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Background—The burden of cerebral white matter hyperintensities (WMH) is associated with an increased risk of stroke, 
dementia, and death. WMH are highly heritable, but their genetic underpinnings are incompletely characterized. To 
identify novel genetic variants influencing WMH burden, we conducted a meta-analysis of multiethnic genome-wide 
association studies.

Methods and Results—We included 21 079 middle-aged to elderly individuals from 29 population-based cohorts, who were 
free of dementia and stroke and were of European (n=17 936), African (n=1943), Hispanic (n=795), and Asian (n=405) 
descent. WMH burden was quantified on MRI either by a validated automated segmentation method or a validated visual 
grading scale. Genotype data in each study were imputed to the 1000 Genomes reference. Within each ethnic group, we 
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investigated the relationship between each single-nucleotide polymorphism and WMH burden using a linear regression 
model adjusted for age, sex, intracranial volume, and principal components of ancestry. A meta-analysis was conducted 
for each ethnicity separately and for the combined sample. In the European descent samples, we confirmed a previously 
known locus on chr17q25 (P=2.7×10−19) and identified novel loci on chr10q24 (P=1.6×10−9) and chr2p21 (P=4.4×10−8). 
In the multiethnic meta-analysis, we identified 2 additional loci, on chr1q22 (P=2.0×10−8) and chr2p16 (P=1.5×10−8). 
The novel loci contained genes that have been implicated in Alzheimer disease (chr2p21 and chr10q24), intracerebral 
hemorrhage (chr1q22), neuroinflammatory diseases (chr2p21), and glioma (chr10q24 and chr2p16).

Conclusions—We identified 4 novel genetic loci that implicate inflammatory and glial proliferative pathways in the development 
of WMH in addition to previously proposed ischemic mechanisms.   (Circ Cardiovasc Genet. 2015;8:398-409. DOI:  
10.1161/CIRCGENETICS.114.000858.)

Key Words:  cerebral small vessel diseases ◼ cerebrovascular disorders ◼ genome-wide association study  
◼ hypertension ◼ leukoencephalopathies ◼ polymorphisms, single nucleotide

Cerebral white matter hyperintensities (WMH) are com-
mon in the aging population and are associated with 

an increased risk of stroke, vascular cognitive impairment, 
dementia, and death.1 The prevalence and severity of WMH 
increase with advancing age and the presence of vascular 
risk factors, notably hypertension.2 The pathophysiology of 
WMH is poorly understood but likely reflects ischemic or 
degenerative damage to the small vessels of the brain, lead-
ing to chronic cerebral hypoperfusion and myelin rarefaction.3 
Perivascular inflammation is a prominent pathological feature 
in WMH,4 and WMH burden has been associated with circu-
lating biomarkers of inflammation, including high-sensitivity 
C-reactive protein, interleukin-6, lipoprotein-associated phos-
pholipase A2, and myeloperoxidase.5,6

Twin and family studies suggest that the heritability of WMH 
is 55% to 80%.7–9 Yet, few genetic variants have been identi-
fied and they explain only a small proportion of the phenotypic 
variance,10 suggesting that additional variants remain to be dis-
covered. The first meta-analysis of genome-wide association 
studies (GWAS) on WMH burden identified a new locus on 
Chr17q25,11 which has been replicated in several studies.12–14 
It comprised 9361 individuals of European descent and used 
genome-wide genotype data imputed to the HapMap2 reference 
panel.11 In recent years, the 1000 Genomes reference panel has 
become available for genotype imputation, enabling the study of 
millions of single-nucleotide polymorphisms (SNPs), including 
low-frequency variants. Furthermore, additional studies with 
brain MRI data have obtained genome-wide genotype data, 
including studies in populations of African, Hispanic, and Asian 
descent. Here, we conducted a meta-GWAS of WMH burden 
based on 1000 Genomes imputation data in 21 079 individuals 
from 4 ethnic groups. To gain pathophysiological insights, we 
also investigated the joint effect on WMH burden of genetic 
loci for high blood pressure levels, a strong predictor of WMH 
burden, and for Alzheimer disease and stroke, which, both, have 
comorbid loads of WMH.

Subject and Methods
Study participants were from 29 population-based cohorts. All par-
ticipating studies worked cooperatively to address issues related to 
phenotype harmonization and covariate selection and to develop 

analytic plans for within-study GWAS analyses and for meta-anal-
yses of results. Each study received institutional review board ap-
proval of its consent procedures, examination and surveillance, DNA 
collection and use, and data access and distribution. All participants 
in this study gave written informed consent for study participation, 
MRI scanning, and use of DNA. Details of cohort recruitment, risk 
factor assessment, phenotyping, and genotyping are described in the 
Data Supplement. Briefly, participants were excluded if they lacked 
information on MRI or genotypes or if they had clinical dementia or 
stroke. If data on clinical stroke were missing in a given cohort, the 
presence of MRI infarcts extending into the cortical grey matter was 
used as an exclusion criterion.

