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Experimental Evaluation of TCP Protocols for
High-Speed Networks

Yee-Ting Li, Douglas Leith, and Robert N. Shorten

Abstract—In this paper, we present experimental results eval-
uating the performance of the scalable-TCP, HS-TCP, BIC-TCP,
FAST-TCP, and H-TCP proposals in a series of benchmark tests.
In summary, we find that both Scalable-TCP and FAST-TCP
consistently exhibit substantial unfairness, even when competing
flows share identical network path characteristics. Scalable-TCP,
HS-TCP, FAST-TCP, and BIC-TCP all exhibit much greater RTT
unfairness than does standard TCP, to the extent that long RTT
flows may be completely starved of bandwidth. Scalable-TCP,
HS-TCP, and BIC-TCP all exhibit slow convergence and sustained
unfairness following changes in network conditions such as the
start-up of a new flow. FAST-TCP exhibits complex convergence
behavior.

Index Terms—Evaluation of TCP protocols, high-speed net-
works, TCP congestion control.

I. INTRODUCTION

THE TCP congestion control algorithm has been remark-
ably successful in making the current Internet function ef-

ficiently. However, in recent years, it has become clear that it
can perform very poorly in networks with high bandwidth-delay
product (BDP) paths. The problem stems from the fact that
the standard TCP AIMD congestion control algorithm increases
the congestion window too slowly. This is illustrated in Fig. 1,
which plots evolution of the congestion window cwnd of a single
flow, and its throughput time histories measured on a 1-Gb/s
transatlantic path between Dublin, Ireland, and Chicago, IL. The
propagation delay is 100 ms, and the bandwidth-delay product
approximately 8000 packets. On reducing cwnd by a half, when
delayed acking is used, it takes 8000 round-trip times i.e., 800s
for the cwnd to fill the pipe again. This is simply too slow
for most applications as it would lead to prohibitively long file
transfer times. In the example shown, it takes over 1200s for
the flow to recover after a backoff, and the average throughput
achieved is only 218 Mb/s. This poor utilization of network ca-
pacity is not confined to long-distance intercontinental paths.
With the continuing rollout of gigabit-speed (and faster) links,
latencies of only a few tens of milliseconds are quite sufficient to
create bandwidth-delay products that yield poor throughput per-
formance with the current TCP congestion control algorithm.

A solution to this problem that has been pursued by many
authors is to increase the rate at which cwnd is increased and
thereby shorten the congestion epoch duration. However, back-
ward compatibility requirements with existing TCP flows re-
quires that any new protocol should behave similarly to stan-
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Fig. 1. Measured cwnd and throughput time histories on 1-Gb/s path between
Dublin, Ireland, and Chicago, IL. Over 1200s, the average throughput achieved
is only 218 Mb/s. These particular measurements were taken on the afternoon
of December 9, 2003 using a dedicated transatlantic link with no significant
competing traffic.

dard TCP on paths with low bandwidth-delay product. Early
work along these lines includes the HS-TCP proposal of Floyd
[8], the scalable-TCP proposal of Kelly [12] and the FAST-TCP
proposal of Low et al. [9]; more recent new proposals include
BIC-TCP [20] and H-TCP [14]. These proposals have all been
the subject of considerable interest and experimentation in re-
cent years.

Due in no small part to the volume of work that has been
carried out in this area, a real need has developed for system-
atic screening of proposals to identify suitable candidates for
more detailed evaluation. Evaluating the performance of new
TCP proposals is not easy. One principal difficulty arises from
the lack of an agreed-on set of performance measures. As a re-
sult of the latter, different studies typically employ performance
tests that highlight particular aspects of TCP performance while
casting little light on other, equally important, properties of pro-
posed protocols. Several existing studies also do not control for
variations in performance associated with differences in net-
work stack implementation that are unrelated to the congestion
control algorithm (see below). This is an important practical as-
pect that is frequently ignored in academic studies on the topic.
In view of these facts, it is not surprising that concrete conclu-
sions relating to the merits of competing proposals have been
difficult to make based on currently available published results.

