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Abstract— Distributed scheduling and routing poli-
cies that perform well are increasingly being sought
for multi-hop wireless infrastructure networks. The
state-of-the-art max-pressure algorithms have prov-
ably optimal stability properties but in networks with
cycles and loops the delay performance can be quite
poor at rates that are not very close to the capacity
region boundary. We propose a new scheduling and
routing policy to try to address this that results in
serving the longest queue but routing packets along
(dynamic) shortest-path routes. For a two-node relay
we prove stability for our policy using fluid limits.

I. INTRODUCTION

Scheduling, resource allocation and routing have
traditionally been important topics of study for
communication networks. However, with the in-
credible number of devices of today that can help
connect people there has been a surge of activity in
this area. Refer to [1], [2] for a current review of
work to date and research problems in this area.
For our purposes we are interested in multi-hop
wireless infrastructure networks, i.e., networks of
wireless access points that are fixed and can com-
municate with each other to transmit data between
different sources and destinations. Additionally, to
keep the complexity low we restrict our attention to
distributed algorithms that could involve (limited)
communication between neighbour nodes. The state
of the art in this area is to consider max-pressure
based algorithms [3], [4], [5], [6], [7] that use in-
formation about the queue-length of different flows
at neighbour nodes. These policies are provably
stabilising, i.e., can keep the queues stable as long
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as the arrival rates lie within the capacity region of
the system. This is usually proved using the sum of
squares of the queue-lengths at the different nodes
as a Lyapunov function. The policy can usually
be written as one-step maximal weight matching
procedure, i.e., considering only nearest/one-hop-
distant neighbours. This, however, precludes the
logic from knowing about loops and avoiding them.
Therefore, at rates not close to the capacity bound-
ary, one can demonstrate that packets spend a lot
of time in loops before exiting the system, leading
to large delays: refer to Section II for an illustrative
example. This lack of knowledge of the topology
of the network also allows max-pressure policies
to route packets to nodes that do not communicate
with the destination node. This does not impact
stability but does adversely impact applications. It
is possible that combining network coding with
max-pressure scheduling [8] the performance issues
highlighted above can be solved. However, without
network coding we propose a policy that involves
constructing distributed metrics that can reveal the
minimum “distance” to the destination from each
node which we term the “draining time” from
each node. This information is used to prune the
routes to be chosen. In Section II we describe our
model and discuss a model where max-pressure
performs poorly, and then present our policy in
Section III. Finally, in Section IV we prove stability
properties for the constructed policy for two-node
relay networks. In the interests of brevity we omit
some of the detailed proofs. We, however, point
the reader to [9] for all details and an extensive
bibliography.



II. MODEL AND EXAMPLE

We consider a discrete-time queueing system
where packets spend at least one time-slot in each
queue, and define the following: let N be the set
of nodes in the network and F is the set of flows
using the network with source s(f) ∈ N and
destination d(f) ∈ N for flow f ∈ F . Let Qfn(t)
be the queue-length of flow f at node n (at time
t). Define connectivity matrix C - N × N with
Cnm ∈ {0, 1}, and rate matrix R that delineates
the number of (whole) packets that can be served
in each time-unit. We assume that there are no
interference constraints, and that different receivers
can simultaneously receive transmissions from dif-
ferent transmitters based upon a rate matrix as will
be specified in detail. The underlying assumption
is of enough frequencies to ensure this in the
case for a network of wireless access points, say
802.11e/g access points, and a distributed frequency
assignment such as that proposed in [10] to yield a
non-interfering allocation. If one models the impact
of interference to be such that some packets in
transit get dropped with the exact number that
are dropped being a function of the scheduled
transmissions that interfere, then we believe that
the policy presented in this paper can be extended
to include interference.