MRI Scans
In each study, MRI scans were performed and interpreted in a stan-
dardized fashion, without reference to demographic or clinical infor-
mation. The field strength of the scanners used ranged from 0.5 to 3.0 
Tesla. T1- and T2-weighted scans in the axial plane were obtained for 
all participants. These were complemented by either scans obtained 
with fluid attenuation inversion recovery or proton density sequences 
to allow better separation of WMH and cerebrospinal fluid. A validat-
ed automated segmentation method (23 cohorts) or a validated visual 
grading scale (6 cohorts) was used to quantify WMH burden. Details 
of the applied WMH quantification method per cohort can be found 
in the Data Supplement.

Comparability between the volumetric and visual scales has 
been evaluated previously and was shown to be similar across 
cohorts.11 Details about the extensive phenotype harmoniza-
tion procedures performed before GWAS have been previously 
reported.11

Genotyping and Imputation
As described in the Data Supplement, the participating stud-
ies used different genotyping platforms and performed extensive 
quality control analyses. Briefly, participant-specific quality con-
trols filters were applied based on missing call rate, cryptic relat-
edness, sex mismatch, principal component analysis, and number 
of Mendelian errors per individual (for studies with family data). 
SNP-specific quality controls included filters for call rate, minor 
allele frequency Hardy–Weinberg equilibrium, differential missing-
ness by outcome or genotype, and imputation quality. After quality 
control analysis, genotype data in each study were used to impute 
to the 1000 Genomes reference panel (version available in the Data 
Supplement). Because not all versions of 1000 Genomes that were 
used included copy number variations, we only analyzed SNPs, 
which totaled 14 227 402.

Statistical Analyses and Meta-Analysis
Statistical analyses were performed similar to the previous meta-
GWAS on WMH burden.8 Analyses were performed separately by 
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ethnic group. Briefly, within each study, we evaluated the relation-
ship between each SNP and WMH burden using a linear regres-
sion model, assuming an additive genetic effect.11 WMH burden 
was expressed as ln(WMH burden+1) to reduce the skewness 
of its distribution. We adjusted for age, sex, intracranial volume 
and, if indicated, principal components of ancestry. No adjust-
ment for intracranial volume was performed in studies that used 
a visual grading scale because these scales take head size into ac-
count. Atherosclerosis Risk In Communities Study (ARIS) and 
Cardiovascular Health Study (CHS) also adjusted for study site, 
and Framingham Heart Study (FHS) adjusted for familial structure 
(Data Supplement).

We performed a weighted Z score–based fixed-effect meta-analysis 
implemented in the METAL software.15 We chose this methodology for 
several reasons: first, the measures of WMH were not expressed on the 
same scale in the various studies, thus a random-effect meta-analysis 
was not possible. Second, the focus of our meta-analyses was to identify 
new loci for WMH, thus we sought to maximize power of our study. 
Fixed-effect models have been shown to be more powerful than random-
effect models even in the presence of between-study heterogeneity.16 
Third, Senn stated that “the choice of fixed effects or random effects 
meta-analysis should not be made on the basis of perceived heterogene-
ity but on the basis of purpose.”17 Our purpose was to identify new as-
sociations rather than accurately estimating effect size of well-validated 
variants, which would need to account for possible between-population 
heterogeneity. For each SNP, the z-statistic, derived from the P value and 
direction of effect, was weighted by the effective sample size, which is 
the product of the sample size and the ratio of the empirically observed 
dosage variance to the expected binomial dosage variance for imputed 
SNPs. A combined estimate was obtained by summing the weighted 
z-statistics and dividing by the summed weights. Before meta-analysis, 
SNPs were filtered out within each cohort if they had a poor imputa-
tion quality (r2>0.3), a minor allele frequency <0.005, and an effective 
sample size <50. The genomic control parameter was calculated and 
used to remove any residual population stratification within cohort and 
in the combined meta-analyses. We performed meta-analyses for each 
ethnicity separately and also combined results in a multiethnic meta-
analysis, correcting for genomic inflation.

To gain a better understanding of each genome-wide significant 
locus (P<5×10−8), we performed a step-wise analysis to examine 
whether additional variants at the identified loci were independently 
associated with WMH burden, after adjusting for the effects of the 
most significant SNP. Each study repeated the primary analyses 
adjusting for the top-SNP at each of the significant loci (European 
ancestry sample only), and the results were then meta-analyzed as 
described above.

