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Abstract
We tested for interactions between body mass index (BMI) and common genetic variants af-

fecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified ge-

nome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and

regression-type analyses in a non BMI-stratified overall sample were performed. The former

did not uncover any novel locus with a major main effect, but supported modulation of ef-

fects for some known and potentially new urate loci. The latter highlighted a SNP at

RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02,
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Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-
ADD, also displayed suggestive differences in main effect size between the lean and obese

strata. All top ranking loci for urate effect differences between BMI categories were novel

and most had small magnitude but opposite direction effects between strata. They include

the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associ-

ated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), reg-

ulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the
strongest known gout risk locus, with an effect halved in obese compared to lean men

(Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthe-

sis as a prominent urate-associated pathway in the lean stratum. These results illustrate a

potentially powerful way to monitor changes occurring in obesogenic environment.

Introduction
Epidemiological studies have associated hyper- and hypo-uricemia with multiple common dis-
eases and conditions in humans [1]; hyperuricemia clusters with all metabolic syndrome com-
ponents and is a causal risk factor for gout development. To date, 28 loci have been identified
and replicated accounting for about 7% of the inter-individual variation in age and sex adjusted
serum urate (SU) levels [2]. The top two loci, which account for about half of the genetic vari-
ance explained so far, have been noted to display marked gender differences in their effect [3–
6], while other urate loci not [2,7]. Variants in the solute carrier SLC2A9 (also known as
GLUT9) gene have doubled the effect on SU in women (0.40 standard deviation (sd) in [7])
than that observed in men, and variants in the transporter ABCG2 gene have a stronger effect
in men than in women (0.22 sd versus 0.14 sd in [7]).

Body mass index (BMI) is strongly positively correlated with SU levels in population-based
studies (phenotypic correlations ranging from 0.27 to 0.44 [8–12]), and the relationship is ap-
proximately linear ([12] and S1 Fig.). Obesity is the strongest modifiable risk factor for hyper-
uricemia and gout [13]. We investigated here to what extent the genetic variants affecting SU
are modulated by BMI. The fact that the genetic variants with the largest effect on SU levels are
observed in genes encoding for ion transport proteins provides a biological rationale, since the
activity of those transporters may be directly or indirectly affected by the metabolic changes as-
sociated with BMI increase, e.g. by levels of serum phosphate and hepatic ATP both reported
to be inversely correlated with BMI [14,15]. Additionally, many of the newly discovered urate
loci are in genes concerned with regulation of energy metabolism and glucose flux which are af-
fected by BMI status. In 2008, a study had suggested that SLC2A9 variants’ effects on SU may
be stronger in severely obese individuals (defined as BMI> 40), with a stronger modulating
BMI effect in men than in women [9], while a recent publication suggests the opposite, in a
predominantly women study [16]. Both these studies had modest sample sizes, calling for a
larger study to be carried out.

Here, we performed a genome-wide investigation for genetic variants influencing serum
urate levels in a BMI-dependent fashion, primarily by analysing genome-wide association
study (GWAS) stratified by BMI. Stratified analyses are best suited when main effects are very
different in magnitude or direction between strata and if the environment factor measured on
a continuous scale is not acting linearly. In a discovery set, totalling 41,832 participants, GWAS
for SU were performed after stratifying subjects by BMI status categorized into three levels:
lean (BMI< 25 kg/m2), overweight (25� BMI� 30) and obese (BMI> 30 kg/m2). This

BMI Modulation of Genetic Associations with Serum Urate Levels

PLOS ONE | DOI:10.1371/journal.pone.0119752 March 26, 2015 3 / 21

Education and Research (3.2.0304.11-0312), Center
of Excellence in Genomics (EXCEGEN),
Development Fund from the University of Tartu
(SP1GVARENG) and from an EFSD New Horizons
grant. Health 2000–The Health 2000 study is funded
by the National institute for Health and Welfare (THL),
the Finnish Centre for Pensions (ETK), the Social
Insurance Institution of Finland (KELA), The Local
Government Pensions Institution (KEVA) and other
organizations listed on the website of the survey
(http://www.terveys2000.fi). GWAS genotyping was
supported by the Wellcome Trust Sanger Institute. Dr.
Salomaa was supported by the Academy of Finland
(grants # 129494 and 139635). InCHIANTI–The
InCHIANTI study baseline (1998-2000) was
supported as a “targeted project” (ICS110.1/RF97.71)
by the Italian Ministry of Health and in part by the U.
S. National Institute on Aging (Contracts: 263 MD
9164 and 263 MD 821336). INGI_CILENTO–This
work was supported by grants from the EU
(Vasoplus-037254), the Italian Ministry of Universities
(FIRB –RBIN064YAT), the Assessorato Ricerca
Regione Campania, the Ente Parco Nazionale del
Cilento e Vallo di Diano and the Fondazione Banco di
Napoli to Marina Ciullo. INGI-Carlantino and INGI-
FVG–The study was funded by Regione FVG
(L.26.2008). INGI-Val Borbera–The research was
done using data obtained thanks to funds from
Compagnia di San Paolo, Torino, Italy, Cariplo
Fundation, Milano, Italy, Italian Ministry of Health
Progetto Finalizzato 2007 and 2009 and project on
Preventive Medicine 2010, and Prin 2009. KORA–
The KORA Augsburg studies were financed by the
Helmholtz Zentrum München, German Research
Center for Environmental Health, Neuherberg,
Germany and supported by grants from the German
Federal Ministry of Education and Research (BMBF).
Part of this work was financed by the German
National Genome Research Network (NGFN). The
research was supported within the Munich Center of
Health Sciences (MC Health) as part of
LMUinnovativ. LBC1936–Phenotype collection in the
LBC1936 was supported by Age UK (The
Disconnected Mind project). Genotyping was funded
by the BBSRC. The work was undertaken by The
University of Edinburgh Centre for Cognitive Ageing
and Cognitive Epidemiology, part of the cross council
Lifelong Health and Wellbeing Initiative (MR/
K026992/1). Funding from the BBSRC and Medical
Research Council (MRC) is gratefully acknowledged.
MICROS–In South Tyrol, the study was supported by
the Ministry of Health and Department of Educational
Assistance, University and Research of the
Autonomous Province of Bolzano, and the South
Tyrolean Sparkasse Foundation. NESDA–The
infrastructure for the Netherlands Study of
Depression and Anxiety (NESDA) was funded

