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Abstract

Intracranial volume reflects the maximally attained brain size during development, and remains 

stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely 

undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci 

for intracranial volume and confirmed two known signals. Four of the loci are also associated with 

adult human stature, but these remained associated with intracranial volume after adjusting for 

height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which 

indicated a similar genetic background and allowed for the identification of four additional loci 
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through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to 

childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in 

growth pathways including PI3K–AKT signaling. These findings identify biological 

underpinnings of intracranial volume and provide genetic support for theories on brain reserve and 

brain overgrowth.

The intricate genetic control of the human brain, complemented by environmental factors, 

leads to the observed variations in brain size in human populations1. Intracranial volume is 

closely related to brain volume in early life as the brain grows.2,3 However, it becomes 

stable after the brain has fully developed and remains unaffected by later age-related 

changes such as brain atrophy4,5, thus representing the maximal attained brain size. 

Discovering genetic variants that influence intracranial volume can contribute to our 

understanding of brain development and related diseases, but prior studies have only 

identified two influential genetic loci6–9.

Here, we performed genome-wide association studies in populations from the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE)10 and Enhancing 

NeuroImaging Genetics through Meta-Analysis (ENIGMA)11 consortia on intracranial 

volume measured by magnetic resonance imaging. Genotypes were imputed to the 1000 

Genomes reference panel (phase 1, version 3). Meta-analysis revealed five novel loci 

associated with intracranial volume. We also discovered genome-wide overlap between 

intracranial volume and other key traits including height, cognitive ability, and Parkinson’s 

disease. Furthermore, we found relatively enriched patterns of association for certain 

functional categories of variants and near genes that are involved in specific pathways.

RESULTS

Genome-wide association studies

Detailed information on the population characteristics, image acquisition and processing, 

and genetic quality control can be found in the Online Methods and Supplementary Tables 

S1–3.

The discovery meta-analysis (N = 26,577) yielded seven genome-wide significant (p < 5 × 

10−8) loci, five of them novel (Figures 1–2; Table 1). The quantile-quantile plot showed 

inflation (λ = 1.092; Supplementary Figure S1), which we determined to be mainly due to 

polygenicity rather than cryptic relatedness or population stratification using LD score 

regression12. Next we analyzed European samples (N = 2,362; not included in the discovery 

sample) and generalization samples with African (N = 938), Asian (N = 955), and Hispanic 

(N = 1,605) ancestries (Table 1). All variants had the same direction of effect in the 

additional European samples (sign test, P = 0.0078), and three variants replicated, at nominal 

significance. Although sample sizes were generally small for the non-Europeans, here too, 

the direction of effect was generally concordant with the discovery (sign test, P = 0.039). 

Five nominally significant associations were detected across all three ethnicities.

Next we were able to map the association to novel variants for two previously identified loci 

at chromosome 17q21 (rs199525; P = 3.8 × 10−21) and 6q22 (rs11759026; P = 2.2 × 
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10−20)6,7. The five novel loci were on chr 6q21 (rs2022464; P = 3.7 × 10−11), chr 10q24 

(rs11191683; P = 1.1 × 10−10), chr 3q28 (rs9811910; P = 2.0 × 10−9), chr 12q14 

(rs138074335/ rs7312464; P = 6.2 × 10−9), and chr 12q23 (rs2195243; P = 1.5 × 10−8). 

Functional annotation of the variants and those in LD (r2>0.8) can be found in 

Supplementary Table S4.