From the definition of the connectivity matrix
C we have the following for all n, m ∈ N
1[Rnm>0] = Cnm, where we have 1S being the
indicator function of set S. Using this we assume
that each transmission from n of flow f at time t
consists of min(Qfn(t),maxm:Rnm>0Rnm) pack-
ets and each receiver m with Rnm > 0 receives
the first min(Qfn(t), Rnm) packets. Note that the
model allows for policies more general than just
routing but using the results from [3], [4], [6], [7]
it is sufficient to consider routing to ensure sta-
bility. Define Rmin := minn,m∈N :Rnm>0Rnm and
Rmax = maxn,m∈N Rnm to be the minimum rate
and (finite) maximum rate, respectively. Note that
this work concentrates on networks with constant
service-rates, and wireless networks never fit this
billing. However, given that we are interested in
wireless infrastructure networks there exist reason-
ably long time-scales when such a notion makes

sense. One can extend the policy assuming that
the link rates change due to fast-fading but with
the connectivity matrix remaining fixed. This is a
natural setting for our problem. Thus, we plan on
using the version for static link rates as a starting
point, and later on generalising to time-varying link
capacities.

We first show an example of a network with one
flow where max-pressure performs poorly. Consider
the network shown in Fig. 1. The operation of a typ-
ical max-pressure algorithm yields the following.
At stations 1, 2, 4, route to next station if queue-
length of next station is smaller. At station 3, if
Q3(t) > Q5(t) and Q3(t) ≤ 2Q4(t) − Q5(t),
then route min(1, Q3(t)) packets to station 5; and
if Q3(t) > Q4(t) and Q3(t) > 2Q4(t) − Q5(t),
then route min(2, Q3(t)) packets to station 4. Note
that the policy (MP) is not work-conserving and
can route packets to station 4. We will compare
this with a work-conserving policy (DT) that avoids
sending packets to station 4. For this network
our proposal will coincide with DT. With i.i.d.
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Fig. 1. Example network with loops.

Geom( λ
1+λ ) arrivals we will compare the two

policies by simulation. The two algorithms are
compared at two arrivals rates 0.9 and 0.75, and
it can be demonstrated that the delay problems
are exacerbated at lower rates. From the results
in Tables I and II it is clear that the MP algo-
rithm leads to much higher delay and higher delay
standard deviation than the DT algorithm. In fact,
one can also see that the number of visits to the
stations (K(N)) in the loop actually increases with



the lower arrival rate. Another illustration that the
MP algorithm can lead to problems with loops is
that at rate λ = 0.9 we have 0.3% of the packets
going through station 4, but at rate λ = 0.75 we
have 1.64% going through station 4. From our
simulations we have found that with increasing
burstiness of the arrival processes the performance
of the MP algorithm worsens.

TABLE I
SIMULATION RESULTS FOR λ = 0.9.

Parameter MP Algorithm DT Algorithm
Mean delay 22.953 12.165

Std. dev. delay 89.001 8.284
E[Q1] 11.279 8.133
E[Q2] 3.431 0.892
E[Q3] 2.41 0.934
E[Q4] 2.78 0.0
µ(K(2)) 1.185 1
σ(K(2)) 6.011 0
µ(K(4)) 0.185 0
σ(K(4)) 6.011 0

TABLE II
SIMULATION RESULTS FOR λ = 0.75.

Parameter MP Algorithm DT Algorithm
Mean delay 19.835 7.316

Std. dev. delay 58.518 3.952
E[Q1] 6.2 3.254
E[Q2] 3.286 0.754
E[Q3] 2.256 0.754
E[Q4] 2.5 0.0
µ(K(2)) 1.479 1
σ(K(2)) 7.362 0
µ(K(4)) 0.479 0
σ(K(4)) 7.362 0

III. SCHEDULING ALGORITHM

For each flow f at time t define the metric
V ft : N → <+ as follows. For the destination nodes
set V ft (d(f)) = 0. For all n ∈ N\{d(f)} if n com-
municates with d(f) set V ft (n) = minm∈N

Qfn(t)
Rnm

+
V ft (m). Note that node n communicates with node
m if ∃ k ∈ N such that Cknm > 0 where Ck is
the kth power of the connectivity matrix C. For all
n ∈ N \ {d(f)} if n does not communicate with

d(f) set V ft (n) = +∞. We have the following
inequalities Qfn(t)

Rmax
≤ V ft (n), and if V ft (n) < +∞,

then V ft (n) ≤
P
n∈N Qfn(t)

Rmin
. Thus, the metric V ft (n)

is roughly linear in the queue-length, and is a sur-
rogate to the draining time or delay to destination.
This is used since calculating the true draining
time (related to make-span) or delay-to-destination
is computationally prohibitive [11], [12]. Note that
V ft (i) can also be written as the minimum of the
sum of Qfn(t)