http://www.terveys2000.fi


allowed investigation of whether stratification revealed new genetic variants influencing SU
and to systematically test differences in effects between BMI strata. Interaction between allelic
effect and BMI was also investigated using a linear model with introduction of an interaction
term and replication attempted in an independent set.

Materials and Methods

Study subjects
The discovery BMI-stratified genome-wide association study meta-analyses (GWAMA) com-
bined data from 22 population cohorts encompassing 42741 individuals with measured circu-
lating urate levels and BMI. With six additional follow-up studies, all were studies of European
descent participants that contributed to the Global Urate and Gout consortium (GUGC) and
have thus been previously described in detail [2]. The study-specific descriptions are reported
in S1 Table, in effect a subset of the GUGC publication.

Two extra studies, the Rotterdam study (described in S1 Table as also a GUGC participant)
and a New-Zealand study of individuals from Polynesian descent [17] only contributed to the
replication for the CLK4 locus. Sample sizes for the different sub-analyses performed and urate
summary statistics for all studies with break down per BMI and gender stratum are detailed in
S2 Table.

Genotype collection
Genome-wide SNP genotyping was undertaken by each cohort using various platforms as pre-
viously described [2] and reported in S3 Table. Imputation of allele dosage of SNPs typed in
the HapMap CEU population was performed using either MACH or IMPUTE with parameters
and pre-imputation filters specified in S3 Table.

Statistical analysis
BMI-stratified main effect GWAMA. Combined-gender and gender-separate association

analyses were performed as described in Kolz et al. [7] within three body mass index (BMI) cat-
egories (nine sub-analyses performed in total): lean (BMI<25), overweight (25�BMI�30) and
obese (BMI>30). Urate level (mg/dl) was adjusted for age, sex, and if required, ancestry princi-
pal components. Medications were not taken into account. Residuals were standardised using a
z-score and used as response variable. Genome-wide association analyses were performed
using imputed allele doses as predictor variable in linear models, and each study submitted re-
gression summary statistics for meta-analysis. Studies with related individuals used a linear
mixed model that additionally accounts for a polygenic random effect (e.g a score test mmscore
[18] implemented in the GenABEL package [19]). Softwares used by the different studies to im-
plement association testing are reported in S3 Table.

The results from all individual GWA scans were combined into a fixed-effects meta-analy-
sis using inverse variance weighting, implemented in the MetABEL R package [15]. From indi-
vidual-study analysis, SNPs with minor allele frequency less than 1% or low imputation
quality (assessed by the metrics r2hat (MACH)<0.3 or. info (IMPUTE)<0.4) were excluded.
The QQ plots for association statistics from each study were visualised in R. This highlighted
that two many results from the PROCARDIS-women dataset departed from the null hypothe-
sis distribution, and this subset was removed from the final meta-analysis as driving many sig-
nificant results if non-excluded. Study-specific genomic control inflation factors are reported
in S4 Table. In the meta-analyses, each individual study results were adjusted using the infla-
tion factors; the overall meta-analysis effects’ standard errors and p-value reported were not
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further corrected. The overall inflation factor for the nine stratified GWAMA were 1.0167
(lean-combined-gender), 1.0069 (lean-women), 1.0120 (lean-men), 1.0362 (overweight-com-
bined-gender), 1.0167 (overweight-women), 1.0232 (overweight-men), 1.0157 (obese-com-
bined-gender), 1.0180 (obese-women) and 1.0157 (obese-men). The conventional genome-
wide significance threshold of 5x10-8 was used. To avoid results driven by one or two popula-
tions that are likely to be spurious, meta-analysis results for the lower allele frequency variants
(MAF<5%) are reported only if at least four populations contributed and if the contribution
of any single study as calculated by the R package “meta” (http://cran.r-project.org/) was not
greater than 30%. Annotation to known GWAS hits in the vicinity (window of 150 kb centred
on index SNP) of novel potential urate loci was made using the NHGRI GWAS catalogue [20],
29-10-2013 update.

Main effect gene-based test. A gene-based test for SU association in the BMI-stratified
GWAMA was conducted using the VEGAS software. Briefly, this method assigns SNPs to
genes (+/- 50kb of 5’ and 3’ UTRs) and combines the association P-values accounting for link-
age disequilibrium between markers assigned to the same gene. Analyses were conducted for
each of the nine BMI/gender categories GWAMA results. As 17,787 genes are tested, the Bon-
ferroni-corrected threshold for significance is set at 2.8 10-6.

