 2×2 matrix Hk in a basis of Pauli matrices

yields
Hk = dz(k)σ

z + dy(k)σ
y, (4.17)

where dz(k) = −µ − 2w cos k and dy(k) = 2∆ sin k. The single particle energies
can be extracted by diagonalising this 2 × 2 matrix or equivalently performing a
Bogoliubov transformation on Ck, denoted generically as C̃k = UCk, which in the
process defines the quasiparticle excitations of the system, C̃k. It is easily checked
that c̃ and c̃† satisfy the usual fermionic anticommutation relations. Moreover, this
brings Hk into the form

εkσ
z = U †HkU , (4.18)

where εk are the single particle energies and are given by

εk = ±
√
(µ+ 2w cos k)2 + 4∆2 sin2 k. (4.19)

These single (quasi-)particle energies then sum over allowable k-values to determine
the many body energy spectrum. The energy gap between the conduction and
valence bands is thus determined via εk. In Fig. 4.3 this gap and its closure is
shown for a selection of parameter values. One can see that the closure of the
gap coincides with the phase transition that manifests the Majorana zero modes
in the Kitaev model namely when |µ| → 2w. In this way one can see that the
two phases are separated by this gap closure. In particular the two regimes cannot
be connected continuously without closing the gap. The topological regime is that
where µ ∈ {−2w, 2w} and the trivial regime is where µ is outside this range of values.
One can understand this trivial regime from the fact that the vacuum, µ → −∞,
and fully occupied band, µ→∞, are adiabatically connected.

Notice, further, that the location of the gap closure shifts from k = 0 to k =

±π. This can be readily understood by checking where the single particle energy
(4.19) vanishes for each regime. The dispersion component will vanish at the Fermi
wavevector, ±kF , determined by

kF = arccos

(
µ

−2w

)
. (4.20)

Similarly, the pairing term, 2∆ sin(k), only vanishes at kF = 0,±π. The correspond-
ing values, then, of µ/−2w are where this fraction is equal to ±1; which is precisely
where µ = ±2w. Thus, the spectrum becomes gapless for µ = −2w at kF = 0 and
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Figure 4.3: Here we show the single particle energies for several regimes, at w = 0.5.
(a) For ∆ = 0.1 and µ < 0 we can see the gap open for all µ values except where
|µ| = 2w. (b) Similarly, for ∆ = 1 and µ > 0 the same can be seen with the gap
closing only at µ = 2w = 1. Away from this point the open gap is larger than the
prior example corresponding to a larger value of ∆. Further we can see that the
point that the gap closes moves from k = 0 to k = ±π coinciding with the change in
sign of µ. (c) A schematic of the phase diagram of the model, where the blue band
indicates the topological region(s), and labelling for the parameters used in (a) &
(b).

similarly, for µ = 2w at kF = ±π as we can observe from Fig. 4.3.

Additionally, Fig. 4.4 shows the curve created by plotting the vector d(k) =

(dy(k), dz(k)). Here we can make a concrete statement regarding the topology of
the system. Each of the plotted loops can be characterized by their winding num-
ber about the origin as k runs through [−π, π] or along the first Brillouin zone. In
particular one finds that for |µ| > 2w there is a winding number of 0, for |µ| < 2w

a winding number of 1 and at the transition |µ| = 2w the winding is undeter-
mined [Sta16]. This is the topological invariant that we have been building towards.
The discrete jump from 0 to 1 and vice-versa is accompanied by the appearance and
disappearance of the Majorana zero modes that we have described. This topological
invariant is known as the Chern number [Sta16].

As for the Ising model example we can write this model in terms of Majorana
operators using the same definitions (4.4) as then. This produces a similar Majorana
Hamiltonian as before

H =
i

2

N−1∑

j=1

(w −∆) γ2jγ2j+1 −
i

2

N−1∑

j=1

(w +∆) γ2jγ2j+1 −
iµ

2

N∑

j=1

γ2j−1γ2j −NµI.

(4.21)
This Hamiltonian then has a very similar limit where exact Majorana zero modes
reside at the end points. This parameter configuration is µ = 0 and w = ∆ which
produces

H = −iw
N−1∑

j=1

γ2jγ2j+1, (4.22)

which clearly as before does not include the end Majorana. Away from this spe-
cial point the Majorana zero modes are not so straightforward to write down but
nonetheless are present in the system as long as the gap remains open. The simi-
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Figure 4.4: Here we plot the vector components dy(k) and dz(k) to show that when
µ = 2w the loop inscribed by the vectors touches the origin. When the origin is
enclosed by the loop the winding number is the |ν| = 1. The sign of the winding
number depends on the sign of ∆, in this case +1.

larities continue as in the Ising model example whereby the fermion parity operator
commutes with this Hamiltonian so that fermion number is conserved modulo 2.

At this point we note that despite this being a “toy model” of a superconducting
wire there are numerous proposals for producing effective models which qualitatively
match this Kitaev model [AKL18; BH13]. Moreover, given that the two Majorana
constitute a single fermionic degree of freedom, one can propose concretely a lattice
model as we have done here of 4 Majorana on a superconducting wire which are
encoded in a system with a 4-fold ground state degeneracy. In this way one can take
this system as a building block of a topologically protected quantum memory. Given
the 4-fold degeneracy, the occupancy of these degrees of freedom can be separated by
their fermion parity into two 2-fold degenerate subspaces which comprise a candidate
platform for encoding a single qubit of information. The natural question which
then arises is how well protected from errors is this candidate platform? The answer
to this is the objective of the remainder of this chapter wherein we examine an
error process which has been overlooked to a degree. We provide an argument and
verification for the topological protection of such a system in the following.

4.3 Topological Quantum Order

The error process that we specifically address here which can corrupt the quantum
memory with undesirable qubit rotations is dynamical phase error. This can occur
when the quantum state partially leaves the ground state manifold and returns later
with a dynamically altered phase. This type of error could arise on a mean-field level
if there are causally connected perturbations near different anyons [Con+19]. In this
scenario the distance between anyons plays an important role in delaying/reducing
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Figure 4.5: Slight energy mismatches between higher energy states (indicated by the
curved line) in topological sectors open up an apparent relative phase error, α(t),
when a local process, δ, couples the protected ground states with the excited states.

the onset of this type of secondary error process. In interacting systems however, a
different scenario for phase error still exists because the aforementioned ground state
degeneracy does not necessarily extend to a degeneracy in bulk eigenstates. One
could then reasonably worry about processes whereby a single localised perturbation
creates, and then at a later time, returns an excitation that has accumulated some
relative dynamical phase from its time spent in the energy mismatched bulk.

In the remaining sections we show that, despite a mismatched bulk spectrum
schematically shown in Fig. 4.5, TQO guarantees that such interaction driven phase
errors are suppressed up to a time that scales with system size, in Sec. 4.3.1. A
consequence of this suppression is that, although the bulk spectra from distinct
topological sectors differ, there is necessarily a high degree of correlation between
spectral densities. This correlation can be intuitively quantified by considering ap-
propriate Green’s functions involving the ground state manifold.

We demonstrate these general results, that hold for any system with TQO, using
a concrete example in Sec. 4.4. Namely, a Majorana based topological memory
based on interacting p-wave superconducting wires [FK08; LSD10; ORO10; CST11;
Ali+11], as shown schematically in Fig. 4.7, and provide a simple path to establishing
the TQO condition for this type of system. We back up our key claims using a
MPS approach known as the time-dependent variational principle (TDVP) [Hae+11;
Pae+19] which allows us to: (1) show that, even in regimes where interactions and
time-dependent perturbations are relatively strong, there is no phase error other
than what one would expect from mean-field like effects, and (2) directly calculate
spectral densities in each topological sector and give a quantitative demonstration
on the degree of correlation that must exist between them, see Sec. 4.5.

4.3.1 An Argument for No Phase Error

Now we establish the core argument against a potentially fatal undetectable error.
We present the argument in generic terms before linking to a more concrete model.
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As such, consider some gapped local Hamiltonian H with anyonic quasi-particles.
By local Hamiltonian we mean a sum of Hermitian operators that are each only
non-trivial on several neighbouring sites. Take the Hamiltonians of the previous
sections as examples. Generically, we express this as

H =
∑

x

Hx, (4.23)

where x can be two nearest neighbour lattice sites, for example.

For simplicity, we assume there are two ground states, |e⟩ and |o⟩, corresponding
to (e)ven and (o)dd parity respectively. This is the case for the Majorana examples
used throughout this chapter. It is straightforward to generalise the argument to
a higher dimensional ground state manifold. Crucially, we assume that for large
enough system diameter L, there is a length L∗ that scales in some way with L (this
length must satisfy L∗ ≥ cL for some constant c > 0), for which the ground states
satisfy the topological quantum order (TQO) property:

Definition 4.1. For every local operator, O, supported in a region of diameter at
most L∗, we have

⟨e|O |e⟩ = ⟨o|O |o⟩+O(e−L/ξ), (4.24)

for some constant ξ > 0. That is, local operators cannot be used to distinguish the
two sectors, up to exponential corrections in L.

From the TQO property one can see that the ground states are degenerate, up to
exponential corrections in the system length L [BHM10; BH11]. That is, ⟨a|H |a⟩
is approximately the same for either parity sector labelled by a = e, o. Note that,
H is a sum of a polynomial (in L) number of k-local terms, Hx. TQO implies that
⟨a|Hx|a⟩ is sector independent up to O(e−L/ξ), which dominates the polynomial in
L in the sum ⟨a|H|a⟩ =∑x⟨a|Hx|a⟩.

Although TQO makes no direct claims on the behaviour of states above the gap
that separates the ground state manifold from the bulk excited states, it can be used
however to derive certain properties see e.g. [BHM10]. In what follows we show how
TQO bounds the dynamically driven phase error, and how this results in a large
number of constraints on the bulk spectrum.

We consider two instantaneous local perturbations of the system, separated by a
time t. The unitary evolution operator in this case is

U(t) = eiδ
′
e−iHte−iδ , (4.25)

where δ and δ′ are local Hermitian operators (possibly at different locations) that
do not mix the even and odd sectors. By a phase error we mean that ⟨a|U(t) |a⟩
is different for the even and odd sectors. We can expand in the energy eigenstates,
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|a, n⟩, to get

⟨a|U(t) |a⟩ =
∑

n

e−iEa,nt ⟨a| eiδ′ |a, n⟩ ⟨a, n| e−iδ |a⟩ , (4.26)

where Ea,n is the energy of the nth eigenstate in the a-sector. For special cases, where
there is a degeneracy between the two sectors for all bulk energies, i.e. Ee,n = Eo,n,
and where the overlaps ⟨a, n| e−iδ |a⟩ are sector independent, there is no phase error.
Neither condition necessarily holds for an interacting system. Nevertheless, one can
make the following argument for the suppression of phase error.

First, we write
⟨a|U(t) |a⟩ = e−iE0t ⟨a| eiδ′O(t) |a⟩ , (4.27)

where we have defined O(t) ≡ e−iHte−iδeiHt, and we have used e−iHt |a⟩ = e−iE0t |a⟩
where, by the approximate ground state degeneracy, E0 is exponentially close be-
tween the sectors. From the Lieb-Robinson bounds [LR72], i.e. the theoretical limits
on the speed of information propagation in a non-relativistic quantum system, we
note that we can approximate O(t) by an operator Õ(t), supported in a region of
size ∼ v|t| about δ, up to corrections of order O(e−(L−v|t|)/ξ). Our argument involves
several exponential error terms; each with its own rate constant ξ. To avoid ambigu-
ity, we take ξ to be the smallest such constant such that each error estimate is valid.
Here, v is the Lieb-Robinson speed of propagation for H. We can then pick some
T ∗ ∼ L∗/v, such that the maximum size of Õ(t) over the range of times |t| < T ∗ is
at most L∗, and such that Õ(t) approximates O(t) to order O(e−L/ξ). This TQO
region and operator growth is shown schematically in Fig. 4.6. There are two cases
to consider: cx

1. If δ′ is contained in an L∗ sized region about δ for sufficiently large L, then,
for all times |t| < T ∗, eiδ′Õ(t) is contained in a region of size at most L∗.
TQO then implies that ⟨a| eiδ′Õ(t) |a⟩ is sector independent to order O(e−L/ξ).
Putting everything together, for times |t| < T ∗ ∼ L∗/v we find that ⟨a|U(t) |a⟩
is approximately equal between the sectors, up to exponential corrections in
L. In this situation we say there is no phase error.

2. If δ′ is not contained in an L∗ sized region about δ, then the separation between
δ and δ′ must be growing with L. The fact that the system is gapped means
that ⟨a| eiδ′Õ(t) |a⟩ ≈ ⟨a| eiδ′ |a⟩ ⟨a| Õ(t) |a⟩, up to an exponential correction
in the operator separation [Has04; HK06], and hence a correction of order
O(e−L/ξ). For |t| < T ∗ the TQO condition implies that ⟨a| Õ(t) |a⟩ is sector
independent up to exponential corrections, and hence ⟨a| eiδ′Õ(t) |a⟩ is too.
That is, we again have exponentially vanishing phase error for times |t| < T ∗.

Note that the exact time, T ∗, for which no phase error arises, depends upon
the specific system, the specific perturbations, and their separation. The preceding
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(b) Operator Growth in Time

Figure 4.6: (a) A schematic showing the a tightly localised area of the system
wherein the TQO property is satisfied. This is within a larger area defined by
the characteristic length T ∗. (b) Using the same colouring we illustrate growth
of a 2-local operator, in this instance, up to a characteristic time T ∗ after which
the TQO property is manifestly broken. Starting from an initial operator, δ̃(t0),
evolving through time the region where the operator acts grows past the point that
it acts across the full L∗ region. However, since the characteristic time and length
is proportional to the system length L one can, in principle, expand the system size
in consideration to allow for a longer time T ∗ or length L∗.

argument should be understood as heuristic justification that T ∗ scales as L∗/v,
and hence as L/v. We address the more general scenario of time-dependent per-
turbations, and we make similar arguments for the suppression of phase error in
Sec. 4.3.2.

The suppression of phase error implies a large number of constraints on the bulk
spectra in the following way. From (4.26) we can write the amplitude of the phase
error, denoted here by α(t), as

α(t) = ⟨e|U(t) |e⟩ − ⟨o|U(t) |o⟩ ,
=
∑

n>0

λe,n,δδ′e
−iEe,nt − λo,n,δδ′e−iEo,nt +O(e−L/ξ), (4.28)

where λa,n,δδ′ = ⟨a| eiδ′ |a, n⟩ ⟨a, n| e−iδ |a⟩, and the sum runs from n > 0 as the
ground state contribution is contained in the exponential correction on the far RHS.
Above we showed that |α(t)| is exponentially suppressed. This then implies that the
magnitude of difference between the even and the odd sums (for n > 0) on the RHS
is also exponentially suppressed in L. Crucially, this is also the case for many pairs
of local operators, δ and δ′, though the exact form of the suppression may differ in
each case. One can then consider this constraint between the even and odd sums for
all such pairs, resulting in a substantial number of constraints on the bulk spectra.
The effect of this on the bulk splittings is illustrated for a specific model in Sec. 4.4.
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4.3.2 Time-Dependent Perturbations

In the previous argument we used a time-independent perturbation, δ. However, the
argument extends also to time-dependent perturbations, δ(t), the details of which
we now summarise. Consider such a time-dependent local perturbation δ(t). The
time-ordered unitary evolution operator is then

U(t) = T{e−i
∫ t
0 dt

′H+δ(t′)} . (4.29)

To show there is no phase error we need to show that ⟨a|U(t) |a⟩ is approximately
sector independent. As U(t) is not a local operator we cannot immediately use the
TQO condition. However, we can turn it into a local operator times a non-local
operator that acts trivially on the system eigenstates

U(t) = e−iHt × T{e−i
∫ t
0 dt

′δ̃(t′)}, (4.30)

where δ̃(t) ≡ eiHtδ(t)e−iHt, which essentially follows from the interaction picture.

From the Lieb-Robinson bounds, we can approximate δ̃(t), and hence the time-
ordered unitary involving δ̃(t), by an operator supported in a region of size ∼ v|t|,
up to corrections of order O(e−(L−v|t|)/ξ). Thus, we have

⟨a|U(t) |a⟩ = ⟨a| e−iHt × T{e−i
∫ t
0 dt

′δ̃(t′)} |a⟩ ,
= e−iE0t ⟨a|T{e−i

∫ t
0 dt

′δ̃(t′)} |a⟩ ,
(4.31)

where E0 is the same in both sectors up to corrections of order O(e−L/ξ). For
|t| < T ∗ ∼ L∗/v, we make an error of order O(e−L/ξ) by approximating the time-
ordered unitary in a region of size L∗. In doing so we can then use TQO to argue
that the expectation value on the last line is sector independent to order O(e−L/ξ),
and hence ⟨a|U(t) |a⟩ is too, i.e. no phase error.

If we now include a second time-dependent perturbation δ′(t), separated from δ(t)

such that [δ̃(t), δ̃′(t)] ≈ 0 up to exponential corrections in the separation between
δ(t) and δ′(t), then the unitary U(t) approximately factorises as

U(t) ≈ e−iHt × T{e−i
∫ t
0 dt

′δ̃(t′)} × T{e−i
∫ t
0 dt

′δ̃′(t′)}. (4.32)

It is straightforward to apply the gap argument from the previous sections to show
that this will also not incur a phase error for |t| < T ∗ ∼ L∗/v. This means that we
can avoid the error process by having a sufficiently large system such that this time
is large enough.
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4.3.3 TQO Inheritance

A critical point must be made before we attend to the example in the next section.
The example therein does not in fact satisfy exact topological quantum order. Nev-
ertheless, we are able to apply the arguments in [HW05] to show how the interacting
Majorana wire, H, inherits approximate TQO (4.24) from some simpler system, de-
noted here by H ′, with exact TQO. That is, the expectation values of any sufficiently
local operator in the even and odd ground states of H ′ are exactly equal. For H
to inherit TQO from H ′ we require the two Hamiltonians to be quasi-adiabatically
connected via a local process that does not close the gap. By quasi-adiabatically
we mean that we require that any deviation from a precisely adiabatic process is at
most exponentially suppressed with respect to the system size.

There are several choices for H ′ that satisfy these requirements. For particular
parameters, H0 (the non-interacting wire) has exact TQO for any operator of size at
most L−1 [Kit01], and one can tune from H0 to H by locally tuning the interaction
strength and the other system parameters in a way that does not close the gap.

A more useful choice for H ′, due to its proximity to H in parameter space, is a
partially interacting wire where density-density interactions are present in the entire
system expect for a small local region. Specifically, we tune the couplings on one
side of the wire (say the right) to what we refer to as the special local Kitaev limit,
denoted by HK , where ∆L−1 = w, µL = 0 and uL−1 = 0 (recall that the L’th site
refers to the last site of the left wire). In this limit there are interactions throughout
all of the wire except the last two sites, which allows a fully decoupled Majorana
to sit on the right hand edge, and thus guarantees a precise even-odd degeneracy
for all many-body states [Kel15a]. In the same way, HK is guaranteed to satisfy
the exact TQO condition for operators of size at most L∗

K = L − 1, i.e. the entire
length of the wire except a single site. The fact that our fully interacting system of
interest, H, differs from HK on a single site, means that it is relatively easy to quasi-
adiabatically connect the two. This manifests in the approximate TQO condition
of H as a smaller exponential error than would arise from a longer quasi-adiabatic
path to H.

Taking H ′ = HK , we now follow [HW05] to derive approximate TQO for H.
Denoting the ground states of HK as |a⟩K (for a = e, o), we have the exact TQO
condition: K ⟨e|O |e⟩K = K ⟨o|O |o⟩K for every local operator O supported in a re-
gion of size at most L∗

K = L− 1. We consider a 1-parameter family of Hamiltonians
H(t), where H(0) = H and H(τ) = HK , where τ is the time we tune for. In [HW05]
they define a unitary operator, denoted here by V , that quasi-adiabatically transi-
tions between H and HK . We only consider cases for which H(t) remains gapped
throughout the tuning process [MN18]. Since this is a local process, H(t) is always
a sum of local terms.

Following [HW05], we consider some local observable O. We then form Ol, which

46



only acts on sites within a distance l from the support of O. Specifically, Ol is the
partial trace (up to some constant) of V OV † over all sites more than a distance l
from the support of O. One can then show that,

⟨a|O |a⟩ = K ⟨a|Q†OlQ |a⟩K +O(e−l/ξ), (4.33)

where ξ is some constant, and Q is a unitary operator acting only within the ground
state manifold.

To use the exact TQO of the local HK limit in the RHS above, we require Ol to
be supported in a region of size at most L∗

K = L− 1. If the length of O is dO, then
the length of Ol is dO +2l, which is less than or equal to L∗

K if l ≤ 1/2(L− 1− dO).
To connect up with Eq. 4.24, we further assume that dO ≤ L∗, where L∗ is some
length satisfying cL ≤ L∗ < L, for some constant c > 0. At worst we then have
l ∼ L, and hence the error above is order O(e−L/ξ), for some (possibly different)
constant ξ.

Finally, given the exact TQO of the special local Kitaev limit, and the fact that
Q only acts within the ground state manifold, we find that the expectation value,

K ⟨a|Q†OlQ |a⟩K , is the same for both sectors. For the fully interacting Majorana
system, H, this implies that ⟨a|O |a⟩ is the same for both sectors, up to O(e−L/ξ)
for operators O of size at most L∗. This is the previously stated approximate TQO
condition of Eq. 4.24.

While the above argument concerned the special local Kitaev limit and a locally
connected H, it is clearly applicable to any pair of locally connected (gapped) sys-
tems where one is known to satisfy an exact TQO condition. This is of course also
true more generally for higher dimensional ground state manifolds satisfying the
same condition.

4.4 An Interacting Majorana Topological Memory

To demonstrate the result of the arguments presented in Sec. 4.3, we model a simple
topological memory consisting of two one-dimensional p-wave superconducting wires
separated by a potential barrier, as shown in Fig. 4.7. The 2L-site (L sites each for
the left and right wires) lattice Hamiltonian [Kit01] for this is given by

H0 =−
2L∑

x=1

[µx − Vx](c†xcx − 1/2)

−
2L∑

x=1

(w c†xcx+1 + h.c) +
2L∑

x=1

(∆xc
†
xc

†
x+1 + h.c.),

(4.34)

where ∆x is the superconducting gap, µx is the on-site chemical potential, Vx is
the potential profile, w is the hopping parameter and the c

(†)
x represent fermion
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Figure 4.7: As a concrete model we consider a symmetry-protected topological quan-
tum memory consisting of two p-wave superconducting wires separated by a poten-
tial barrier, Vx. In this setup 4 Majorana zero-modes occur at the domain bound-
aries, as indicated by the purple lines numbered 1-4 at the bottom. Local fluctuating
noise can be realized, for example, by oscillating the left domain boundary by some
δ(t) perturbation, or as a quasi-particle tunneling into the system.

(creation) annihilation operators. To simulate the two-wire setup of the Majorana
based topological memory we utilise the potential profile:

Vx = Vouter[f(x1 − x) + f(x− x4)] + Vinner[f(x− x2)− f3(x− x3)], (4.35)

where xi, for i = 1, 2, 3, 4, encodes the lattice site positions of 4 domain walls, and
f(x) = (1+exp(−x/σ))−1 is a Sigmoid function, which allows for the implementation
of Sec. 4.3.3. We also choose the separating potential, and separation |x2 − x3|, to
be large enough so as to render both wires fully disconnected. Note that any time-
dependent noise protocols only influence the left wire, and we assume that all low
energy bulk excitations occur only in the left wire.

In Fig. 4.8 and 4.9 we oscillate the walls of the left wire. This is implemented
by replacing x1,2 with a time-dependent function x1,2(t) = (vmax/ω) sinωt, with a
velocity vmax and frequency ω that does not break (super-)adiabaticity [KRO13;
SS13; Con+19; Coo+21b]. This is the time-dependent perturbation relevant to the
arguments presented thus far.

Interactions are modelled using a nearest-neighbour density-density term

Hint =
2L−1∑

x=1

uxc
†
xcxc

†
x+1cx+1, (4.36)

where ux is the interaction strength. The fully interacting Hamiltonian of interest
is H = H0 + Hint. This model can be effectively realized in proximity coupled
systems [FK08; LSD10; ORO10; CST11; Ali+11; ST13] which are backed up with
extensive experimental evidence [Mou+12; Den+12; Das+12; Fin+13; Chu+13;
Alb+16; Den+16; Nad+14; Rub+15; Paw+16; For+19; Ren+19]. For discussions
on different types of noise that can occur in these systems see [RL12; BWT12;
RBS12; KH13; YF14; Ng15; PD15; Hu+15; Ipp+16; Bro+16; AKL18; Kna+18;
Zha+19; KRO13; SS13; Con+19; Coo+21b], these error processes include qubit-
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Figure 4.8: Time-averaged rate of phase error as a function of interaction driven
ground state splitting. The TDVP-MPS methodology can pick up an interaction
driven phase rotation (error) resulting from finite-size ground state splitting of order
⟨δE⟩ ∼ 10−10. For system sizes where no appreciable splitting occurs we do not
detect any systematic phase rotation. Inset: same data as in the main figure plotted
against interaction strength (in units of w). In these simulations we oscillated the
left boundary wall (4.35) with frequency ω = 1 and maximum velocity vmax = 0.1.
The time-averaging was done over an O(1) multiple of the oscillation period. We
also set uniform parameters µ = −1.5 and ∆ = 0.7.

loss from non-adiabatic movement of the confining potential, bit-flip and phase flip
errors though not the dynamical interaction driven phase error discussed herex.