To study whether identified SNPs may cause damage of protein 
function, we used the prediction tools PolyPhen-218 and SIFT.19 To 

examine whether identified SNPs had an impact on gene regulation, 
we used a heuristic scoring system implemented in RegulomeDB.20

In secondary analyses, we studied the joint effect of loci for WMH-
related traits. We extracted SNPs from the meta-analysis that have 
been reported to be associated with blood pressure,21 Alzheimer dis-
ease,22 and stroke23–25 and meta-analyzed their effects using a weight-
ed Z score method.26 Additional details are provided in the in the Data 
Supplement.

Results
Demographic and clinical characteristics of the participat-
ing cohorts are shown in the Data Supplement (Table I in the 
Data Supplement). In total, we included 17 936 individuals 
of European descent, 1943 African descent, 795 individuals 
of Hispanic descent, and 405 individuals of Asian descent 
(204 Chinese and 201 Malays). There was no evidence of 
test statistic inflation in the individual cohort analyses or the 
ethnic-specific and overall meta-analyses (Table I in the Data 
Supplement).

Table 1 shows the genome-wide significant loci (P<5×10−8) 
in the meta-analyses of the overall sample and of each eth-
nic group. Manhattan-plots are displayed in the Figure II in 
the Data Supplement. In the European descent samples, we 
identified 3 regions with genome-wide significant SNPs: on 
chr17q25 (top-SNP: rs7214628, P=2.7×10−19); on chr10q24 
(top-SNP: rs72848980, P=1.6×10−9); and on chr2p21 (top-
SNP: rs11679640; P=4.4×10−8; Table 1). In the samples of 
African, Hispanic, and Asian descent, no variant reached 
genome-wide significance likely because of limited power. 
In the multiethnic analyses, we identified 2 additional 
regions, on chr1q22 (top-SNP: rs2984613, P=2.0×10−8) 
and chr2p16 (top-SNP: rs78857879, P=1.5×10−8; Table 1). 
Directions of effect for these SNPs in each of the cohorts 
are shown in Table II in the Data Supplement and informa-
tion on suggestive loci (P<1.0×10−5) in Table III in the Data 
Supplement.

The chr17q25 locus contained 147 genome-wide significant 
SNPs in the meta-analysis of the European descent samples 
(Figure). The top-SNP from chr17q25 (rs7214628) lies close 
(2.9 kb) to TRIM65 and is in high linkage disequilibrium (LD) 
with rs3744028, reported in our previous GWAS (r2=0.99).11 

Table 1.  Genome-Wide Significant Loci for White Matter Hyperintensities Burden

Locus SNP
Chr:Position  

(hg19) Nearest Gene

P Value

RA
RAF
EUR

RAF
AFR

RAF
HIS

RAF
ASN

Total 
(n=21 079) EUR (n=17 936) AFR (n=1943) HIS (n=795)

ASN 
(n=405)

17q25.1 rs7214628 17:73882148 TRIM65 +5.1E−19 +2.7E−19 +0.12 +0.11 −0.32 G 0.19 0.40 0.28 0.13

10q24.33 rs72848980 10:105319409 NEURL (intron) +2.6E−09 +6.3E−09 +0.09 +0.41 −0.31 G 0.80 0.96 0.93 0.97

rs7894407 10:105176179 PDCD11 (intron) +2.6E−08 +1.6E−09 −0.36 +4.4E−02 −0.46 T 0.65 0.80 0.69 0.61

rs12357919 10:105438112 SH3PXD2A (intron) +1.5E−08 +1.9E−08 +0.36 +0.31 +1.00 T 0.81 0.95 0.92 0.96

rs7909791 10:105613178 SH3PXD2A (intron) +2.9E−09 +1.7E−08 +0.33 +0.29 +0.09 A 0.34 0.35 0.32 0.16

2p16.1 rs78857879 2:56135099 EFEMP1 (intron) +1.5E−08 +2.9E−07 +2.2E−02 +0.18 −0.67 A 0.10 0.02 0.05 0.04

1q22 rs2984613 1:156197380 PMF1−BGLAP 
(intron)

+2.0E−08 +1.4E−05 +6.5E−05 +1.5E−02 −0.80 C 0.65 0.72 0.69 0.68

2p21 rs11679640 2:43141485 HAAO +2.1E−06 +4.4E−08 −0.37 −0.79 −0 0.74 C 0.80 0.84 0.85 0.98