Replication of the differential effect of the CLK4 variant rs7711186 was sought in six inde-
pendent studies of individuals of European descent, totalling 1259 individuals, in which the
marker was either genotyped or well imputed and, as exploratory foray, in a small sample of in-
dividuals of Polynesian descent (N = 290) with prevalent obesity.

Testing for differences in main effect between BMI strata. The meta-analysed SNPmain
effects on SU were compared between all pairwise BMI categories (lean-obese, lean-overweight,
and overweight-obese) using a t-test. Test statistics were calculated using the statistic t = (βbmicat1 -
βbmicat2)/sqrt(SEbmicat1

2 + SEbmicat2
2-2r(SE bmicat1, SE bmicat2)), with βbmicat and SEbmicat the meta-

analysed SNP effect-estimates and their corresponding standard errors, and r the Spearman rank
correlation coefficient between meta-analyzed beta-estimates, in each of the BMI categories com-
pared, across all SNPs. Under the null hypothesis of no difference in effect sizes between BMI stra-
ta, the t statistic is expected to follow a Student’s t distribution.

Interaction effect GWAMA
Discovery studies. Combined-gender and sex-stratified SNP by BMI interaction analyses

were also performed in participating discovery studies using linear regression methods.
Urate residuals were generated using the same covariates and standardisation as described

for the stratified main effect GWAS. For studies with related individuals, relatedness was ac-
counted for by fitting ancestry principal components (PCs) derived from the genomic relation-
ship matrix rather than fitting it in full within a mixed model for the association test as the
iterative processes used for parameter estimations of the mixed models often did not converge
in a pilot run using family-based populations. The number of PCs to account for, varying from
study to study and best determined by examination of scree plots (point to which additional
PCs all contribute the same percentage of genetic variation), was left to the decision of each
study analyst. Each study GWAS was performed on imputed genotype dose using the following
model: z(residual)~μ+β1BMI+β2SNP+β12BMI�SNP+�, with BMI as continuous variable,
z(residual) the serum urate level adjusted for age, sex (in the combined gender analysis) and
ancestry principal components expressed as z-score ((individual trait value minus population
mean)/population standard deviation), β the regression coefficients for the fitted effects, � the
error term with normal probability distribution.
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Softwares used by the different studies to implement association testing are reported in S2
Table. Coefficients estimates for the main effect (β1 and β2) were not reported for studies that
used Quicktest, as this later only reported the interaction term (β12). Meta-analyses of the in-
teraction effects (β12) coefficients were carried out using MetABEL as described for the strati-
fied main effect GWAS, with a higher MAF cut-off (5%) for each individual study. To avoid
results predominantly driven by one population that are likely to be spurious, meta-analysis
results with individual study contribution greater than 50% as calculated by the meta R pack-
age were filtered out.

As the individual studies genomic control inflation factors (λ) for these analyses were often
high (S3 Table), only the studies with a λ less than 1.2 were analysed and sensitivity analyses
with a reduced set of studies with λ less than 1.05 were also performed. The overall inflation
factors for the GWAMA of interaction terms with the studies with a λ less than 1.2 corrected
using genomic control were 0.992 in the combined-gender, 1.011 in the women and 1.024 in
the men analyses.

Follow-up set. A small number of studies were available for follow-up of the linear inter-
action analysis, totalling 9298 participants (INGI-Cilento, OGP Talana, NESDA, INCIPE,
INGI-FVG and AGES). All follow-up studies analyses were carried out in the combined-gender
data-set only and use the “model-robust method” that is implemented in the ProbABEL and
Quicktest packages. Application of the model-robust method in principle leads to lower geno-
mic control inflation for the interaction term [21]. To increase sample size in the follow-up, the
CoLaus study (N = 5411) was added as a follow-up rather than discovery set for the regression
based interaction term analysis. One study (INCIPE-N = 940) had high λ for both main and in-
teraction effects (S3 Table), and was not included in the meta-analysis.

Meta-analyses of the interaction effects (β12) coefficients were carried out using MetABEL
as previously described for the discovery cohorts. The overall inflation coefficient for this fol-
low-up meta-analysis was 1.018 and 1.006 for the combined discovery and follow-up studies
interaction term meta-analysis.

Pathway Analysis
The pathway analysis was carried out using a SNP-based circular permutation method imple-
mented in an extension of the R package “genomicper” (http://cran.r-project.org/) available
upon request to the package’s authors. After lift over to build37, SNPs were annotated to genes
when they were located within gene regions using annotations from the NCBI Gene database
(http://www. ncbi.nlm.nih.gov/gene; build.37.1) and the SNPs (and associated GWAMA-p-val-
ues) were ordered according to their location in the genome. Pathways (n = 229) were down-
loaded using KEGG.db (http://www. genome.jp/kegg/) and the SNPs and genes assigned to the
pathways. SNPs with GWAMA p-values less or equal to 5% were considered associated with
trait and associated SNPs within a pathway counted. This count was compared to the distribu-
tion of counts obtained from 10,000 circular permutations of the SNPs’ GWAMA association p-
values with respect to the SNPs locations. In circular genomic permutation the genome is con-
sidered circular and ordered from chromosome 1 to 22 and restarting at chromosome 1 [22].
Each permutation is akin to the spinning of a wheel with the whole starting set of SNP labels
and locations fixed at the outside of the wheel and the SNPs’ GWAMA p-values on the rotating
wheel. As the SNPs’ p-values rotate to the same degree, they retain patterns of correlation simi-
lar to those in the original data. The empirical p-value for the trait-pathway association was cal-
culated from the ratio of the total number of permutations with more significant SNPs than the
non-permuted set divided by the total number of permutations performed in the analysis [22].
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Ethics Statements
Participants gave written informed consent to each original study. All studies received approval
from their local ethics committees as listed. S1 Table and protocols comply with the tenets of
the Declaration of Helsinki.