Our aim in this paper is to compare the performance of com-
peting TCP proposals in a systematic and repeatable manner.
It is important to emphasize that our goal in this paper is not
to achieve exhaustive testing, but rather to perform initial
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screening of proposals. Our approach is to define and use a set
of benchmark tests that probe a number of important aspects
of new protocols and to consistently apply these tests to all
proposals. Specifically, we present experimental measurements
of the performance of the HS-TCP, scalable-TCP, FAST-TCP,
BIC-TCP, and H-TCP1 proposals. These tests highlight a
number of specific deficiencies of the protocols studied and
suggest future research directions to render these suitable for
deployment in real networks.

II. SOME PITFALLS

Comparing the performance of TCP proposals is not always
easy and many pitfalls exist. Examples include the following.

Different Network Stack Implementations: In several recent
studies on high-speed networks, publicly available Linux
patches provided by the authors of TCP proposals are used.
The performance of these patches are then compared directly.
However, patches may relate to different operating system
versions. More seriously, performance issues relating to the
inefficiency of the network stack implementation, particularly
in relation to SACK processing, are known to have a significant
impact on performance. As a result, most patches implementing
proposed changes to the TCP congestion control algorithm also
implement numerous changes to the network stack that are
unrelated to the congestion control algorithm. Consequently,
direct performance comparisons of these patches risk revealing
more about the efficiency of the network stack implementation
than about the performance of the congestion control algorithm.
In this paper, we use a common network stack implementation
with all of the congestion control algorithms studied in order to
focus solely on the latter’s performance.

Congestion Control Action Not Exercised: It is important to
design experiments that exercise the TCP congestion control al-
gorithm rather than other elements of the network stack. For ex-
ample, it is essential that the bandwidth of the network is lower
than that of the server network interface card (NIC), i.e., that
the network bottleneck lies external to the server being tested.
Otherwise, it is often the case that the transport layer conges-
tion control algorithm is effectively inactive (packet drops are
virtual), and performance measurements merely evaluate the ef-
ficiency of the NIC driver.

Performance Measures Too Narrow: We argue that it is not
sufficient to focus solely on TCP throughput performance. Fair-
ness, responsiveness, backward compatibility, support for incre-
mental rollout, etc., should also be evaluated.

Range of Network Conditions: Frequently, results are pre-
sented tests from a single test run only and/or for a specific
network condition or small range of network conditions. A huge
variety of conditions exist in modern networks. We argue that
it is essential, as a minimum, to characterize TCP performance
across a broad range of bandwidths (not just on high-speed
links), propagation delays (not just transcontinental links),
router buffer sizes (not just very large or very small buffers),
and mix of connection sizes.

1We note that H-TCP is developed by some of the authors of this paper. We
emphasize, therefore, that all of the protocols studied are put through identical
tests yielding quantitative and repeatable measurements. While space restric-
tions prevent us from including all of our experimental measurements in this
paper, the measurements are available at www.hamilton.ie/net/eval.

Such issues limit the utility of previous evaluation studies and
motivate the approach taken in the present paper. We do not
claim that our tests in this paper are exhaustive. We do, however,
seek to demonstrate their utility and discriminating power and to
initiate wider debate on this topic in the networking community.

III. COMPARATIVE TESTING

An immediate difficulty that arises in our work, even for the
limited scenarios that we consider, is that the question as to what
exactly constitutes a good network protocol is itself a topic of
much debate. We do not attempt to answer this question here.
Instead, we seek to support decision making by characterizing
some important aspects of the behavior of new protocols in
a consistent and objective manner. While we lack agreed-on
metrics for ranking performance, we do have the existing TCP
standards-based algorithm against which to compare the per-
formance of new protocols. We therefore propose taking the
performance of the current start-of-the-art TCP algorithm2 as
a baseline against which the behavior of new proposals can be
compared.