The non-interacting Hamiltonian, H0, gives rise to four Majorana zero energy
modes Γj [Kit01], localised at the domain walls between topological (µx+Vx ≤ 2w)
and non-topological regions encoded by Vx. These Majorana modes can be paired
into two Dirac fermionic zero-modes β̂L/R

0 = 1√
2
(Γ1/3+ iΓ2/4), one for the left (L) and

one for the right wire (R) 1. From the 4-fold degeneracy associated with these zero-
modes we can, without loss of generality, define the topologically protected ground
states from the even-parity sector (states with an even number of excitations) as:

|00{0}⟩ = |0⟩L |0⟩R |{0}⟩ , |11{0}⟩ = |1⟩L |1⟩R |{0}⟩ , (4.37)

in which |{0}⟩ = |0⟩⊗L−2 corresponds to the ground state of the bulk modes and
|0⟩α , |1⟩α are the respective unoccupied and occupied Dirac zero-mode for the α =

L/R wire. In discussions, one can effectively forget about the right wire, its purpose
is to keep the system in the even-parity sector overall. Henceforth, any mention of
even and odd sectors, and wires, in the remainder of the chapter refers to the left
wire only.

When local interactions are present (ux ̸= 0) we can no longer label many-body

1This definition is much the same as in Eq. 4.4, though tailored for this particular example.
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Figure 4.9: Phase error for two oscillating walls. In this simulation we set uniform
parameters w = 1, ∆ = 0.8, µ = −1.2, L = 70, dt = π/60 and a bond dimension
of D = 50. Both walls were oscillated with frequency ω = 1 and maximum velocity
vmax = 0.1.

eigenstates ofH in terms of their quasi-particle occupation numbers. Nonetheless, as
we have shown in Sec. 4.3.3, the system inherits approximate TQO, in part because
the topological ground state degeneracy holds (up to exponential corrections in the
length of the system). Crucially, these conditions hold so long as the interactions
do not close the excitation gap [MN18]. On the other hand, the same degeneracy
between the excited states can be broken by interactions when the spectrum contains
overlapping quasi-particle bands [Kel15a; Mor+17; KMM18; Pel+20], leaving open
the possibility for phase errors to be returned to the ground state without the need
for quasi-particle propagation. The results presented here are focused solely upon
the dynamically generated phase errors that can occur because of bulk spectrum
mismatches in an interacting system. However, based on our arguments thus far this
mechanism must be suppressed because H has TQO and we numerically confirm
this below.

4.4.1 Numerical Verification

We present numerical results for the more general case of a time-dependent perturba-
tion. Specifically, we simulate an oscillating perturbation δ(t) on the left boundary
of the Majorana wire. The phase error itself is quantified by

Pphase(t) ≡
1

4
| ⟨e|U(t) |e⟩ − ⟨o|U(t) |o⟩ |2, (4.38)

where Pphase(t) = 0 corresponds to no phase error.

Our numerical results are obtained using TVDP-MPS simulations [Hae+11; Pae+19],
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also summarised in Ch. 3. In Fig. 4.8, we examine the time-averaged rate of phase
error as a function of the the time-averaged energy difference, ⟨δE⟩, between the
approximately degenerate ground states for finite size systems. The ground state
energy splitting is time-averaged since the spectrum varies in time due to the time-
dependent perturbation. The results clearly show that the numerical methodology
is capable of detecting phase error in the dynamics once the ground state splitting
is of order ⟨δE⟩ ∼ 10−10. When the system is large enough, such that interactions
do not make a detectable change to ⟨δE⟩, we do not see any systematic increase in
the phase error.

We also consider the case of a second oscillating perturbation δ′(t) at the right
boundary of the wire. Fig. 4.9 shows that in this case, after a time T ∗ ∼ L/v there
is a sudden increase in phase error. This is well understood on a mean field level:
excitations originating at one wall return to the ground state space at the other
wall, generating a σz error in the ground state space (see, e.g., [SS13; Con+19]).
Pertinently, before T ∗ we see no evidence of any other systematic phase error, other
than that which can be attributed to the small detectable splitting in the ground
state manifold.

To provide some context to the results for the phase error, we present additional
numerical TDVP-MPS simulation results for our interacting topological memory. In
particular we show numerical results for the qubit-loss error (infidelity) as defined
by

Ploss(t) ≡ 1− | ⟨e|U(t) |e⟩ |2 − | ⟨o|U(t) |o⟩ |2. (4.39)

In Fig. 4.10 we show the response of the system to a single oscillating boundary
across a range of frequencies from the almost adiabatic regime, ω ≪ Egap, up to fre-
quencies far in excess of the topological gap. The results resemble the expected local
density of states in the wire, in a given parity sector. We see that repulsive interac-
tions lower the peak resonant frequency (in agreement with an expected reduction
to the band edge). We also see that the topological memory degrades slightly across
all frequencies. This is somewhat different from what is observed in non-interacting
studies, where a lower bulk gap from, say, a reduced p-wave pairing or a lower wire
electron density, can result in an improved robustness to high-frequency perturba-
tions, see Fig. 2 (b) of [Con+19] and compare against Fig. 4.10.

4.5 Spectral Correlations: Green’s Functions

It is important to note the deviations observed in phase error after T ∗ are not really
driven by the phase error accumulated in the bulk states, but are symptomatic of
the fact that the dynamics will eventually turn local operators into non-local ones.
However, the fact that we cannot observe phase error before T ∗, for all initially local
perturbations, implies that the even-odd excited energy spectra in the interacting
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Figure 4.10: Averaged rate of qubit-loss versus frequency of the left boundary wall
for 4 different interaction strengths. The frequency covers a wide regime from slow
almost adiabatic oscillations, ω ≪ Egap, to high (non-adiabatic) frequencies ω ≫
Egap. The resonance peak shifts to lower frequencies with increasing interaction
strength, corresponding to an expected reduction in the gap. Moreover across all
frequencies the rate of qubit-loss increases with interaction strength. For this plot
we set L = 50, vmax = 0.1, w = 1, µ = −1 and ∆ = 0.5.

model are related to a unique aspect of systems with TQO. This is most clearly
demonstrated by Fourier transforming the system’s Green’s functions. These spec-
tral correlation functions are interesting in their own right as tools to probe the
properties of a model and demonstrate the power of time evolved tensor network
techniques. We provide an appendix (App. A) that demonstrates another applica-
tion of the techniques used in this section.

Consider, for example, taking

eiδ
′
= 2c†x′cx′ − 1, e−iδ = 2c†xcx − 1, (4.40)

in U(t) in (4.25) and define the Green’s function for the a-sector as

Ga(x, x′, t) ≡ eiE0t⟨a|U(t)|a⟩ , (4.41)

which depends on the operator positions, x and x′, and the time t. For convenience,
we fix x = 1 (the left boundary of the wire) or x = L/2 (the middle of the wire) in
what follows, and consider Ga as a function of (x′, t) only.

No phase error implies that the difference, Deo ≡ Ge − Go, is exponentially
suppressed for times |t| < T ∗, and hence so is the integral of Deo over [−T ∗, T ∗].
One can then verify that this implies that the Fourier transform, F [Deo](k, ω), is
exponentially suppressed when convolved with the Fourier transform, F [Θ], of some
cut-off or box function, e.g. Θ(t) ∼ 1 for |t| < T ∗ and ∼ 0 otherwise. In other words,
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Figure 4.11: The single particle Green’s functions (a) |Ge(1, x, t)| and (b) the dif-
ference between sectors |Deo| = |Ge(1, x, t)− Go(1, x, t)|, which shows that the two
correlators are the same up to exponentially small corrections for a time T ∗. (c) In-
troducing a cut-off in time, Θ(t) = e−.03|t|, leads to spectral density F [Θ×Ga](k, ω)
that is weighted around positive group velocities. The dashed line shows the free
single particle dispersion for comparison. The resolution of F [Θ × Ge] is set by
1/L for momenta and 1/T ∗ ∼ v/L for frequency. At this resolution there are only
exponentially small differences between F [Θ×Ge] and F [Θ×Go].

while the spectral functions, F [Ga](k, ω), differ between sectors, these differences are
washed out by smearing, or convolving, with F [Θ]. For a box function, with cut-off
T ∗, F [Θ] has the form of a sinc function with width ∼ 1/T ∗, and hence a convolution
with F [Θ] acts to smear F [Ga](k, ω) by this width in the ω direction. It is important
to note that this is not a perturbative statement.

4.5.1 Extension to Fermionic & Multi-particle Operators

The analytical arguments above rest heavily on the Lieb-Robinson bounds, which are
formulated as commutation relations between local operators. Fermionic operators
such as cx are non-local, as they can be seen as strings of local operators through
the Jordan-Wigner representation. Even powers of such fermionic operators, on
the other hand, are local. Our analytical results, therefore, only pertain to the
latter, and hence can only address time-dependent changes within parity preserving
Hamiltonians.

Despite this, in Fig. 4.11 we illustrate the Green’s functions and their FT’s for
fermionic operators

eiδ
′
= c†x′ + cx′ , e

−iδ = c†1 + c1 (4.42)

in U(t) in (4.25) and define the Green’s functions as before. The resulting resolution
in reciprocal space [k×ω] is of the order [1/L×v/L]. One can estimate from Fig. 4.9
that the Lieb-Robinson speed v ∝ u, and hence, while increased interactions imply a
coarser grained energy correlation between sectors, making the system larger allows
us to systematically improve this bound. The numerical results, in particular the
cancellations of even and odd Green’s functions up to a time T ∗ (Fig. 4.11 (b)),
indicate that it may be possible to extend the analytical argument to fermionic
perturbations. The work in [NSY18; HK06] likely offers a good starting point for
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(a) log10 |Ge(x, t)−Go(x, t)| (b) F(Θ×Ge) (c) 2-particle density

Figure 4.12: (a) The difference |Ge(x, t)−Go(x, t)| is negligible up to a time t = T ∗.
(b) As a result, F(Θ × Ge) ≈ F(Θ × Go) for a cut-off function Θ(t) that drops off
after T ∗. (c) The total momentum resolved 2-particle spectral density of the non-
interacting system (ux = 0) for a system size of L = 100.

such a generalisation.

For multi-particle Green’s functions the situation is similar except that T ∗ should
have a quantity proportional to the spatial extent, l, of the local operators subtracted
from it, i.e. T ∗ → T ∗− l/v. For the spatial resolution, although there are now many
more states participating in the evolution, we also have many more possible local
operators to choose from. As a demonstration, we show some results for the 2-
particle spectral densities. We set eiδ′ = 2c†x′cx′ − 1 and e−iδ = 2c†xcx − 1 in U(t)

in Eq. 4.25 and define the Green’s function for the a-sector as in Eq. 4.41. In this
case, we fix x = L/2 (the middle of the wire) so as to not couple to the zero-modes
(which tends to blur our spatial Fourier transform) and then plot Ge(L/2, x′, t)

and the difference Deo ≡ Ge(L/2, x′, t) − Go(L/2, x′, t), which is given in a log
scale for clarity. Fig. 4.12(a) shows, up to numerical errors of O(10−8) that Deo

is exponentially suppressed for some initial time T ∗. Furthermore, this time scales
with the system size L.

Fig. 4.12(b) shows the shape of the 2-particle spectral density as a function of the
total momentum, after cutting off the Green’s function for t > T ∗. Fig 4.12(b) can
be compared against the exact density determined from the single particle solutions
of a periodic system, given in Fig. 4.12(c).

The energetic resolution obtained in Fig. 4.12(b) is effectively governed by the
Lieb-Robinson velocity and L. However, as we stressed above in the constraints
section, we are free to choose from a large number of local operators with which
we can generate a much larger set of spectral constraints (Eq. 4.28). For example,
we could generate the entire 3-parameter functions Ga(x, x′, t) and perform a 2D
Fourier transform on the first two spatial components, from which we could obtain
a tighter k-space resolution.
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Remarks

In this chapter we have examined a process wherein undetectable interaction in-
duced errors could be introduced into a topological quantum memory. However, by
leveraging the topological quantum order (TQO) property and, in particular, the
inheritance of TQO between adiabatically connected systems we have argued that
this property protects against such error processes. This protection persists up to a
characteristic time scale which scales with the system size. Thus, in principle, these
errors can be circumvented by utilising a sufficiently large system. Additionally, this
argument has been verified in detail numerically using time-evolved tensor network
and Green’s function methods. Primarily, we used the density matrix renormalisa-
tion group (DMRG) technique to access the system’s groundstate. Subsequently, we
employed the time dependent variational principle (TDVP) technique to generate
time evolution of the system. The same techniques are applied to access the Green’s
functions and in some cases examined under Fourier transformation.

Next, rather than considering the p-wave superconductor with interactions, we
expose the model to dissipation and examine the effect of combining quantum trans-
port with a stochastic, or classical, transport model.
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Chapter 5

Quantum Exclusion Process

A valuable way of understanding a many-body system is to characterise its phase
diagram and the associated transitions. This approach is useful across a broad
class of systems, from the classical to the quantum realms, at zero-temperature,
and both in- and out-of thermal equilibrium. Although typically such domains are
clearly separated, there are situations where phase transitions in one such domain
can influence the behaviour of another. Indeed, one can investigate the interplay
between the different domains if one can put both in the same framework.

A useful framework to address such issues is the Lindblad master equation [GKS76;
Lin76], through which one may combine both Hamiltonian and classical stochastic
dynamics. This methodology has been used, for example, to explore mixed classical-
quantum transport [Pro08; PP08; Eis11; TWV12]. However, despite this success,
it is difficult to find systems where an interesting interplay can be maintained be-
tween classical/stochastic and quantum phases. For example, for a spin chain with
stochastic processes encoded in the Lindblad jump operators only at the boundary
spins, the typical steady state behaviour is largely dictated by the quantum prop-
erties of the bulk Hamiltonian (see e.g. [Pro08; PP08]). On the other hand, if bulk
stochastic processes are also allowed, these typically dominate [Eis11; TWV12] and
leaves little to no trace of the quantum phase transition to survive at late times.

In this chapter we discuss a spin chain model where both classical stochastic and
quantum phases are simultaneously relevant to a degree that allows for a genuine
interplay between them in the late-time properties. The model is a combination of
the transverse XY (TXY) Hamiltonian1, or equivalently the Kitaev chain [Kit01],
with a one-way/unidirectional classical stochastic hopping process, modelled by the
totally asymmetric simple exclusion process (TASEP). We refer to the combination
of these two models as the TXY-TASEP.

The TASEP, considered in isolation, has a phase diagram for its non-equilibrium
steady state (NESS) that is determined by the stochastic “hop-on/hop-off” rates at
its boundaries. The TXY Hamiltonian undergoes a quantum phase transition in

1See also Ch.2 and Ch.4 for more discussion and work related to this model.
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its ground state as the transverse magnetic field parameter is increased, assuming a
non-zero XY anisotropy parameter ∆, at ∆ = 0 the model is critical for any magnetic
field value. In fact, this quantum phase transition (QPT) has already been alluded
to in Ch. 4 where we described the representative ground state(s) associated with
each phase of the model.

When the two models are combined, we find that for zero anisotropy, ∆ = 0, the
NESS retains many of the properties associated with the classical TASEP and, as
such, its behaviour can be essentially controlled via the stochastic boundary rates.
Indeed, the steady state in this case is largely indistinct from the TASEP steady
state with no additional processes. On the other hand, in the regime associated with
the anti-ferromagnetic (topological) phase of the XY model, the steady-state more
closely resembles a perturbed infinite temperature state, but where the stochastic
boundary rates do still dictate some key properties of the perturbation away from
this maximally mixed state.

From the perspective of the TASEP phase diagram (see e.g. [DDM92] and
Fig. 5.2), we see that steady states of the low- and high-density phases are far
more susceptible to the pair creation/annihilation associated with the XY anisotropy
terms, see Fig. 5.8. These low- and high-density steady states as the name sug-
gests are states with respectively few or many occupied lattice sites. This effect is
much less pronounced in the maximal current phase, where the tendency of the XY
anisotropy to drive the system towards half-filling is complementary to the maximal
current micro-states that are themselves half-occupied states.

The TXY-TASEP system does not allow for a direct analytical treatment, as
available for related models [GS92; Kim95; GE05; GE06; Pro08; ŽP10; CRS10;
CR12; LP14; Žni15; Pro16; BDS15; Zha+19; EP20; ISN21; RE21]. Our results
are therefore arrived at by using a combination of numerical methods and approx-
imate approaches. On a numerical level we apply matrix product state (MPS)
methods [NCS02; Sch11; Pae+19] to study steady states and their particle cur-
rents [TWV12]. Moreover, we use third quantization [Pro08; ŽP10], and exploit
the block structure that occurs naturally via the associated canonical Majorana
representation [GC12; Kel15a; Kel15b], to make concrete perturbative statements.

An overview of the chapter is as follows: In section 5.1 we introduce key aspects of
the transverse XY and TASEP models, providing detail of our main results and the
physical picture that emerges. In section 5.2 we detail our main numerical results,
focusing in particular on the relationship of the non-equilibrium steady state (NESS)
with both the TASEP steady state and the maximally mixed state. In section 5.3
we will describe preliminary examinations on the effects of the anisotropy parameter
∆ on the current of the steady state. In particular how a region of the lattice with
non-zero ∆ can effect the resultant current profile in the steady state from what is
known in the classical model. We devote Chapter 6 to analysing the Liouvillian gap
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Figure 5.1: In this figure we schematically describe the totally asymmetric exclu-
sion process. The green arrows show processes that are allowed within the TASEP
model (with γ = 1 usually). Additional processes with matching weights in the left
direction recovers the SSEP. The orange and blue regions on either side of the lattice
(coloured yellow) denote infinite baths of particles and holes respectively and are
not explicitly modelled.

of the TXY-TASEP model and related models.

5.1 Model and methods

To begin we briefly review the exclusion process as it is usually classically defined.
Details on obtaining the steady state solution for the TASEP via a matrix product
ansatz (MPA) solution are reserved for App. C. Therein also, we explain how to pro-
mote the dynamics of this model to that of a dissipative process via Kraus operators
on diagonal density matrices to provide a compatibility with the dynamics of the
transverse XY model. This second model has been described in Ch.2 and analysed
in a fermionic context in Ch. 4. We then combine them to create the TXY-TASEP
model which is the model of interest in this chapter and part of the next, Ch. 6.

5.1.1 Review of TASEP

The totally asymmetric exclusion process (TASEP) is a paradigmatic model of
stochastic transport in one dimension. Schematically, we summarise the processes
which constitute this model in Fig. 5.1. One of the important properties of the
model is that it admits a MPA solution for its steady state. We provide the full
detail on how one obtains this solution in App. C. This ansatz solution captures
many of the salient features of the model as the steady state itself is the primary
descriptor of the late time behaviour. Moreover, this MPA allows one to determine
directly the steady state current which in turn dictates the phase diagram of the
model. We can see from examining the current that the model splits into three main
phases that are determined by the boundary rates, α and β.

This dependence on the boundary rates is shown in the steady state phase dia-
gram Fig. 5.2 and can be understood intuitively from the processes given in Fig. 5.1.
We can see that when γ, the bulk hopping rate, is set to one that any particle in the
bulk always moves to the right. This is the set up we maintain throughout for this
model. Then if there is an inequality between α and β there will be an inequality
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Figure 5.2: The TASEP phase diagram which depends only on the boundary rates
α and β. For both rates greater than 1

2
, the steady state is described as being in

the maximal current (MC) phase. For α < 1
2

and β > α the steady state is in the
low-density (LD) phase. Similarly, for β < 1

2
and α > β the steady state is in the

high-density (HD) phase.

between the amount of particles entering and leaving the lattice. More particles en-
tering rather than leaving, α > β, causes the lattice to fill and therefore the steady
state becomes a high-density state. Conversely, if the rate of particles leaving is
greater than the rate of particles entering, α < β, this causes a deficit of particles
and thus a low-density steady state. The remaining phase is the maximal current
phase wherein both boundary rates are greater than 1

2
. In this case the steady states

are half filled states. One such state is the alternately occupied/unoccupied state
where at every instance of time all particles are allowed to move to the right by one
lattice site. Evidently, this is the situation that allows for the largest current to pass
though the system by the allowed TASEP processes.

We derive the MPA and the associated currents based on [DDM92; Der+93]
in full detail in App. C. At least at the level of the steady states then, we can
construct them in a form already amenable to the machinery we have in place for
simulating quantum systems. In particular we can compare the MPA states of
TASEP against those steady states obtained from our numerical simulation, namely
DMRG as described in Ch. 3.

The next step to bring TASEP onto the same footing as the TXY model is to
promote the stochastic dynamics to one that is compatible with the dynamics of
the TXY model. Usually TASEP is formulated as a discrete time process. However,
we can reformulate the entire process within the conceptual framing of a quantum
channel via Kraus operators [NC00]. We detail the steps to achieve this outcome in
App. C. To summarise, we embed the classical state (or configuration) at a given
time, t, onto the diagonal of a density matrix, ρ(t). The dynamics are then encoded
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Figure 5.3: Our model is a chain of two-level quantum systems evolving by the
combination of the transverse XY Hamiltonian (TXY) and the totally asymmetric
simple exclusion process (TASEP). In the lower layer we show explicitly the allowed
transitions between nearest neighbour spin configurations with the associated model
parameters indicated. In addition we typically set w = 1 throughout.

into a set of Kraus operators, {K(j)
i }, for each lattice site, i, that act as

ρ(t+ dt) =
∑

i

∑

j

K̂
(j)
i ρ(t)K̂

(j)†
i . (5.1)

For the specific forms of these Kraus operators, see App. C. We then recover a
continuous time master equation from this in the limit as dt → 0. This master
equation has the form

d

dt
ρ̂(t) =

1

N + 1

(
αD[σ̂+

1 ] + βD[σ̂−
N ]
)

(5.2)

+
1

N + 1

(
γ
N−1∑

i=1

D[σ̂−
i ⊗ σ̂+

i+1]

)
(ρ̂(t)),

where D[ℓ̂](ρ̂) ≡ ℓ̂ρ̂ℓ̂† − 1
2
ℓ̂†ℓ̂ρ̂− 1

2
ρ̂ℓ̂†ℓ̂. This form of the TASEP dynamics precisely

matches the dissipative part of a Lindblad master equation [GKS76; Lin76], see also
Ch 2.

5.1.2 Combining the TXY & TASEP Models

Now that we have the classical dynamics expressed as a quantum channel we can
add the quantum dynamics to have both the TXY and TASEP models together.
As already indicated both are separately well understood as paradigmatic mod-
els for transport in one dimensional systems. The XY spin model with a transverse
magnetic field can be solved exactly by mapping to a free fermion model with super-
conducting terms present due to the XY anisotropy. Likewise, the classical TASEP
is solvable in the sense that there is an ansatz solution for the NESS [DDM92;
Der+93].

We thus incorporate both models into a single Lindblad master equation [GKS76;
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Lin76]

dρ̂

dt
= −iλH(ρ̂) + ϵL(ρ̂),

= L(ρ̂). (5.3)

The TXY model is represented by the following commutator H(ρ) = [Ĥ, ρ̂], with
overall strength λ and the Hamiltonian

Ĥ = −hz
N∑

j=1

σ̂zj +
N−1∑

j=1

(
1 + ∆

2
σ̂xj σ̂

x
j+1 +

1−∆

2
σ̂yj σ̂

y
j+1

)
. (5.4)

Here hz is the transverse magnetic field and 0 ≤ ∆ ≤ 1 the anisotropy param-
eter. We note that if ∆ ̸= 0, the TXY-Hamiltonian has a quantum phase tran-
sition at |hz| = 1 (see Fig. C.2(a)). The anisotropic terms can be rewritten as
2∆(σ̂+

i σ̂
+
i+1 + σ̂−

i σ̂
−
i+1), so they can be seen to introduce pair creation/annihilation

when ∆ is non-zero. We make this statement in the view that, after a Jordan-Wigner
transformation, Ĥ can be rewritten in terms of spinless fermions, which is known
as the Kitaev chain [Kit01]. Then the spin model can be reinterpreted as parti-
cles hopping on a one dimensional lattice where spin-up corresponds to an occupied
state and spin-down to an unoccupied state. This further allows us to leverage our
intuition of particles (whether fermions or hard-core bosons) hopping along a lattice
in addition to spin excitations.