Results

BMI stratified urate GWAS
All 22 participating studies had previously contributed to non-stratified SU analyses [2] and
study-specific information is reported in S1 and S3 Tables. All study participants were of Euro-
pean ancestry and displayed BMI distribution typical of that of populations that adopted west-
ernised diet and culture, with more than half of the participants overweight or obese (Table 1).
The smallest stratum analysed comprised 4,613 individuals (obese-men category), the largest
17,078 (overweight-all category). Individual study SU descriptive statistics are reported in S2
Table. The median population mean SU per stratum analysed was, as expected from the wealth
of epidemiological data, higher in males than females and increasing from the lean to the obese
group (Table 1).

The stratification process did not yield any novel genome-wide significant signal at the SNP
level (P< 5 x 10-8) and all but three (LRRC16, SLC16A9 and RREB1) of the eleven loci reported
in two earlier, non-stratified, SU genome-wide association meta-analyses (GWAMA) of size
roughly comparable to the present analyses [7,23], reached genome-wide significance in at
least one of the nine strata (Table 2). All other loci encompassing SNP variant(s) with an asso-
ciation P-value below the suggestive threshold of 10-5 in any of the nine meta-analyses are
listed in S5 Table. Three of these suggestive loci, A1CF (lean-combined-gender), HLF (obese-
combined-gender) and NRG4 (obese-men) are among the 18 novel, validated and replicated,
urate loci in a large recent SU GWAMA (N>140,000 individuals, a subset of which is analysed
here) [2]. No functional link with urate homeostasis is obvious from the genes within the other
suggestive signals apart potentially for SLC28A1 (lean-men category), encoding a sodium/nu-
cleoside co-transporter present in kidney.MYO18D and ADAMST17 (both in lean stratum sig-
nals) have been previously listed as suggestive loci for serum urate levels in a small study of
African American participants [24].

The gene-based association test implemented in the statistical package VEGAS revealed one
novel locus, CLK4, reaching the gene-based genome-wide significance in the obese-men stra-
tum only (P-value = 2 x 10-6, just below the Bonferroni corrected gene-based threshold of 2.8 x
10-6). However, this effect was not reproduced in a replication set (S2 Fig.).

A complete list of top associated genes in the gene based analysis is reported in S6 Table
down to the suggestive threshold for gene-based association of 10-4. Most encompassed known

Table 1. Statistics for the discovery studies mean serum urate levels.

Lean (BMI < 25 kg/m2) Overweight (BMI 25–30kg/m2) Obese (BMI >30 kg/m2)

median; Min-Max N median; Min-Max N median; Min-Max N

All 4.58; 4.18–5.71 14504 5.36; 4.75–6.19 17078 5.81; 4.98–6.64 9445

Men 5.5; 4.86–6.19 5529 5.9; 5.2–6.72 10058 6.53; 5.31–7.23 4613

Women 4.1; 3.73–4.85 9753 4.6; 4.14–5.41 7189 5.22; 4.63–6.19 4690

Median, Minimum and Maximum values for the mean serum urate (SU) concentrations (mg/dl) amongst the twenty two studies used in the BMI and

gender stratified meta-analyses are displayed. N represents the total number of participants analysed in each category.

doi:10.1371/journal.pone.0119752.t001
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urate loci, including two of the recently reported novel urate-associated loci [2]: A1CF, an es-
sential component of the apolipoprotein B mRNA editing machinery, which is suggestive in
the lean-combined sex stratum andMLXIPL, a carbohydrate-responsive element-binding pro-
tein, in the overweight-combined sex stratum.

Effect size variation across BMI strata for genome-wide significant
effects
Some modulation of effect sizes depending on BMI status is suggested by close inspection of
the most strongly associated SNPs in each stratum (Table 2). For example, a GCKR SNP,
rs780094, reached genome-wide significance in the obese-combined-gender stratum but no
SNP within that locus reached even the suggestive threshold of association (10-5) in the lean-
combined-gender stratum despite the larger number of individuals in the latter.

We formally tested the differences in SU effect sizes across BMI strata pairwise for the vari-
ants that reached the genome-wide significance threshold in at least one BMI stratum in this
study (Table 2), discarding SLC2A9 and ABCG2 comparisons in the combined gender analysis
as the proportion of male and female is not the same across BMI categories and the effect sizes
of the variants are sex-sensitive. Taking a Bonferroni corrected significance threshold for the
number of independent SNPs analysed in different settings (0.05/(14�3) = 0.0012), only one
locus, ABCG2, showed a statistically significant difference in effect size between obese and lean
men (Table 2) and the trend between BMI categories and effect on SU level seemed linear
(Fig. 1A). The magnitude of the effect on urate for the ABCG2 index SNP was more than
halved in the obese category compared to the lean category (effect of rs2231142 allelic substitu-
tion: 95% CI 0.257 to 0.389 in lean men versus 95% CI 0.069 to 0.213 in obese male) making
the magnitude of effect in obese men similar to that seen in women (95% CI 0.125 to 0.221 in
lean women). SNPs at three additional loci reached nominal significance (Fig. 1B-D).