Loci with corresponding P value are given for the association with white matter hyperintensities burden. The sign indicates the direction of the effect of the risk allele. 
Multiple single-nucleotide polymorphisms at the same locus indicate independent associations. AFR indicates African descent; ASN, Asian descent; Chr, chromosome; 
EUR, European descent; HIS, Hispanic descent; RA, risk allele; RAF, risk allele frequency; and SNP, single-nucleotide polymorphism.
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Figure.  Regional plots of the genome-wide significant loci in individuals of European descent. Loci on chr17q25.1, chr10q24.33, 
chr2p16.1, chr1q22, and chr2p21 are shown. Each circle indicates a single-nucleotide polymorphism (SNPs) with a color scale corre-
sponding to the r2 value for that SNP and the top SNP from 1000 Genomes. Purple diamonds indicate the SNPs with the strongest asso-
ciation in the overall meta-analysis. Estimated recombination from 1000 Genomes are indicated blue lines. The bottom panels show the 
relative position of genes within each locus.
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Analyses of association adjusting for the effect of rs7214628 
were performed to determine whether secondary signals were 
present across the region. None of the 147 SNPs remained 
genome-wide significant after accounting for the effect of 
rs7214628 (Figure III in the Data Supplement). Ten were nomi-
nally significant (P<0.05), including 4 intronic variants and 1 
missense variant in ACOX1, 3 intronic variants and 1 variant 
near FBF1, and 1 intronic variant in MRPL38, but would not 
survive a multiple testing significance threshold. Functional 
annotation of the genome-wide significant SNPs in the chr17q25 
region identified 7 missense variants, 4 eQTLs influencing gene 
expression of TRIM47, 10 SNPs with a likely functional impact 
on gene regulation (RegulomeDB score ≤3), and 6 synonymous 
or intronic SNPs with high levels of evolutionary conservation. 
Association of these SNPs with WMH burden in each ethnic 
group is shown in Table  2. The direction of association was 
generally consistent in Europeans, Hispanics, and blacks but 
was opposite in Asians. This pattern was also observed across 
the larger set of 147 genome-wide significant SNPs, suggesting 
possible heterogeneity of effects in Asian populations. Among 
the putatively functional SNPs, those with the strongest LD with 
rs7214628 in Europeans were the TRIM47 eQTL rs3744017 
and the putatively regulatory SNP rs3744020, located in an 
intron of TRIM47. Interestingly, these 2 SNPs had also the low-
est P value in blacks (rs3744017, P=0.08; rs3744020, P=0.09). 
We observed a nominally significant association (P<0.05) for 
the regulatory SNP rs1551619 in Hispanics. This SNP was in 
moderately high LD with rs7214628 in both Europeans and 
Hispanics (r2=0.74).

The chr10q24 locus contained 12 genome-wide sig-
nificant SNPs in the meta-analysis of the European 
descent samples and 7 SNPs in the overall meta-analysis. 
These mapped to a 555-kb region from base pair position 
105080575 to 105635537 (Figure). The top-SNP from 
chr10q24 (rs7894407) lies within an intron of PDCD11. 
Analyses accounting for the effects of rs7894407 revealed 
that the SNPs in SH3PXD2A (rs12357919, P=2.7×10−3; 
rs4630220, P=2.7×10−3; rs7909791, P=3.9×10−7), and 
NEURL (rs72848980, P=1.9×10−3) were independently 
associated with WMH burden (Figure III in the Data 
Supplement). Ivn the multiethnic meta-analysis, rs72848980 
(NEURL) had the lowest P value within the chr10q24 locus. 
These 4 SNPs were in low LD with rs7894407 (r2 between 
0 and 0.33), and in moderate to low LD with each other 
(Table IV in the Data Supplement). Functional annotation 
of the genome-wide significant SNPs identified a missense 
variant in TAF5 (rs10883859, Ser/Ala). The exonic variant 
in CALHM1 (rs4918016) was synonymous. Annotation of 
the genome-wide significant SNPs for predicted function 
on gene regulation identified 2 SNPs (RegulomeDB score 
≤3): rs12357919 located in an intron of SH3PXD2A; and 
rs729211 located in the 3′untranslated region of CALMH1, 
and identified as an eQTL influencing gene expression of 
USMG5. rs11191772 was a highly conserved intronic SNP 
in SH3PXD2A. Association of these SNPs with WMH bur-
den in each ethnic group is shown in Table  3. rs729211, 
rs4918016, and rs11191772, identified in the multiethnic 
meta-analyses, show trends toward nominal significance in 
blacks and Hispanics.

The chr2p16 locus contained 1 genome-wide significant 
SNP (rs78857879) in the multiethnic meta-analysis. This SNP 
maps to an intron of EFEMP1 (Figure) and was predicted 
to have a putatively functional impact on gene regulation 
(RegulomeDB score=3a). This SNP was nominally significant 
in the groups of European and African descent (P=2.9×10−7 
and 2.2×10−2, respectively; Table 1).

The chr1q22 locus contained 1 genome-wide significant 
SNP (rs2984613) in the multiethnic meta-analysis. Although 
the association of rs2984613 with WMH burden was only 
nominally significant in individuals of European, African, 
and Hispanic descent (P=2.4×10−5, 1.4×10−5, and 1.5×10−2, 
respectively), it reached genome-wide significance in the mul-
tiethnic meta-analysis combining all ethnic groups. This SNP 
is located in an intron of PMF1/PMF1-BGLAP (Figure).