In the second term of Eq. 5.3 we have the totally asymmetric simple exclusion
process (TASEP), with overall strength ϵ and modelled by the Lindblad operator
[TWV12]

L(ρ̂) = αD[σ̂+
1 ](ρ̂) + βD[σ̂−

N ](ρ̂) +
N−1∑

j=1

D[σ̂−
j σ̂

+
j+1](ρ̂), (5.5)

where D[ℓ̂](ρ̂) = ℓ̂ρ̂ℓ̂† − 1
2
ℓ̂†ℓ̂ρ̂ − 1

2
ρ̂ℓ̂†ℓ̂. The TASEP has three distinct phases with

respect to α and β (see Fig. C.2(b)):

MC phase: α > 1/2 and β > 1/2,

LD phase: α < 1/2 and β > α,

HD phase: β < 1/2 and β < α.

(5.6)

This phase diagram can be deduced from the exact MPA solution for the TASEP
steady state, with infinite dimensional matrices [DDM92]. However, the exact so-
lution can also be accurately approximated by a MPS with a relatively small bond
dimension [TWV12]. In this way we can generate an efficient matrix product state
description of the TASEP steady state in a way that can be further extended to find
the steady state ρ̂NESS of the full Liouvillian L, where an exact MPS or ansatz is
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(a) (b)

Figure 5.4: (a) The structure of L in the canonical basis for a system size of
N = 4. (b) The s = 0 block that corresponds to the maximally mixed/thermal
state is connected via terms dependent on the bulk and boundary driving to states
|ϕL⟩⟩ = | γ1γ2⟩⟩, |ϕR⟩⟩ = | γN−1γN⟩⟩. These elements are highlighted, on the left
within the L(2,0) sub-block, by the upper orange dot and lower cyan dot, which have
respective values −ϵ(β − 1/2) and ϵ(α− 1/2).

not known. Away from the purely classical model, we can obtain the full NESS by
a density matrix renormalisation group (DMRG) implementation modified for open
quantum systems [OV08; PŽ09; JNK13].

We note that Eq. 5.5 is part of a continuous-time master equation, while TASEP
is often considered as a discrete time stochastic process. Additionally, instead of
considering a master equationn, by viewing the TASEP as a discrete time Markov
process one can translate the model to a non-Hermitian spin chain for which Bethe
anatz methods can be applied to determine analytic results, see e.g. [GS92; Kim95;
GE05; GE06]. We note also that our approach is not the only one with the aim
to introduce quantum effects into classical exclusion processes. A number of re-
cent works have proposed quantum modified versions of the SSEP [BJ19; BP21]
and ASEP [Ber+22] which employ a non-Hermitian Hamiltonian formulation of the
exclusion process that introduces noise in the particle hopping amplitudes.

In the remainder of this chapter we present our findings on the steady state and
the current associated as obtained from the corresponding TXY-TASEP model’s
Liouvillian superoperator L, as we vary the model parameters, including the pa-
rameter ϵ/λ which controls the relative strength of the quantum TXY model and
the classical TASEP in Eq. 5.3. We set λ = 1 for the remainder of this chapter,
essentially allowing λ to define the unit of frequency. We note that the steady state
of L for the isotropic Hamiltonian, with hz = ∆ = 0 and TASEP, has been pre-
viously explored by other methods [TWV12]. Also, the case of zero bulk TASEP
hopping has been explored in the more general scenario where particles can hop on
or off either end of the chain [PP08]. Before getting into the results we must make
explicit the superoperator of the model. While the generalities of third quantization
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have been summarised in Ch. 2 we make specific the transformations implemented
for our results to be obtained.

5.1.3 TXY-TASEP Superoperator

In the following, it will be useful to represent the superoperator L in Eq. 5.3 as a
matrix that acts on a vectorized representation of the quantum state ρ̂. The general
approach for a superoperator formulation has been covered in Ch. 2. In this instance
we also choose a convenient basis of orthonormal operators {Γi} with respect to the
Hilbert-Schmidt inner product, i.e., ⟨⟨Γi|Γj⟩⟩ ≡ Tr

(
Γ†
iΓj

)
= δij. We choose the

so-called canonical Majorana basis [GC12; Kel15a; Kel15b]:

Γ(0) : I/
√
2N ,

Γ(1) : γ1/
√
2N , γ2/

√
2N , . . . , γ2N/

√
2N , (5.7)

Γ(2) : iγ1γ2/
√
2N , iγ1γ3/

√
2N , . . . , iγ2N−1γ2N/

√
2N ,

etc.

These Majorana operators are defined from the spin operators as:

γ2n−1 =

(
2n−2∏

k=1

σzk

)
σx2n−1, γ2n =

(
2n−1∏

k=1

σzk

)
σy2n, (5.8)

for n = 1, 2, . . . , N . This is simply the combination of the Jordan-Wigner transfor-
mation shown in Ch. 2 and the definition of a Majorana operator from Sec. 4.1. As
shown in Eq. 5.7, an element Γ

(s)
a of this basis is a product of Majorana operators,

where the upper index s is the number of γ’s in the product, and a labels the basis
elements within each s subspace. The factors of 1/

√
2N ensure the normalisation

⟨⟨Γ(s)
a |Γ(s′)

b ⟩⟩ = δss′δab. In this basis the Liouvillian superoperator L has the matrix
elements

L(s,s′)
ab = ⟨⟨Γ(s)

a |L(Γ(s′)
b )⟩⟩, (5.9)

where the upper indices (s, s′) label blocks in the matrix and the lower indices a, b
label the matrix elements within the (s, s′) block [see Fig. 5.4 (a,b) for an illustration
of the matrix structure]. Likewise, the vectorized density operator in this operator
basis has the elements ρ(s)a = Tr

(
Γ
(s)
a ρ
)
.

The superoperator L has some other interesting features that are worth pointing
out. First, we note that it preserves the parity of the label s (i.e., the operator
L(Γ(s)) is a linear combination of operator basis elements with the same parity as
s). This is true provided that the Hamiltonian preserves the parity, which is the
situation we have for the TXY Hamiltonian. This is seen clearly in Fig. 5.4(a,b),
where L(s,s′) = 0 if s and s′ have different parity. Also, we highlight the s = s′ = 0
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block [upper-left corner of Fig. 5.4(a,b)], corresponding to the operator basis element
Γ(0) = I/

√
2N . Using the master equation (5.3), it is straighforward to show that

this matrix element is always zero L(0) = 0. Similarly, it can be shown that this
element is only connected to two others in the L(2,2) block, via the off-diagonal block
L(2,0) [as illustrated in Fig. 5.4(b)]. The two non zero elements are:

⟨⟨2−N
2 γ1γ2|2−

N
2 I⟩⟩ = ϵ(α− 1/2), (5.10)

⟨⟨2−N
2 γ2N−1γ2N |2−

N
2 I⟩⟩ = −ϵ(β − 1/2), (5.11)

which are highlighted in Fig. 5.4. If these two matrix elements are zero (i.e., if
α = β = 1/2 or if ϵ = 0) then the maximally mixed state ρ ∼ Γ(0) ∼ I is a valid
steady state of the Liouvillian. If both matrix elements are non-zero but small then
we expect the NESS to be close to the maximally mixed state. This intuition is based
partly on the structure produced in our expression of the Liouvillian superoperator
(see Fig. 5.4 and Eq. 5.9) and on prior work for a related system which allows for a
NESS ansatz [Žni11] with the maximally mixed state as the zeroth order state. We
will exploit this feature later in Section 5.2.2 to perturbatively estimate the steady
state and later the gap scaling in the small ϵ limit in Section 6.1.

Furthermore, generically speaking, for a Lindblad equation comprised of a Hamil-
tonian which is quadratic and Lindblad jump operators that are linear in fermion
operators one finds that the Liouvillian superoperator admits such a (near-)block
diagonal matrix form. As a result, the superoperator can be solved block-by-block.
There are cases however where exact treatments of the superoperator are possible
despite the underlying Lindblad equation not being entirely quadratic. Asymmet-
ric boundary driving [Pro08; PP08] and quartic stochastic processes [Eis11; Žun14]
are two such examples. Although similar approaches cannot be directly applied to
TXY-TASEP, we will show that using the canonical representation yields a useful
block structure which allows for perturbative estimation of the Liouvillian gap in
the weak classical regime in Ch. 6.

5.2 Non-Equilibrium Steady State

The non-equilibrium steady state (NESS) is defined as the state ρ̂NESS for which
L(ρ̂NESS) = 0. The case for studying the NESS is straightforward: it governs the
system’s late time behaviour. There are various examples of open quantum spin
chains for which the NESS can be calculated exactly through analytical methods.
One important class are those for which matrix product ansatz solutions exist for the
NESS [Žni10; Žni11; Pro11; KPS13; Pro15]. This includes, for example, the purely
classical TASEP (λ = 0 in our model) for which a matrix product ansatz solution
was found by Derrida et al. [DDM92]. Other formulations allow one to utilise the
methodology from the Bethe Ansatz [GS92; Kim95; GE05; GE06; CRS10; CR12;
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Figure 5.5: These figures contain numerical data for the overlap, as defined in
Eq. 5.12, for three cases of ϵ = {0.1, 1, 10} and capturing features of the three
TASEP phases. In (a)-(c), for the low density (LD) phase [α = 0.1 & β = 0.3] we
observe a strong effect on the overlap with changing ∆, in the high density (HD)
phase one can see similar features. In (d)-(f), for the maximal current (MC) phase
[α = 0.7 & β = 0.9] we show the relatively weak effect of increasing ∆, note the
restricted color range of values for this row of figures. For all figures we have a
system size of N = 50.

LP14; Pro16; BDS15; Zha+19; EP20; ISN21] or operator quantization [Pro08; PP08;
Eis11]. However, these exact analytical methods cannot be applied to the full TXY-
TASEP to determine the NESS. Instead, in this section we employ the density matrix
renormalisation group (DMRG) algorithm (Sec. 3.3) to numerically determine ρ̂NESS.

5.2.1 Obtaining NESS from DMRG

We begin by comparing ρ̂NESS to the classical TASEP steady state ρ̂cl, defined as
the state for which L(ρ̂cl) = 0 (where L is defined in Eq. 5.5). For given TASEP
boundary hopping rates (α, β) we know from the work of Derrida et al. [DDM92]
how to construct ρ̂cl from its exact matrix product ansatz. However, introducing
the Hamiltonian term in Eq. 5.3 generically modifies the steady state so that it is no
longer equal to the classical TASEP steady state ρ̂cl. For a given (α, β) we quantify
the difference between ρ̂NESS and ρ̂cl with the overlap

O(ρ̂NESS, ρ̂cl) =
⟨⟨ρNESS|ρcl⟩⟩√

⟨⟨ρNESS|ρNESS⟩⟩⟨⟨ρcl|ρcl⟩⟩
, (5.12)

where ⟨⟨A|B⟩⟩ = Tr
(
Â†B̂

)
is the Hilbert-Schmidt inner product for operators Â and

B̂. This overlap takes values in the interval O ∈ [0, 1], with O = 1 if ρ̂NESS = ρ̂cl
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and O = 0 if the states ρ̂NESS and ρ̂cl are orthogonal (i.e., ⟨⟨ρNESS|ρcl⟩⟩ = 0).

Assuming (α, β) in the LD phase, in Fig. 5.5 [(a)-(c)] we plot the overlap O as
a function of the TXY-model parameters (∆, hz), for the three different stochastic
strengths ϵ = {0.1, 1, 10}. For ϵ = 10 the Liouvillian L is dominated by the TASEP
component of the model. It is not surprising, therefore, that in Fig. 5.5(c) we see
large regions in parameter space where O ≈ 1. In particular, for small anisotropy
∆ we see that ρ̂NESS and ρ̂cl are very similar. This is consistent with previous work
by Temme et al. [TWV12], which considered the transport properties for the TXY-
TASEP in the special case of zero anisotropy ∆ = 0, and found that the isotropic
Hamiltonian has little effect. However, even for ϵ = 10 where TASEP dominates, we
see in Fig. 5.5(c) that increasing the TXY anisotropy parameter to relatively small
values ∆ ≳ 0.5 can lead to a significant decrease in the overlap O. This suggests
that, in the LD phase, the TXY anisotropy ∆ plays an important role in driving the
NESS away from the TASEP steady state. Similar results are obtained for (α, β)

chosen in the HD phase.

When ϵ = 0.1, on the other hand, the TASEP is relatively weak compared to the
TXY Hamiltonian in Eq. 5.3. So, intuitively, we may expect the steady state ρ̂NESS

may be very different from ρ̂cl. This is borne out in Fig. 5.5(a), where O ≪ 1 for
most values of (∆, hz). However, even in this parameter regime we see a significant
overlap O when hz > 1 and ∆ is small, i.e., for parameters in the ferromagnetic
phase of the TXY-Hamiltonian. This indicates that the quantum phase transition
has an effect the properties of the NESS.

As mentioned above, our numerical results in Fig. 5.5 [(a)-(c)] are plotted for
(α, β) in the LD phase, and similar results are obtained in the HD phase. However,
the results are quite distinct for (α, β) in the MC phase. In Fig. 5.5 [(d)-(f)] we can
see that the overlap does not go to zero as in the LD phase for all (∆, hz). While
an attempt has been made to highlight the different regions in (∆, hz), the overlap
is largely similar across the parameter space.

In Fig. 5.6 we plot the overlap O as a function of system size N , for various
choices of β, at fixed α = 0.7. We see that the overlap decays much more slowly
with system size for β > 0.5, in the MC phase. Indeed, extrapolating from the
log10 inset figure there is a suggestion that for N → ∞ the overlap approaches a
constant non-zero value. Unfortunately, as yet we are unable to definitively confirm
this expectation2.

What can we say about ρ̂NESS when it is driven away from ρ̂cl by the TXY-

2We note that we could obtain larger system sizes above N = 100 to be more certain of this
suspicion however the effective MPS sizes needed are double this number as we are performing
the analysis in the doubled superoperator space. This is merely a symptom of the fact that we
have exchanged a state vector for a density matrix and further vectorized this density matrix. The
Liouvillian superoperator itself is scaling as 4N ×4N and as such significantly larger systems would
become too computationally intensive.
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Figure 5.6: In this figure, the overlap is shown against system size, N , showing an
exponential decay with system size within the HD phase where β = 0.1, β = 0.3,
(see inset showing log10(O)). In the MC phase the overlap decays at a slower rate
with respect to system size. The remaining parameters are: ∆ = 0.1, hz = 0.5 and
ϵ = 0.1.
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hz
(a) ϵ = 0.1 (b) ϵ = 10

Figure 5.7: At classical rates (α, β) = (0.1, 0.3), LD phase, we show the
purity/mixedness of the NESS at two relative strengths ϵ representative of the
weak/strong classical limits. In (a) ϵ = 0.1, weak classical regime, we can see
that increased ∆ quickly produces a more mixed state for all hz though more slowly
for hz > 1. In (b) ϵ = 10, strong classical regime, the value of hz has less relevance
yet the effect of increasing ∆ remains apparent. N = 50 for both figures.
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(a) N = 50, ∆ = 0 (b) N = 50, ∆ = 0.2

Figure 5.8: The susceptibility of ρ̂cl to dynamics by the Liouvillian ⟨⟨ρcl |L†L| ρcl⟩⟩ =
λ2⟨⟨ρcl |H2| ρcl⟩⟩. [(a),(b)] The introduction of pairing ∆ allows the the classical
steady state to couple strongly to the quantum commutator in both low and high
density phases.

Hamiltonian? We can gain some insight by studying the mixedness Tr(ρ̂2NESS) of the
steady state. In Fig. 5.7[(a)-(b)] we plot the mixedness of the steady state ρ̂NESS of
the full Liouvillian in the LD regime. As the parameter ϵ decreases, corresponding
to increasing relative strength of the TXY-Hamiltonian, we see that the NESS is
driven towards a much more mixed state. Moreover, with decreasing ϵ one can
clearly resolve signatures of the phase transition of the TXY-model at hz = 1 and
∆ > 0, see Fig. 5.7 (a).

We have shown then that increasing the TXY anisotropy can drive the NESS
away from the classical TASEP steady state, for (α, β) in the LD/HD phase. To
better understand this, we examine the overlap

⟨⟨ρcl|L†L|ρcl⟩⟩ =
∣∣ d
dt
|ρcl⟩⟩

∣∣2, (5.13)

which quantifies the susceptibility of the TASEP steady state ρ̂cl to dynamics of the
full Liouvillian. Since L|ρcl⟩⟩ = 0 we observe that

⟨⟨ρcl|L†L|ρcl⟩⟩ = λ2⟨⟨ρcl|H2|ρcl⟩⟩, (5.14)

so that the susceptibility depends only on the Hamiltonian part of the Liouvillian3.
In Fig. 5.8 (a) we see that the isotropic Hamiltonian ∆ = 0 has a relatively small

effect on the classical steady state. However, for ∆ > 0, Fig. 5.8 (b) shows that ρ̂cl
responds very strongly to the TXY-Hamiltonian in the LD and HD phases, although
not in the MC phase. This is reinforced by Fig. 5.9, which shows the susceptibility
scales linearly with system size N in the HD phase, but sub-linearly in the MC
phase.

3This is not a particularly deep statement but a result of L |ρcl⟩ = 0, since ρcl is the steady
state of the TASEP.
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Figure 5.9: The susceptibility of ρ̂cl to dynamics by the Liouvillian ⟨⟨ρcl |L†L| ρcl⟩⟩ =
λ2⟨⟨ρcl |H2| ρcl⟩⟩. The strength of this coupling scales linearly with the system size
in the low and high density phases (upper two lines). We emphasis this by plotting
the susceptibility divided by N so that the upper lines remain largely constant and
the lower lines decrease. All data in this figure was plotted with w = 1, hz = 0.5
and ϵ = 0.1.

One can infer the reasons for the strong response of ρ̂cl in this case by considering
the steady state configuration [DDM92; Raj+97; ERS99; NCS02] in those classical
phases. In the low density phase, as the name suggests, there are many empty sites.
Rewriting the anisotropic terms of the Hamiltonian in Eq. 5.4 as

∆(σ̂xi σ̂
x
i+1 − σ̂yi σ̂yi+1) = 2∆(σ̂+

i σ̂
+
i+1 + σ̂−

i σ̂
−
i+1), (5.15)

the operator σ̂+
i σ̂

+
i+1 associated with the anisotropy can be applied successfully to

the state at many locations on the chain. Similarly, in the high density phase there
are many occupied sites and the pair annihilation operator, σ̂−

i σ̂
−
i+1, can be applied

often without annihilating the state. However, in the maximal current phase the
steady state is largely comprised of half-filled configurations which will not couple
as strongly to the anisotropic terms.

Another interesting property of the steady state ρNESS is the “energy” expectation
value ⟨E⟩ = Tr ρNESSH which gives an indication of which Hamiltonian eigenstates
take part in the steady state. In Fig. 5.10 we show how the expectation value
changes relative to the full eigen-spectrum of the system Hamiltonian. In the LD
and HD regimes the expectation value drifts towards the extrema of the many body
Hamiltonian spectrum, provided the Hamiltonian is tuned to the paramagnetic re-
gion. This occurs due to the energetic importance of either filled or empty sites (up
or down spins) in this quantum phase. On the other hand, in the ferromagnetic
regimes, the energy of the steady state coincides with the centre of the many-body
spectrum backing up the idea that here the system favours something close to the
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Figure 5.10: The energy expectation values of ⟨E⟩ = Tr ρNESSH together with the
many-body eigen-spectrum, En of H, where only band edges are shown. (a) α = 0.1,
β = 0.3, ∆ = 0.1, (b) α = 0.3, β = 0.1, ∆ = 0.05, (c) α = 0.7, β = 0.9, ∆ = 0.1.
In all figures, ϵ = 0.1 and N = 50. In the paramagnetic regimes |hz| > 1 the
classical densities determined by the boundary rates result in steady states with a
clear low/high energy imbalance [(a) and (b)]. This imbalance is suppressed in the
ferromagnetic regime |hz| < 1 and also throughout the maximal current phase (c)

maximally mixed state. In the maximal current phase, this behaviour dominates for
all values of the transverse field.

5.2.2 NESS as a Perturbation of the Maximally Mixed State

We have mentioned at various points up until now how the TXY model drives ρcl
towards I, the maximally mixed state. We now formalise this notion by providing
an understanding on the NESS as a perturbation on this maximally mixed state.
The perturbation theory utilised here for non-Hermitian systems is based on [SW72;
LPK14; LPK16]. As a starting point, one defines a “bare" unperturbed Liouvillian
L0 with eigenvalues En and left and right eigenvectors ⟨⟨ṽn | and | vn⟩⟩ such that
⟨⟨ṽm |L0| vn⟩⟩ = δnmEn. We write the perturbation as L1 and an expansion of the
steady state as | ρ⟩⟩ =∑j | ρj⟩⟩, the terms of which are produced iteratively according
to

| ρj⟩⟩ = L−1
0 L1| ρj−1⟩⟩, (5.16)

where L−1
0 is the pseudo-inverse defined as

L−1
0 =

∑

En ̸=0

| vn⟩⟩⟨⟨ṽn |
En

. (5.17)

At this point one might expect that H is chosen as the unperturbed piece of the
Liouvillian and subsequently that ϵL becomes the perturbation. However, one can
immediately see an obstacle arising from this choice. Given Eq. 5.17, since H corre-
sponds to the commutator of the Hamiltonian its spectrum is massively degenerate
as all eigenvectors of the Hamiltonian yield zero eigenvalue in the commutator. As
a result we would be left with a highly degenerate situation that is difficult to deal
with.
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We propose a way to circumvent this obstacle by exploiting the structure of ϵL.
We know that once any part of L is switched on that the system will immediately
have a preferred steady state. As such we propose that to proceed we first treat
diagonal (\) components of the TASEP term L differently from the off diagonal (\\)
ones. Namely, we split the total L as the sum

ϵL→ ϵ\L\ + ϵ\\L\\. (5.18)

We note here that this expression of the splitting of ϵL is an equality, however we
introduce new ϵ variables for the separate components for this calculation. In the
end they will be equalized to the original ϵ variable. While artificial this serves
to illuminate from which component of the Liouvillian the corrections arise. Our
unperturbed system will then consist of the collective diagonal blocks

L0 =
∑

s∈even

L(s) =
2N∑

s∈ even

ϵ\L(s)
\ − iλH(s), (5.19)

and the perturbation as the remaining off diagonal components

L1 = L − L0 =
∑

s∈ even

L(s,s+2) + L(s+2,s),

= ϵ\\
∑

s∈ even

L(s,s+2) + L(s+2,s).
(5.20)

The block diagonal form of L0 means that we can write down its eigen-spectrum
block by block. In practice we observe numerically that the real component of E (s)n

for small ϵ\ grows linearly such that in what follows it will be useful to write this
dependence explicitly and expand the complex eigenvalue as

E (s)n = ϵ\r
(s)
n + iEs

n. (5.21)

Another property of our unperturbed operator is that the pseudo-inverses of
the blocks only act locally within each block. This will allow us to simplify some
expressions in the following and implies for example that

L−1
0 =

∑

s∈even

[L(s)]−1. (5.22)

Then, with the maximally mixed state as our starting state | ρ0⟩⟩ = | I⟩⟩ we can
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proceed according to the iterative procedure (5.16):

| ρ1⟩⟩ = −[L(2)]−1L(2,0)| I⟩⟩,
| ρ2⟩⟩ = −[L(4)]−1L(4,2)| ρ1⟩⟩,
| ρ3⟩⟩ = −([L(2)]−1L(2,4) + [L(6)]−1L(6,4))| ρ2⟩⟩,

...

(5.23)

where only the non-zero L(s,s′) blocks/elements have been kept. Plugging in the
dependence on the overall weights we have for the first order expression:

| ρ1⟩⟩ = −ϵ\\[L(2)]−1L(2,0)| I⟩⟩,

= −ϵ\\
∑

n

| v(2)n ⟩⟩
E (2)n

⟨⟨ṽ(2)n |L(2,0)| I⟩⟩,

= −ϵ\\
∑

n

ᾱ⟨⟨ṽ(2)n |ϕL⟩⟩ − β̄⟨⟨ṽ(2)n |ϕR⟩⟩
ϵ\r

(2)
n + iE

(2)
n

| vn⟩⟩,

(5.24)

with

|ϕL⟩⟩ = | γ1γ2⟩⟩, |ϕR⟩⟩ = | γ2N−1γ2N⟩⟩,

ᾱ = α− 1

2
, β̄ = β − 1

2
,

(5.25)

and where on the last line we have also expanded the s = 2 block eigenvalues into
their real and imaginary components.