Height-adjusted analyses

Four of the seven loci for intracranial volume were previously discovered for height (17q21, 

6q22, 6q21, and 12q14), prompting us to investigate genome-wide overlap between the two 

traits. As height and intracranial volume are correlated (weighted average Pearson’s r = 

0.556; Supplementary Table S5) and this could drive association signals, we performed a 

GWAS of intracranial volume adjusted for height in the studies that had measured height (N 
= 21,875). Findings were compared to the corresponding subset of studies without 

adjustment (N = 22,378). Using LD score regression (Online Methods), we found that there 

is considerable genetic correlation between intracranial volume and height (ρgenetic = 0.241, 

P = 2.4 × 10−10), which disappears after adjusting for height (ρgenetic = 0.049, P = 0.21) 

(Table 2). The associations of the seven intracranial volume loci, however, remained 

significant after adjusting for height (Supplementary Table S6). To investigate whether more 

height loci were associated with intracranial volume independently of height, we analyzed 

all 697 genome-wide significant height variants13. An additional 73 variants (10.7%; 14 

variants not available) showed nominally significant associations with intracranial volume 

but were not attenuated after adjustment for height, although none survived Bonferroni 

correction (Supplementary Table S7). For some variants, the direction of effect was 

discordant, i.e. positive for height and negative for intracranial volume. Furthermore, a 

polygenic score of the 697 variants predicted intracranial volume, and this was also the case 

after adjustment for height in a subset of the studies (Supplementary Table S8).

Genetic correlation

In addition to height, we examined the genome-wide genetic overlap between intracranial 

volume and other anthropometric traits, cognitive function, and neurodegenerative diseases 

(Table 2). We found a strong genetic correlation with child head circumference (ρgenetic = 

0.748), which validates intracranial volume as a measure of brain growth during early 

development. Since this high correlation indicates that the genetic determinants of 

intracranial volume and child head circumference are largely shared, we aimed to leverage 

this information by performing a meta-analysis of both traits. The meta-analysis (combined 

N = 37,345) led to the identification of four novel loci (Figure 3; Supplementary Table S9).

Weaker correlations were found with birth length and weight (ρgenetic < 0.3), which 

attenuated after adjusting for height. Additionally, intracranial volume was genetically 

correlated with cognitive function in childhood (ρgenetic = 0.277, P = 2.2×10−3) as well as 

general cognitive function in middle-aged and older adults (ρgenetic = 0.202, P = 6.3×10−4). 

Furthermore, we found a positive genetic correlation with Parkinson’s disease (ρgenetic = 

0.315, P = 6.6 × 10−7), but there was no significant genetic overlap with Alzheimer’s 

disease, white matter lesions, and psychiatric traits.

Adams et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Enrichment analyses

Next, we assessed whether particular subsets of genetic variants were enriched for 

association with intracranial volume using partitioned heritability and pathway analyses 

(Online Methods). Overall, we found that common variants genotyped from across the 

whole genome explained 25.42% (S.E. 2.73%) of the variation in intracranial volume. 

Partitioning heritability by chromosome showed that chromosome 22 contributed twofold 

more to variation in intracranial volume than would be expected by its size (Figure 4A), 

which was not seen for any of the other complex traits from the genetic correlation analysis 

(Supplementary Figure S2). Partitioning by functional elements showed an enrichment for 

introns and several histone codes that are found in actively transcribed promoters (Figure 

4B). The enrichment for intronic variants was specific to intracranial volume, whereas the 

other functional classes were also enriched in other complex traits (Supplementary Figure 

S3). We also found that loci associated with intracranial volume cluster around genes 

involved in specific pathways, with 94 pathways significantly enriched (Figure 4C; full list 

in Supplementary Table S10). These pathways included all cell cycle components – the M-, 

G1-, S-, and G2-phases – and various growth factor signaling pathways, including PI3K–

AKT.

Head growth trajectories

Although intracranial volume reflects brain development until maturation, and we identified 

influences of many growth-related processes contributing to its variation, all loci were still 

discovered via cross-sectional associations in adults. Therefore, we tested whether a 

polygenic score of the 7 loci could predict head growth in a longitudinal cohort of 2,824 

children of European ancestry followed prenatally until 6 years of age (Online Methods). 