The chr2p21 locus contained 1 genome-wide significant SNP 
(rs11679640) near HAAO (122 kb) and THADA (316 kb) in 
individuals of European descent only (Table 1; Figure). The asso-
ciation of rs11679640 with WMH burden was no longer genome-
wide significant in the overall meta-analysis and showed opposite 
direction of effect in the other ethnic groups (Table 1), suggest-
ing possible heterogeneity by ethnicity. Although a genome-
wide significant SNP for multiple sclerosis (rs6718520)22 is also 
nearby (184 kb), this SNP was not in LD with rs11679640 and 
was not significantly associated with WMH burden in our study.

To gain additional pathophysiological insights, we investi-
gated whether genetic loci identified for WMH-related traits 
are related to WMH burden.

We showed that genetic loci for blood pressure were signifi-
cantly related to a higher WMH burden (P for systolic blood 
pressure <0.0001; P for diastolic blood pressure=0.007). We 
did not find a significant association between WMH and loci 
for Alzheimer disease (P=0.12) or stroke (P=0.46, in opposite 
direction).

Discussion
We performed a meta-analysis of genome-wide association 
studies in samples of European, African, Hispanic, and Asian 
descent. We identified 4 novel loci on chr10q24, chr2p21, 
chr1q22, and chr2p16 and confirmed a previously identi-
fied locus on chr17q25. Three of the 4 novel loci (chr10q24, 
chr1q22, and 2p16.1) were associated with WMH burden 
in >1 ethnic group. In addition, we showed that genetic loci 
influencing systolic blood pressure and diastolic blood pres-
sure are associated with WMH burden.

Strengths of our study include the large and diverse sample, 
the population-based setting, and the comprehensive set of 
common genetic variants examined. However, several limita-
tions must be acknowledged. First, the use of different WMH 
quantification methods has constrained our analytic method-
ology to the meta-analysis of P values, which is less power-
ful and prevented us to determine an estimate of effect size 
for the associated SNPs. Second, we had a limited sample 
size of blacks, Hispanics, and Asians. This limited sample 
size has reduced our ability to identify new variants in these 
populations and to replicate findings from the larger European 
sample. However, the inclusion of these groups in a multieth-
nic meta-analysis permitted the identification of 2 additional 
loci, albeit likely because of increased sample size. Finally, 
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we used different versions of the 1000 Genomes reference 
panel for genotype imputation and did not study copy number 
variations.

We confirmed the association of the locus on chr17q25 
in individuals of European descent. The genome-wide 

significant SNPs in this locus include all previously reported 
SNPs.11 However, the most significantly associated SNP in 
this analysis (rs7214628) was not previously identified. 
It lies 2.9 kb away from TRIM65 and in strong LD with 
rs3744028 from the original report. Analyses accounting 

Table 2.   Association of Putatively Functional SNPs at the 17q25.1 Locus by Ethnic Group

Chr
Position 
(hg19) SNP

Putative Function 
and Location RA

LD With 
rs7214628 

(EUR)

P Value
RAF
EUR

RAF
AFR

RAF
HIS

RAF
ASNEUR AFR HIS ASN

17 73827205 rs1135688 Missense (K867E, 
UNC13D)

C 0.32 +1.7E−08 +0.60 +0.22 −0.12 0.31 0.81 0.50 0.37

17 73839366 rs3744009 Regulatory (RDB=3a) 
(intronic, UNC13D)

T 0.29 +1.8E−10 −0.89 +0.22 −0.23 0.26 0.44 0.31 0.15

17 73841285 rs2410859 Regulatory (RDB=2b) 
(5′-UTR UNC13D)

C 0.44 +1.9E−11 +0.48 +0.16 −0.20 0.32 0.82 0.51 0.38

17 73841702 rs9900122 Regulatory (RDB=2b) 
(3′-UTR, WBP2)

C 0.44 +1.5E−11 −0.98 +0.19 −0.21 0.32 0.76 0.48 0.38

17 73844748 rs2290771 Regulatory (RDB=2b) 
(intronic, WBP2)

G 0.46 +8.1E−11 +0.39 +0.17 −0.17 0.32 0.82 0.50 0.16

17 73847613 rs936393 Regulatory (TRIM47 
eQTL; RDB=1f) 
(intronic, WBP2)

G 0.86 +2.7E−18 +0.74 +0.96 −0.46 0.19 0.26 0.21 0.14

17 73851113 rs55868394 Regulatory (RDB=2b) 
(intronic, WBP2)