Rnm
along all paths from i to d(f). Now

the distributed Bellman-Ford algorithm [13] yields
V ft (n); the computational complexity of which is
proportional to the number of links of the network.
Note that we can ignore all paths with loops from
i to d(f) since dropping the loop will only reduce
the path cost. In practice we could augment the
link metrics to an,m + bfnQ

f
n(t)

Rnm
for some an,m > 0

and bfn > 0 to provide QoS differentiation, and
use virtual queues instead of Qfn(t) to control the
delays (the latter at a small loss in capacity). For
implementation purposes one can also perform the
computation of the V metrics slower than once
every scheduling instance.

At every node n define the following metric for
every flow f and node m given by

W f
n,m(t):=Rnm(V ft (n)−V ft (m)) if V ft (n)<+∞, (1)

and W f
n,m(t) := −∞ otherwise. Use this to define

a flow metric F fn (t) at node n given by F fn (t) :=
maxm∈N W f

n,m(t) with the maximiser given by
m∗f,n(t). Now define a node metric Gn(t) :=
maxf∈F F fn (t) with the maximiser given by f∗n(t).
Note that in contrast to the max-pressure algorithm
we are replacing Qfn(t) by V fn (t). Ties are broken
in an arbitrary manner in both maximisations.
Scheduling algorithm: If Gn(t) > 0 serve flow

f∗n(t) and route min
(
Q
f∗n(t)
n (t), Rnm∗

f∗n(t),n

)
pack-

ets to m∗f∗n(t),n(t).
Alternate view: Restricting attention only to nodes
that communicate with d(f) the definition of
V ft (m) leads to the following relation for all m,
Rnm

(
V ft (n)− V ft (m)

)
≤ Qfn(t) with equality

for some m with Cnm = 1; this is specifically
given by an m such that P ft (n,m) = 1 where one



defines the N×N matrix P ft such that P ft (n,m) =
1 if V ft (n) = Qfn(t)

Rnm
+ V ft (m) and V ft (n) <

+∞ and P ft (n,m) = 0 otherwise. Therefore,
F fn (t) = Qfn(t) and Gn(t) = maxf∈F Qfn(t). This
implies that f∗n(t) ∈ arg maxf∈F :V fn (t)<+∞Qfn(t)

and m∗f∗n(t),n(t) ∈
{
m ∈ N : P f

∗
n(t)
t (n,m) = 1

}
.

In other words, the longest queue is served at each
node, and routing is along (dynamic) shortest paths
(to destination d(f∗n(t))) with link metric Qf

∗
n (t)
Rnm

.
It is well documented that max-pressure policies
are not work-conserving. In fact, it is clear that
a node does not serve any flow if locally (over
all neighbour nodes) it has the smallest vector of
queue-lengths. Note from the alternate definition
that, in contrast, our policy is work-conserving.

Queueing equation: Let βfn,m(t) ∈ {0, 1} be
the routing variables, i.e., the indicator function of
whether flow f packets are routed from node n to
node m. Note that by conservation of time we have∑
f∈F

∑
m∈N β

f
n,m(t) ≤ 1. If the policy is work-

conserving, then we have equality if there is any
flow to be served, i.e., if maxf Qfn(t) > 0. The
queuing equations for flow f at node n are given
as follows. If n 6= d(f), then

Qfn(t+1)−Qfn(t)=
P
m∈N βfm,n(t) min(Rmn,Qfm(t)))

+Afn(t)−
P
m∈N βfn,m(t) min(Rnm,Qfn(t)),

(2)

where the first term is due to services at other nodes
in the network, the second term from new arrivals
at node n, and the final term owing to services at
node n. If n = d(f), then one can drop the terms
for the queue-length at time t and the service at
node n because the destination node for each flow
absorbs all packets that were present in the past
time-slot.