We found that a higher polygenic score, representing a genetically larger intracranial volume 

in adults, was also associated with a larger child head circumference (β = .031 per SD, P = 

0.010). Furthermore, the effect of the polygenic score was age-dependent and more 

prominent in older children (β = 0.0080 per SD polygenic score per year age, Pinteraction = 

0.0091). When investigating the individual loci separately, both 17q21 and 12q14 showed 

significant associations with child head circumference, but they influenced the trajectories of 

head growth differently (Figure 4A–B). For 17q21, the negative impact of the G allele on 

head circumference becomes apparent postnatally and increases towards six years, whereas 

the 12q14 locus exerts an effect from early pregnancy to one year of age, but is less 

prominent later in life.

DISCUSSION

Genes contributing to variation in the size of the human brain remain challenging to 

discover. In a worldwide project of unprecedented scale, we performed the largest-ever 

meta-analysis of genome-wide association studies of intracranial volume. We discovered 

five novel genetic loci associated with intracranial volume, and replicated two known 

signals. The discovery sample included Europeans only, but the direction of effect was 

similar in other ethnicities. The genes in these loci provide intriguing links between maximal 

brain size and various processes, including neural stem cell proliferation (FOXO3), 

neurodegeneration (MAPT), bone mineralization (CENPW), growth signaling (IGF1, 
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HMGA2), DNA replication (GMNC), and rRNA maturation (PDCD). On a genome-wide 

scale, we discovered evidence of genetic correlation between intracranial volume and other 

key traits such as height and cognitive function, and also with Parkinson’s disease, 

indicating that the genes underlying brain development have far-reaching effects well 

beyond the initial years of life.

The 17q21 locus tags a 1Mb inversion that is under positive selection in Caucasians14. It 

contains multiple genes including the MAPT and KANSL1. The MAPT gene is consistently 

implicated in various neurodegenerative disorders including Parkinson’s disease, 

Alzheimer’s disease, and frontotemporal dementia15,16, and microduplications have been 

reported to cause microcephaly17. KANSL1 causes the reciprocal 17q21.31 microdeletion 

syndrome - a multisystem disorder with intellectual disability, hypotonia and distinctive 

facial features18. The signal at 6q22 is intergenic to CENPW and RSPO3, but now lies 

172kb closer to CENPW. Interestingly, multiple variants at this locus independently 

influence bone mineral density19,20, and our signal particularly overlaps with the variant 

showing high specificity for the skull20.

The significant variants at chr 6q21 span FOXO3, a gene associated with longevity21, 

height13, and serum IGF1 levels22. FOXO3 regulates the proliferation of neural stem cells, 

and knockout mice show larger brains resulting from increased proliferation immediately 

after birth23, followed by a decrease in adult neural stem cell renewal23,24. The rs3800229 

variant in strong LD with our top variant (r2 = 0.84) contains chromatin promoter marks in 

the fetal brain (Supplementary Table S4), and regulates serum IGF1 levels in infants25. This 

provides a link to the genome-wide significant locus on chr12q23 near IGF1, pointing to a 

potential mechanism through which these loci may affect brain growth. Chr12q23 lies 20Mb 

from one of two loci previously detected for head circumference in children26, but that 

region was not associated with intracranial volume in our study (rs7980687; P = 0.06). The 

other reported child head circumference locus, however, corresponded to our chr12q14 

signal, with the top variant lying 14kb downstream of HMGA2, and already showed 

suggestive association with intracranial volume in a previous report7. It has also previously 

been associated with height13 and is essential for growth27. The chr10q24 LD-block covers 

multiple genes, but an intronic variant within PDCD11 is most significant. PDCD11 encodes 

an NF-kappa-B-binding protein required for rRNA maturation and generation of 18S 

rRNA28. A variant in LD (rs7894407) has recently been identified in a GWAS of cerebral 

white matter hyperintensities29. The top chr3q28 variant is located upstream of GMNC, 

which codes for the geminin coiled-coil domain-containing protein essential for DNA 

replication30.