A 0.63 +1.5E−13 −0.87 +0.22 −0.34 0.13 0.03 0.08 0.09

17 73852008 rs936394 Regulatory (RDB=2b) 
(5′-UTR, WBP2)

A 0.89 +6.0E−18 +0.62 +0.65 −0.41 0.19 0.26 0.21 0.14

17 73865657 rs9894383 Regulatory (TRIM47 
eQTL; RDB=2b) 

(4.6kb 3′ of TRIM47)

G 0.91 +7.6E−18 +0.18 +0.34 −0.30 0.19 0.59 0.35 0.14

17 73871467 rs3744017 Regulatory (TRIM47 
eQTL; RDB=1f) 

(intronic, TRIM47)

A 0.93 +6.7E−18 +0.09 +0.16 −0.27 0.19 0.29 0.23 0.13

17 73871773 rs3744020 Regulatory (RDB=2a) 
(intronic, TRIM47)

A 0.93 +4.1E−18 +0.10 +0.16 −0.29 0.19 0.29 0.22 0.13

17 73873394 rs9908862 Regulatory 
(RDB=2b), 

Conserved (intronic, 
TRIM47)

G 0.73 +7.9E−16 +0.21 +0.13 −0.31 0.14 0.50 0.28 0.12

17 73874071 rs4600514 Missense (R187W, 
TRIM47)

A 0.74 +6.3E−16 +0.20 +0.11 −0.30 0.14 0.32 0.21 0.12

17 73874138 rs4072479 Conserved, 
synonymous (A164A, 
TRIM47), regulatory 

(RDB=2b)

C 0.72 +5.6E−15 +0.43 +0.21 −0.30 0.14 0.44 0.26 0.12

17 73885805 rs1551619 Regulatory (RDB=2b) 
(3′-UTR, TRIM65)

T 0.74 +2.2E−14 +0.24 +4.4E−02 −0.34 0.23 0.33 0.27 0.13

17 73886888 rs3760128 Missense (L509P, 
TRIM65)

G 0.46 +6.9E−12 +0.65 +0.12 −0.06 0.33 0.82 0.51 0.20

17 73888427 rs7222757 Missense (V222G, 
TRIM65)

C 0.56 +1.3E−14 −0.95 +0.34 −0.07 0.28 0.71 0.45 0.20

17 73922941 rs2305913 Missense (R151G, 
FBF1)

C 0.41 +4.7E−11 +0.92 +0.13 −2.1E−02 0.34 0.76 0.50 0.19

17 73926121 rs1135889 Missense (G65V, 
FBF1)

A 0.29 +9.5E−11 −0.79 +0.16 −4.9E−03 0.23 0.19 0.18 0.13

17 73949540 rs1135640 Missense (I312M, 
ACOX1)

G 0.41 +3.3E−10 +0.88 −0.17 −7.0E−03 0.35 0.67 0.49 0.19

AFR indicates African descent; ASN, Asian descent; Chr, chromosome; EUR, European descent; HIS, Hispanic descent; LD, linkage disequilibrium; RA, risk allele; RAF, 
risk allele frequency; and SNP, single-nucleotide polymorphism.
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for the effects of rs7214628 showed a strong attenuation of 
effects for all genome-wide significant SNPs, suggesting 
little evidence for multiple independent association signals 
in this region. Several genome-wide significant SNPs in 
the chr17q25 locus are missense variants in the UNC13D, 
TRIM47, TRIM65, FBF1, and ACOX1 genes. In addition, 
several SNPs were predicted to have a functional impact on 
gene regulation, including 2 eQTLs of the TRIM47 gene. 
The direction of associations of SNPs at this locus was gen-
erally consistent among populations of European, Hispanic, 
and African descent but not Asians. Power to detect genetic 
effects in ethnic groups other than Europeans was limited. 
However, SNPs potentially affecting regulation of TRIM47 
and TRIM65 showed the strongest associations in this region 
in Hispanics and blacks, whereas SNPs encoding missense 
mutations in FBF1, ACOX1, and TRIM65 were nominally 
associated in Asians.

The novel locus on chr10q24 contained genome-wide 
significant SNPs in introns of PDCD11, NEURL, and 
SH3PXD2A, TAF5, and CALHM1, of which PDCD11, 
NEURL, and SH3PXD2A were shown to be independent from 
each other. PDCD11 encodes the programmed cell death 11 
and is involved in T-cell–induced apoptosis.27 It is expressed 
in glial cells,28 which make up a large proportion of the white 
matter. NEURL encodes the neuralized homolog (Drosophila), 
an E3 ubiquitin ligase, which has been implicated in malig-
nant brain tumors.29,30 NEURL reportedly causes apoptosis and 
downregulates NOTCH target genes in medulloblastoma.29 
NEURL maps to a region that is frequently deleted in astro-
cytoma.30 The SNP in NEURL was also nominally associ-
ated in Hispanics in the same direction (P=0.04). The SNP in 
PDCD11 only showed significant associations in individuals 
of European descent. SH3PXD2A, which codes for SH3 and 
PX domain-containing protein 2A, has also been implicated 
in gliomas.31 In addition, it has been reported to be involved 
in amyloid-β neurotoxicity32 and implicated in Alzheimer 
disease.33 TAF5 contained a missense variant, although 
without predicted damage on protein function. TAF5 codes 
for transcription initiation factor TFIID subunit 5, which is 
involved in the initiation of transcription by RNA polymerase 
II. CALHM1 codes for calcium homeostasis modulator 1, 