It is also important to emphasize that our goal in this paper
is not to achieve exhaustive testing, but rather to perform ini-
tial screening of proposals. We therefore seek to define a se-
ries of benchmark tests that can be consistently applied and that
exercise core functionality of TCP. The performance problems
of standard TCP over high bandwidth-delay product paths are
largely associated with bulk data transfers. It is therefore nat-
ural to take this as our starting point in testing new TCP pro-
posals. In addition to focusing our attention on the performance
of long-lived flows, we also confine consideration to drop-tail
queues, since this is the prevalent queueing discipline in current
networks and to a single shared bottleneck link.

We recognize that short-lived TCP flows, and indeed
non-TCP flows, constitute a large proportion of traffic in real
networks. Similarly, not all routers operate drop-tail queueing
disciplines, and multiple bottlenecks including cross traffic
can occur. However, as a minimum, we expect that TCP algo-
rithms should function well over a single bottleneck link with
drop-tail queueing and, as we shall see, the range of network
conditions that we consider is already sufficient to highlight
many interesting features of new TCP proposals. Moreover,
a single bottleneck link with drop-tail queueing is an obvious
starting point for investigating new algorithms as the behavior
of the standard TCP algorithm in this setting is well studied. In-
deed, our understanding of standard TCP behavior under these
conditions immediately suggests a number of fundamental
characteristics to consider in making comparisons.

A. Definitions

Before proceeding, the following definitions will be useful.
Letting denote the number of packets transferred by the
th flow in the time interval , the average throughput is

(1)

2Implementations of standard TCP do differ in their behavior. However, dif-
ferences in implementation are largely confined to areas such as time-out han-
dling, undo actions, etc., and there is generally consistency in the implemen-
tation of the congestion control algorithm itself. In this paper, we consider the
Linux 2.6 TCP implementation.
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We also define the short-term average throughput as the moving
average

(2)

We have that is the number of packets sent in in-
terval and is theaveragesendingrate
over this interval. In this paper, we use a sampling interval of 0.1
s. We have fading memory so that is, roughly speaking, the
running average over a window of past data with the window size
determined by the parameter . We choose so that the averaging
window scales is approximately 100 round-trip times. We define
the -convergence time following startup of a new flow to be the
time before the short-term average throughput of the new flow
is within a factor of its long-term average value. Typically, we
use yielding the 80% convergence time.

B. Range of Network Conditions

We consider round-trip propagation delays in the range
16–320 ms and bandwidths ranging from 1–250 Mb/s. We do
not consider these values to be definitive—the upper value
of bandwidth considered can, in particular, be expected to be
subject to upwards pressure. We do, however, argue that these
values are sufficient to capture an interesting range of network
conditions that characterizes current communication networks.
In all of our tests, we consider delay values of 16, 40, 80, 160,
and 320 ms and bandwidths of 1, 10, 100, and 250 Mb/s. In
addition, we perform each test with 0, 10, 20, 30, 40, and 50
competing bidirectional Web sessions. This defines a three-di-
mensional grid of measurement points where, for each value
of delay and level of Web traffic, performance is measured for
each of the values of bandwidth.

C. Fairness

The formal fairness requirement on new protocols is unclear,
and many definitions of fairness exist. Nevertheless, we can
make the following observations. On a path with a single bottle-
neck, we expect that competing long-lived flows with the same
round-trip time should achieve approximately the same average
throughput. Flows with different round-trip times will be unfair
when thestandardTCPcongestioncontrolalgorithmisused,with
short round-trip time flows generally achieving greater average
throughput than long round-trip time flows (e.g., see [17]). We
therefore require that our tests of new TCP proposals should, as a
minimum, evaluate the impact of round-trip time on the relative
throughputs of competing flows. Specifically, to evaluate fair-
ness, we consider two TCP flows and propose the following tests.

i) Fairness with same RTT: Measure the average throughput
of each flow when each flow operates the same congestion
control algorithm, has the same propagation delay, and
has a shared bottleneck link. Measurements are taken for
a range of propagation delays, link bandwidths, and level
of competing bidirectional Web traffic (see above), and
the queue is sized as a constant proportion of the band-
width-delay product (we suggest 20% and 100% of the
bandwidth-delay product, roughly corresponding to con-
ditions with small and large queues).

ii) Fairness with different RTTs: Measure the average
throughputs as the propagation delay of the first flow is

held constant and that of the second flow is varied from
16–320 ms. Measurements are taken for a range of link
bandwidths, Web traffic, and propagation delays of the
first flow; the queue is sized as a constant proportion of
the bandwidth-delay product.