Prior efforts to identify variants affecting intracranial volume were much smaller and 

critically did not adjust for height6–9. We found that 4 out of 7 loci were already discovered 

for height13, but also that over 10% of the known ‘height loci’ actually affect intracranial 

volume, even after regressing out height. Interestingly, some variants showed discordant 

associations for height and intracranial volume - in line with the recent finding that different 

height loci disproportionally affect either leg length or spine/head length31 and may be a 

marker for pathological development32. Also, height might thus serve as a proxy phenotype 

for intracranial volume, with the tenfold larger sample of the height GWAS giving greater 
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power to detect associations. Neural genes are also enriched in pathway analyses of height13. 

However, to fully disentangle whether these identified genes are ‘height genes’, ‘brain 

volume genes’, or ‘growth genes’ (i.e., pleiotropic), a large collaborative effort is needed that 

examines the association of these variants with both intracranial volume and height under 

various models.

When investigating genome-wide overlap with other traits, we found a strong correlation 

with child head circumference, underlining that intracranial volume is valid measure for 

maximal attained brain size. We were able to leverage this genetic link by meta-analyzing 

both traits, which led to the identification of four additional loci (2q32.1, 3q23, 7p14.3, 

22q13.2). The correlations with birth length and weight were weaker and decreased further 

after adjusting for height, so a similar phenotypic correlation between head size and body 

size at younger age may drive these correlations. Intracranial volume was also genetically 

associated with cognitive function in childhood as well as general cognitive function in 

middle-aged and older individuals. This indicates that variation in maximally attained brain 

size during development shares a genetic basis with cognitive ability later in life and 

supports intracranial volume as a measure of brain reserve5.

The brain reserve hypothesis states that premorbid brain size can modify resilience to age-

related brain pathology33, but there was no indication of a genome-wide overlap with 

Alzheimer’s disease. However, we found a positive genetic correlation with Parkinson’s 

disease that rather points to a brain “overgrowth” hypothesis. Interestingly, the IGF1 and the 

PI3K–AKT pathways, key factors in both growth signaling and our current study of 

intracranial volume, are neuroprotective in a model system of Parkinson’s disease34. There 

were no correlations with other neurological or psychiatric traits, indicating that this finding 

might be specific to Parkinson’s disease. However, it is important to note that there is a 

certain extent of variation in the sample size and power of these studies, and larger GWAS 

might reveal genetic correlation with other traits as well.

It is not yet known if variance in intracranial volume, within the normal range, contributes to 

disease risk or brain reserve. There is no doubt that in the pathological extremes of the 

distribution, size can matter, as in disorders such as microcephaly or macrocephaly. Here we 

found evidence for a shared genetic background between intracranial volume and cognitive 

function, and risk of Parkinson’s disease. While not definitive, these are novel pieces of 

empirical evidence in the debate on whether or not whole brain size matters.

The pathway analyses highlight cellular growth and proliferation and included all 

components of the cell cycle (M-, G1-, S-, and G2-phase) and various growth factor 

signaling pathways. PI3K–AKT signaling has a well described role in brain overgrowth 

disorders35,36, and was the only significant pathway using a different pathway analysis 

method (Supplementary Table S11). Interestingly, AKT3 intronic variants showed 

suggestive evidence for association with intracranial volume (rs7538011; P = 9.2 × 10−7). 

Deletions of AKT3 cause microcephaly syndromes37, whereas duplications give rise to 

macrocephaly38. Similar to FOXO3, it is part of the IGF1 signaling pathway, which is 

important for human longevity39. The PI3K–AKT signaling pathway seems to have an 

important role in brain growth, not only in pathological extremes, but also for normal 
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variation at a population level. Other pathways enriched for association with intracranial 

volume highlight neuronal functions such as neurotransmission and axon guidance.

We identified novel loci all influencing intracranial volume and, at a genome-wide level, 

there seem to be common pathways, but our longitudinal study reveals that their 

developmental effects are complex. The loci influenced trajectories of head growth 

differently; it also would be interesting to investigate whether their spatial profiles of effects 

are distinct, where certain loci promote growth of particular brain regions.