which influences calcium homeostasis and increases cere-
bral amyloid-β (Aβ) peptide production. Interestingly, a mis-
sense variant of CALHM1 (rs2986017) has been associated 
with late-onset Alzheimer disease and Creutzfeldt–Jakob 
disease,34,35 but this SNP was only nominally associated with 
WMH burden (in the same direction) in our study (P=2.5×10−2 
in Europeans and P=3.5×10−2 in the total group). The genome-
wide significant SNP rs729211, located in the 3′untranslated 
region of CALHM1, had a predicted functional impact on 
USMG5 gene expression. USMG5 encodes a small subunit 
of the mitochondrial ATP synthase, which is phylogeneti-
cally conserved and is thought to have a role in cellular energy 
metabolism.

The novel locus on chr2p21 that reached genome-wide 
significance in Europeans but not the overall group was 
located near HAAO. HAAO codes for 3-hydroxyanthranilate 
3,4-dioxygenase, which catalyzes the synthesis of quino-
linic acid (QUIN) from 3-hydroxyanthranilic acid. QUIN is 
an excitotoxin whose toxicity is mediated by its ability to 
activate glutamate N-methyl-d-aspartate receptors. QUIN 
has been implicated in neuroinflammatory diseases and 
may participate in the pathogenesis of Parkinson disease, 
Alzheimer disease, and Huntington disease.36–39 Within the 
brain, QUIN is produced and released by infiltrating macro-
phages and activated microglia, which are prominent during 
neuroinflammation.36

The novel genome-wide significant SNP on chr1q22 is 
located in an intron of the read-through PMF1-BGLAP 
sequence, which encodes a variant isoform of the poly-
amine-modulated factor 1 (PMF1). PMF is a member of a 
kinetochore-associated multiprotein complex, involved in 
chromosomal alignment and segregation during mitosis.40 
Moreover, it is a cofactor for the regulation of expression 
of the rate-limiting enzyme in the catabolic pathway of 
polyamine metabolism.41 Polyamines are important regula-
tors of cell growth and cell death, and epigenetic modifica-
tion of PMF1 has been implicated in cancer.42 The SNP 
identified in our analysis (rs2984613) was also identified 
in a GWAS of nonlobar intracerebral hemorrhage.43 In one 
study involving two of the cohorts included in this work, 
WML burden was associated with an increased risk of 

Table 3.  Association of Top-SNPs and Putatively Functional SNPs at the 10q24 Locus by Ethnic Group

Chr
Position 
(hg19) SNP

Putative Function and 
Location RA

LD with 
rs7894407

(EUR)

P Value
RAF
EUR

RAF
AFR

RAF
HIS

RAF
ASNEUR AFR HIS ASN

10 105128134 rs10883859 Missense (S130A, TAF5) T 0.64 +1.2E−08 −0.13 +0.09 −0.27 0.67 0.75 0.67 0.57

10 105214932 rs729211 Regulatory (USMG5 
eQTL, RDB=1f) (3′-UTR, 

CALHM1)

T 0.65 +1.7E−07 +0.21 +0.08 −0.69 0.67 0.63 0.62 0.61

10 105218254 rs4918016 Conserved, synonymous 
(P85P, CALHM1)

C 0.66 +8.1E−08 +0.38 +0.06 −0.71 0.67 0.80 0.70 0.61

10 105438112 rs12357919 Regulatory (RDB=2b) 
(intronic, SH3PXD2A)

T 0.11 +1.9E−08 +0.36 +0.31 0.99 0.81 0.95 0.92 0.96

10 105459834 rs11191772 Conserved (intronic, 
SH3PXD2A)

T 0.04 +1.0E−06 +0.07 +0.22 0.17 0.60 0.66 0.61 0.43

AFR indicates African descent; ASN, Asian descent; Chr, chromosome; EUR, European descent; HIS, Hispanic descent; LD, linkage disequilibrium; RA, risk allele; RAF, 
risk allele frequency; and SNP, single-nucleotide polymorphism.
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intracerebral hemorrhage.44 Both intracerebral hemorrhage 
and WMH share common risk factors, such as hyperten-
sion, and may share common underlying pathological 
mechanisms involving microangiopathy. Our finding sup-
ports such a hypothesis.