Leaving the inner products in the numerator to one side for a moment we can
consider which terms are relevant in this first iterative correction by looking at cases
for the coefficients in the sum:

−ϵ\\
ϵ\r

(2)
n + iE

(2)
n

∼





−1

r
(2)
n

, E
(2)
n ≪ ϵ\r

(2)
n ,

iϵ\

E
(2)
n

, otherwise.
(5.26)

Evidently as we reinstate ϵ\\ = ϵ\ → ϵ and approach ϵ→ 0 the second case is irrele-
vant and only those coefficients with small to negligible imaginary parts contribute
to the correction.

What about the terms ⟨⟨ṽ(2)n |ϕL/R⟩⟩? An unusual feature of the block-decomposition
is that we could in principle have additional ϵ\ dependences occurring through the
| ṽ(2)n ⟩⟩. However, in practice we see via direct evaluation that, to leading order, these
vector elements are independent of ϵ. This means, that in the limit ϵ\\ = ϵ\ → 0 we
approach a fixed steady state that is not the infinite temperature state | I⟩⟩. More-
over, the magnitude of this deviation from the thermal state is dictated primarily
by the scale given by 1/r(2) for which the term 1/r

(2)
1 is the largest.

This outcome runs counter to typical perturbative statements where, as the small

73



parameter tends to zero, we approach the bare un-perturbed state (in this case | I⟩⟩).
Recall however that, to avoid dealing with the massive degeneracy of the commuta-
tor H, we also allowed the small parameter ϵ to enter into the bare Liouvillian. In
this iterative construction then, we do not necessarily expect that each successive
iteration will result in contributions that scale according to some positive power of
ϵ. Indeed, one expects that further iterations would eventually lead to additional
corrections in other s-even sectors that, similarly to the explicit first iterative cor-
rection above, do not vanish as ϵ → 0. This argument is not generic as presented
as we have simplified some steps given the specifics of the TXY-TASEP model but
nonetheless the non-Hermitian perturbation theory is quite general.

5.3 Effect of Hamiltonian Processes on Lattice Cur-

rents

Given that the p-wave superconductor and the totally asymmetric exclusion process
(TASEP) model quantum and classical transport in one dimension it is reasonable
to consider how the particle current of the hybrid TXY-TASEP model differs from
either model in isolation. In this section we examine the current found from the
NESS of this hybrid model.

Recall that the steady state current of the stochastic model is known (see [Der+93]
and App. C). Depending purely on the boundary rates, (α, β), the steady state
current is fixed and uniform across the lattice. Here we explore the effect of (par-
tially) introducing the superconductor model on the known steady state currents of
TASEP. In Fig. 5.11 we elaborate on the set up we employ to investigate this effect.
For a lattice with N sites as before we have the stochastic process (TASEP) acting
throughout the lattice. The quantum processes (as the TXY model) are present
only in the middle portion. For the numerical simulations we chose this portion
to be N/2 and subsequently the left/right N/4 size sections of the lattice have no
quantum process acting. This is easily implemented by allowing λ to vary along the
lattice and introducing a step function via this parameter. Based upon our obser-
vations of the effect pairing has on the steady states we focus specifically on how ∆

affects the currents in the steady state as [TWV12] has demonstrated the effects of
purely coherent hopping.

One would expect that the MC phase of TASEP remains largely unchanged. The
notional steady state for the MC phase is a half/alternately filled lattice which is
largely unaffected by the action of the ∆-pairing terms in the Hamiltonian. As such
we expect that the steady state current remains at the maximum value as determined
from the TASEP model. In the LD phase the lattice is less than half filled so
one would expect the pair creation term from the Hamiltonian to fill empty sites
rapidly such that the current gradually approaches a larger value. In the left region,
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Figure 5.11: (a) The lattice of N sites. (b) The profile of the Hamiltonian pa-
rameters. For the numerical results presented in this section this is taken as a step
function for convenience. A smooth function can be implemented but for the pur-
pose of this section we take this sharp cut-off. (c) Our expectation of the effect of
partial quantum processes.

where pairing terms are absent, the LD configuration will remain largely distinct
from the middle region. Mirroring the lattice and exchanging our perspective as
holes travelling along a lattice of particles in the opposite direction the very same
expectation can be seen for the HD phase. As a result the current profile may appear
qualitatively to mirror the LD phase profile about the middle site.

We must stress that what we suggest thus far is based on an intuition developed
from the properties of the steady state that are known [Der+93] and the knowledge
of the stochastic model that has been presented up to this point. Moreover, recall
that in the TASEP we could refer to the local occupations (ni) and the step-wise
update rules to determine the current. The resultant classical current is simply the
amount of particle content passing through each link of the lattice. In the hybrid
model here we must instead find the equation of motion for the local densities to
determine the correct current for a model described by a Lindblad equation.

For the numerical work presented, we have simulated the system by the same
tensor network methods as in prior sections and simply set the Hamiltonian param-
eters to zero in the left and right regions. This allows us to access relatively large
system sizes. Our findings indicate that the effects are qualitatively the same for all
the sizes we accessed (from 20 up to 100 sites).

5.3.1 Continuity Equation: Currents, Sources and Sinks

First let us define the quantity of the local particle or spin density, denoted for
TASEP by ni,see App. C. We take the expectation value of this quantity with
respect to the density matrix to define the local density at any given time i.e.

⟨n̂i⟩ = ⟨σ̂+
i σ̂

−
i ⟩ = Tr

[
ρ̂(t)σ̂+

i σ̂
−
i

]
, (5.27)
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Figure 5.12: The locations of the local terms in the continuity equation relative to
a particular site i. See that each source/sink term Λ is contains information from
both adjacent sites relative to site i. The J contributions take account of the particle
content moving across the adjacent bonds.

which is the probability of finding a particle at site i on the chain. Taking the
derivative of this definition and inserting the right hand side of the master equation
(5.3) in place of dρ

dt
leads us to the equation of motion for the density

d⟨n̂i⟩
dt

= −iTr{n̂i[Ĥ, ρ̂]}+ Tr{n̂iL(ρ̂)}. (5.28)

After some manipulation this can be written in the form of a continuity equation

d⟨n̂i⟩
dt

= ⟨Ĵi−1,i⟩ − ⟨Ĵi,i+1⟩+ ⟨Λ̂i⟩. (5.29)

The continuity equation expresses the fact that changes in the particle density at
site i are either due to transport of particles across the bond (i − 1, i) by the cur-
rent ⟨Ĵi−1,1⟩, or across the bond (i, i + 1) by the current ⟨Ĵi,i+1⟩. The final term
corresponds to the generation of particles by a source term ⟨Λ̂i⟩ which can be pos-
itive or negative. We refer to this term as a source when positive and a sink when
negative as it acts as a net particle creation or annihilation term respectively. For
1 ≤ i ≤ N − 1 the particle current operator in Eq. 5.29 is

Ĵi,i+1 = iλ
(
σ̂+
i σ̂

−
i+1 − σ̂−

i σ̂
+
i+1

)
+ γσ̂+

i σ̂
−
i · σ̂−

i+1σ̂
+
i+1. (5.30)

This can be understood as first the contribution to the continuity equation coming
from the hopping terms present in the Hamiltonian and secondly a term which
is essentially the “density × (1 − density)” current of the TASEP written in spin
operators. The source/sink operators are given by:

Λ̂1 = 2ασ̂−
1 σ̂

+
1 +∆η̂1,2,

Λ̂i = ∆(η̂i−1,i + η̂i,i+1), 2 ≤ i ≤ N − 1,

Λ̂N = −2βσ̂+
N σ̂

−
N +∆η̂N−1,N ,

(5.31)

where
η̂i,i+1 ≡ i(σ̂+

i σ̂
+
i+1 − σ̂−

i σ̂
−
i+1), (5.32)
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is the difference between pair-creation and pair-annihilation at the neighbouring
sites (i, i + 1). We can understand these Λ partly from the intuition we have built
from the classical model. The terms with α and β are exactly again those terms
that would appear in the classical case from the boundary processes. All the other
terms manifestly depend on ∆ and stem directly from the pairing terms of the
Hamiltonian.

5.3.2 Steady State Current

Now that we have the definitions in place for the model’s currents/sources we can
consider how they behave for the steady state. The non-equilibrium steady state
ρ̂NESS is defined by the condition that dρ̂NESS/dt = 0. Since this implies that
d⟨n̂i⟩NESS/dt = 0 the continuity equation 5.29 gives

⟨Ji,i+1⟩NESS − ⟨Ji−1,i⟩NESS = ⟨Λ̂i⟩NESS. (5.33)

For ∆ = 0 we see that

α⟨σ̂−
1 σ̂

+
1 ⟩NESS = ⟨J1,2⟩NESS = . . .

. . . = ⟨JN−1,N⟩NESS = β⟨σ̂+
N σ̂

−
N⟩NESS. (5.34)

Thus the current is constant across the chain and is equal to both α⟨σ̂−
1 σ̂

+
1 ⟩NESS and

β⟨σ̂+
N σ̂

−
N⟩NESS, which are interpreted as the rate of particles hopping onto and off

the chain. This reproduces the result from Temme et. al. [TWV12] and, indeed,
the classical model that the current has a flat profile across the lattice. In other
words, for no ∆, and additionally for the classical model, the current is uniform.
However, if ∆ ̸= 0 we do not expect the current to be constant across the chain, due
to particle pair creation/annihilation in the bulk. Summing both sides of Eq. 5.33
over all values of the site index i gives the identity

β⟨σ̂+
N σ̂

−
N⟩NESS − α⟨σ̂−

1 σ̂
+
1 ⟩NESS =

∆

2

N−1∑

i=1

⟨η̂i,i+1⟩NESS. (5.35)

This suggests that if the right hand side is positive the current through the chain is
enhanced by the particle pair creation/annihilation in the bulk. We note that the
Hamiltonian parameters hz and w do not appear explicitly in Eq. 5.35, but they do
appear implicitly in their contribution to the steady state ρ̂NESS.

It was shown in Ref. [Der+93] that for TASEP in the large N limit the current
is ⟨Ĵ⟩NESS = 1/4 in the maximal current phase, ⟨Ĵ⟩NESS = α(1 − α) in the low-
density phase, and ⟨Ĵ⟩NESS = β(1− β) in the high-density phase. In Ref. [TWV12]
the authors examined the Hamiltonian for ∆ = 0, and found that the coherent
contribution to the current decays as system size increases, and appears to vanish
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in the N → ∞ limit, and thus in that case the Hamiltonian does not modify the
transport properties significantly.

5.3.3 Quantum Effect on the Steady State Current

To illustrate the effect on the steady state current we consider a chain in which the
anisotropy parameter ∆i can vary across the chain, as shown in Fig. 5.11. For the
first and last quarters of the chain we have ∆i = 0 and so, by Eq. 5.34, the current
is constant in these regions. In the middle half of the chain, however, we choose
∆i = ∆ > 0 so that particle pair creation/annihilation can change the current. In
Fig. 5.13(a), we see that the effect on the current is small when α and β are chosen
to be in the maximal current phase of TASEP, as proposed. However, for α and β

in the low-density phase we see that the current is enhanced at the end of the chain
as a result of a net particle pair creation in the steady state. Conversely, in the
high-density phase there is a net particle pair annihilation, and thus the current is
reduced.

The key result here is that the typical current expected from the low- and high-
density phases have a strong reaction to the introduction of ∆ in the middle portion
of the lattice. We observe that the expected current of the low density phase is driven
into the corresponding current of the high density phase and vice-versa, Fig. 5.13(a).
The stochastic component is largely unaffected up to minor fluctuations, notice the
restricted values on plotted in Fig. 5.13(b). We can see the effect of introducing ∆

only in the middle of the lattice from the non-zero source terms appearing in the
vicinity of the step function (Fig. 5.11), as shown in Fig. 5.13(d). The dominant
contribution to the change in steady state current stems ultimately from the coherent
part Fig. 5.13(c) but note that this does not appear unless there is some non-zero
source terms.

5.3.4 Role of the Quantum Phase Transition

The qualitative features of the current change depending on the phase of the quan-
tum model. In particular, within the topological phase (|µ| < 2w or hz < 1) the
current in the low- and high-density phases appear to be most affected as we have
argued. These effects are summarised in Fig. 5.14 and for increased ∆ in Fig. 5.15.
In the (a) panel of each we can see the pronounced increase/decrease in the low-
density and high-density phases respectively within the topological phase of the
Hamiltonian. In the trivial phase of the Hamiltonian, see (b) panels, the effects on
the current change sharply. For (α, β) near the critical line, α = β, any enhance-
ment or effect on the profile of the current appears to be suppressed. This is in part
due to the fact that steady states on the critical line behave in much the same way
as those in the MC phase. Moreover, where an effect remains the features of the
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Figure 5.13: Here we present the current profiles of the components of the current
as expressed in the continuity equation. (a) The total current for all three TASEP
phases and on the critical line (CL), where α = β. As proposed only the current
for (α, β) in the LD/HD phases are significantly changed. It appears that in the
middle region the current is increased/decreased to match the corresponding value
of the current for (β, α). (b) Changes in the stochastic component of the current.
We see that these profiles remain largely flat. For larger system sizes the LD/HD
profiles have less variation than in this small case. (c) The coherent component of
the current reflects the changes in the total current. (d) The changes to the source
terms which follow the step function of the Hamiltonian parameters we impose. For
larger system size this profile becomes sharper but nonetheless there is some non-zero
effect extending past the boundary of the middle region as the source Λi is defined
over several sites. In these simulations we set w = 1,∆ = 0.2, hz = 1, N = 20,
further with the particular choices (α, β) = {(0.2, 0.2), (0.2, 0.7), (0.7, 0.2), (0.7, 0.7)}
corresponding to the CL, LD, HD and MC phases respectively. The symmetry of
LD/HD plots in (a) is a reflection of the (α, β) values chosen in those regions.
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Figure 5.14: We can see the effect of pairing in topological (a) and trivial (b)
phases of the quantum model at ∆ = 0.4, for each phase of TASEP and near the
critical line. (a) In the topological phase, we see a similar variation in the current
for the low- and high-density phases. In this case our choice of (α, β), (0.2, 0.7) and
(0.8, 0.3) respectively, these curves are no longer symmetric. For the lowest curve, we
are deep in the low-density phase and close to the critical line, at (α, β) = (0.2, 0.3),
thus the effect is less pronounced. Similarly, the effect in the MC phase at (0.8, 0.7)
is less pronounced than the effect in the LD/HD phases. (b) In the trivial phase
of the quantum model the effect of pairing is distinct from the topological phase.
Any effect seen is less pronounced and the steady state comes close to a flat profile
unless the parameters (α, β) are chosen far from the critical line α = β.

current profile are altered. We no longer retain flat profiles on the left and right
portions of the lattice. Rather, the current follows a straight sloped line which stems
almost entirely from the coherent component of the current. The contributions from
sources in the trivial regime are orders of magnitude smaller than those from the
coherent current. As a consequence pairing effects are broadly suppressed in this
phase. In Fig. 5.15 where we have a doubled pairing strength the features are sim-
ilar. Although increased ∆ increases the effects seen, the effect is not particularly
sizeable.

It appears that to observe any significant enhancement, or indeed reduction, to
the steady state current one must have model parameters which place the system in
the topological phase of the quantum model and in the low-density or high-density
phase of the classical model. In particular, if it is desired for the left and right sides
of the system to interpolate between the behaviour of the low- and high-density
phases of TASEP.
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Figure 5.15: We can see the effect of pairing in topological (a) and trivial (b) phases
of the quantum at ∆ = 0.8, for (α, β) in the LD/HD/MC phases and LD near the
critical line of the TASEP. The important point to note here is that the increase of
∆ corresponds to an increase in the effect of pairing on the current, albeit the result
of a doubled value of ∆ is slight in this weak dissipative regime, ϵ = 0.1.
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Chapter 6

Liouvillian Gap of Dissipative
Quantum Systems

When studying the steady state of the TXY-TASEP model we found that the pres-
ence of non-zero XY anisotropy was the key feature of the model that allowed for
an interplay between quantum and classical effects to manifest. Together with the
bulk stochastic process, we find that this then opens a constant Liouvillian gap that
persists even for large system sizes. The precise functional form of the gap depends
on the underlying quantum phase and is thus controlled by the bulk topology of the
p-wave superconductor band-structure, see Fig. 4.3. This results in gap behaviour
that is different in each of the quantum phases of the model. Our key result is that
the non-trivial topology of the Kitaev p-wave model model can typically directly
affect the behaviour of the Liouvillian gap, and that moreover, the scaling of the
gap is related to the presence of superconductor pairing in the quantum model. This
survival of quantum features under dissipation is found by exploiting the canonical
representation of the Liouvillian superoperator an making projections onto compo-
nents of the superoperator.

As such we claim that evidence of the underlying quantum phase transition of
the Kitaev model remains even under TASEP dissipation but moreover, for a vari-
ety of dissipative processes. In essence there is a fingerprint of the quantum phase
transition left in the model even under the influence of dissipation. The notion of
topological condensed matter in this context is, at its core, the idea that single-
particle band-structures can have non-trivial topologies and that these exotic forms
can radically influence the way matter behaves. This notion has been around for
several decades and has been enormously successful, with direct applications for
metrology [WN90; MR91; DFN05; He+17], spintronics [QZ10], and quantum infor-
mation processing [Kit03; Kit06; Nay+08; CGD11].

The majority of works in this area focus on equilibrium properties of mat-
ter, where topology most clearly arises in quantities calculated by integrating over
momentum-space parametrizations of the single-particle excitation bands, as in

83



Ch. 4. Other indicators of topology (e.g. ground state degeneracies [HW05], equiv-
alences between local ground-state correlators [LW06; Coo+21a], bulk-boundary
correspondences [KK12; Lee16], tensor network classifications [Bul+17; Cir+17;
Jon+21]) can be used beyond the implicitly non-interacting band theory of solids.

The fingerprints of topology are not, however, constrained to the equilibrated
realm. Indeed, there has been much evidence of topology in recent years on numerous
frontiers such as Floquet systems [Rie+18; Ful+19; RL20; SRM21], non-Hermitian
models [Kun+18; EKB19; BBK21], entanglement transitions in weakly measured
models [Geb+20; Wan+22; LAB21], along with proposals to engineer topological
steady states in open quantum systems [Bar+13; BZD15; SBD16; Iem+16; GBZ16;
Bar+20; Ton+20; Wol+20; MD20; AFD21; HSD22]. There are also deep connec-
tions to be made between the stability of open quantum systems, the scaling of the
Liovillian gap, and the character of steady-state correlators. In this latter context
one can formulate topological analogs that hold in an open quantum setting.

This chapter is structured as follows: In section 6.1 we introduce the Liouvillian
gap and summarise the observations we have found for the gap in the TXY-TASEP
model also studied in the previous chapter. These observations are made within the
same third quantized framework utilised previously, found numerically by tensor
network simulations. Further, we outline some of the salient features of the gap in
this context. Next, in section 6.2 we describe the projection method we employ to
demonstrate the immediate opening of a gap from non-zero pairing strengths and to
obtain the precise form of the Liouvillian gap. Therein, the methodology described
is rather generic. In section 6.3 we provide an illustrative implementation of the
method using the TXY model with on-site dephasing. For this choice of dissipation
the calculations are direct and exemplify the projection method. Despite its rela-
tive simplicity, we show the immediate effect of non-zero pairing strength opening
a constant (in system size) gap. In addition, the gap in this model possesses the
topological features observed numerically for TXY-TASEP. We end this section with
the explicit forms of the Liouvillian gap in the thermodynamic limit. Crucially, in
section 6.4 we repeat our analysis for the Hermitian SSEP and TASEP models of
dissipation which verifies our numerical observations. These calculations are slightly
more involved yet the final form of the Liouvillian gap remains the same as in the
illustrative example. The remaining sections (Sec. 6.5, 6.6 & 6.7) expand on the
technical aspects and interpretations of the block perturbation theory used in sec-
tion 6.1 and section 6.2. These technical considerations are particularly pertinent
for the TXY-TASEP and similar models which do not possess a Liouvillian superop-
erator that is exactly block diagonal. Nonetheless, our methodology can be reliably
applied to them provided these technical considerations are satisfied.
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6.1 The Liouvillian Gap

One can consider the Liouvillian gap as a key indicator of relaxation times towards
the NESS [DS00; NCS02; GE06; OV08; PŽ09; Kes+12; JNK13]. Given a Liouvil-
lian superoperator, with matrix representation L(s,s′)

ab , generically this can be non-
Hermitian. As a result this admits a complex eigenspectrum, resulting in a set of
complex eigenvalues {E0, E1, E2, . . . }. Then without loss of generality these can be or-
dered according to their real parts 0 ≥ Re(E0) ≥ Re(E1) ≥ . . .. The non-equilibrium
steady state corresponds to the eigenvalue with zero real part, Re(E0) = 0, that
being the one that does not decay in the long time limit. All other eigenvalues
corresponds to decaying modes1. Then the Liouvillian gap is defined as

Egap ≡ −Re(E1), (6.1)

where E1 is the eigenvalue of L with non-zero real component closest to zero. For
a review of gap behaviour in a variety of related models see [Žni15]. Generically, in
such studies a key indicator is how the Liouvillian gap scales as a function of the
system size, N , e.g. Egap ∼ N−z where the exponent z depends on the particular
model studied. By finding this relationship, one can understand the relaxation time
of the model in question. The relaxation time is usually the inverse of this gap.
Thus, a gap that approaches zero in the N → ∞ limit corresponds to a diverging
relaxation time.

6.1.1 Emergence of a Liouvillian Gap from XY Anisotropy

and Bulk Dissipation

As indicated we utilise a convenient basis for the Liouvillian superoperator (Sec. 5.1.3).
Using this, we find that the gap for this system can be obtained via a MPS based
approach [OV08; PŽ09; JNK13]. Moreover we find that, in this limit, the full Liovil-
lian gap is closely shadowed by the gap obtained by restricting to the 2-excitation
sector only (s = 2) - the E (2)n gap used in section 5.2.2. Analysing the scaling of
s = 2 sector we find that it, and therefore the full Liouvillian gap scales as

Egap ∼ f(∆, hz) +O(N−1), (6.2)

where f(∆, hz) is non-zero when |∆| > 0. We will refer to this function as the
“gap function” as it determines the features of the gap in the thermodynamic limit.
Indeed extrapolating our numerical results to N → ∞ seems confirms this, see
Fig. 6.1. We should note that the gap function depends on more than ∆ and hz but

1We are assuming here that there is a unique steady state and hence only one such zero eigen-
value. Generically, this is not necessarily the case but for the models of interest here it will be
so.
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(a) Extrapolated N →∞

0.25 0.5 0.75 1.0 1.25 1.5

(b) Gap Across Phase Diagram Extrapolated

Figure 6.1: (a) Spectral gap scaling with α = 0.1, β = 0.3, ϵ = 0.1, hz = 0.5.
A nonzero ∆ introduces a persistent gap in the N → ∞ limit. (b) A scan of the
projected N → ∞ limit. The character of the gap changes when one traverses the
quantum phase transition at hz = 1 (red line). We note that the quantity plotted
in the right figure is precisely r(2)1 of Sec. 5.2.2.

these are the critical variables for describing the functional form. In particular, the
gap function does not depend on N in the thermodynamic limit. In this limit, the
gap becomes precisely equal to this function.

Crucially, because of the constant gap, even in the thermodynamic limit one can
move quickly between these limiting cases by simply tuning the transverse field at
fixed ∆. Note that by “quickly” here, we mean that we have a finite relaxation time,
independent of the system size but dependent on the model parameters. Systems
with a finite gap in this limit are described as rapidly mixing and it can be shown
that the resultant steady states are robust to local perturbations and uncorrelated
at a scale equivalent to the inverse gap size [Žni15; Pou10; NVZ11; KE13; Luc+15;
Cub+15]. Our results, obtained by similar methods to prior studies of a dissipative
XY model [Bİ12; JNK13], suggest that the XY system parameters can be used to
quickly engineer and tune specific features into the steady state and as such have
the potential to be used as a means of rapid state preparation.

We can identify the non-zero gap as a consequence of combining both an XY
anisotropy and bulk dissipation. This is the distinguishing feature of the model
as a non-zero gap is present in neither the XX model, i.e. the XY model without
anisotropy, with TASEP [TWV12] nor with the symmetric simple exclusion process
(SSEP) [Eis11]. Indeed, this feature of the gap is absent in the XY model with
only boundary driving [PŽ09] processes. As such, we have determined after some
examination that the ultimate requirements for a gap with these specific features are
the TXY model as the Hamiltonian and dissipation across the full lattice, i.e. bulk
and boundary dissipation. The precise functional form of the gap function f(∆, hz)
for different types of dissipation, including TASEP, is found in section 6.2.
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Figure 6.2: Comparison of projection and MPS methods for a line cut at: α = 0.1,
β = 0.3, ∆ = 0.7, ϵ = 0.1 and N = 30. A low bond dimension (D = 20 in this
case) can be used to estimate gapped low lying states in both sectors by adding a
weighted parity operator to L. The even-sector gap can be estimated directly due
to the specific form the Liouvillian takes in the canonical basis, which means that
one can decouple the s = 0 block without affecting any other eigenvalues.