Here we identified key genetic loci implicated in intracranial volume within a global 

collaborative effort, followed by computational analyses to determine the important 

biological pathways and functional elements. While the majority of the genetic variants are 

yet to be discovered, it is clear that these will provide better insight into brain development, 

but also into related neuropsychiatric traits such as cognitive functioning and even for 

neurodegeneration late in life. Uncovering the remaining heritability will advance our 

understanding of the brain’s complex genetic architecture.

ONLINE METHODS

Study population

This study reports data on 32,438 subjects from 52 study sites that are part of the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE)10 consortium and 

Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)11 consortium. 

Briefly, the CHARGE consortium is a collaboration of predominantly population-based 

cohort studies that investigate the genetic and molecular underpinnings of age-related 

complex diseases, including those of the brain. The ENIGMA consortium brings together 

numerous studies, mainly with a case-control design, which performed neuroimaging in a 

range of neuropsychiatric or neurodegenerative diseases, as well as healthy normative 

populations. Studies participated in either the discovery cohort of European ancestry, the 

replication in European ancestry, or the generalization to other ethnicities. An overview of 

the demographics and type of contribution for each cohort is provided in Supplementary 

Table S1. Written informed consent was obtained from all participants. Each study was 

approved by the respective Institutional Review Board or Local Ethics Committee.

Genetics

Genotyping was performed using a variety of commercial arrays across the contributing 

sites. Both samples as well as variants underwent similar quality control procedures based 

on genetic homogeneity, call rate (less than 95%), minor allele frequency (MAF < 0.01), and 

Hardy-Weinberg Equilibrium (HWE p-value less than 1 × 10−6). Good quality variants were 

used as input for imputation to the 1000 Genomes reference panel (phase 1, version 3) using 

validated software packages (MaCH/minimac, IMPUTE2, BEAGLE, GenABLE). Variants 

that were poorly imputed (R2 < 0.5) or uncommon (MAF < 0.5%) were removed prior to 

meta-analysis. Full details on the site-specific genotyping and quality control may be found 

in Supplementary Table S2.
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Imaging

Magnetic resonance imaging (MRI) was obtained from scanners with a diversity of 

manufacturers, field strengths, and acquisition protocols. Images were used to estimate 

milliliters of intracranial volume from automated segmentations generated by freely 

available or in-house methods that have been described and validated earlier. Most sites 

measured intracranial volume for each participant by multiplying the inverse of the 

determinant of the transformation matrix required to register the subject’s MRI scan to a 

common template by the template volume (1,948,105 mm3), using the FreeSurfer software. 

Visual inspections were performed to identify and remove poorly segmented images. Either 

all scans were visually inspected, or sites generated histogram plots to identify any outliers, 

which were defined as individuals with a volume more than three standard deviations away 

from the mean. Statistical outliers were only excluded if the segmentations were deemed 

improper‥ More site-specific information related to the imaging is available in 

Supplementary Table S3.

Genome-wide association studies

Genome-wide association studies of intracranial volume were performed for each site 

separately, controlling for age, sex, and, when applicable, age2, population stratification 

variables (MDS / principal components), study site (for multi-site studies only), diagnosis 

(for case-control studies only). Studies of unrelated individuals performed a linear regression 

analyses whereas studies of related individuals (ASPSFam, BrainSCALE, ERF, GeneSTAR, 

GOBS, NeuroIMAGE, NTR-Adults, OATS, QTIM, SYS) used linear mixed models to 

account for familial relationships. Summary statistics, including the effect estimates of the 

genetic variant with intracranial volume under an additive model, were exchanged to 

perform a fixed-effects meta-analysis weighting for sample size in METAL40. After the final 

meta-analysis, variants were excluded if they were only available for fewer than 5,000 

individuals. Meta-analyses were stratified by race and done separately for discovery, 

replication, and generalization samples. Beta coefficients were recalculated from Z-scores, 

allele frequencies, and the sample, as described earlier41 Site-specific quantile-quantile plots 

were generated to inspect the presence of genomic inflation. The variance explained by all 

variants in the GWAS was estimated using LD score regression12,42. Sensitivity analyses 

were performed by excluding patients.