Effect size variation across BMI strata genome-wide
The same tests were also done genome-wide to investigate potential BMI-sensitive SNPs of op-
posite effect between strata. QQ plots for those analyses (S3 Fig.) showed no evidence for an ex-
cess of false positive results (genomic inflation factors ranged from 1.004 to 1.016). The most
significant effect-differences (Pdiff < 10-5) for all nine comparisons, after quality control for
low frequency variants, are reported in S7 Table together with results for the 28 urate loci
known to date, none of which reaching a Pdiff lower than 10-5. The lowest P-values were from
the lean-obese and lean-overweight comparisons, all in loci not previously associated with
urate and displaying different direction of effects in the lean and obese/overweight strata
(Fig. 2 and S4 Fig.). The variant rs1829975, intergenic in RBMS1-TANK, a region that has been
associated with several obesity related traits [25,26,27], reached the genome-wide significance
threshold (Pdiff< 5�10-8) in the men lean-overweight contrast. The second most significant dif-
ference, Pdiff = 9.13 x 10-8, was also in the men lean-overweight contrast for a variant 5’ of the
gene TSPYL5, a gene coding the testis specific Y-encoded-like protein 5 that has been recently
suggested to regulate estradiol produced by adipocytes [28]. The most significant loci for the
lean-obese comparisons were intergenic ARL5B-PLXDC2 and LASS3 for the men (Pdiff, respec-
tively, 1.1 x 10-7 and 2.2 x 10-7) and RBFOX3 for women and combined gender (Pdiff~ 4 x 10-7)
which had suggestive main effect in the obese women stratum.

Interaction effect in linear regression models
To see whether a simple linear modelling of the BMI by SNP interaction (see methods) would
uncover the same loci as the stratified analysis, interaction term analyses in linear models were
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conducted in a subset of the discovery studies. Only those with an inflation factor less than 1.2
were combined in a meta-analysis. Two common variants, one intergenic EROL1B-EDARADD
and one in the RBFOX3 gene, displayed P-values just below the genome wide significance for a
BMI�SNP interaction in the combined-sex analysis (rs10802528 Pinter = 7.78 x 10-8 and
rs898534 Pinter = 9 x 10-8, Table 3 and full list of most significant results in S8 Table). SNPs at
these loci also displayed suggestive interaction in the women-only analysis. The ERO1LB-E-
DARADD locus remained suggestive in a sensitivity analysis with only the combined sex stud-
ies with the lowest genomic inflation analysed (lambda< 1.05, S9 Table), while index SNP
rs898534 in RBFOX3’s P-value drops to 1.5 x 10-4. For a fair comparison, the tests for differ-
ence of main effects between BMI strata presented in S7 Table were recalculated using the
exact subset of studies for which BMI�SNP term results were analysed (S9 Table) and led to
similar conclusions. Noticeably, while the top loci in the lean versus obese comparisons come
up as top loci in the linear fitting of an interaction term (S8 and S9 Tables), none of the loci
ranking high in the lean versus overweight strata reached suggestive significance in the linear
modelling despite the strongest Pdiff P-values, suggesting a non-linear mode of action for those.

We attempted replication of the linear interaction seen in the combined-sex analysis in a
replication set consisting of six studies. Model-robust estimates of effects’ standard errors were
calculated to avoid inflated λGC statistic commonly seen when using classical regression ap-
proaches [21]. Top results for this replication set and the combined samples are reported in

Fig 1. Mean effect across BMI strata of allelic substitutions at representative variants displaying genome-wide significant association with SU in at
least one BMI stratum and displaying nominally significant difference in effect size across BMI strata. Effect size is on standardised age-adjusted SU
levels. Error bars indicate the standard errors of the mean effect estimates within a BMI category. Horizontal lines indicate nominally significant (p< 0.05)
differences in mean effect sizes between BMI categories, ** indicates significance at the 1% level taking into account the multiple comparisons performed.
Differences in mean effect sizes between BMI strata were tested pairwise using the classical z-test, and Pdiff denotes the 2-sided test corresponding P-value.
Lean: BMI< 25 kg/m2, overweight: 25� BMI� 30 kg/m2, obese: BMI> 30 kg/m2.

doi:10.1371/journal.pone.0119752.g001
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Fig 2. Forest plots of effect sizes within BMI stratum for variants with the twomost significant mean effect size differences between BMI stratum.
A. RBMS1-TANK locus and B. TSPYL5 locus. The overall inverse—variance-weighted mean effect per BMI stratum is calculated assuming fixed effect
across studies and represented by a lozenge, associated P-value displayed as P. Measure of heterogeneity between studies is reported (I-squared) with
associated P-value for significance (p). Pdiff is the test of difference in mean-effect size P-value. For study abbreviations and references, see S1 Table.

doi:10.1371/journal.pone.0119752.g002
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S9 Table. Both RBFOX3 and ERO1L-EDARADD SNPs showed consistent direction of interac-
tion effect between discovery and follow-up sets and a low level of heterogeneity across studies
and RBFOX3 index SNP reached genome-wide significance in the combined dataset (Table 3).

Pathway analysis
We used a recently developed pathway analysis method where pathway associations are tested
following circular permutations of all the GWAS SNPs P-values [22] and compare enriched
KEGG defined pathways in all nine strata. Results (S10 Table) did not uncover any pathway
reaching the genome-wide significance threshold defined by a strict Bonferroni correction using
229 pathways and nine analyses (P = 2.43 x 10-5) but this threshold is very conservative given
that many pathways are interconnected or overlapping and the combined and sex separate anal-
yses are not independent. The most significant pathways were the ribosome pathway (P = 3 x
10-4) in overweight women, glycosaminoglycan degradation in obese men (P = 6 x 10-4) and N-
glycan biosynthesis in lean women (P = 6 x 10-4).