D. Backward Compatibility

To evaluate backward compatibility, we repeat the foregoing
fairness measurements but now with the first flow operating the
standard TCP algorithm and the second flow operating the new
TCP congestion control algorithm being studied.

E. Efficiency

Efficiency refers to the utilization of the available network re-
sources. It is known that the efficiency of standard TCP is influ-
enced by the queue provisioning within the network: for a single
flow (or with multiple synchronized flows) link, utilization falls
as the queue size is reduced below the delay-bandwidth product
of a path. As a minimum, we therefore expect our tests to char-
acterize efficiency with respect to this parameter.

To evaluate link utilization, we consider two TCP flows
having the same propagation delay and propose the following
two tests.

i) Efficiency versus queue provisioning: Measure average
throughput and loss overhead as the queue provisioning is
varied from 1% to 100% of the bandwidth-delay product.

ii) Efficiency versus RTT: Measure average throughput and
loss overhead as the propagation delay is varied and the
queue size scaled to be a constant proportion of the band-
width-delay product.

F. Responsiveness

Since network conditions are not static, we are also interested
in the ability to rapidly acquire and release bandwidth as condi-
tions change.

i) Response function: On links with many flows, the backoff
events experienced by a single flow are often modeled as
a random process (e.g., see Padhye et al. [17]). Motivated
by this, we evaluate the impact of random packet loss on
efficiency via the following test. Configure the network to
generate random packet losses with constant per-packet
drop probability (in our tests, we implemented this on
a software router). Measure the average throughput of a
single TCP flow as the level of random packet losses is
varied.

ii) Convergence time: On links with a smaller numbers of
flows, it is known that interactions between competing
flows can have a strong impact on network convergence
time following a disturbance (e.g., see [19]). We eval-
uate the responsiveness of small numbers of TCP flows
to changing network conditions by measuring the 80%
convergence time following the startup of a second flow.
We recommend that tests be repeated with a range of start
times of the second flow that span at least one congestion
epoch of the first flow. In this way, we can evaluate the av-
erage performance independent of the specific start time
used.

As usual, these measurements are carried out for a range of
propagation delays, Web traffic, and link bandwidths.
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IV. EVALUATING HIGH-SPEED PROTOCOLS

In this section, we measure the performance of the fol-
lowing high-speed proposals: scalable-TCP, high-speed TCP
(HS-TCP), BIC-TCP, FAST TCP, and H-TCP. These proposals
have all been the subject of considerable interest and exper-
imentation in recent years, with patches implementing each
of these protocols on the Linux operating system publicly
available.

Before proceeding, we very briefly review the basic operation
of each of these competing proposals. The reader is referred to
the original literature for more detailed information.

A. Scalable-TCP

The basic idea in scalable-TCP [12] is to make the recovery
time after a congestion event independent of window size.
Specifically, scalable-TCP proposes that the TCP cwnd be
updated as follows:

Ack

Loss

Suggested values for the parameters and are 0.01 and 0.875,
respectively. A mode switch is used whereby the standard TCP
cwnd update rules are used when cwnd is less than a threshold,
Low Window, and the scalable-TCP update rules are used for
larger cwnd values.

B. HS-TCP

HS-TCP [8] uses the current TCP cwnd value as an indication
of the bandwidth-delay product on a path. The AIMD increase
and decrease parameters are then varied as functions of cwnd,
as follows:

Ack

Loss

In [8], logarithmic functions are proposed for
and , whereby increases with cwnd and

decreases. Similarly to scalable-TCP, HS-TCP uses
a mode switch so that the standard TCP update rules are used
when cwnd is below a specified threshold.