Functional annotation

All tracks of the regional association plots were taken from the UCSC Genome Browser 

Human hg19 assembly. SNPs (top 5%) shows the top 5% associated variants within the 

locus and are colored by their correlation to the top variant. Genes shows the gene models 

from GENCODE version 19. The tracks give the predicted chromatin states based on 

computational integration of ChIP-seq data for 12 chromatin marks in various human tissues 

derived from the Roadmap Epigenomics Consortium43. Additionally, we used HaploReg 

version 3 for annotation of the top variants and all variants in LD (> 0.80) (http://

www.broadinstitute.org/mammals/haploreg/haploreg_v3.php).
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Genetic correlation

The genetic correlation analyses were also performed using LD score regression. The 

GWAS meta-analysis of intracranial volume, as well as the height adjusted and height subset 

meta-analyses, were correlated with published GWAS of the following traits: Child head 

circumference26, birth weight44, birth length45, adult height13, childhood cognitive 

function46, adult cognitive function47, Alzheimer’s disease48, Parkinson’s disease49, white 

matter lesions50, psychiatric disorders51, neuroticism52, and extraversion53.

Enrichment analyses

To determine whether the intracranial volume association results were enriched for certain 

types of genetic variants, we employed two strategies: partitioned heritability and pathway 

analyses.

Partitioned heritability was calculated using a previously described method42. This was done 

by partitioning variants by chromosome and by 28 functional classes: coding, UTR, 

promoter, intron, histone marks H3K4me1, H3K4me3, H3K9ac5 and two versions of 

H3K27ac, open chromatin DNase I hypersensitivity Site (DHS) regions, combined 

chromHMM/Segway predictions, regions that are conserved in mammals, super-enhancers 

and active enhancers from the FANTOM5 panel of samples (Finucane et al. page 4)42. 

Multiple testing thresholds were calculated accordingly: Pthresh = 0.05/(22 chromosomes) = 

2.27 × 10−3 for the chromosomes and Pthresh = 0.05/(28 classes) = 1.79 × 10−3 for the 

functional classes.

Pathway analyses were performed using the KGG2.554 and MAGENTA55 software 

packages. LD was calculated based with the 1000 Genomes Project European samples as a 

reference (see URLs). Variants were considered to be within a gene if they were within 5 kb 

of the 3’/5’ UTR based on chromosome positions (hg19) coordinates. Gene-based tests were 

done with the GATES test54 without weighting P-values by predicted functional relevance. 

Pathway analysis was performed using the HYST test of association56. A multiple testing 

threshold accounting for the number of pathways tested resulting in a significance threshold 

of Pthresh = 0.05/(671 pathways) = 7.45 × 10−5.

Head growth trajectories

Head growth trajectory analyses were done within the Generation R study, a longitudinal 

cohort study situated in Rotterdam, the Netherlands. For this analysis we included 2,824 

children of European ancestry followed prenatally until 6 years of age. Head size was 

measured at the following points: prenatally (using echo) during the first, second, and third 

trimester, and postnatally (measuring head circumference) at 0–2 months, 2 months, 3 

months, 4 months, 5–10 months, 10–13 months, 13–17 months, and 5 years of age. We 

tested whether a polygenic score of the 7 loci, as well as the 7 loci themselves separately, 

were related to head growth using linear mixed models and included an interaction term 

between time and the genetic score/variant (SAS software). Next, the predicted values were 

calculated for each person and plotted over time, stratified by genotype (0/1/2 risk alleles) 

using the R software package.
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URLs

ftp://pricelab:pricelab@ftp.broadinstitute.org/LDSCORE/

http://enigma.ini.usc.edu/protocols/genetics-protocols/

http://genenetwork.nl/bloodeqtlbrowser/

http://gump.qimr.edu.au/general/gabrieC/LocusTrack/)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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the European Commission (DG XII), and the Municipality of Rotterdam. This research is supported by the Dutch 
Technology Foundation STW, which is part of the NWO, and which is partly funded by the Ministry of Economic 
Affairs. MAI is supported by ZonMW grant number 916.13.054. HHHA is supported by the Van Leersum Grant of 
the Royal Netherlands Academy of Arts and Sciences.