N-glycan biosynthesis (KEGG pathway hsa00510- N = 43 genes) is particularly compelling
as its ranking amongst associated pathways is stable through the variable sample sized analyses
for the same BMI stratum: it ranks top in all the lean meta-analyses (rank = 1 in combined-
gender and women, rank = 21 in men), while it is medium-ranked in all the overweight analy-
ses (rank = 68 in combined-gender, rank = 69 in women and rank = 103 in men) and amongst
the lowest ranks in all the obese strata (rank = 217 in combined-gender, rank = 223 women
and rank = 218 men). The list of genes out of the 43 genes in this pathway with at least one
SNP nominally significantly associated with urate levels (P<0.05) in either BMI stratum in the
combined-gender analyses are listed in S11 Table.

Discussion
No novel locus with a genome-wide significant main effect on SU was uncovered when per-
forming GWAS within the three BMI strata investigated, suggesting that changes in BMI do
not switch on a yet unknown major urate locus. However, many loci reached suggestive level of
SU association in a BMI dependent fashion and/or displayed suggestive difference in main ef-
fects across BMI categories that may collectively account for a substantial amount of BMI-
sensitive SU variation.

One weakness of this study is its relatively modest size. Gene by environment (GxE) detec-
tion requires a larger sample-size than that required for the detection of main effects of compa-
rable magnitude [29] (a rule of thumb proposed for case control design is a four time larger
study [30]). Data from over 200,000 individuals were required to confirm the attenuation of
FTO obesity risk genotype by physical activity [31] with the reported interaction term

Table 3. Most significant BMI x SNP interaction terms for urate GWAMA.

Discovery_Metaanalysis
N = 28610

Replication_Metaanalysis
N = 13959

Combined_Metaanalysis
N = 42569

Locus SNP A1 A2 chr Pos(36) fqA1 βinter s.e. Pinter I2 βinter s.e. Pinter I2 βinter s.e. Pinter I2

ERO1LB-EDARADD rs10802528 G T 1 234573438 0.55 0.010 0.002 7.8E-08 0% 0.003 0.003 3.4E-01 0% 0.008 0.0015 2.94E-07 0%

RBFOX3 rs898534 G A 17 74785108 0.88 -0.016 0.003 9 E-08 0% -0.009 0.005 5.2E-2 0% -0.014 0.003 2.61E-08 0%

A1, allele for which effect (β) is reported; A2 alternate allele, fqA1 weighted average effect-allele frequency across studies meta-analyzed; s.e. standard

error of the effect estimate, I2 meta-analysis heterogeneity statistic. The interaction term is modelled within a linear model where standardised SU levels

(after adjustment for age and sex) is regressed on BMI, SNP and their interaction. βinter is the regression coefficient for the interaction term.

doi:10.1371/journal.pone.0119752.t003
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significant, Pinter = 0.001, because only one candidate gene was tested. Few scans for GxE inter-
action have been performed genome-wide to date [32–37]. A stratification strategy was used to
uncover novel women-specific genetic effects in waist-related phenotypes with strong statistical
support using a very large dataset [36] and gave support for stronger effects of the known to
date type 2 diabetes genetic risks variants in lean compared to obese individuals [35]. Other
studies have reported modest (Pinter at best 10

-4) interaction effect after testing for a joint effect
of the main SNP effect and interaction term with the significant results driven by the main
SNP effect [32,34]. Joint effect meta-analysis (JMA) was implemented fairly recently [38] and
best suited when both main and interaction effects are present.

Our study was additionally challenged by using a crude readout, BMI, where similar measures
can reflect very different physiological status, e.g high BMI could correspond to high visceral fat
deposition as well as low visceral fat deposition but high muscle mass. It would certainly benefit
frommore specific measures of environmental exposures for example, of diet (fructose, fat con-
tent, alcohol intake) or amount of physical activity or of metabolic status of the subject.

Despite these limitations, this is the largest investigation of the interplay between genetic
variants influencing urate and BMI status to date and it provides novel, biologically supported,
hypotheses that warrant further investigations.

Of the known urate loci, there was weak statistical evidence for modulation of SLC2A9 variant
effects by BMI and no support from previous reports [9,16] of a consistent BMI modulating ef-
fect. By contrast, statistically significant change was observed for ABCG2 in men, with a fan-
shaped interaction pattern and diminution (by half) of the genetic variant effect size in obese
compared to lean men on average. The ATP-binding cassette transporter ABCG2 has been estab-
lished as a high capacity urate transporter, is expressed in renal proximal tubules, liver and intes-
tines, and the hyperuricemia causal Q141K mutation has been shown to reduce urate transport
rates [39]. Surrounding lipids, ATP concentrations, cholesterol and bile acids have been shown
to modulate activity of ABCG2 in vitro [40]. Interestingly, BMI-dependent effects of Q141K on
urate response to acute fructose exposure have been recently reported [41]. A stronger effect of
GCKR variant in the obese strata was only suggestive but it is well supported by the equivalent
doubling in the lowering effect reported for the GCKR pleiotropic rs780094 T allele for fasting in-
sulin and glucose in high-BMI participants compared to low-BMI participants, supplementary
Table 2 of [32]. It is also consistent with the finding that adjustment for triglyceride (TG) level as
potential mediator/confounder attenuates GCKR rs780094 variant urate association [10].