C. H-TCP

H-TCP [14] uses the elapsed time since the last conges-
tion event, rather than cwnd, to indicate path bandwidth-delay
product, and the AIMD increase parameter is varied as a func-
tion of . The AIMD increase parameter is also scaled with path
round-trip time to mitigate unfairness between competing flows
with different round-trip times. The AIMD decrease factor is
adjusted to improve link utilization based on an estimate of the
queue provisioning on a path. In more detail

Ack

Loss

with

otherwise

where is a specified threshold such that the standard TCP
update algorithm is used while . A quadratic increase
function is suggested in [14], namely

. and are measurements of
the minimum and maximum round-trip time experienced by a
flow. is a measurement of the maximum achieved
throughput during the last congestion epoch.

D. BIC-TCP

BIC-TCP [20] employs a form of binary search algorithm to
update cwnd. Briefly, a variable is maintained that holds a
value halfway between the values of cwnd just before and just
after the last loss event. The cwnd update rule seeks to rapidly
increase cwnd when it is beyond a specified distance from

, and update cwnd more slowly when its value is close to .
Multiplicative backoff of cwnd is used on detecting packet loss,
with a suggested backoff factor of 0.8. In more detail

Ack

Loss otherwise

with

or

otherwise .

BIC-TCP also implements an algorithm whereby upon low uti-
lization detection, it increases its window more aggressively.
This is controlled with the Low Util and Util Check parame-
ters. In order to maintain backwards compatibility, it uses the
standard TCP update parameters when cwnd is below threshold
Low Window.

E. FAST-TCP

FAST-TCP [9] is a delay-based algorithm. In outline

Each RTT

Loss
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Fig. 2. Experimental setup.

TABLE I
HARDWARE AND SOFTWARE CONFIGURATION

TABLE II
DEFAULT NEW-TCP PARAMETERS USED IN ALL TESTS

where and are the minimum and average observed
latencies of the flow, respectively. The function de-
pends upon the measured throughput achieved by the flow:
currently, is set to 8, 20, and 200 for achieved through-
puts of less than 10 Mb/s, less than 100 Mb/s, and greater
than 1 Gb/s, respectively. (These thresholds are specified by
the sysctl entries and

, respectively.) FAST-TCP also includes rate
pacing. Note that rate pacing is a functional change and is thus
viewed here as being part of the congestion control algorithm
(unlike network stack issues such as efficient SACK processing
implementation which fundamentally involve no functional
change, only a change in computational burden).

F. Experimental Setup

All tests were conducted on an experimental testbed. Com-
modity high-end PCs were connected to gigabit switches to
form the branches of a dumbbell topology (see Fig. 2). All
sender and receiver machines used in the tests have identical
hardware and software configurations as shown in Table I (see
the Appendix) and are connected to the switches at 1 Gb/s.
The router, running the FreeBSD dummynet software, can be
configured with various bottleneck queue sizes, capacities,
and round-trip propagation delays to emulate a wide range of
network conditions.

Apart from the router, all machines run a modified version
of the Linux 2.6.6 kernel. Each of the congestion control
algorithms studied have independent patches that are publicly

available. However, these patches are often for different ver-
sions of Linux and typically also make changes to the network
stack that are not directly related to the congestion control
algorithm; for example, it is common for patches to alter the
SACK processing algorithm to improve its efficiency as the
standard implementation has known performance problems
in high-speed environments [13]. To provide consistency, and
control against the influence of differences in implementation
as opposed to differences in the congestion control algorithm
itself, we therefore built the congestion control algorithms into
a common kernel. This kernel is referred to as the altAIMD
kernel (see the Appendix for further details).3

The kernel is instrumented with the Web100 extensions [16]
to allow measurement of TCP variables.