Saguenay Youth Study (SYS): The Saguenay Youth Study project is funded by the Canadian Institutes of Health 
Research (TP, ZP), Heart and Stroke Foundation of Quebec (ZP), and the Canadian Foundation for Innovation (ZP). 
TP is supported by the Tanenbaum Chair in Population Neuroscience at the Rotman Research Institute, University 
of Toronto.

SHIP and TREND: The SHIP datasets are part of the Community Medicine Research net (CMR) of the University 
of Greifswald, which is funded by the German Federal Ministry of Education and Research and the German 
Ministry of Cultural Affairs, as well as by the Social Ministry of the Federal State of Mecklenburg–West Pomerania 
(grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), and the network ‘Greifswald Approach to Individualized 
Medicine (GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-
wide data and MRI scans were supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) 
and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg–West 
Pomerania. The University of Greifswald is a member of t the Caché Campus Program of the InterSystems GmbH.

Sydney Memory and Ageing Study (Sydney MAS): We would like to thank the Sydney MAS participants, their 
supporters and respective Research Teams. Sydney MAS was supported by the Australian National Health and 
Medical Research Council (NHMRC) Program Grants 350833 and 568969 to P Sachdev, H Brodaty and G 
Andrews. DNA was extracted by Genetic Repositories Australia, an Enabling Facility supported by the NHMRC 
Grant 401184. Henry Brodaty is supported by the Australian Government funded Dementia Collaborative Research 
Centre (DCRC), UNSW. Nicola Armstrong was supported by the NHMRC Project Grant 525453 and Karen Mather 
is supported by an Alzheimer’s Australia Dementia Research Foundation Postdoctoral Fellowship. Both Simone 
Reppermund and Karen Mather are supported by the NHMRC Capacity Building Grant 568940.

Tasmanian Study of Gait and Cognition (TASCOG): The Tasmanian Study of Gait and Cognition is supported 
by project grants from the National Health and Medical Research Council of Australia (NHMRC; 403000,491109, 
and 606543) and a grant from the Wicking Dementia Education and Research Centre, Hobart. V.S. is supported by a 
cofunded NHMRC Career Development Fellowship (1061457) and a Heart Foundation Future Leader Fellowship 
(ID 100089).

Three City Dijon Study: The 3-City Study is conducted under a partnership agreement among the Institut National 
de la Santé et de la Recherche Médicale (INSERM), the Victor Segalen–Bordeaux II University, and Sanofi-
Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C 
Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, 
Mutuelle Générale de l’Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine 
and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme “Cohortes et collections de 
données biologiques.” Christophe Tzourio and Stéphanie Debette are supported by a grant from the Fondation 
Leducq.

TOP: The study was supported by the Research Council of Norway (#213837, #223273, #229129), South-East 
Norway Health Authority (#2013-123) and KG Jebsen Foundation.

UCLA_NL_BP: Data collection and genotyping was made possible with (NIH/NIMH) R01 MH090553 to 
R.A.O.th-East Norway Health Authority (#2013-123) and KG Jebsen Foundation.

UMCU: UMCU acknowledgement data: This work was supported by 917.46.370 (H.H.) and 908-02-123 (H.H.) 
from the Netherlands Organisation for Health Research and Development ZonMW.

WHICAP: This study was supported by a grant from the NIH (5R01AG037212).

Published GWASs used for genetic correlation analysis

CHARGE consortium: See Davies et al.47 for the general cognitive function GWAS, and Verhaaren et al.50 for 
the white matter lesion GWAS.

Early Growth Genetics (EGG) consortium: Data on head circumference, birth weight, and birth length have been 
contributed by the EGG Consortium and has been downloaded from www.egg-consortium.org.