6.1.2 MPS obtained Egap versus E (2)1

Our key claims on the scaling of the gap are based on the assertion that, in the
weak dissipation regime, the full Liouvillian gap can be estimated by only solving
the s = 2 sub-block. Our primary tool here is a MPS calculation where we can effec-
tively project out the steady state from the variational algorithm. Here we exploit
the structure that the Liouvillian superoperator takes in the canonical Majorana
representation (as in Fig. 5.4), specifically using the fact that the s = 0 block is only
connected to the s = 2 block via a single off-diagonal block, L(2,0). This allows one
to project out the steady state from the MPO that represents the full Liouvillian
operator, while leaving all other eigenvalues unaffected.

In Fig. 6.2 we compare the results from E (2)1 with the eigenvalues obtained from a
full MPS treatment of a system of N = 30 and see excellent agreement right across
the phase diagram. In Sec. 6.5 we also detail a perturbative argument for why
these values are so close, using the Rayleigh-Schrödinger non-Hermitian formulation
[SW72] of the TXY-TASEP system. A synopsis of this calculation is that in the
small ϵ regime, we can consider s-blocks as only being weakly connected to their
(s± 2)-block neighbours. Here the true Egap can be expanded as

Egap = E (2)1 + E (2)′1 + E (2)′′1 + . . . , (6.3)

where E (s)i is the ith eigenvalue from the s diagonal block and E (s)′i and E (s)′′i are
the first and second order corrections. We expand on the meaning and calculation
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of these corrections in Sec. 6.5. They are found by considering the connectivity of
the Liouvillian superoperator’s block structure in the canonical basis. Crucially, one
finds that the first order correction E (2)′1 is zero and that the second order correction
is much smaller than the zeroth order estimate, and typically scales as ϵp where
p > 2, see Sec. 6.5. As such the corrections quickly become vanishingly small.

6.1.3 Analysis of the s = 2 Spectrum

In the weak classical limit we can use E (2)1 now as a proxy for the full gap and more
fully analyse the parameter space of the model and assess its scaling as a function
of system size, see Fig. 6.1. Our main result is that, in the thermodynamic limit
N →∞, the gap Egap → f(∆, hz) remains open if the anisotropy parameter is non-
zero. However the dependence Egap has on ∆ also relies strongly on the magnetic field
parameter, with clear differences occurring between the different quantum phases of
the Hamiltonian.

When ∆ = 0 we find that f(0, hz) = 0 and thus Egap ∼ N−1 N→∞−−−→ 0. This value
is completely unaffected by changes in magnetic field hz, as a result of a Lindblad
symmetry present, see e.g. [AJ14]. However, for non zero ∆ and when |hz| < 1

(where the underlying Hamiltonian has a topological gap and boundary zero-energy
modes, Sec. 4.2) the Liouvillian gap develops linearly with ∆ (the superconducting
order parameter in the fermionic picture). On the other hand where |hz| > 1, and
the system Hamiltonian is non-topological and the gap develops ∝ ∆2. This smaller
gap means that perturbations to the thermal state are far more dramatic in this
quantum regime, see Sec. 5.2.2. It remains to be seen if this observed behaviour of
the gap can be connected in a precise way to the topology of the quantum model or
if it is purely symptomatic of the presence of a phase transition. For a discussion
on the odd sector blocks s = 1 and s = 2N − 1 see Sec. 6.6 and Sec. 6.7.

6.1.4 Relaxation Rate Compared to Related Models

The interpretation of the gap as an inverse relaxation time motivates one to consider
the scaling of the gap with system size. If one has an inverse relation between the gap
and the system size then in the large N limit the system will not relax to the steady
state in finite time. As such one often aims to determine the dynamical exponent, z,
in the scaling relation Egap ∼ N−z [Žni15]. If z = 0, the longest relaxation times for
the dynamics remain finite in the thermodynamic limit, while if z > 0 they diverge.

Generically, the dynamical exponent depends on a variety of factors from the
model in question. The gap scaling of our model has been found in certain restricted
cases where some processes such as bulk dissipation or superconductor pairing are
absent. We summarise these known restricted cases in Table 6.1. Notably, we see
that the appearance of a constant in system size gap is uncommon for models with
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coherent hopping and dissipation modelled by exclusion processes.

Ĥ D z Reference
TXY Boundary SSEP 3(a) [PP08; Pro08]
None TASEP 0, 3/2, 2(b) [DS00; NCS02; GE05; GE06]
(T)XY Boundary Driving ≥ 1(c) [Žni15]

TXY TASEP, SSEP, dephasing 0 Ch. 6 & [Kav+22b]

Table 6.1: Summary of related restricted cases of the TXY-TASEP model, labelled
by the Hamiltonian (Ĥ) and dissipative processes (D) that enter the Lindblad equa-
tion. Broadly speaking, coherent hopping models under dissipation which can be
obtained by restricting the TXY-TASEP model do not feature finite relaxation rates.
It appears that non-zero ∆ and dissipation on the full system are required for this
feature to manifest. Note: (a) This exponent increases to z = 5 for |hz| = 1 −∆2.
(b) These exponents correspond to the TASEP phases LD/HD, MC and CL respec-
tively. (c) This has been shown as a generic bound for boundary driven dissipation
on the TXY model. The TXY-TASEP model agrees with this bound for ∆ = 0,
reinforcing the requirement for pairing to be present.

However, the existence of a finite gap for appropriate Hamiltonian parameters
places the TXY-TASEP outside of the scope of the results summarised thusfar and
indeed also outside the scope of integrable systems results [ZE20; LPP21]. One can
draw the conclusion that both bulk and boundary dissipation together with pairing
are necessary for a non-vanishing gap in all phases of the TASEP. Furthermore, we
show in Sec. 6.3 and Sec. 6.4 that TASEP is not particularly unique in this sense.
Additional dissipative processes give rise to the same essential features of the gap,
namely dephasing and hermitian SSEP. Though we note that we have not conducted
an exhaustive search of dissipative processes.

6.2 Kernel Projection for the Liouvillian Gap

In this section, we reiterate the important aspects of the model, TXY with dis-
sipation, we will use to demonstrate the kernel projection method to obtain the
Liouvillian gap. As in the previous chapter we exploit the superoperator represen-
tation of the total Liouvillian. As a pedagogical example we take the dissipation to
be single site dephasing but include further more involved forms of dissipation such
as TASEP which verifies the observations made numerically.

6.2.1 Model

As before we begin this the Lindblad master equation [GKS76; Lin76] in superop-
erator form. To reiterate, this equation for the evolution of the system’s density
matrix is comprised of two parts: the Hamiltonian commutator and the dissipator.

89



In combination we refer to these as the Liouvillian which we write as

dρ

dt
= −iH(ρ) + ϵL(ρ) = L(ρ). (6.4)

Here the commutator H(ρ) = [Ĥ, ρ] is with respect to the system Hamiltonian, the
transverse XY model:

Ĥ =
µ

2

N∑

j=1

σzj +
1

2

N−1∑

j=1

(
(w +∆)σxj σ

x
j+1 + (w −∆)σyjσ

y
j+1

)
. (6.5)

From this point we only use notation for parameters matching that of Ch. 4 to
keep clear the connection to the topological model. In superoperator form the
commutator becomes

H(ρ)→ H|ρ⟩⟩ =
(
Ĥ ⊗ I− I⊗ ĤT

)
|ρ⟩⟩, (6.6)

where |ρ⟩⟩ is the vectorised density matrix. It can be useful at points to consider
the Hamiltonian in its fermionic form, obtained via Jordan-Wigner transformation.
The core step here is to use the mapping of Eq.2.7, which yields the fermionic
Hamiltonian expressed as

Ĥ = −µ
N∑

j=1

(c†jcj − 1/2) +
N−1∑

j=1

(
−wc†jcj+1 +∆ cjcj+1 + h.c.

)
. (6.7)

We note that if ∆ ̸= 0, the TXY model has a quantum phase transition at |µ| = 2w.
The Hamiltonian is quadratic in fermion operators and therefore can be solved using
free fermion solutions β†

n to write

Ĥ =
∑

n

En(β
†
nβn − 1/2). (6.8)

We will use this notion of mapping to free fermion solutions later when working with
the complete Liouvillian superoperator.

After fixing the Hamiltonian of the Liouvillian (6.4) we note that the dissipator
has the superoperator form

L[ℓ] =
∑

n

ℓ∗n ⊗ ℓn −
1

2
I⊗ ℓ†nℓn −

1

2
ℓTnℓ

∗
n ⊗ I. (6.9)

By using this superoperator form one can see the more clearly the connection to
the operators in the canonical basis described in this section. To define each type
of dissipation herein, it suffices to define the set of ℓn operators. These will be often
distinguished by whether they correspond to the bulk or boundary of the underly-
ing lattice. The nature of the Liouvillian gap and the non-equilibrium steady state
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can be altered dramatically depending on which are included. We exemplify the
methodology with several forms of dissipation that lead to block diagonal Liouvil-
lian matrices. The first, which will exemplify the methodology, is local dephasing
appearing next. The others which include exclusion processes appear in short form
in Sec. 6.4. These latter dissipative processes produce results for the gap which are
not necessarily exact yet provide good approximate descriptions.

6.2.2 Setup of Kernel Projection Method

We now detail the Hamiltonian kernel projection method that allows us to determine
a functional form for the Liouvillian gap. First we form a superoperator basis
which takes its inspiration from a Majorana fermion operator basis used in the
diagonalization of quadratic Hamiltonians. The Majorana fermion operators are
defined directly from the spin operators as:

γ2i−1 = −
i−1∏

k=1

σzk · σyi , γ2i =
i−1∏

k=1

σzk · σxi . (6.10)

These Majorana operators can be the viewed as a set of operators, γx,y, which
appear on the opposite upper/lower legs of a N× 2 ladder of sites so that they may
be labelled by:

γx,1 = γ2i−1, γx,2 = γ2i. (6.11)

In this way the i index which runs over 2N sites in the doubled space is split into the
N rungs of the N × 2 ladder. We can implicitly take odd- and even-numbered γ as
being on opposite legs of this ladder throughout. The utility of this transformation
and relabelling it that any quadratic fermionic Hamiltonian, including Eq. 6.5 under
a Jordan-Wigner transformation, can be written as

H = i
∑

ij

Aijγiγj. (6.12)

In this form, we see that in the (Majorana) canonical basis the commutator of this
system H = [H, ·] is block diagonal and moreover, that the eigensystem of the full
commutator can be found in a systematic way from the single particle block, which
turns out to be the adjacency matrix A [Kel15b].

Building upon this approach, we use an operator basis for the Liouvillian con-
sisting of ordered strings of Majorana operators

Γν⃗ = γν11 γ
ν2
2 . . . γν2N2N . (6.13)

The index ν is a binary label for the elements γi that are present in a given operator
string. This basis, together with the Hilbert-Schmidt inner product on operators
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Figure 6.3: (a) The superoperator of the Hamiltonian commutator in the canonical
basis. We use the shorthand A = σa. Note that the operator in the transverse XY
model basis becomes a sum and combination of other operators in the superoper-
ator ladder basis. For example, σz the external field becomes the anti-symmetric
combination of X and Y on opposite sides of the ladder as shown in the µ term of
(a). Of particular importance in our later analysis of the dephasing terms in Sec. 6.3
is the role played by z-dimers on the rungs of the ladder (b). These correspond to
operators consisting of products where both γ(x,1) and γ(x,2) appear or where they
are both absent. (c) Total magnetization term in the canonical basis.

⟨⟨A|B⟩⟩ = Tr(A†B)/2N , allows us to write the matrix elements of the total Liouvil-
lian,

Lν,ν′ = ⟨⟨Γν⃗ |L|Γν⃗′⟩⟩, (6.14)

and render the Liouvillian as a sum of spins on a two leg ladder see Figure 6.3.

Before we continue, it is worth to understand how we arrive at Fig. 6.3. As an
illustrative example we look at how the σz term of the Hamiltonian enters the ladder
diagram. Consider, how to express σz using the Majorana operators, γ, as defined
in Eq. 6.10. We can see readily that

σzi = −iγ2i−1γ2i = −i
(
−

i−1∏

k=1

σzk

)
σyi

(
i−1∏

k=1

σzk

)
σxi = σzi , (6.15)

which at this point is trivial. However, taking the γ operators with explicit (x, y)

ladder notation (6.11) we have

σzj = −iγj,1γj,2 = −i
(
−

j−1∏

k=1

σzk,1

)
σyj,1

(
j−1∏

k=1

σzk,2

)
σxj,2

= i

(
j−1∏

k=1

σzk,1σ
z
k,2

)
σyj,1σ

x
j,2.

(6.16)

We can see from this why the left portion of the µ term in Fig. 6.3 (a) appears
as X-Y . For the right portion, recall that to the right of tensor product we have
need the conjugate-transpose of the Hamiltonian. Therefore, the individual terms
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are conjugate-transposed which amounts to reversing the order of products of Pauli
matrices in this perspective. Then, the second term from the commutator appears as
Y -X on opposite sides of the ladder due to the reversed ordering. While this gives
some intuition as to why this particular term appears as such on the ladder the
explanation is imprecise. For a complete discussion see the Appendix of [Kel15b].
One must take care in translating operators on the original lattice to superoperators
on the doubled ladder lattice. In addition, with the introduction of the canonical
Majorana basis, there is a rearrangement of basis elements such that the mapping
is not quite as direct as we have suggested here. The operator strings that appear
above are artefacts of our loose presentation but can be dealt with in a systematic
way. The presence of an operator string will ultimately depend on whether we want
to use a spin representation of the Γ-Majorana canonical basis or of a Dirac fermion
basis. Explicit expressions for the operators that transform the Liouvillian into the
canonical Majorana basis appear in App. B. To further understand the subtleties of
moving to the superoperator representation see [Pro08].

Some Liouvillian superoperators preserve the number of Majorana in a string,
leading one to naturally define a block structure where each block is labelled in
terms of the number of Majorana modes present in each state. This is essentially a
conservation of the excitation number and is encoded by the operator N which takes
the form of a magnetisation term in the canonical representation, see Figure 6.3(c).
We exploit this emergent block structure in the remainder of this paper to determine
the Liouvillian gap. While this is not necessarily exact in all cases included in
this work; we have found, nonetheless, that this approach is both an effective and
close estimate of the true gap. This is in the same spirit as block diagonalising a
Hamiltonian matrix representation where an exactly block diagonal matrix is easily
exploited but even a close to block diagonal structure can be advantageous.

In the case of the hermitian SSEP [Eis11] this structure occurs exactly, and one
can diagonalize the full Liouvillian block by block. This criterion is also met exactly
in the case of symmetric boundary driving [PP08] where α+ = α− and β+ = β−.
Indeed, even with a boundary rate asymmetry, one can still write out the full Li-
ouvillian in terms of quadratic fermionic superoperators and thereby determine the
steady-state and Liouvillian gap. In the canonical representation, we can under-
stand this as a rendering of the Liouvillian matrix into a lower triangular block form,
meaning that the entire spectrum of L can still be found by solving the blocks indi-
vidually. Crucially, for the boundary driving problem the higher excitation number
block eigenvalues can be understood in terms of eigenvalues of the extremal blocks
(e.g. s = 1 and s = 2N − 1), for further discussion see Ch. 5.

Prosen [Pro08] showed that a convenient way to work in this picture is to define
creation and annihilation superoperators, which create the Majorana operator labels
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inside the double ket structure. For example

G†
x,y| I⟩⟩ = | γx,y⟩⟩. (6.17)

Using the canonical representation shown in Fig. 6.3 we can write the full commu-
tator as H = HR −HL

HS = iµ
N∑

x=1

G†
x,1G

†
x,2 + i

1

2
(w +∆)

N−1∑

x=1

G†
x,1G

†
x+1,2 (6.18)

+ i
1

2
(w −∆)

N−1∑

x=1

G†
x+1,1G

†
x,2,

where the operators on the RHS are on the R,L side of the tensor product depending
on S. We can also generate eigenvectors of H, using the free-fermion solutions
β†
n =

∑2N
i=1W

∗
niγi of Ĥ to make quasi-particle creation superoperators

Bn =
2N∑

i=1

uniGi, (6.19)

such that
| β†

n⟩⟩ = Bn| I⟩⟩, | βn⟩⟩ = B†
n| I⟩⟩, (6.20)

are eigenstates of H with eigenvalue En and with support in the single particle
block s = 1. We can combine operations to make states inside the other blocks. For
example,

| β†
nβm⟩⟩ = BnB

†
m| I⟩⟩, (6.21)

has eigenvalue En − Em and is supported in the two quasi-particle block s = 2.

6.3 Kernel Projection Method for Dephasing

Up to this point the steps of the kernel projection method have been generic. In this
section we use an example to give the reader an understanding of how one would
perform the remainder of the calculation. We further split the kernel projection into
two parts; one for the case of strong dissipation/weak quantum regime and the case
of weak dissipation/strong quantum regime.

The key feature we want to address here is the role that Cooper pair creation
and annihilation plays in the steady-state relaxation rate. In cases where the even-
tual steady-state is a featureless infinite-temperature thermal state, there should
be a significant effect that can be argued heuristically: Cooper-pair creation and
annihilation will drive the system towards half-filling and the infinite temperature
steady-state is naturally dominated by such half-filled states.

To quantify this we choose a system undergoing bulk dephasing, choosing Lind-
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blad ℓ operators of the form
ℓx =

√
ϵσzx. (6.22)

This type of process preserves excitation number symmetry. In the canonical repre-
sentation (6.14) we can write these terms as

L[σz] = ϵ
∑

x

(Zx,1Zx,2 − I), (6.23)

which we can see commutes with the excitation number symmetry operator shown
in Figure 6.3(c). Note in addition that this is the superoperator on the ladder, hence
the quadratic Z term coming from either side.

6.3.1 Weak quantum limit - Projection to the L kernel

In the canonical basis the spin-| ↓⟩⟩i represents the presence of a Majorana operator
as a label in the state | γi⟩⟩ while spin-| ↑⟩⟩i represents the absence of such an oper-
ator. For dephasing then, we can see that states |Γ⟩⟩, where only pairs like γx,1γx,2
occur, will sit in the kernel of L. In the weak quantum limit (1/ϵ≪ w, |∆|, |µ|) we
can thus consider the commutator H as a perturbation to this subspace. Setting

| ⇑⟩⟩ ≡ | ↑↑⟩⟩, | ⇓⟩⟩ ≡ | ↓↓⟩⟩, (6.24)

and perturbing in this degenerate space we see that on the first order the commutator
H takes us completely out of this space and so L{1} = 0. On the second order,
however, we return to this subspace and can write the resulting effective model as

L{2} =
w2 +∆2

4ϵ

∑

i

(
τ zi τ

z
i+1 − I

)

+
w2 −∆2

4ϵ

∑

i

(
τxi τ

x
i+1 + τ yi τ

y
i+1

) (6.25)

where the τ ’s are Pauli operators acting on the | ⇑⟩⟩ and | ⇓⟩⟩ basis. We can
understand how these τ operators arise by first considering the terms that could
appear at second order in the spin ladder picture. Then we map the operators on
the rungs of this resultant ladder in a similar spirit to an effective spin hard-core
boson mapping [SDV08]. This amounts to τ appearing from σ as:

τxi ≡ σxi,1 ⊗ σxi,2, τxi ≡ −σyi,1 ⊗ σyi,2,
τ yi ≡ σxi,1 ⊗ σyi,2,
τ zi ≡ σzi,1 ⊗ Ii,2,

Ii ≡ σzi,1 ⊗ σzi,2.

(6.26)

The model can be seen to be an XXZ model shifted so that its eigenvalues are
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always negative semidefinite, and it can be solved by employing Bethe Ansatz tech-
niques [BdV83]. The no-spin sector has eigenvalue E0 = 0 and corresponds to the
effective steady-state. The one spin excitation sector (i.e. the sector with one ⇓ that
sits in the s = 2 sector of the full model), has a spectrum

Ek =
w2 −∆2

ϵ
cos(k)− w2 +∆2

ϵ
(6.27)

resulting in a relaxation gap of −2∆2/ϵ at k = 0. The gap is robust as the system
length N →∞ and, as the system maps directly to the XXZ chain, we can also work
out the two and higher excitation sectors via the standard Bethe Ansatz approach.

Interestingly the µ (or hz) parameter does not appear at all on the second order,
contributing only at higher orders (4th and above). This means that signatures
of the quantum phase transition are essentially washed out in this limit. We will
show that this situation changes dramatically in the strong quantum limit, and that
the presence of the quantum phase transition is clearly visible in the steady-state
relaxation rates.

6.3.2 Strong quantum limit - Projection to the H kernel

We need to take a different strategy to approach the strong quantum limit (ϵ ≪
w, |∆|, hz). To do this, we shall first define, using the free-modes of the Hamiltonian,
a set of vectorized operators that lie in the kernel of H. Then, we expand the de-
phasing term in this basis and show that, for low quasi-particle excitation numbers,
this effective Liouvillian permits a direct solution.

It was shown in [Kel15a] that to enumerate states in the kernel of H one can
symmetrically “super-create” terms that have creation and annihilation operators of
the same free-fermion modes β, e.g.,

Kn ≡ BnB
†
n − B†

nBn. (6.28)

Operating with a K operator on the identity element (maximally mixed state) gives

Kn| I⟩⟩ = |Kn⟩⟩ ≡ | βnβ†
n − β†

nβn⟩⟩, (6.29)

and from here one can span the full kernel of H

|Kn⟩⟩, |Kn1 , Kn2⟩⟩, . . . , |Kn1 , Kn2 ..., KnN
⟩⟩. (6.30)

One can then expand the dissipative terms of L in this basis and use it to make
statements about the behaviour of the Liouvillian gap in the weak stochastic limit.
In what follows we will be particularly interested in the behaviour of the s = 2
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particle block
L̃(2)

n,m ≡ ⟨⟨Kn |L|Km⟩⟩. (6.31)

To work out the functional form for these states we start by assuming a system with
periodic boundary conditions, such that, in the Majorana basis, the free fermion
modes β†

k =
∑

rWr,kγr (where r = (x, y)) can be expressed as:

Wr,k =
−eikx√
2Nx

(iyvk + (−i)yuk), (6.32)

where

uk =

√
1

2
+

εk
2Ek

, vk = −
√

1

2
− εk

2Ek
eiarg∆k , (6.33)

and εk = −µ − 2t cos k, Ek =
√
ε2k + |∆k|2, and ∆k = i2∆ sin k. For two particles

this gives the state,
|Kk⟩⟩ =

∑

r1,r2

Wr1,r2,k| γr1 , γr2⟩⟩ (6.34)

with

Wr1,r2,k =





−i
NEk

[(−1)y1εk cos kδx − i∆k sin kδx] if y1 ̸= y2,

i
N
sin kδx if y1 = y2,

(6.35)

where δx ≡ x1 − x2. This expression is purely imaginary if we assume ∆ ∈ R.

To probe the strong quantum limit we can now project to the 2-particle block to
produce the L̃(2)

using the states |Kk⟩⟩ in (6.34). This yields

L̃(2)

kk′ = ⟨⟨Kk |L|Kk′⟩⟩,
= ϵ

∑

r1r2

W ∗
r1r2k

Wr1r2k′⟨⟨γr1γr2 |
∑

x

Zx,1Zx,2 − I| γr1γr2⟩⟩,

= ϵ
∑

r1r2

1

N

εkεk′

EkEk′
δx1x2 − ϵδkk′ ,

⇒ L̃(2)
=

ϵ

N

(
˜|ψ⟩ ˜⟨ψ| −N

)
,

(6.36)

where we have defined the vector ˜|ψ⟩k ≡ εk/Ek with normalised form |ψ⟩ = J−1
ψ

˜|ψ⟩
and J2

ψ =
〈
ψ̃
∣∣∣ψ̃
〉

=
∑

k ε
2
k/E

2
k . In total, then, by projecting to the 2-excitation

kernel |Kk⟩⟩ we obtain the sub-matrix

L̃(2) =
ϵ

N
×
(
J2
ψ |ψ⟩ ⟨ψ| −N

)
, (6.37)

from which we directly read off the principle eigenvalue as,

Egap = −
ϵ

N

∑

k

|∆k|2
E2
k

N→∞−−−→ −ϵ
∫
dk
|∆k|2
E2
k

. (6.38)
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6.3.3 Gap Analysis

Now, writing the expression for the gap (6.38) explicitly we find the following integral
form

Egap = −ϵ
∫ π

−π
dk

|2∆ sin(k)|2
(µ+ 2w cos(k))2 + |2∆ sin(k)|2 . (6.39)

To expedite our discussion of the result we leave the details of the evaluation to
Appendix D. There, we show how this expression can be evaluated by careful sub-
stitution or by considering a contour integral. Remarkably we find that within the
topological region (|µ| < 2w), the integral is independent of µ giving

Egap = 4πϵ
∆

w +∆
. (6.40)

In the non-topological region (|µ| > 2w) this sharply transitions to

Egap = 4πϵ
∆2

w2 −∆2

(
|µ|√

µ2 − 4w2 + 4∆2
− 1

)
, (6.41)

which decays as 1/
√
|µ| when |µ| ≫ 2w, see Figure 6.4. At the transition, µ = 2w

the integral is not defined.