RBFOX3 and EROL1B were the top loci showing interaction with BMI status using linear
models (with RBFOX3 index SNP reaching genome-wide significance in the combined discov-
ery and look-up studies GWAMA). Both loci displayed the strongest evidence of a significant
difference in SNP main effect when the lean and obese stratified samples were compared (S7
Table), analyses in which no individual study showed a high inflation factor or high heteroge-
neity across studies, supporting genuine interaction with BMI and in a linear fashion. We
noted that, in contrast to those, the two top ranking loci from the stratified analyses compari-
sons (both for men lean-overweight contrasts) were not significantly interacting with BMI
when using a linear model of interaction, and would require replication using the same meth-
odology to be confirmed. RBFOX3 is a neuronal nuclear marker expressed in the Arcuate nu-
cleus in the hypothalamus where orexigenic and anorexigenic neurons reside. Its paralog,
RBFOX1, has been proposed as an obesity gene [42]. RBFOX3 (akaHRNBP3) was also selected
together with 38 other genes in a gene-centric joint test for significant association with
HDL-Cholesterol levels in a dataset combining expression data and GWAS data from indepen-
dent sources [43]. A metabolic outcome of RBFOX3 knockout in mice (international mouse
phenotyping consortium) is decreased circulating alkaline phosphatase, human levels of which
correlates with BMI [44] and metabolic syndrome [45], a component of which is
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hyperuricemia. EROL1B encoding for the endoplasmic reticulum oxidoreductin 1LB catalizes
the formation of disulfite-bonds in the ER. It represents another good candidate for BMI inter-
action as it is responsive to the unfolded protein response, a signal triggered by ER stress, levels
of which are elevated in state of over-nutrition [46]. ER stress response itself may induce in-
flammation [47] and has been correlated with increased levels of inflammation marker mole-
cules CRP and IL6 which were both positively correlated with urate levels [48].

The “N-glycan biosynthesis” pathway acting to influence urate levels differentially in lean
individuals compared to overweight or obese individuals is intriguing. One of the newly identi-
fied urate loci [2], B3GNT4, also acts in a complex capping reaction, of Type II Lactosamine for
example, establishing a precedent for a link between glycosylation enzyme variation and urate
levels. The glycolysis intermediate Fructose 6P is the main precursor of amino sugar, combin-
ing with glutamine to form glucosamine-6-phosphate. Dependence on glutamine for both pu-
rine and glycoaminoglycan biosynthesis as illustrated by the inhibition of either pathway by
the glutamine analogue antagonist DON [49] also interconnects these pathways.

These links would be important to study further as glucosamine can be prescribed to pa-
tients with gout to reduce pain and inflammation but the possibility that it might influence the
urate level has not been explored.

Significant changes in N-glycosylation profiles with BMI have been well documented
[50,51,52]. Fitting with the urate-association results (S11 Table), core fucosylation (driven by
FUT8) was noted to decrease with BMI [52] and transcript levels for the sialyltransferase gene
ST6GALT2 to be highly stimulated by the pro-inflammatory cytokines IL6 and IL8 [53] that
are potentially elevated in the systemic low-grade inflammation that characterises obesity [54].
It is possible that in obese individuals flux towards O-GlcNacylation rather than towards N-
glycan biosynthesis is more prominent, possibly following ER stress. O-GlcNacylation has
been proposed as a nutrient sensor activated by glucose availability and correlates with insulin
resistance, a common hallmark of obesity [55].

Metabolic pathways are highly inter-connected and their dys-regulation underlies many dis-
eases. Accounting for body mass index in analyses provides a tool to link pathways to both obe-
sity and urate homeostasis.

Supporting Information
S1 Fig. Scatter plots of BMI and serum urate in men and women from two populations
used in this study. A CROATIA-Vis and B.ORCADES. Residuals from a mixed linear model
adjusting serum urate (SU) levels for age and accounting for relatedness are plotted against
each other. As noted in [11] the linear fit is stronger amongst women.
(TIF)

S2 Fig. Forest plots for rs7711186 CLK4 variant effect size in the male and female obese
stratum in replication datasets together with those of a SLC2A9 variant as positive control.
In the discovery dataset, rs7711186 (C allele) was suggestively associated with urate in the
men-obese stratum, differentially (overall effect size = 0.21, se = 0.04). Look-up in a small Poly-
nesian study (NZL-Poly) where obesity is prominent is added under the overall meta-analysis
value for the replication studies, all of European ancestry (represented by lozenge). �For this
Polynesian study only the SLC2A9 variant rs11942223, in LD (r2 = 0.6) with variant
rs13129697, was available and used in the figure.
(TIF)

S3 Fig. QQ plots for difference in SU effect statistics in all nine comparisons performed:
lean versus overweight, lean versus obese and overweight versus obese in combined-gender
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(ALL) or sex-stratified (MEN, WOMEN) samples. The ordered observed squared t statistic
are plotted against the ordered expected statitics of the null, chi2, distribution, where t =
(βbmicat1 - βbmicat2)/sqrt(SEbmicat1

2 + SEbmicat2
2-2r(SE bmicat1, SE bmicat2)),with βbmicat and SEbmi-

cat the meta-analysis weighted beta-estimates and their corresponding standard errors and r
the Spearman rank correlation coefficient between meta-analyzed beta-estimates in the BMI
categories compared across all SNPs. Inflation coefficients, λGC, are reported for each plot in
the left upper corner.
(TIF)