In order to minimize the effects of local hosts queues and flow
interactions, unless otherwise stated, we only ran one long-lived
flow per PC with flows injected into the testbed using iperf.
Web traffic sessions are generated by dedicated client and server
PCs, with exponentially distributed intervals between requests
and Pareto distributed page sizes. This is implemented using a
client-side script and custom CGI script running on an Apache
server. Following [21], we used a mean time between requests of
1 s and a Pareto-shape parameter of 1.2. Each individual test was
run at least 10 min each. In the case of tests involving Standard
TCP, we ran individual tests for up to an hour as the congestion
epoch duration becomes very long on large bandwidth-delay
products paths. In order to obtain a good representation of the
run-to-run variability in performance metrics, all individual tests
were repeated at least five times and the arithmetic mean taken.
An error on the measurement was taken as the standard error
from this mean.

As discussed previously, an essential feature of the proposed
approach is that we always carry out the full range of tests for
standard TCP so as to provide a baseline against which we can
evaluate the performance of new TCP proposals. By always
taking measurements for standard TCP, we have a common
baseline for making comparisons.

V. RESULTS

Owing to space restrictions, we cannot include the results of
all our tests here. We therefore present results for a subset of
network conditions that are representative of the full test results
obtained.

A. Fairness With Same RTT

Fig. 3 plots the ratio of measured throughputs for two flows
with the same propagation delay sharing a common bottleneck
link as the path propagation delay is varied. Tests are of 10-min
duration. Results are shown both for a bottleneck link band-
width of 10 and 250 Mb/s, roughly corresponding to low and
high-speed network conditions. The results shown are with no
Web traffic, but similar behavior is observed when Web traffic
is present.

It can be seen that this basic test reveals some striking be-
havior. Under these conditions, the standard TCP congestion

3We note that the implementation of BIC-TCP included in the standard Linux
2.6.6 kernel distribution is known [15] to be incorrect (this has subsequently
been corrected). In our tests, we use a corrected implementation based upon the
original Linux patch developed by the BIC-TCP authors.
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Fig. 3. Ratio of throughputs of two flows with the same RTT (also sharing same bottleneck link and operating same congestion control algorithm) as path propa-
gation delay is varied. Results are shown for 10 and 250-Mb/s bottleneck bandwidths. The bottleneck queue size is 20% BDP, no web traffic. Observe that while
standard TCP and H-TCP are essentially fair (the competing flows achieve, to within 5%, the same average throughput) under these conditions, scalable-TCP, and
FAST-TCP are notably unfair. HS-TCP and BIC-TCP can also be seen to exhibit significant unfairness, albeit to a lesser degree than scalable-TCP and FAST-TCP.

control algorithm consistently ensures that each flow achieves
the same (to within less than 5%) average throughput. How-
ever, the measurements shown in Fig. 3 indicate that many of
the proposed protocols exhibit substantial unfairness under the
same conditions. While both FAST-TCP and scalable-TCP dis-
play very large variations in fairness, BIC-TCP and HS-TCP
also display significant levels of unfairness.

In view of the somewhat surprising nature of these results,
it is worthwhile investigating this behaviour in more detail. We
consider, in turn, each of the protocols exhibiting greater levels
of unfairness than standard TCP.

• Scalable-TCP: Fig. 4 shows typical examples of measured
cwnd time histories. It can seen that the cwnds either do
not converge to fairness or else converge very slowly in-
deed (not reaching fairness within the 10-min duration of
these tests). Although sometimes expressed as a modified
additive increase algorithm, it is easily shown that the scal-
able-TCP algorithm is, in fact, a multiplicative-increase

multiplicative-decrease (MIMD) algorithm, and this ap-
pears to explain much of the observed behavior. It has been
known since the late 1980s [5] that in drop-tail networks,
such algorithms may not converge to fairness. Further, in
the case of MIMD flows with different round-trip times,
theory predicts that the flow with the shortest round-trip
time can seize essentially the entire link capacity [3], and
this type of behavior is evident in our experimental results
presented later. Note that this behavior is not confined to
synchronized patterns of packet drop and is also observed
when significant levels of Web traffic are present (although
[3] considers synchronized drop-tail environments, the
analysis can be readily extended the unsynchronized drops
with similar conclusions).