The constant (with respect to µ) relaxation gap is highly unusual and reminiscent
of the behaviour of the topological index or winding number for the XY system, see
e.g. [Sta16]. Translating into the spin language it implies that across the entire
ferromagnetic region the first-order response of the system is entirely independent
of any applied transverse field. Conversely, when the parameters of the Hamiltonian
enter the paramagnetic regime, the relaxation gap experiences a sharp drop-off as
the field amplitude is made larger. Crucially, neither expression depends on the
system length N and therefore means that it is possible to engineer a robust and
precisely controlled excitation gap in the thermodynamic limit.

Systems with constant (in length) relaxation gaps are often referred to as rapidly
mixing [Pou10; NVZ11; KE13; Luc+15; Cub+15; Žni15]. In the two cases con-
sidered, since the jump operators ℓ in all cases are Hermitian, the eventual steady
state is the maximally mixed thermal state. This can be seen algebraically, because
[H, I] = 0 always and if ℓ = ℓ† then L(I) =

∑
n ℓ

2 − 1
2
ℓ2 − 1

2
ℓ2 = 0. It can also

be understood visually from the block structure that L takes in the canonical ba-
sis. If the ℓ are hermitian then the vector | I⟩⟩ corresponding to the thermal state
is completely disconnected from all other vectors and is thus already an eigenstate
with eigenvalue 0. For non-Hermitian jump operators (e.g. the TASEP model of
the appendix) the eventual steady-state can be, on a perturbative level, understood
as an iteratively dressed thermal state [Kav+22a].
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(b) µ dependent gap at fixed ∆

Figure 6.4: (a) Plot of the Liouvillian gap with respect to ∆ in the topological
(µ = 1) and trivial (µ = 3) phases respectively. One can see the difference in
the development of the gap from the analytic expressions (6.40 & 6.41) which was
observed in our numerics, see e.g. subfigure (b) of Fig. 6.1. (b) The gap plotted
against µ at fixed ∆. Here we see the sharp change in behaviour at the phase
transition µ = 2w, marked by the dashed line. For both plots we have the coherent
hopping w = 1.

6.4 Further Models of Dissipation

This section collects the results for the projection method for the symmetric simple
exclusion process (SSEP) and totally asymmetric simple exclusion process (TASEP).
Both, while being more involved than dephasing, produce a similar Liouvillian gap
which admits a topological aspect.

6.4.1 Symmetric Simple Exclusion Process

The same expression also arises in the treatment of stochastic hopping. Consider
for example the Hermitian process

ℓ2x−1 =
√
ϵσ−

x σ
+
x+1 +

√
ϵσ+

x σ
−
x+1,

ℓ2x =
√
ϵσ−

x σ
+
x+1 −

√
ϵσ+

x σ
−
x+1,

(6.42)

This choice of Hermitian jump operators has the nice property that it preserves
what we call excitation number symmetry. When looking at the superoperator
matrix representation of the Liouvillian (L) this leads to a hierarchy of blocks that
can be solved individually [Eis11].

As in the previous section we project to the 2-particle kernel of the commutator
which yields

L̃(2)
k,k′ = ⟨⟨Kk |L|Kk′⟩⟩,

= ϵ
4

N
·
(
εkεk′

EkEk′
+

∆k∆k′ sin k sin k
′

EkEk′

)
.

(6.43)
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from which we can extract the non trivial eigenvalues exactly from the two level
model

Heff = ϵ
4

N

[
J2
ψ ⟨ψ|ϕ⟩

⟨ϕ|ψ⟩ J2
ϕ

]
− 4ϵI2 (6.44)

where ˜|ψ⟩k = εk/Ek and ˜|ϕ⟩k = sin k × ∆k/Ek and J2
ψ =

〈
ψ̃
∣∣∣ψ̃
〉

=
∑

k ε
2
k/E

2
k ,

J2
ϕ =

〈
ϕ̃
∣∣∣ϕ̃
〉
=
∑

k(sin k)
2∆2

k/E
2
k . A first order estimate of the gap E is then

E =
4ϵ

N
J2
ψ − ϵ = −

4ϵ

N

∑

k

|∆k|2
E2
k

, (6.45)

which, as N → ∞, is 4 times the expression given in (6.38). Next, we show how
the same expression arises, again on a perturbative level, for the TASEP dissipator
that encodes a non-symmetric, non-Hermitian stochastic hopping.

6.4.2 Totally asymmetric simple exclusion process

Temme et. al. [TWV12] considered the totally asymmetric simple exclusion process
(TASEP) with coherent hopping (i.e. Ĥ|∆=0, the XX model). In the bulk the model
consists of N − 1 stochastic terms,

ℓx =
√
γσ−

x σ
+
x+1, ∀x ∈ {1, . . . , N − 1}, (6.46)

and two boundary terms which specify particle creation (hop on of spin downs) on
the left hand side and particle annihilation (hopping off of spin down) on the right

ℓN =
√
ασ−

1 , ℓN+1 =
√
βσ+

N , (6.47)

see App. C for a more complete description.

The full Lindblad operator for the TASEP is given diagrammatically in Fig. 6.5.
For TASEP we typically assume open boundary conditions for both Hamiltonian
and stochastic terms. To produce the precise effective description we could then use
single particle fermionic operators from this open boundary scenario. However, to
simplify things we instead assume that we can use periodic momentum fermionic
creation and annihilation operators to make the zero excitation energy kernel of H.
The situation is more complicated here since the superoperator matrix is not block
diagonal but using the arguments of [Kav+22a] we note that we can project onto
the s = 2 block for small ϵ and end up with a situation very similar to (6.42) above

L̃(2) = ϵ
N − 1

N2
× (Jψ |ψ⟩ ⟨ψ|+ Jϕ |ϕ⟩ ⟨ϕ|) , (6.48)

− ϵ
(
1− 1

N
+
α + β

N

)
, (6.49)
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Figure 6.5: Full TASEP Lindblad superoperator in the canonical basis. We use
the short hand X = σx, Y = σy, Z = σz. Only terms highlighted commute with
the excitation number operator N . For the Hermitian SSEP only these highlighted
terms appear - albeit multiplied by an overall constant of 4. We have set γhop = 1
throughout this thesis.
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s=1

s=2N-1

s=2

Figure 6.6: Numerically obtained spectral gaps from a number of extremal blocks.
One of our main observations is that the complex spectrum near E = 0 is dominated
by the states generated from the extremal blocks L(0), L(1), L(2) and L(2N−1) and
that the eigenvalues of these states are well approximated by diagonalizing within
each block separately. This can be seen via a non-Hermitian perturbative analysis
where the effects of off-diagonal blocks appear only at second order, see Sec. 6.5. In
the figure, we give spectral gaps for s = 1 (red), s = 2 (black) and s = 2N−1 (blue)
for a system of length N = 100, with α = 0.1, β = 0.3, and ϵ = 0.1.

which, using essentially the same analysis as the above, leads to a gap that tends to
E = −ϵf(∆, µ) in the N →∞ limit.

6.5 Block Perturbation Theory

The structure of the Lindblad operator in the canonical basis allows one to see
why, in the weak classical limit, one can typically focus on the extremum blocks
s = 0, 1, 2 and 2N − 1 to understand the gap scaling. At a numerical level this
can be seen in Fig. 6.7 where the blocks corresponding to s = 1 and s = 2 have
the greatest relevance. Starting in the canonical basis, we generalise our previous
notation and also label the block matrices according to the excitation number blocks
that they connect. For example L(0,2) is the block-matrix that connects the 0th

and 2nd excitation number blocks, whereas, like before, L(n) labels the n-excitation
number diagonal.

We wish to understand how the coupling to other blocks affects the energies of a
particular block and so employ a Rayleigh-Schrödinger non-Hermitian formulation
problem [SW72], which proceeds very similar to the Hermitian counterpart. We
consider the diagonal blocks as our unperturbed system

L0 =
∑

s∈even

[L(s)] =
2N∑

s∈ even

ϵ\L(s)
\ − iλH(s) (6.50)
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and the perturbation as the off diagonal complement

L1 = L − L0 =
∑

s∈ even

L(s,s+2) + L(s+2,s) (6.51)

= ϵ\\
∑

s∈ even

L(s,s+2) + L(s+2,s) (6.52)

The left and right eigenvectors | ṽ(n)i ⟩⟩ and | v(n)i ⟩⟩ are those which diagonalise the
diagonal blocks L(n)

⟨⟨ṽ(l)i |L(n)| v(m)
j ⟩⟩ = E (n)i δijδnmδln, (6.53)

Starting with one of the zeroth order states which we obtained by diagonalising
one of the diagonal blocks L(n) we wish to understand how the addition of the off
diagonal blocks perturb this eigenvalue:

E (n)i,exact = E (n)i + E (n)′i + E (n)′′i + ... (6.54)

The first order correction E (n)′i can be easily seen to vanish simply because L1 does
not connect any block to itself

E (n)′i = ⟨⟨ṽ(n)i |L1| v(m)
j ⟩⟩ = 0. (6.55)

The leading correction to the eigenvalue can thus only occur at second order or
higher. Generally, the second order correction can be written as

E (n)′′i =
∑

j,m

⟨⟨ṽ(l)i |L1| v(n)i ⟩⟩⟨⟨ṽ(l)i |L1| v(n)i ⟩⟩
E (n)i − E (n)j

. (6.56)

For the steady state
∣∣v(0)

〉
with E (0) = 0 we see that, because L(0,2) = 0, there

can be no higher order corrections to this eigenvalue (as one would expect). In our
MPS calculations the same feature can be used to decouple the steady state from
the even parity sector and allows us to converge variationally on the first even-parity
excited state above the gap.

Our primary focus here is to understand the energy scaling of states from the
s = 2 excitation-number block on a perturbative level. As L(0,2) = 0 we only have
to consider perturbative paths that connect to the s = 4 block and thus:

E (2)′′i =
∑

j

⟨⟨ṽ(2)j |L(2,4)| v(4)j ⟩⟩⟨⟨ṽ(4)j |L(4,2)| v(2)i ⟩⟩
E (2)i − E (4)j

. (6.57)

The analysis above is fairly conventional. However there is one anomaly in that we
have hidden the small parameter ϵ in both the diagonal and off diagonal blocks.
Thus, we expect the parameter ϵ to appear in both numerator and denominator of
the second order expansion above. For the off-diagonal terms the contribution there
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Figure 6.7: The difference between the Egap and E (2)1 along with the second order
correction E (2)′′ for a system size of N = 7 with ∆ = 0 and 0.5 with boundary
driving (α, β) of (0.1, 0.3) and (0.7, 0.9).
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Figure 6.8: The minimum values of |ReE (2)| and |ReE (4)| for N = 16, α = 0.7,
β = 0.9, and µ = 1. In the small ϵ limit these eigenvalues are both proportional to
ϵ and we have |E (0)1 | ≈ 2|E (2)1 |.

is an overall ϵ2 factor in each of the L operators. However, we may also expect
some ϵ contributions in both the zeroth order eigenstates and in the real part of the
eigenvalues appearing in the denominator.

If the imaginary part of the denominator is small with respect the real part then
we see an ϵ−1 contribution occurring from these terms. In practice, however, we
see that most of the weight of this contribution occurs in the opposite limit where
the ϵ−1 contribution is negligible. Indeed, we have found that this ϵ−1 scaling is
compensated for via the ϵ dependence within the eigenstates themselves, leaving
a net scaling of ϵr with r ≥ 2. In Fig. 6.7 we compare the Egap with the zeroth
E (0)2 estimate along with second order E (2)2 correction. We see that for ∆ = 0 the
correction seems to actually scale close to ϵ3 while for ∆ = 0.5 the scaling is closer
to ϵ2 .

One last question remains; how can we be sure that the real gap magnitude of
E (0)1 is smaller than that of E (2)1 ? Here we proceed by observation. In Fig. 6.8 we
show the behaviour of the absolute value of eigenvalues that are closest to the steady
state for a system size of N = 16. In this figure and in all other similar calculations
we see that the the minimum even gap magnitude comes from the s = 2 sector, and
that it is approximately half that of the s = 4 sector.

6.6 The Meaning of Even and Odd Sector Gaps

Thusfar we have distinguished between the maximum non-zero real eigenvalues from
both even and odd parity sectors of the Liouvillian. It is worth discussing briefly
what these eigenvalues represent. Firstly, we note that the block-diagonal structure
(see Fig. 5.4) can be interpreted as excitation number conservation, which in the
representation used here resembles magnetisation on a 2N -site spin chain. Interac-
tions and/or dissipation can break this symmetry but still allow excitation parity
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conservation. Parity then allows us to divide up the full 22N dimensional space into
two 22N−1 dimensional spaces.

The even sector consists of operators that preserve the parity of a state. This
includes density operators ρ =

∑
pψ |ψ⟩ ⟨ψ| where |ψ⟩ have well defined parity.

For this reason the even-sector gap is what determines the slowest relaxation rate
towards the steady state. We have argued that this gap can be largely understood
by focusing on the s = 2 block of the basis rotated Liouvillian superoperator.

The operator Hilbert space allows for more possibility than density matrices. The
odd-sector of the superoperator L, for example, consists of basis states that represent
fermionic creation and annihilation operators [Kel15a] and odd numbered products
of them. By definition such operators would switch the parity of a state. For
excitation number preserving systems suitable combinations of these single-particle
operators (Γ(1)-sector) are the quasi-particle excitations and by combining products
of such operators one can generate more complicated n-particle excitation operators
in the other excitation number blocks [Kel15a]. Although this meaning is diluted if
there is no longer excitation number symmetry, it is important to know where such
states occur in order to distinguish them from the even sector gap. We will see again
that the extremal sectors (s = 1 and s = 2N − 1 in this case) allow us to predict
the largest odd sector eigenvalue.

6.7 Spectrum of the Odd Sectors

In the canonical basis for the s = 1 and s = 2N − 1 sub-blocks the elements from
the commutator can be read directly from the adjacency-matrix used to define the
quadratic Hamiltonian (see e.g. [GC12; Kel15a]). In these sub-blocks the terms
from stochastic process occur only on the diagonal:

L(1)
n,n = −ϵ[1/2 + α− (α/2 + 1/4)(δn,2N−1 + δn,2N)

−(β/2 + 1/4)(δn,1 + δn,2)], (6.58)

L(2N−1)
n,n = −ϵ[1/2 + β − (β/2 + 1/4)(δn,2N−1 + δn,2N)

−(α/2 + 1/4)(δn,1 + δn,2)]. (6.59)

Setting, as throughout, the bulk stochastic hopping amplitude to 1 and neglecting
the boundary terms we see that for the s = 1 (s = 2N − 1) sector the boundary
coefficient α (β) acts constantly throughout the bulk of the system and thus the
largest real eigenvalues in each sector are effectively linearly dependent on these
boundary rates.

On top of this linear dependence, the imaginary components stemming from
the Hamiltonian part of the Liouvillian also play a critical role. In the topologically
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trivial phase (|µ| > 2w) the bulk imaginary spectrum in the continuum limit behaves
approximately as

Im(E) = ±
√

(µ+ 2w cos k)2 + 4∆2 sin2 k. (6.60)

In the ferromagnetic/topological phase (|µ| < 2w) the open system develops evanes-
cent edge modes on the Im(E) = 0 line. These modes are the so-called Majorana
zero modes that have been studied extensively in recent years [Kit01; FK08; LSD10;
ORO10; ST13]. In the limit that these zero-modes have a very long coherence
length ξ ∝ |µ|/∆ ≫ 1 (i.e. small ∆) we see that the associated real component
saturates to the bulk value of ∼ −ϵ(γ/2 + α) or −ϵ(γ/2 + β) see (6.58) and (6.59).
In the ferromagnetic limit (∆ = 1 and µ = 0) the zero-modes are δ-functions
at sites n = 1 and n = N and thus the real components can be estimated as
−ϵ(1/2 + α)/2,−ϵ(1/2 + β)/2,−ϵ(1/4 + α− β/2),−ϵ(1/4 + β − α/2). When α and
β are both small these topological driven states slice through the even-sector gap to
become closest to the steady state, see Fig. 6.2 and Fig. 6.7.

Remarks

In the past two chapters we have examined the late-time features of a small num-
ber of open quantum systems. Initially, in Chapter 5 we focused on the effects
of coherent, that is quantum, processes on the stochastic/classical TASEP model.
In particular, we noticed that in constructing the TXY-TASEP model we could
analyse an interplay between the quantum and classical phases of the constituent
models. This was highlighted by comparing known steady states of the classical
model against steady states extracted from the TXY-TASEP. In this process it can
be seen that the pairing strength, ∆, plays a crucial role in whether a steady state
of TXY-TASEP resembles the corresponding TASEP steady state.

Furthermore, we found that pairing influenced greatly the steady state current
that resulted in the low-/high-density phases. This lead to our observations that if
pairing was partially present in the system that the current could be driven from
being characteristically low-density to high-density and vice-versa. However, on the
critical line and in the maximal current phase there is little effect. This is not
particularly illuminating as the pairing terms of the Hamiltonian have little effect
on the MC steady states.

An interesting aspect to the TXY-TASEP model is the ability to tune between dif-
ferent steady states that derive key properties from the underlying quantum phase.
These quantum effects are most profound in the parameter spaces of low magnetic
field (hz < 1) where the XY terms opens a Liouvillian gap that is approximately
linear in the anisotropy ∆. On the other hand, in the regimes associated with high
transverse field (hz > 1) we see that the steady state essentially reverts to the some-
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thing like the purely stochastic NESS, mimicking the scenario also found with no XY
anisotropy, albeit with a gap now proportional to ∆2. These are the observations
that begin Chapter 6.

Consequently, an understanding of this gap behaviour necessitated access to the
Liouvillian gap. Accordingly, we demonstrated a novel technique for estimating the
Liouvillian gap in open quantum systems. Moreover, our examination of a particular
system with various dissipative processes yields a mixture of exact or close estimates
of the Liouvillian gap. The full procedure entails a number of steps. After choosing
a particular system one moves to the canonical Majorana basis for the superoperator
of the Liouvillian. Next one constructs the 2-excitation sub-block of the Liouvillian
in close analogy to a standard block diagonalization of a Hamiltonian with respect
to particle number. The non-trivial eigenvalue of this sub-block then determines the
first order estimate of the gap and in particular cases the exact Liouvillian gap.

We exemplify this method with the TXY under dissipation modelled by dephas-
ing before repeating the analysis for dissipation modelled by hermitian SSEP and
TASEP. The resultant gap is much the same in each case, however, additional con-
siderations are taken in these latter cases as the gap there is a first order estimate
albeit an accurate one. These considerations round off our excursion into open
quantum systems.

108



Chapter 7

Conclusion

In this thesis we have explored topological features of one-dimensional many-body
quantum models. Our focal point to start our study was the p-wave superconductor
model. Building upon this we subsequently took two distinct routes, one regarding
closed systems and another focused on open systems.

In the first instance, in Chapter 4, we considered the p-wave superconductor as a
topological quantum memory; a quantum memory which relies on the encoding of
qubits via Majorana zero modes. This non-local (topological) encoding is essential
to the topological protection of the qubit, yet in an interacting system this protection
is not automatically guaranteed. In this chapter, we used the topological quantum
order (TQO) condition to show how the potential phase error due to bulk energy
mismatches in interacting topological systems is suppressed up to times that scale
with the system size. This indicates that the TQO condition, while defined in terms
of the degenerate ground state manifold, ensures the suppression of errors from local
processes that couple to, and evolve for some time in, the bulk. We furthermore
discussed how this leads to a high degree of correlation between the bulk spectra of
distinct topological sectors. These results are completely general, applying to any
material that displays the TQO condition. This is important, given the growing
number of novel materials with topological features [Bra+17].

As a direct demonstration of these general results we used a Majorana based
topological memory consisting of two interacting p-wave superconducting wires. We
exploited a special limit with exact TQO to argue that the fully interacting system
satisfied an approximate TQO condition, and we performed extensive numerical
analysis to back-up our claims regarding the phase error and bulk spectral correla-
tion.

This bulk spectral correlation could form the starting point for future analysis.
For instance, it remains to be seen whether the restrictions on the bulk splittings
in [BHM10] can be tightened by the conditions presented here. Furthermore, it is
also not clear what the implications of these restricted bulk splittings are on the high
temperature properties of topological quantum memories. The bounds here are con-
siderably weaker than those of special cases of strong zero-modes [Gan+11; Jer+14;
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Kel15a; Kel15b; Fen16; Kem+17; Mor+17; MKN17; MA18; Pel+20; MA20] (where
splittings are exponentially suppressed), and only concern those states that can be
reached via local perturbations from the ground states. At the same time, this cur-
rent work is both non-perturbative and general, requiring no special considerations
other than the TQO condition.

A further direction is the question of disorder, its effect on spectral correlations,
and if contact can be made with works on constrained thermalisation e.g. [Hus+13;
Els+17; KMM18; Nul+20]. In [Con+19] it was shown for a non-interacting sys-
tem that disorder can be used to suppress the phase-error jump after time T ∗. In
those simulations disorder did not affect T ∗ itself, showing that disorder induced
localization reduced the amplitudes of excitations reaching the other side, but not
the speed at which they got there. The reliability of the TDVP-MPS methodology
outlined here suggests that for interacting systems this question could be addressed
on a numerical level.

In Chapter 5 we moved to the setting of open systems with a view to consider the
effects of combining stochastic (classical) and coherent (quantum) transport models.
This entailed combining the p-wave model with dissipation modelled by the totally
asymmetric simple exclusion process (TASEP). In this process, we found that each
constituent model contributes to features of the total TXY-TASEP model. To an
extent many classical features survive in the final NESS and topological features of
the superconductor survive in the Liouvillian gap.

We found that the non-equilibrium steady states (NESS) of TXY-TASEP, for a
large portion of the parameter space, keep the features of the corresponding TASEP
steady states. In particular, coherent hopping and Zeeman magnetic terms have
negligible effects. This was previously observed in [TWV12], but we show that
when anisotropy is introduced, in the transverse XY model, the situation changes
dramatically.

For low- and high-density phases of the TASEP model, the states are mani-
festly changed. In particular, boundary driving rates corresponding to the low- and
high-density phases of TASEP the steady states couple strongly to the Hamiltonian
anisotropy terms. As a result, these TASEP states have little resemblance to the
TXY-TASEP NESS at the same boundary driving. However, for the TASEP in
its maximal current phase the NESS are largely unchanged, even in the limit of an
infinite system. The low field deviations from the classical NESS, most pronounced
in the TASEP low- and high-density regimes, can be understood by viewing the
XY anisotropy ∆ as a source of pair creation/annihilation which seeks to drive the
system towards half filling, and pin the energy expectation value close to the cen-
tre of the many-body spectrum. The high magnetic effect reduces this anisotropic
drive toward half filling allowing the particle densities to be largely determined by
the classical boundary driving. This coincides with NESS energy expectation values
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drifting towards the extremes of the Hamiltonian many-body spectra.
This demarcation of the effect of pairing is reflected also in the effect on the

NESS currents. The NESS current in MC phase is unaffected, however, even the
partial presence of pairing in the system can drive the current of the LD or HD phase
NESS to the expected current of the HD or LD phase respectively. For pairing only
in the middle half of the system, this creates a system in which opposite sides of
the system exhibit the expected current of each classical phases. Essentially, partial
pairing seems to create a smooth transition between low- and high-density currents
and vice-versa. It remains to be explored if this observation can be exploited to
enhance steady state current in a controlled manner for similar systems.

In our study of the TXY-TASEP NESS we found that the Liouvillian gap, which
determines the NESS relaxation rate, has a strong dependence on the phase of
the quantum model and further that this gap would remain non-zero in the ther-
modynamic limit for non-zero pairing strength. As such the Liouvillian gap for
TXY-TASEP is topological in nature. In Chapter 6 the connection to the topo-
logical phase transition is made concrete. To achieve this we employed two kernel
projection methods and analytically verified our numerical observations. Our ker-
nel projection methodology is most clearly exemplified for dissipation modelled by
dephasing but we extend our analysis for the cases of hermitian SSEP and TASEP
dissipation also.

A future direction of study is to determine precisely for which forms of dissipation
the topological properties remain in the form of the Liouvillian gap. At this time,
we have verified a topological fingerprint in the Liouvillian gap for the case of local
dephasing and nearest neighbour hopping. One would expect that for other forms of
dissipation the situation will change. For example, Lindblad jump operators acting
on more sites will break the (close to) block diagonal structure of the Liouvillian
superoperator. This may result in our projection method failing or the topological
feature of the gap disappearing.