We use fluid limits [14], [15] for our proofs. For
this purpose we will be considering a sequence of
networks with the same topology, arrival processes
and service rates but with increasing scaling param-
eter M =

∑
f∈F

∑
n∈N Q

f
n(0). We assume that

the arrival processes satisfy a Functional Strong
Law of Large Numbers with mean rate λfn - in-
dependent arrival processes with countable state
Markov Chains will satisfy this: also refer to [14],
[15] for other processes that will satisfy these

conditions.
For a flow f such that node n does not com-

municate with d(f) as given by the connectivity
matrix C, we set Qfn(0) = 0 in all the networks
for consideration. Our policy never routes flow
f to such nodes. However, max-pressure policies
can route packets to such nodes, albeit only a
finite number of times. We extend our discrete-
time processes, namely {Qfn(t) : ∀ n ∈ N, ∀ f ∈
F, and ∀ t = 0, 1, . . .} to continuous time by set-
ting Qfn(t) = Qfn ([t]) resulting in right-continuous
processes with left-hand limits on [0,∞), i.e., D :=
D[<+;<k], k ∈ N that we endow with the Skoro-
hod J1-topology. Convergence in D to continuous
functions C is given by uniform convergence on
compact sets (u.o.c.).

For every n and f we will look at the behaviour
of Qf,Mn (t) := Qfn(Mt)

M for all t ∈ <+ in the limit
as M → +∞. For node n = d(f) we can assert
[9] that qfn(t) = limM→∞Qf,Mn (t) = 0 a.s. u.o.c
for all t > 0. Therefore, we need not be concerned
about the destination nodes for stability issues. For
a regular node we have

Qfn(t) ≤ Qfn(0) + [t]NRmax +
[t]−1∑
s=0

Afn(s). (3)

This will imply uniform integrability of Qf,Mn (t)
from assumptions about the arrival processes [14],
[15]. Therefore demonstrating the stability of the
fluid limit implies stability of the original queueing
network. We have [9] that along a sub-sequence
limM→∞Qf,Mn (t) = qfn(t) u.o.c. where qfn(t) is
non-negative and Lipschitz continuous. Moreover,
we have the relationship a.s.

qfn(t) = qfn(0) + λfnt

−
∑
m∈N

Rnm∑
k=1

kφf,kn,m(t) +
∑
m∈N

Rmn∑
k=1

kφf,km,n(t), (4)

where φf,kn,m(t) is a non-decreasing Lipschitz con-
tinuous function that measures the amount of time
in [0, t] that node n routes k ∈ {0, 1, . . . , Rnm}
packets of flow f to node m. For all policies
if qfn(t) = 0, then

∑Rnm
k=1

dφf,kn,m
dt (t) = 0 for all

m ∈ N \ {n}.



For every t define function vft (n) in a similar
manner to V ft (n) as follows. If n = d(f), then
set vft (n) = 0. If node n 6= d(f) communicates
with d(f), then set vft (n) = minm

qfn(t)
Rnm

+ vft (m).
Otherwise for nodes n 6= d(f) set vft (n) = +∞.
Also define the N × N matrix pft such that
pft (n,m) = 1 if vft (n) = qfn(t)

Rnm
+ vft (m) and

vft (m) < +∞ and pft (n,m) = 0 otherwise. One
can show the convergence of the scaled V metrics
to vft (n). Then our policy has the following
properties [9]:
Maximum Rate Service: If qfn(t) > 0, t ∈ [t1, t2]
for every f and m, then

∑Rnm−1
k=1

dφf,kn,m
dt (t) = 0

and only k = 0 or k = Rnm can be chosen.
Scheduling: Only the longest queues get
served, i.e., if f̂ 6∈ arg maxf∈F qfn(t), then∑
m∈N

∑Rnm
k=1

dφf̂,kn,m
dt (t) = 0. The allocation

between flows with the longest queues is arbitrary,
and determines the switching curves between flows
at any given node.
Work Conserving: If maxf qfn(t) > 0, then∑
f̂∈arg maxf∈F q

f
n(t)

dφf̂,Rnmn,m

dt (t) = 1.
Routing: Only the shortest paths are taken
for routing, i.e, if Rnm̂

(
vf̂t (n)− vf̂t (m̂)

)
<

maxf qfn(t) for some f̂ and m̂, then∑Rnm̂
k=1

dφf̂,kn,m̂
dt (t) = 0.