S4 Fig. Forest plots of effect sizes within BMI stratum for variants showing the most signif-
icant mean effect size differences (associated P-value, Pdiff) between BMI stratum genome-
wide, in the combined-gender (all) strata. The overall inverse—variance-weighted mean ef-
fect per BMI stratum is calculated assuming fixed effect across studies and represented by a loz-
enge, associated P-value displayed as P. Measure of heterogeneity between studies is reported
(I-squared) with associated P-value for significance (p). For study abbreviations and references,
see S1 Table.
(TIF)

S1 Table. Study description for each study site.
(DOC)

S2 Table. Individual study summary statistics for serum urate levels (SU) within the nine
BMI/gender categories analysed. SU unit is in mg/dl, sd stands for standard deviation, N is
the number of individuals with BMI and SU measures.
(XLS)

S3 Table. Study-specific genotyping, imputation information and analysis softwares.
(XLS)

S4 Table. List of inflation factors (λ) for each sub-analysis at individual study level. Inflation
factors were calculated after filtering out poorly imputed variants and low frequency variants
(MAF< 1% for main effect analysis in BMI-stratified GWAS (λ�), MAF< 5% for SNP�BMI
interaction term analysis (λ��). NA flags analysis not performed. ��� indicates that model-ro-
bust regression method was used.
(XLS)

S5 Table. List of loci encompassing SNP(s) with SU association suggestive P-value (5 x 10-8

=<P<10-5) in the nine stratified GWAMA performed. Only the information pertaining to
the SNP with the lowest P-value (index SNP) is listed. Lower allele frequency variants (1%<MAF
<5%) are reported if the meta-analysis included at least four populations and if the contribution
of any single study, as calculated by the meta R package, was lower than 30%. A1, allele for which
effect (β) is reported; A2 alternate allele, frq(A1) weighted average effect-allele frequency across
studies. Associations reported in the vicinity of the urate index SNP (in a 150kb region centred on
the SNP) in the NHGRI GWAS catalogue (29_10_2013 update) are listed; highlighted red, the
ones with same index SNP or index SNP in high to moderate linkage disequilibrium (r2>0.4).
(XLS)

S6 Table. List of significant and suggestive loci (P-value< 10-4) from the nine BMI strati-
fied GWAMA in the gene-based association test implemented in VEGAS. Novel loci are
shaded in grey. In bold, gene reaching genome-wide significant association with serum urate
levels (P< 2.10-6).
(XLS)
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S7 Table. List of loci with SNP(s) displaying the strongest evidence of SU mean effect size
difference across BMI strata in the discovery studies. Effect differences were tested using a t
test. All loci with SNP displaying a Pdiff < 10-5 are listed with representative index SNP of low-
est P-value (the total number of SNPs with suggestive P-value per loci is listed in N sugges-
tivSNPs column). Low MAF SNPs were filtered as in S5 Table. Additionally, Pdiff values for
the 28 known urate loci [2] are listed with index SNP from the published data. Locus in bold in-
dicates that the difference in effect size between BMI strata reached genome-wide significance.
P-value in bold for the known urate loci are those reaching the nominal threshold of 0.05.
Locus with asterix had index SNP with main effect reaching suggestive level of association
(P< 10-5) in the BMI stratified urate GWAMA analysis (S5 Table).
(XLS)

S8 Table. List of loci with suggestive (Pinter< 10-5) SNPxBMI interaction term using regres-
sion based method. Studies with inflation factor greater than 1.2 were not included in the anal-
ysis. For the combined-gender analysis, the CoLaus study was analysed as a replication study
to balance discovery and replication sets. SNP with low MAF (< 5%) were excluded prior to
meta-analysis. Results for the discovery, replication and combined sets are presented. Locus in
bold indicates a genome-wide significant interaction effect. Shaded are loci common with S9
Table (list of loci with suggestive difference in urate main effects between BMI stratified
GWAMA)
(XLS)

S9 Table. Results obtained as in S7 Table when analysis is restricted to the subset of studies
(N = 16) used for BMI by SNP interaction testing using a regression-based method and
with markers of MAF> 5% for direct comparison. Shaded are loci displaying suggestive as-
sociation in linear interaction model(listed in S8 Table).
(XLS)

S10 Table. Results from the Pathway analysis tool implemented in the genomicper R pack-
age in the nine stratified urate GWAMA performed.
(XLS)

S11 Table. List of genes in the KEGGs N-glycan biosynthesis pathway, hsa00510, harbour-
ing at least one SNP with a serum urate GWAMA P-value (P) nominally significant in one
of the three combined-gender BMI categories analysed. N-glycan biosynthesis step coded
1 = N-glycan lipid-linked oligosaccharide precursor synthesis 2 = high mannose oligosaccha-
ride to an Asparagine residue transfer and N-glycan trimming and branching 3 = more elabo-
rate capping reactions
(XLS)
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ATin EM AGr GKG JC PD'A SU PV GW SC IK KF MV JEM CM ET CB RS ADöring ER KS
AHo AGUMWH-EW GD AJG ND LS JHS MK RNMN ClS KB SMF ET AnJ VS CinS CHe
MBu RMNK SK SS SR SC NS GH TN PBMNHHC IR CHa OHF TRM VGMPi BWP HS
AMMCi PPP CMvD LF GG IJD MGD JFW PG UG TDS AFW CaH HWMPe MBoWHLK
MCa DT HV CG AK VV. Design and/or management of individual study: NH HC IR OHF
TRM VGMPi BWP HS AMMCi PPP CMvD LF GG IJD MGD JFW PG UG TDS AFW CaH
HWMPe MBoWHLKMCa DT HV CG.
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