A related question is to what extent are these features unique to the p-wave super-
conductor or transverse XY model. Physically, is the presence of a topological gap
due to the appearance (disappearance) of bound states in the closed system? For
example, the Su-Schrieffer-Heeger model [SSH79] could be a starting point in this
direction. The model can host edge states and has a similar yet distinct topological
phase transition. The model itself contains only hopping processes on two alternat-
ing sublattices in one dimension. Absent is any superconducting pairing from the
Kitaev model yet it can host edge modes at the lattice boundaries and has a similar
phase transition. If no corresponding persistent Liouvillian gap could be found in
this case then we may be able to conclude it is purely a feature of pairing terms in
the Hamiltonian. In this latter case, it yet remains to consider more realistic models
such as the s-wave superconductor.
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Appendix A

Numerical MPS Methods: A Further
Use Case

As a case study of the effectiveness of DMRG we can look at the XXZ Heisenberg
spin chain with multiple external fields. We take this model as an example as
it is one of the more generic applications of the spin models described in Ch. 2.
Primarily the data shown in this chapter is that found by time evolving correlation
functions and their Fourier transforms. This formed the basis of the Green’s function
methods in Chapter 4. By probing these correlation functions we were able, in that
case, to understand how robust topological quantum order was in protecting against
undesired errors. In particular, we could observe in the time evolved data both the
spectral densities between parity sectors and characteristic time before errors occur.

Another application of these methods is the production of dynamical spin struc-
ture factors. Dynamical spin structure factors (DSF) are useful tools in describing
particle correlations in spin systems that are experimentally accessible. Such DSF
can act as probes for quasi-particle excitations e.g. spinon excitation, magnon re-
sponse or spinon chirality depending on the particular structure factor that is ex-
amined. While numerical simulation can only predict features of these structure
factors, these predictions can be experimentally verified through inelastic neutron
scattering experiments.

The objective of this appendix is to apply time evolved tensor networks to the
calculation of DSF. This is not a unique study but nonetheless is a valuable demon-
stration of the numerical techniques. The algorithm being used here is the time
dependent variational principle (TDVP) in a 1-site realisation, these techniques also
appear in Sec. 4.5.1 and are a variation upon standard DMRG techniques as ex-
plained in Sec. 3.3. This is in the class of tensor network methods employing matrix
product states (MPS). The specific model analysed here is a 1-dimensional XXZ spin
chain with a combination of additional magnetic fields in either perpendicular and/or
parallel directions. We find that our methods allow for access to exotic parameter
regimes outside the realm of conventional perturbative or analytic Green’s function
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methods. Moreover, we are able to introduce generic Dzyaloshinskii-Moriya [Dzy59;
Mor60] interaction terms, although they will not be of primary focus.

The structure of the appendix is as follows: Section A.1 begins with a description
of the model, the regimes of interest and the particular dynamic structure factors
which we analyse. Subsequently, in Section A.2 we describe our approach to calcu-
lating these correlations on a lattice by manner of time-evolved tensor networks. We
have already summarised the basics of these tensor network techniques in Chapter 3
and so include the additional detail necessary here. In Section A.3 as a check we
compare against two structure factors that we computed by a perturbative Green’s
function method [Eng15]. We see good agreement between these two methods for
these perturbatively accessible structure factors. Sections A.4 gives an overview of
our numerical simulations for the spin-wave response, extracted from the XX struc-
ture factor, to give an understanding of the effect that modifying the magnetic fields
has on the response. After this, in Section A.5, we present data for the response
of the spinon chirality which can be, in turn, extracted from the (chiral) YZ-ZY
dynamic spin structure factor. In particular this chiral spinon response for multiple
magnetic fields is inaccessible from perturbative Green’s function methods.

A.1 Model

The model we consider is simulated on a finite chain of N sites. The Hamiltonian
we use is the Heisenberg XXZ with external magnetic fields, namely,

H =
N−1∑

i=1

[
Jt(σ̂

x
i σ̂

x
i+1 + σ̂yi σ̂

y
i+1) + Jzσ̂

z
i σ̂

z
i+1 + hxi σ̂

x
i + hzi σ̂

z
i

]
. (A.1)

Here hx denotes the magnetic field in the direction perpendicular to the system’s
polarization and hz denotes the magnetic field in the parallel direction. The lat-
ter is staggered site by site, meaning that: hzi = (−1)ih, where h is taken to be
constant throughout. The sign and magnitude of hx is uniform across the system.
Furthermore, we have the capability to introduce another interaction term, namely
the Dzyaloshinskii-Moriya [Dzy59; Mor60] interaction which has the form,

HDMI =
N−1∑

i=1

D⃗ · (S⃗i × S⃗i+1), (A.2)

where D⃗ is a constant times a unit vector, usually x̂ or ẑ, here we will choose
D⃗ = Dx̂. Such a choice of D⃗ results in the interaction:

HDMI = D

N−1∑

i=1

(
σ̂yi σ̂

z
i+1 − σ̂zi σ̂yi+1

)
. (A.3)
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The encoding of this Hamiltonian as an MPO for simulation has been outlined
previously in Section 3.3.1. The objects of note in this appendix are the dynamic
structure factors (DSF), which are usually defined in the following way

Sαβ(q, ω) ≡ 1

2π

∫
dteiωt

1

N

∑

i,j

⟨σ̂αi (t)σ̂βj (0)⟩e−iq·(ri−rj), (A.4)

where q denotes momentum (transfer), ω frequency and the expectation is with re-
spect to the ground state of the Hamiltonian, later denoted by |0⟩. The superscripts
α, β may take values in {x, y, z}. As one can readily see this is the double Fourier
transform of the two spin correlation function:

Sαβ(ri − rj, t) = ⟨σ̂αi (t)σ̂βj (0)⟩, (A.5)

where the σ̂αi operators are Pauli matrices operating on the ith site. Lastly, σ̂αi (t) =
U †(t)σ̂αi U(t), where U(t) is the usual time evolution operator under the Hamiltonian
above.

In this system the excitations are spinons and the dynamical spin structure factors
(DSF) describe properties of these excitations. For example Sxx(q, ω) is known as the
spin-wave or magnon response and describes the tendency of the excitation to occur,
that is, the tendency for spin flip excitations. Syy(q, ω), gives similar information so
we focus on Sxx(q, ω). The DSF Szz(q, ω) is referred to as the longitudinal response
and describes how the length of the spin varies along the chain. This also gives an
indication to the magnetic order fluctuations in the presence of excitations. Finally,
the last DSF of interest to us is the combination, Syz(q, ω)− Szy(q, ω). Taking our
system to be polarized in the x̂ direction this is the term of interest that remains from
a Dzyaloshinskii-Moriya interaction, which is linked to the chirality of the spinon
excitations [Eng15]. As a result the combination above is a probe of the chirality of
the spinons in the system.

Usually the regime of large external magnetic field would not be amenable to
usual techniques. However, utilising tensor network methods we have been able to
determine of results with a high degree of confidence. We set all couplings with
respect to Jz which defines our energy scale. Moreover, we can investigate several
interesting regimes such as hx ≫ hz and hx ≪ hz which are our primary concern in
these simulations.

A.2 Lattice Implementation of DSF

The key step in attaining the DSF is to appropriately bring its expression onto a
lattice where established TDVP can be applied. However, first, since our goal will be
to calculate a variety of structure factors, which are essentially two spin correlation
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functions, one needs the ground state of the Hamiltonian, Eq. A.1. In order to
obtain the ground state we employ a one-site DMRG algorithm as a first step in our
calculations [Whi92; Sch11; Orú14].

While Eq. A.4 is the usual defintion for a lattice, recent work [Pae+19; WL19]
presents a modification to improve computational efficiency and accuracy. Firstly
rather than time evolving every spin structure factor for all combinations of i and
j we fix j at the centre of the chain and sweep through i. This is an important
modification to avoid effects from the edge of the system. Next we translate the
spin structure factor above to discrete time steps giving:

Sαβ(q, ω) ∼= 2π

NT
δ

M∑

m=0

ei(ω+iη)tm
N∑

j=1

e−iq·(j−N/2)2Re⟨σ̂αj (tm)σ̂βN/2(0)⟩. (A.6)

Here η is a damping factor to prevent spectral leakage due to a finite time interval
and time is discretized as: tm = mδ with Mδ = T . The damping factor needs only
to be approximately 0.01. Moreover at the level of the real space spin correlator, we
express this as:

Sαβ(j, t) = ⟨0| σ̂αj (tm)σ̂βN/2(0) |0⟩ − ⟨0| σ̂αj σ̂
β
N/2 |0⟩ ,

= eiE0tm ⟨0| σ̂αj |1(t)⟩βN/2 − ⟨0| σ̂αj σ̂
β
N/2 |0⟩ .

We consider the state |1(t)⟩βN/2 to be the time evolved state of a β excitation at the
central site and the phase in front comes from acting the evolution operator to the
left on the ground state. The second term is evaluated once at the beginning of the
time evolution. Inserting this real space form of the spin structure factor we perform
our evolution using the 1-site TDVP algorithm.

A.3 Comparison against Green’s Function Methods

As a further consistency check we include a comparison to an extant semi-analytic
approach to the DSF calculation which utilises Green’s function methods [Eng15]. It
should be noted that the method cited is a first order perturbation theory, capturing
the relevant information for 2-spinon excitations on the chain. Firstly, if we examine
Sxx(q, ω) without external magnetic fields we can see the agreement between the
methods in Fig A.1.

The perturbative method also produced results for the chiral DSF which are com-
pared in Fig. A.2. It is worth noting that figures and results that appear in [Eng15]
that involve an external perpendicular field have the field magnitude expressed in
units of Tesla, i.e. Bx = 10T. The total coupling which we denote hx is expressed

116



(a) hx = hz = 0 (b) Bx = 0

Figure A.1: XX structure factor without magnetic fields obtained from TN numerics
and perturbative methods [Eng15] respectively. Note, smaller values of η give closer
agreement with the magnitude of the intensities. In addition the axes and scales do
not coincide since the right figure only contains the upper right quadrant of the left
figure.

(a) hx = 0.08, hz = 0 (b) Bx ̸= 0

Figure A.2: (a) Chiral DSF with perpendicular magnetic field obtained from our
numerics. (b) The same object found by perturbative methods. Note that here
the intensity is plotted meaning a positive z-axis. In (a) we see that the two peaks
correspond to a sharp switch between a negative and positive peak.
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(a) hx = hz = 0 (b) hx = hz = 0.08Jz

Figure A.3: XX structure factor (a) without and (b) with external magnetic fields.
In (a) we recover the regular dispersion for the system. In (b) we notice a tighter
band that falls off with increasing frequency.

in terms of this magnetic field strength in the manner,

hx = gµBBx, (A.7)

where g = 2.002319 is the electron spin g-factor, µB = 0.05788meV T−1 is the Bohr
magneton and Bx is the magnitude of the magnetic field. Combined then what we
refer to as the magnitude of our magnetic field is in fact:

hx = 0.1159BxJz, (A.8)

if we take Jz = 1meV. To give a sense of the values a few conversions would be,
Bx = {0, . . . 10}T → hx = {0, 0.1159, . . . 1.159}meV.

A.4 XX Dynamical Structure Factor

Beginning with no fields in Fig. A.3(a) we obtain the DSF for the XXZ model.
Additional magnetic fields break this continuum into more discrete energy levels,
Fig. A.3(b). The splitting into discrete levels is strongly linked to the parallel field,
hz, rather than the perpendicular field, hx; to see this compare Fig. A.4(a) and
Fig. A.4(b).

A.5 Chiral Dynamical Structure Factor

Importantly, one can see that between Fig. A.5(a) and Fig. A.5(b) that the chiral
spin structure factor does not appear until both external fields are present. If no
fields are present the response of the chiral DSF is essentially zero up to an accuracy
that we could in principle improve. In practice, while we could increase the bond
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(a) hx = 0.08Jz, h
z = 0 (b) hx = 0, hz = 0.08Jz

Figure A.4: A comparison between the XX structure factor with only one external
field, (a) hx and (b) hz respectively. From these two figures we can deduce that the
splitting of the peak (Fig. A.2(a)) is due to the field hx while the tightening of the
frequency band (Fig. A.3(b)) is due to hz.

dimension of the states involved and push the precision of the TVDP algorithm it
is not necessary to demonstrate the structure factor’s response to external fields. It
is worth noting that the non-zero noise seems to correspond to the XX structure
factor without fields though clearly smaller by several orders of magnitude.

Crucially, the observation we make here is that the response from the chiral
structure factor necessarily requires both magnetic fields to be non-zero. If this is
the case we see similarities in its response to increasing field strength. For example,
comparing Fig. A.5(b) and Fig. A.4(a) we can see the same effect of increased hx

in producing two close peaks. In addition, the effect of hz can be seen in Fig. A.6
similarly as found in the response of the XX structure factor seen in Fig. A.4(b). In
both cases we see the largest response sharpen and many more diminishing responses
appear at higher frequencies. In the case of the chiral spin factor the effect seems to
be more pronounced as these higher frequency responses do not diminish quite as
rapidly as in the XX case. For much larger hx, orders of magnitude larger than hz

that is, the result is an initial response at an almost flat ω profile with few higher
frequency signals. Any high frequency responses are strongly suppressed.

119



(a) hx = hz = 0 (b) hx = hz = 0.08Jz

Figure A.5: Chiral structure (a) without and (b) with external magnetic fields. In
(a) we see only a noisy signal of the XX structure factor pattern. Strictly, this should
be zero but merely indicates a (small) level of error in our numerical simulations for
this system. This could be resolved in a number of ways; for example by using a
larger bond dimension for states. In (b) the signal is more clear where we can see
two split peaks in a flattened frequency range due to non-zero hz.

(a) hx ≫ hz

Figure A.6: The chiral spin structure factor at large hx, hx = 5hz. Here, we bring
together our previous observations. We can see a narrow frequency range beginning
at ω ∼ π for the initial peaks around q = {−2, 0, 2}. In addition, the presence of hz
gives rise to diminishing peaks for larger frequency values.
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Appendix B

Canonical Basis

Throughout Ch. 5 and Ch. 6 we utilised the operator quantization in the canonical
Majorana basis. In operator quantization we must use the Hilbert-Schmidt inner
product

⟨⟨A|B⟩⟩ ≡ Tr
(
A†B

)
/22N , (B.1)

to define a basis of operators that is orthonormal. However, in the canonical basis
this inner product is transformed. We note here the transformation required. First,
recall the definition of the canonical basis [GC12; Kel15a]:

Γ(0) : I (B.2)

Γ(1) : γ1, γ2, γ3, . . . , γ2N ,

Γ(2) : iγ1γ2, iγ1γ3, . . . , iγ2N−1γ2N ,

Γ(3) : −iγ1γ2γ3, . . . ,−iγ2N−2γ2N−1γ2N ,
...

...

Γ(2N) : i(2N)Nγ1γ2 . . . γ2N .

where γ2n−1 = c†n + cn and γ2n− = i(c†n − cn). We number each operator by an
index a (i.e. Γa) , for a = 1, . . . , 22N . For each a one we use the integer s to be the
number of γ’s in the product Γa. In each of these subsets there are

(
2N
s

)
elements

and when we need to refer to a particular element of the subset s we will write Γ
(s)
a .

The phases are chosen so that Γ2
a = I and since the product of two Γa’s gives a third

(up to a phase) and Tr
(
Γ
(s)
a

)
= 0 for s > 1 then we have

⟨⟨Γa|Γb⟩⟩ ≡ Tr
(
Γ†
aΓb
)
/22N = δab. (B.3)

Formally, the transformation to the canonical basis can be made as Lab = ⟨⟨Γa|L|Γb⟩⟩.
This is the object that we regularly work with in the relevant chapters. In practice,
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though, we make the rotation L′ = R†LR where R is the double transformation

R =M
N∏

x

Fx, (B.4)

with

Fx =
1√
2




1 0 0 1

0 1 1 0

0 −i i 0

1 0 0 −1



. (B.5)

Further, M is a second basis-reordering that can be defined via alternate single-
particle binary identifications

00000001

00000010

00000100

00001000

00010000

00100000

←

00000001

00000010

00000111

00001011

00011111

00101111

(B.6)

These binary string label the presence of Majorana operators in the Γ operator
strings. Hence, in effect, we have reordered the Majorana operator strings with this
transformation. A finite state automata representation of the MPO that achieves
the transformation M is

M1 =
1

2
[I 0 0 Z], (B.7)

Mx =
1

2




I X Y Z

I X Y Z

I −X −Y Z

I −X −Y Z



, (B.8)

MN =




I +X

I +X

I −X
I −X



, (B.9)

where X = σx⊗σx, Y = σy⊗σy, and Z = σz⊗σz. Finally, by utilising this two-fold
transformation we are able to attain the correct Lab expressed in the canonical basis.
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Appendix C

TASEP & Its Quantum Embedding

In this appendix, we focus on the totally asymmetric simple exclusion process
(TASEP) but nonetheless the quantum embedding can be performed in much the
same manner for the symmetric simple exclusion process (SSEP). We first give an
overview of the TASEP before presenting the embedding. One of the most useful as-
pects of TASEP, for our purposes, is the existence of an exact solution [Der+93] for
the non-equilibrium steady state (NESS) which we take as a starting point for our
(numerical) analysis in Chapter 5 and 6. Since we utilise extensively MPS/DMRG
methods in this context there are some convenient similarities to this exact solution
and the matrix product states we use. In essence, one can view the exact solution
as an MPS and further can encode the NESS for the classical model as an MPS1.
While we do not find an exact (or ansatz) solution to the full TXY-TASEP NESS;
we are able to make concrete comparisons back to the well studied classical model’s
NESS in various phases/regimes, see Ch. 5. To begin we reproduce the derivation
of the NESS ansatz solution that we use in this thesis, in Section C.1. After we
describe the quantum embedding of the TASEP in Section C.2.

C.1 Exclusion Process

In a few words, the TASEP is one of the simplest models of a driven diffusive sys-
tem. In this thesis it is taken with open boundary conditions where the particles
all move independently to the right with hard-core repulsion along a 1-dimensional
lattice. Particles are fed into the left side of the system and removed from the
right. We do not explicitly model the “baths” from which and to which these par-
ticles move, see Fig. C.1. Other recursive methods via generating functions were
proposed prior [DDM92] to the presentation given here [Der+93]. The basic formu-
lation considers configurations of occupied and unoccupied lattice sites. Each site
occupancy is denoted by ni with a value of 1 or 0 indicating occupied/unoccupied.

1Coincidentally, the exact solution of the TASEP model was proposed contemporaneously to
the original White formulation of MPS for the 1d AKLT model [Whi92].
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Figure C.1: Here, we schematically describe the totally asymmetric exclusion pro-
cess. The green arrows show processes that are allowed within the TASEP model
(with γ = 1 usually). Additional processes with matching weights in the left direc-
tion recovers the SSEP. The orange and cyan regions on either side of the lattice
(coloured yellow) denote infinite baths of particles and holes respectively and are
not explicitly modelled.

At each discrete time-step, dt, every site is updated by a few rules determined by
the nearest-neighbour occupancies. If the first site, i = 1, is empty the probability
for the site being injected from outside the system is αdt. Similarly, if the last site,
i = N , is occupied that particle has a probability to leave the lattice to the right of
βdt. In the bulk of the system, provided that site i is occupied and the site i+ 1 is
empty then the particle at site i moves to the right with probability dt2. The dy-
namics of the system is then determined by the following relations on the site-wise
configurations, ni:

n1(t+ dt)




1, with probability p1 = n1 + [α(1− n1)− n1(1− n2)]dt,

0, with probability 1− p1,
(C.1)

ni(t+ dt)




1, with probability pi = ni + [ni−1(1− ni)− ni(1− ni+1)]dt,

0, with probability 1− pi,
(C.2)

nN(t+ dt)




1, with probability pN = nN + [nN−1(1− nN)− βnN ]dt,
0, with probability 1− pN .

(C.3)

In the long-time limit, T → ∞, the system reaches a steady state wherein the
probabilities, PN(n1 . . . nN), of finding the system in configuration {n1 . . . nN} are
stationary such that

d

dt
PN(n1 . . . nN) = 0. (C.4)

The exact matrix formulation of the steady state allows one to obtain all PN for any
N . The matrix formulation enters as an unnormalised form of PN . If we express
this as

PN(n1 . . . nN) =
fN(n1 . . . nN)∑
{ni} fN(n1 . . . nN)

, (C.5)

2A particular rate can be given of γ for this bulk hopping but ultimately it can be rescaled out
of the equations since in the end it only changes the size of the time-step dt. For this reason we
will largely set it to unity thoughtout as in the original formulation.
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then the unnormalised weights fN can be expressed via matrices, D and E, as

fN(n1 . . . nN) = ⟨W |
N∏

i=1

(niD + (1− ni)E) |V ⟩ . (C.6)

In effect the information on a given configuration only requires two matrices and
two vectors to be known. It is here that we can make the connection to an MPS.
Taking A0 = D and A1 = E one can consider a configuration of say {00110101} as
being represented by

fN(n1 . . . nN) = ⟨W |DDEEDEDE |V ⟩ = ⟨W |A0A0A1A1A0A1A0A1 |V ⟩ , (C.7)

which is reminiscent of one unpacking a generic MPS as defined in Ch. 3, where
we would be extracting the particular entry in the 2N tensor ψi1...iN for a specific
configuration. This gives the weight of a particular state in the superposition of
basis states. Then, what are these matrices and vectors D, E, ⟨W | and |V ⟩? We
can obtain relations between these matrices and vectors which are:

DE = D + E ≡ C,

D |V ⟩ = 1

β
|V ⟩ ,

⟨W |E =
1

α
⟨W | ,

(C.8)

which are obtained shortly from the stationarity of PN for a steady state configura-
tion. From these relations one can determine single and two-site expectation values.
For example, writing fN in terms of these matrices gives

Z =
∑

{ni}

fN({ni}) = ⟨W |CN |V ⟩ = ⟨W | (D + E)N |V ⟩ . (C.9)

Then the single site expectation value w.r.t. the steady state is given by

⟨ni⟩ =
∑

{ni}

nifN({ni})
Z ,

=
⟨W |Ci−1DCN−i |V ⟩
⟨W |CN |V ⟩ ,

(C.10)

where D appears in the i-th position. Similarly the two point expectation value, for
i < j, is given by

⟨ninj⟩ =
⟨W |Ci−1DCj−i−1DCN−j |V ⟩

Z . (C.11)

This extends onto higher point expectations in the same way. At this point if we can
determine “simple” forms of the vectors and matrices in this ansatz we can easily
find the density profile of the lattice in steady state or indeed any n-point correlation
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functions in a clear, systematic way.

The next step in this direction is to consider the possible transitions between
states/configurations that are allowed. For the left-most site we can construct a
matrix h1 representing these transitions in a {0, 1} basis. We know by the rules
governing the model that the only possible transition for this site is

{0, n2 . . . } α−→ {1, n2 . . . }, (C.12)

which is a particle entering from the left, with rate α. The only remaining “tran-
sition” is for the occupied configuration to remain occupied i.e. {1, n2 . . . } to itself
with the negation of the previous rate. This produces the matrix

h1 =

(
−α 0

α 0

)
. (C.13)

By a complementary argument the corresponding matrix for the right-most site is
given by

hN =

(
0 β

0 −β

)
. (C.14)

In the bulk of the lattice the allowed transition between neighbouring sites is that
of {. . . , 1, 0, . . . } → {. . . , 0, 1, . . . } or no change which gives the same h throughout
the bulk of the lattice3

h =




0 0 0 0

0 0 1 0

0 0 −1 0

0 0 0 0



. (C.15)

Next we look at the dynamics, using these allowed transitions to expand the
expression for the stationarity equation and verify the matrix and vector relations

3It is worth noting that for the ASEP model with particles allowed to move to the left with
rate γL we have a very similar matrix given by

h =




0 0 0 0
0 −γL γR 0
0 γL −γR 0
0 0 0 0


 .

The boundary matrices, h1 and hN , are generalised in a similar way by adding the appropriate
rate to the empty columns such that the columns sum to zero.
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(C.8),

dPN({n})
dt

=
∑

σ1

(h1)n1σ1
PN(σ1, n2, . . . )

+
N−1∑

i=1

∑

σiσi+1

(h)nini+1σiσi+1
PN(. . . , σi, σi+1, . . . )

+
∑

σN

(hN)nNσN
PN(. . . , nN−1, σN).