We can summarise all of the above
by: if maxf qfn(t) > 0, then set∑
f̂∈arg maxf∈F q

f
n(t)

∑
m:pf̂t (n,m)=1

dφf̂,Rnmn,m

dt (t) =
1. The allocation between neighbour nodes when
two or more nodes m have pft (n,m) = 1 is
arbitrary, and determines the switching curves
between routes at any given node.

Using the characterisation in [3], [4], [5], [6],
[7] given a set of arrival rates {λfn}(f∈F,n∈N)

with λfn = 0 if n does not communicate with
d(f), for stability it is sufficient that there exist
non-negative numbers {ψfnm}(f∈F,n∈N,m∈N) such
that the following hold:
Feasibility: If Rnm = 0, then

∑
f ψ

f
nm = 0.

Time Conservation:
∑
f

∑
m∈N ψ

f
nm ≤ 1.

Flow Conservation: We have λfn +

∑
m∈N Rmnψ

f
mn <

∑
m∈N Rnmψ

f
nm. An

equality here is necessary for stability.

IV. SIMPLE EXAMPLE: A TWO-NODE RELAY

Source Destination
Station A

Relay Station B

Rate x units

Rate 1 unit

Rate y units

Fig. 2. Two-node Relay.

Consider the relay network shown in Fig. 2
obtained by scaling an original model with integral
rates. We assume x > 1, otherwise our algorithm
is trivially stabilising since all the traffic will be
routed directly to the destination. Then stability
condition is λ < min(x, 1 + x−1

x y). For this
network the only decision variable is at node A: to
route traffic to node B or to the destination directly.
Our routing policy is the following:

r(t) =

{
D if qA(t)x−1

x y ≤ qB(t);
B otherwise.

(5)

We have chosen to route to the destination directly
when both routing decisions are equally good .

We will show that the fluid limit is stable. For
the fluid limit we have the following:

dqA(t)
dt =

8><>:λ−1[qA(t)>0] if r(t)=D

λ−x1[qA(t)>0] if r(t)=B
;

dqB(t)
dt =−y1[qB(t)>0]+

8><>:0 if r(t)=D

x1[qA(t)>0] if r(t)=B
.

(6)

Consider quadratic Lyapunov function L(t) =
q2A(t)+

q2B(t)
y

2 . Then we have the following:

dL(t)
dt =qA(t)

dqA(t)
dt +

qB(t)
y

dqB(t)
dt =−qB(t)

+

{
qA(t)(λ−1) if r(t)=D

qA(t)(λ−x)+qB(t)
x1[qA(t)>0]

y if r(t)=B
.

(7)



Assume λ ≥ 1, else L(t) < 0 trivially. With this
assumption we have if r(t) = D, then

dL(t)
dt ≤qB(t)

x(λ−1− x−1
x

y)
(x−1)y .

Now assume x ≥ y, else dL(t)/dt < 0 trivially.
For r(t) = B we have

dL(t)
dt ≤qA(t)(λ−(1+ x−1

x y)).

Since λ < min(x, 1 + x−1
x y) we have our result.

Source
Destination

Station A

Relay Station B

Rate x
Rate y

Relay Station C

Rate a
Rate b

Fig. 3. Two route network.

There is an alternative view of our routing policy
that allows us to generalise to the network in Fig. 3.
Routing is given by

r(t)=

8><>:C if qA(t)
a +

qC (t)
b ≤ qA(t)

x +
qB(t)
y

B otherwise
(8)

Rearranging terms we get

r(t)=

8><>:C if a
“
qA(t)− xqC (t)

b

”
≥x
“
qA(t)− aqB(t)

y

”
B otherwise

(9)

This resembles a max-pressure policy, hence one
can show stability using Lyapunov function L(t) =
q2A(t)

2 + x
b
q2C(t)

2 + a
y
q2B(t)

2 . Note that since a FIFO
two-station tandem network [16] falls under the
class we are considering, it is likely finding Lya-
punov functions in the general case will be tricky.

V. CONCLUSIONS

We proposed an alternative to max-pressure
scheduling policies that for interference-free net-
works resulted in routing packets of the longest
queues along (dynamic) shortest path routes. This
policy was shown to be stabilising for a class of
simple networks. In our simulation experiments this
continues to hold for more complex networks.

Thus our future work will be to prove stability for
general networks, and to generalise the policy to
networks with time-varying rates and interference
constraints.
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