Genetic Investigation of ANthropometric Traits (GIANT) consortium: See Wood et al.13

Genetics of Personality Consortium: See De Moor et al.52 for the neuroticism GWAS and Van den Berg et al.53 

for the extraversion GWAS.
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IGAP: We thank the International Genomics of Alzheimer’s Project (IGAP) for providing summary results data for 
these analyses. The investigators within IGAP contributed to the design and implementation of IGAP and/or 
provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous 
participation of the control subjects, the patients, and their families. The i–Select chips was funded by the French 
National Foundation on Alzheimer’s disease and related disorders. EADI was supported by the LABEX (laboratory 
of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de 
Lille 2 and the Lille University Hospital. GERAD was supported by the Medical Research Council (Grant n° 
503480), Alzheimer’s Research UK (Grant n° 503176), the Wellcome Trust (Grant n° 082604/2/07/Z) and German 
Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant n° 01GI0102, 
01GI0711, 01GI0420. CHARGE was partly supported by the NIH/NIA grant R01 AG033193 and the NIA 
AG081220 and AGES contract N01–AG–12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, 
and the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA grants: U01 
AG032984, U24 AG021886, U01 AG016976, and the Alzheimer’s Association grant ADGC–10–196728.

International Parkinson’s Disease Genomics Consortium (IPDGC): See Nalls et al.49

Psychiatric Genomics Consortium: See Cross-Disorder Group of the Psychiatric Genomics paper. 51

Social Science Genetic Association Consortium (SSGAC): See Benyamin et al.46 for the childhood cognitive 
function GWAS.
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Figure 1. Common genetic variants associated with intracranial volume
Manhattan plot where every point represents a single genetic variant plotted according to its 

genomic position (x-axis) and its –log10(p-value) for association with intracranial volume 

(y-axis). Variants in blue are genome-wide significant in a previously known locus, whereas 

red variants reach genome-wide significant for the first time in that locus. The dashed 

horizontal line represents a significance threshold of p-value < 10−6 and the full horizontal 

line represents genome-wide significance of p-value < 5 × 10−8. Variants surpassing these 

thresholds are indicated by larger points.
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Figure 2. Regional association and functional annotation of novel genome-wide significant loci
Regional association plots for the five novel genome-wide significant loci of intracranial 

volume with gene models below (GENCODE version 19). Annotation tracks below from the 

Roadmap Epigenomics Consortium57 highlight the genomic region that likely harbors the 

causal variant(s) (r2 > 0.8 from the top SNP). See Online Methods for detailed track 

information. Plots were generated using the LocusTrack software (http://gump.qimr.edu.au/

general/gabrieC/LocusTrack/).
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Figure 3. Meta-analysis of intracranial volume and child head circumference
A ‘twin’ Manhattan plot shows every variant twice: once for the discovery analysis and once 

for the combined discovery plus replication analysis. The least significant association of the 

variant-pair is plotted in grey (alternating light and dark between chromosomes). The most 

significant association of the variant-pair is plotted in red if is from the combined analysis 

(i.e., the association became more significant after meta-analyzing with the child head 

circumference GWAS) and in turquoise if it is from the discovery analysis (i.e., the 

association became less significant after meta-analyzing with the child head circumference 

GWAS). The dashed horizontal line represents a significance threshold of p-value < 10−6 

and the full horizontal line represents genome-wide significance of p-value < 5 × 10−8. 

Variants surpassing these thresholds are indicated by larger and brighter points.
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Figure 4. Enrichment analyses of common variants associated with intracranial volume
Enrichment of subsets of variants for association with intracranial volume: A) by 

chromosomes, B) by functional subtype, and C) by pathway. See Online Methods for 

additional information.
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Figure 5. Temporal trends of intracranial volume loci during pre- and postnatal brain 
development
Mean predicted values of standardized head circumference using linear mixed models with 

age, sex, and the rs199525 or rs138074335 variants. The blue line represents children not 

carrying the risk allele, purple only a single risk allele, and red with two risk alleles. See 

Online Methods for additional information. Total sample size is 2,824.
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