The locus on chr2p16 contained its top-hit in the intron of 
EFEMP1, which codes for EGF containing fibulin-like extra-
cellular matrix protein 1. EFEMP1 is uniquely upregulated in 
malignant gliomas (different grades) and promotes tumor cell 
motility and invasion.45 It encodes a novel soluble activator of 
Notch signaling that antagonizes DLL3, an autocrine inhibitor 
or Notch, and promotes tumor cell survival and invasion in 
a Notch-dependent manner.46 EFEMP1 was originally cloned 
from senescent fibroblasts derived from a patient with Werner 
syndrome a disease of premature aging with diffuse structural 
abnormalities in the brain white matter.47,48

Intriguingly, 3 of the 5 regions significantly associated 
with WMH burden and 1 suggestive locus contained vari-
ants in genes implicated in malignant brain tumors of the 
white matter that involve glial cells (TRIM47, NEURL, 
SH3PXD2A, EFEMP1, and NBEAL1). Although these 
tumors can appear as WMH on MRI,49 given the popula-
tion-based setting of the participating studies, the exclu-
sion criteria used in WMH quantification, as well as the 
very low incidence of gliomas (<5 per 100 000 persons 
per year),50 the presence of unrecognized glioma cases 
is very unlikely to explain these associations. However, 
our findings suggest that WMH in aging and glioma may 
share common pathophysiological mechanisms, perhaps 
involving glial cell activation, apoptosis, or both. The role 
of microglia in white matter injury has been demonstrated 
in several animal models. For example, activated microg-
lia have a critical role in the formation of the excitotoxic 
white matter lesion in a mouse model of periventricu-
lar leukomalacia.51 In the rat 2-vessel occlusion model, 
microglial activation was shown to be an early marker of 
subsequent white matter injury52 and may contribute to 
induce apoptosis of oligodendrocytes in the white matter 
of these animals.53

In addition to the identification of novel WMH loci, we 
showed that loci for blood pressure were also associated with 
WMH burden. This further establishes the role of blood pres-
sure in WMH. We were not able to identify effects of loci 
for Alzheimer disease and stroke on WMH. Pathological 
processes other than those affecting WMH may be stronger 
determinants of Alzheimer disease and therefore variants 
identified to date may capture mostly other mechanisms lead-
ing to Alzheimer disease. Similarly, stroke is heterogeneous 
and the stroke risk variants tested here are not those reflect-
ing small-vessel disease stroke subtypes. Shared mechanisms 
between WMH and stroke are expected mostly for these 
subtypes.

In summary, in a meta-analysis of genome-wide associa-
tion studies in individuals of European, African, Hispanic, 
and Asian descent, we identified 4 novel loci and confirmed 
a previous locus. Furthermore, we also report significant 
associations of blood pressure loci with WMH burden. 
Although additional fine mapping at each of the identified 
loci will be needed to uncover the causal genes and variants, 

a unifying hypothesis emerging from this work suggests 
a central role of neuroinflammation, possibly involving 
pathological mechanisms related to microglial activation 
and common to gliomas. Additional work will be needed 
to establish the importance of these findings in understand-
ing the cause and pathophysiology of WMH and bring us 
closer to reducing WMH burden and its associated clinical 
manifestations.
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CLINICAL PERSPECTIVE
White matter hyperintensities (WMH) are commonly identified on MRI, and their burden increases with age. These MRI 
findings cannot be considered benign accompaniments of aging because their burden in the elderly is associated with impair-
ments in cognition, mobility, and mood and with an increased risk of subsequent stroke, dementia, and death. Small-vessel 
angiopathy is presumed to play a major causal role given associations with vascular risk factors, especially hypertension, 
but the precise pathophysiologic pathways responsible for accumulation of WMH with aging remain obscure. Genetics 
likely is key, and the heritability of WMH is higher than other MRI findings. The hope is that understanding the genetic 
underpinnings of WMH may lead to a better understanding of these pathways and thus novel means to prevent the clini-
cal consequences of WMH. Genome-wide association studies are one of the initial steps in coming to that understanding. 
Here, we describe a multiethnic genome-wide association study including 21 079 middle-aged to elderly participants from 
29 population-based cohorts, who were free of dementia and stroke. The findings not only support a vascular cause, further 
highlighting the relationship between blood pressure and WMH burden, but also suggest a central role of neuroinflammation 
in WMH, possibly involving pathological mechanisms related to microglial activation and common to gliomas. More work 
is needed to learn whether these findings will lead to the discovery of interventions, beyond those directed at vascular risk 
factors, to prevent the development of WMH and their clinical consequences.
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