(C.16)

The next step is to assume that there exists some x0 and x1 such that the following
relations hold for each ni. These relations consider how the configurations on N sites
connect to the configurations on N − 1 sites. Or rather what the contribution each
single site has in the dynamics dependent on which site in particular is removed.
The relations are:

∑

σ1

(h1)n1σ1
PN(σ1, n2, . . . ) = xn1PN−1(n2, . . . ),

∑

σiσi+1

(h)nini+1σiσi+1
PN(. . . , σi, σi+1, . . . ) = −xni

PN−1(. . . , ni−1, ni+1, . . . )

+ xni+1
PN−1(. . . , ni, ni+2, . . . ),∑

σN

(hN)nNσN
PN(. . . , nN−1, σN) = −xnN

PN−1(. . . , nN−1).

(C.17)

Taking the assumption that x0 and x1 exist, the stationarity equation (C.16) is
satisfied by the relations (C.17). These relations combine together as a telescoping
sum of terms so that there are many cancellations reducing the right hand side
expressions immensely. Let us illuminate this statement with an example to see
how this leads to the relations (C.8). Taking the configuration in its matrix form

PN({n}) =
1

Z ⟨W |
N∏

i=1

(niD + (1− ni+1)E) |V ⟩ , (C.18)

we require that:

(h1)00
Z ⟨W |E

N∏

i=2

(niD + (1− ni+1)E) |V ⟩+ (h1)01 ⟨W | . . . |V ⟩

=
x0
Z ⟨W |

N∏

i=2

(niD + (1− ni+1)E) |V ⟩ ,

(h1)10
Z ⟨W |E

N∏

i=2

(niD + (1− ni+1)E) |V ⟩+ (h1)11 ⟨W | . . . |V ⟩

=
x1
Z ⟨W |

N∏

i=2

(niD + (1− ni+1)E) |V ⟩ .

(C.19)
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By inspecting these two equalities we can conclude that

x0 = −1, x1 = 1,

⟨W |E = ⟨W | 1
α
,

(C.20)

noting the values of the elements of h1. By similar consideration of the bulk and
right end cases we find that

DE = −x0D + x1E,

βD |V ⟩ = −x0 |V ⟩ = x1 |V ⟩ .
(C.21)

Combining all of these leads us to the relations provided in Eq. C.8. The question
remains of how to construct the matrices explicitly to satisfy these relations. To
find D and E we first consider if they are commuting matrices, in which case

⟨W |DE |V ⟩ = ⟨W |ED |V ⟩ = 1

αβ
⟨W |V ⟩ ,

= ⟨W | (D + E) |V ⟩ =
(
1

α
+

1

β

)
⟨W |V ⟩ .

(C.22)

This brings about the conclusion that α + β = 1 once ⟨W |V ⟩ ≠ 0. In this case
the two matrices collapse into single numbers: E = 1/α, D = 1/β. In this case all
correlations are trivial, so that all n-point expectation values of ni’s become αn. As
such the system is uncorrelated [DDM92]. Instead, we can consider non-commuting
matrices. This leads to the result that each are infinite-dimensional matrices. This
can be shown by contradiction. Assume that D and E are finite-dimensional. Then
if DE = D + E this implies that D(E − I) = E. So by extension if (E − I) is
invertible then D = E(E − I)−1 and in fact [D,E] = 0. This is contradictory, but
we can consider still that E − I is non-invertible. As such it has a zero vector in its
kernel and (E − I) |v⟩ = 0 for |v⟩ ≠ 0. This further leads to

D |v⟩ = D (E |v⟩) = (D + E) |v⟩ = D |v⟩+ |v⟩ ⇒ |v⟩ = 0. (C.23)

This provides a further contradiction as we have found |v⟩ = 0 after the under-
standing that |v⟩ ̸= 0. As a result we have the final conclusion that the matrices
are infinite-dimensional for α+β ̸= 1. There are a number of choices [Der+93] that
satisfy the relations and are infinite-dimensional but we will include only one here
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(b) TASEP Phases

Figure C.2: The phase diagrams for the ground state of the TXY Hamiltonian (for
w = 1) (a), and for non-equilibrium steady state of the TASEP (b) where: LD =
Low Density, HD = High Density, MC = Maximal Current.

that we ourselves used. The matrices are:

D =




1/β a 0 0 . . .

0 1 1 0

0 0 1 1

0 0 0 1
... . . .



, E =




1/α 0 0 0 . . .

a 1 0 0

0 1 1 0

0 0 1 1
... . . .



, (C.24)

with vectors:
⟨W | = (1, 0, . . . ) , |V ⟩ = (1, 0, . . . )T , (C.25)

where a2 = (α + β − 1)/αβ. Now we have expressions for the matrices from which
we can express the steady state for any given boundary rates (α, β). To actually use
this matrix product ansatz in our simulations we of course cannot use an infinite
bond-dimension matrix product state. Nonetheless for the purpose of choosing an
initial state, from which we begin our DMRG calculation, a finite-dimensional form
is more than sufficient using truncated forms of the above infinite objects. Moreover,
we can trust that using a truncated form of the infinite-dimensional MPA will be
sufficient since the matrices are sparse objects and the vectors are non-zero in only
one entry. Primarily we use these truncated forms to make comparisons between
numerically obtained NESS and the MPA form of the classical steady states.

As a final point we mention the broad properties of the classical steady state
for particular boundary rates. For our purposes the phase diagram of the classical
model is split into 3 distinct phases, see Fig. C.2(b)4. These are descriptively called

4There is more sub-structure within these phases than we show here but for us these are the
relevant elements of the phase diagram. For example, there is a critical line along α = β where
the steady state is more akin to the MC phase than the adjacent phases at lower values.
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the low-density (LD), high-density (HD) and maximal current (MC) phases. These
can be identified directly from the expressions found in this section applied to the
current. In steady state the current through a bond i is the expectation value of
ni(1− ni+1). Expressed in terms of the MPA this is

J =
1

Z ⟨W |C
i−1DECN−i−1 |V ⟩ ,

=
1

Z ⟨W |C
i−1(D + E)CN−i−1 |V ⟩ ,

=
1

Z ⟨W |C
N−1 |V ⟩ .

(C.26)

Asymptotic expressions are known for the current and correlations [Der+93] which
are readily evaluated in the limit (N →∞) to yield:

J =





1
4
, for α ≥ 1

2
& β ≥ 1

2
, (MC)

α(1− α), for α < 1
2
& β > α, (LD)

β(1− β), for α > β & β < 1
2
. (HD)

(C.27)

A few comments on these values. In the MC phase we see a current of 1/4 which
would indicate an average occupancy across the lattice of 1/2. This is what we see
when computing the steady state in this phase, the state is half filled. One such
state is that which has sites alternately filled and empty, immediately confirming
the current found from the asymptotic expressions. In all phases, by definition the
current is flat, only dependent on the particular boundary rates. When we examine
the numerically obtained currents for the states of the TXY-TASEP model in later
sections we will see that it is not completely flat, there are some variations near the
boundaries but for the bulk and for large lattice sizes this will be the case for the
classical model. Now that the elements are in place to compare against we describe
the dynamics of the TASEP in a manner amenable to combine with the TXY spin
model.

C.2 TASEP Embedded in a Quantum Spin Chain

The objective of this section is to embed the TASEP model described in C.1 as
a continuous time process in order to join it with the time evolution of the TXY
model. In the end we will find that by embedding TASEP in a quantum channel
using Kraus operators [NC00] we can achieve this outcome. By this approach we
can now model the combination of coherent and stochastic dynamics coming from
the TXY and TASEP models respectively.

Notationally, we drop PN denoting configurations for a bra-ket computational
basis. In particular, we exchange the set of ni for the vector |ni⟩. This is later
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Figure C.3: The classical configuration is embedded directly onto the diagonal of
a density matrix. Here for 4 sites, where ni are valued as zero or one depending on
the occupation of the corresponding site.

embedded into a density matrix. This is conceptually not difficult, essentially the
classical state written as the vector, |ni⟩, is embedded onto the diagonal elements
of a density matrix (Fig. C.3).

Next the update rules must be translated into an operation on such a diagonal
density matrix that preserves the classical nature of the state, i.e., takes a diagonal
density matrix to another diagonal density matrix. To update the configuration |n⟩t
to the configuration |n⟩t+dt a time-step later, we randomly choose an integer from
the set {0, 1, ..., N} with a uniform distribution, i.e., each integer has a probability
1/(N + 1) of being selected. The classical state is then updated by the rules:

1. If the outcome is i ∈ {1, ..., N − 1}, and if ni = 1 and ni+1 = 0, we hop the
particle from site i to site i+ 1 with the probability γdt.

2. If the outcome is i = 0, and if n1 = 0, then we should introduce a particle at
site i = 1 with the probability αdt.

3. If the outcome is i = N , and if nN = 1, then we should remove the particle at
site i = N with the probability βdt.

To encode this, consider the operation on a density matrix that performs step 1
above, i.e., the hopping of a particle from site i to site i+1. This can be implemented
with the operation ρ̂→ Λhop

i [ρ̂], where

Λhop
i [ρ̂] =

1∑

j=0

K̂
(j)
i ρ̂K̂

(j)†
i , i ∈ {1, 2, . . . , N − 1}, (C.28)

for the Kraus operators:

K̂
(0)
i ≡ |0i0i+1⟩ ⟨0i0i+1|+ |0i1i+1⟩ ⟨0i1i+1|

+
√

1− γdt |1i0i+1⟩ ⟨1i0i+1|+ |1i1i+1⟩ ⟨1i1i+1| ,
K̂

(1)
i ≡

√
γdt |0i1i+1⟩ ⟨1i0i+1| .

(C.29)

Intuitively, the Kraus operator K̂(1)
i hops a particle from site i to site i + 1, with

probability γ∆t, only if site i is occupied and site i + 1 is unoccupied, i.e., it im-
plements step 1. The Kraus operator K̂(0)

i leaves the system unaffected in all other
cases. It is easily checked that K̂(0)†

i K̂
(0)
i + K̂

(1)†
i K̂

(1)
i = 1̂, making this is a well-

defined, probability preserving quantum operation. It is also easily checked that
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this operation preserves the classical nature of a state, since it takes any diagonal
density matrix ρ̂ to another diagonal density matrix ρ̂.

Similarly, the quantum operations that represents steps 2 and 3 above are ρ̂ →
Λon[ρ̂] and ρ̂→ Λoff[ρ̂], respectively, where:

Λon[ρ̂] =
1∑

j=0

K̂(j)
on ρ̂K̂

(j)†
on , Λoff[ρ̂] =

1∑

j=0

K̂
(j)
off ρ̂K̂

(j)†
off , (C.30)

for the Kraus operators:

K̂(0)
on ≡

√
1− αdt |01⟩ ⟨01|+ |11⟩ ⟨11| ,

K̂(1)
on ≡

√
αdt |11⟩ ⟨01| ,

K̂
(0)
off ≡ |0N⟩ ⟨0N |+

√
1− βdt |1N⟩ ⟨1N | ,

K̂
(1)
off ≡

√
βdt |0N⟩ ⟨1N | .

(C.31)

Again, it is straightforward to check that K̂(0)†
on K̂

(0)
on +K̂

(1)†
on K̂

(1)
on = 1̂ and K̂(0)†

off K̂
(0)
off +

K̂
(1)†
off K̂

(1)
off = 1̂, and also that these operations preserve the classical (i.e. diagonal)

nature of a state ρ̂.

Implementing each of these possibilities with the uniform probability 1/(N + 1)

gives the full quantum operation representing the discrete-time state update

ρ̂(t+ dt) = Λ[ρ̂(t)] =
1

N + 1
Λon[ρ̂(t)]

+
1

N + 1
Λoff[ρ̂(t)] +

1

N + 1

N−1∑

i=1

Λhop
i [ρ̂(t)].

(C.32)

We can find the classical continuous-time master equation in the dt→ 0 limit of
the discrete dynamics above. First, we focus on the hopping operation Λhop

i . For
this operation alone, the master equation is found as

lim
dt→0

Λhop
i (ρ̂(t))− ρ̂(t)

dt
= γD[σ̂−

i σ̂
+
i+1](ρ̂(t)), (C.33)

where D[ℓ̂](ρ̂) ≡ ℓ̂ρ̂ℓ̂† − 1
2
ℓ̂†ℓ̂ρ̂ − 1

2
ρ̂ℓ̂†ℓ̂. Similarly, for the Λon and Λoff processes, we

have

lim
dt→0

Λon(ρ̂(t))− ρ̂(t)
dt

= αD[σ̂+
1 ](ρ̂(t)),

lim
dt→0

Λoff
i (ρ̂(t))− ρ̂(t)

dt
= βD[σ̂−

N ](ρ̂(t)),

(C.34)

respectively. Combining each of these gives the TASEP continuous-time master
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equation

d

dt
ρ̂(t) =

1

N + 1

(
αL(σ̂+

1 ) + βL(σ̂−
N)
)

+
1

N + 1

(
γ
N−1∑

i=1

L(σ̂−
i ⊗ σ̂+

i+1)

)
[ρ̂(t)].

(C.35)

Finally, rescaling the rates α, β, γ by a factor of N + 1 gives Eq. 5.5, which is the
form we use in the main text chapters. Generally, we set the bulk hopping γ = 1

unless otherwise stated.
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Appendix D

Performing the Gap Integral

Herein we present two approaches to tackle the computation of the gap integral
(Eq. 6.38). We write it explicitly as it has appeared thusfar, with minor modifica-
tions,

Egap = −2ϵγ
∫ π

0

dk
|2∆ sin(k)|2

(µ+ 2w cos(k))2 + |2∆ sin(k)|2 . (D.1)

We note that the integral is even in the integration variable (k) so will continue with
two times the integral from 0 to π in the remainder of this appendix as above and
drop the minus signs in the squared term involving cos(k). We will take two possible
approaches and see what they yield, firstly in Sec. D.1 we use a change of variables
and continue to calculate the expression as a real integral. Following this we will
convert the original integral to a contour integral about the unit circle in Sec. D.2
and determine if we can gain further insights into the integral from that approach.

We find that both approaches yield the same result which provides a verification
of the methods. While the real integration method of Sec. D.1 may be rather
straightforward it does require us to use the prior knowledge that the gap is a real
valued quantity by definition to evaluate the limits of integration correctly. However,
by performing the evaluation via a contour integral in Sec. D.2 we need not have
prior knowledge of the quantity to be calculated.

Moreover, the contour integral has the added feature that the poles relevant to
the gap are “lifted” off the real axis of the complex plane when the parameters are
chosen in the topological region of the Hamiltonian. Outside of the topological
region of the parameter space these poles are pinned to the real axis, an example of
this feature is seen in Fig. D.1.
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D.1 Change of Variables

The change of variables we propose for this section is:

x = 2 cos(k), dx = −2 sin(k)dk, x(π) = −2, x(0) = 2. (D.2)

Inserting all of this information into (D.1), and expanding the denominator, yields

Ix(w, µ,∆) = −2∆2ϵγ

∫ −2

2

dx
−2 sin (arccos(x/2))

µ2 + 2wµx+ w2x2 +∆2(4− x2) . (D.3)

Note now that we can use the identity

sin(arccos(x/2)) =
1

2

√
4− x2, (D.4)

in the denominator and tidy up to obtain

Ix(w, µ,∆) = −4∆2ϵγ

∫ 2

−2

dx

√
4− x2

(w2 −∆2)x2 + 2wµx+ 4∆2 + µ2
. (D.5)

Defining the following coefficients:

a ≡ w2 −∆2,

b ≡ 2wµ,

c ≡ µ2 + 4∆2,

(D.6)

produces

Ix(w, µ,∆) = −4∆2ϵγ

∫ 2

−2

dx

√
4− x2

ax2 + bx+ c
. (D.7)

This yields the expression, before evaluating at the integration limits,

−1
4∆2ϵγ

Ix(w, µ,∆) =− 1

a
arcsin

(x
2

)

−
√

8a2 + 2ac− b2 + b
√
b2 − 4ac√

2a
√
b2 − 4ac

× arctanh

(
8a+

(
b−
√
b2 − 4ac

)
x

√
8− 2x2

√
8a2 + 2ac− b2 + b

√
b2 − 4ac

)

+

√
8a2 + 2ac− b2 − b

√
b2 − 4ac√

2a
√
b2 − 4ac

× arctanh

(
8a+

(
b+
√
b2 − 4ac

)
x

√
8− 2x2

√
8a2 + 2ac− b2 − b

√
b2 − 4ac

)
.

(D.8)
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Some care must be taken when evaluating this expression at the limits x = ±2 to
keep account of the correct sign appearing from the arctanh. Either arctanh provides
a limit of ±iπ/2, so to keep everything, correctly, real we take a minus sign out of
the square root in front. The reason we enforce reality here is because the gap is
defined as the real component of the E1 Liouvillian eigenvalue and as such must be
real valued. The arcsin directly evaluates to π. This leaves us with the following
form

1

4∆2ϵγ
Ix(w, µ,∆) =

π

a
− π

a
√
2
√
b2 − 4ac

√
b2 − 8a2 − 2ac+ b

√
b2 − 4ac

+
π

a
√
2
√
b2 − 4ac

√
b2 − 8a2 − 2ac− b

√
b2 − 4ac.

(D.9)

Peeling back the a, b, c notation (D.6) gives us

1

4π∆2ϵγ
Ix(w, µ,∆) =

1

w2 −∆2

−

√
w2(µ2 − 4w2 + 4∆2) + µ2∆2 + 2|∆|µw

√
µ2 − 4w2 + 4∆2

2|∆|(w2 −∆2)
√
µ2 − 4w2 + 4∆2

+

√
w2(µ2 − 4w2 + 4∆2) + µ2∆2 − 2|∆|µw

√
µ2 − 4w2 + 4∆2

2|∆|(w2 −∆2)
√
µ2 − 4w2 + 4∆2

(D.10)

This is not yet the final, most useful form of the integral. Firstly, in chapter 5
we only take ∆ > 0 so we drop the absolute value here. Moreover, we define the
square root in the denominator as its own variable ζ

ζ =
√
µ2 − 4w2 + 4∆2. (D.11)

This now allows a new more compact form

1

πϵγ
Ix(w, µ,∆) =

4∆2

w2 −∆2

(
−1 + 1

2∆ζ

(√
(wζ +∆µ)2 −

√
(wζ −∆µ)2

))
,

=
4∆2

w2 −∆2

(
−1 + 1

2∆ζ
(|wζ +∆µ| − |wζ −∆µ|)

)
.

(D.12)

We can make a brief analysis of this expression to understand further how this
simplifies for the two phases of the quantum model i.e. |µ| < 2w or |µ| > 2w. First
assume that ζ ∈ R. Then we have four cases:

1. If |wζ ±∆µ| > 0

|wζ +∆µ| − |wζ −∆µ| = 2µ∆
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2. If |wζ ±∆µ| < 0

|wζ +∆µ| − |wζ −∆µ| = −2µ∆

3. If |wζ +∆µ| > 0 & |wζ −∆µ| < 0

|wζ +∆µ| − |wζ −∆µ| = 2wζ

4. If |wζ +∆µ| < 0 & |wζ −∆µ| > 0

|wζ +∆µ| − |wζ −∆µ| = −2wζ

which lead to the four corresponding cases for the gap integral:

1

πϵγ
Ix(w, µ,∆) =





4∆2

w2−∆2

(
µ
ζ
− 1
)
, for case (i)

4∆2

w2−∆2

(
−µ
ζ
− 1
)
, for case (ii)

4∆2

w2−∆2

(
−1 + w

∆

)
= 4∆

w+∆
, for case (iii)

4∆2

w2−∆2

(
−1− w

∆

)
= −4∆

w−∆
, for case (iv).

(D.13)

Finally, how do these cases correspond to the actual phase transition (|µ| = 2w)?
Consider how we have split the case by the quantity wζ±µ∆. This quantity changes
sign when it crosses zero i.e. when

wζ ± µ∆ = 0,

w2(µ2 − 4w2 + 4∆2) = µ2∆2,

µ2(w2 −∆2) = 4w2(w2 −∆2),

⇒ |µ| = 2w.

(D.14)

D.2 Gap Integral as a Contour Integral

Similarly to the previous subsection we begin with a change of variables, trading k
for z in the following way:

z = exp(ik), dz = ieikdk, dk = −iz∗dz. (D.15)

Note that where we inserted x in the integrand earlier we can insert z + z∗. This
then gives the new z dependent integrand

z∗
1− (z2 + (z∗)2 + 2)/4

(µ2 + 4∆2) + 2wµ(z + z∗) + w2(z∗)2 + 2) + 4∆2(1− (z2 + (z∗)2 + 2)/4)
.

(D.16)
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Rearranging and using a, b, c as defined in the previous section gives us

1

∆2ϵγ
Iz(w, µ,∆) = −i

∮
dzz∗

2− z2 − (z∗)2

c+ b(z + z∗) + a(z2 + (z∗)2 + 2)
. (D.17)

Since the integral is over z our next step is to remove any z∗ which in this instance
is equivalent to z̄ or 1/z which yields

1

∆2ϵγ
Iz(w, µ,∆) = i

∮
dz

(z2 − 1)2

az5 + bz4 + (2a+ c)z3 + bz2 + az
. (D.18)

At this point the integrand is in a suitable form to discuss which values of z are
poles. In particular one can see that the all come from the denominator which we
find from solving the equation

az5 + bz4 + (2a+ c)z3 + bz2 + az = 0. (D.19)

Normally an arbitrary quintic polynomial would be exceedingly difficult to solve in
closed form but luckily this one can be solved symbolically since there is no constant
term. This means the actual solution to be found is of a quartic rather than an overly
difficult quintic. Solving this quartic gives, in addition to the obvious pole at zero,
four others which come in two pairs. Then in total the roots of the full polynomial
and hence the potential poles are:

z0 = 0, (D.20)

z±1 = − 1

4a
(b+

√
b2 − 4ac)± 1

a
√
8

√
b2 − 8a2 − 2ac+ b

√
b2 − 4ac, (D.21)

z±2 = − 1

4a
(b−

√
b2 − 4ac)± 1

a
√
8

√
b2 − 8a2 − 2ac− b

√
b2 − 4ac. (D.22)

Having obtained the poles explicitly we can next compute the residue of the integral
at each of these values of z. The residues are then, in a, b, c variables:

Res(z0) =
1

a
,

Res(z±1 ) =
∓1

a
√
2
√
b2 − 4ac

√
b2 − 8a2 − 2ac+ b

√
b2 − 4ac,

Res(z±2 ) =
±1

a
√
2
√
b2 − 4ac

√
b2 − 8a2 − 2ac− b

√
b2 − 4ac.

(D.23)
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Now as before we revert to the w, µ,∆ variables by inserting the definitions of a, b, c
and doing some minor rearrangement to produce:

Res(z0) =
1

w2 −∆2
,

Res(z±1 ) =
∓1

2∆(w2 −∆2)
√
µ2 − 4w2 + 4∆2

×
√
µ2(w2 +∆2)− 4w2(w2 −∆2) + 2µw∆

√
µ2 − 4w2 + 4∆2,

Res(z±2 ) =
±1

2∆(w2 −∆2)
√
µ2 − 4w2 + 4∆2

×
√
µ2(w2 +∆2)− 4w2(w2 −∆2)− 2µw∆

√
µ2 − 4w2 + 4∆2.

(D.24)

Recalling the definition of ζ we can write the two pairs compactly as:

Res(z±1 ) =
∓1

2∆(w2 −∆2)ζ

√
w2ζ2 + µ2∆2 + 2µw∆ζ,

Res(z±2 ) =
±1

2∆(w2 −∆2)ζ

√
w2ζ2 + µ2∆2 − 2µw∆ζ,

(D.25)

which leads to the final form for the residues:

Res(z0) =
1

w2 −∆2
,

Res(z±1 ) = ∓
|wζ + µ∆|

2∆(w2 −∆2)ζ
,

Res(z±2 ) = ±
|wζ − µ∆|

2∆(w2 −∆2)ζ
.

(D.26)

Finally, recall the residue theorem
∮

c

f(z)dz = 2πi
∑

k

Res(f, ak), (D.27)

for c a positively oriented simple closed curve (here the unit circle at the origin) and
ak a pole in the interior of the curve. These points enclosed by the contour are z0,
z+1 and z+2 , see Fig. D.1, which yield

1

ϵγ
Iz(w, µ,∆) = − 2π∆2

w2 −∆2
− ∆π|wζ + µ∆|

(w2 −∆2)ζ
+

∆π|wζ − µ∆|
(w2 −∆2)ζ

,

=
2π∆2

w2 −∆2

(
−1 + 1

2∆ζ
(|wζ + µ∆| − |wζ − µ∆|)

) (D.28)

From this point we can reproduce the same cases as found for the real form of the
integral.
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(b) Poles in Trivial Phase

Figure D.1: The locations of the poles of the contour integral. The contour itself is
the unit circle as defined from our change of variables. (a) We show the poles in the
topological phase, µ < 2. (b) We show the poles in the trivial phase, µ > 2. Notice
that while the poles move around the complex plane, the poles that are enclosed by
the contour are those poles we have labelled, z0, z+1 and z+2 . Hence, they are the one
whose residues we include to obtain our result. Interestingly the topological phase
can be seen by the poles “lifting” off the real line.
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