• FAST-TCP: Fig. 5 shows typical examples of measured
cwnd time histories when using the FAST-TCP algo-
rithm. The upper figure shows measurements taken on a
250-Mb/s path with 42-ms propagation delay. Rapid vari-
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Fig. 4. Scalable-TCP cwnd time histories following startup of a second flow.
RTT of both flows is 42 ms (top) and 162 ms (bottom). Bottleneck bandwidth
is 250 Mb/s, queue size 20% BDP, no Web traffic.

Fig. 5. FAST-TCP cwnd time histories following startup of a second flow. RTT
is 42 ms (top) and 162 ms (bottom). Bottleneck bandwidth is 250 Mb/s, queue
size 20% BDP, no Web traffic.

ations in cwnd are evident that are somewhat surprising
in view of the delay-based rather than loss-based nature
of the FAST-TCP algorithm. The lower figure shows the
cwnd’s measured when the propagation delay on the path
is increased to 162 ms. The rapid variations in cwnd are
no longer present, but the flows now exhibit a number
of abrupt changes in cwnd, including a sharp increase in
unfairness after 500s. It is perhaps worth emphasizing that
these examples are representative of our measurements
across a wide range of network conditions and are not
selected as worst case behaviors. The purpose in this
paper is not to explain the performance of the FAST-TCP
algorithm. We do, however, comment that the behavior in
the low latency example appears to be associated with use
of a large value of . Roughly speaking, each FAST flow
attempts to maintain packets in the queue at the bot-
tleneck link. Hence, with flows a queue size of at least

is needed to avoid flooding the queue and inducing

Fig. 6. HS-TCP cwnd time histories following startup of a second flow. RTT is
42 ms (top), 162 ms (middle) and 324 ms (bottom). Bottleneck bandwidth 250
Mb/s, queue size 20% BDP, no Web traffic.

many packet losses. For link speeds above 100 Mb/s,
, and so with two flows, we need a queue of

at least 200 packets. However, for a 250-Mb/s link and
42-ms delay, a 20% BDP queue is only 175 packets. The
behavior in the high-latency example in Fig. 5 appears to
be associated with the adaptive switching of the pa-
rameter value. If flows happen to adapt to different values
of , this can lead to substantial unfairness as can
take values in a range covering two orders of magnitude.
Moreover, this unfairness can be sustained since the
is updated based on throughput. For example, choosing a
low value of leading to a low throughput share, in turn,
leads to the continuing choice of a low value for , while
conversely once a flow chooses a high value of such
that receives a high throughput share then this leads to it
maintaining a high value of . As a result, the network
can remain indefinitely in an unfair configuration.

• HS-TCP: Fig. 6 shows examples of HS-TCP cwnd time
histories for flows with the same round-trip time following
startup of a second flow. It can be seen that the flows do
converge to fairness, but that the convergence time can be
long. This effect becomes more pronounced as the path
propagation delay is increased. These experimental mea-
surements are in good agreement with the simulation re-
sults previously reported in [18]. Recall that the AIMD in-
crease parameters are functions of cwnd in HS-TCP. The
slow convergence appears to originate in the asymmetry
that exists in HS-TCP between the AIMD parameters of
newly started flows (with small cwnd) and existing flows
(with large cwnd). Existing flows with large cwnd have
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Fig. 7. Detailed HS-TCP cwnd time histories (top) and �; � time histories
(bottom) following startup of a second flow. RTT is 42 ms, bottleneck band-
width 250 Mbit/sec, queue size 20% BDP, no Web traffic.

more aggressive values of increase and decrease parame-
ters than do newly started flows, which have small cwnd.
Hence, new flows are at a disadvantage and sustained un-
fairness can occur. Note that similar behavior is also ob-
served as we vary the level of Web traffic. We also com-
ment briefly upon the 250-Mb/s, 42–ms measurement for
HS-TCP shown in Fig. 3. The cwnd time histories corre-
sponding to this measurement are shown in Fig. 6, and in
more detail in Fig. 7. It can be seen that there appears to be
long-term unfairness between the two flows that persists
after the flows have converged to steady state. Also shown
in Fig. 7 are the measured values of the AIMD and pa-
rameters for each flow. The long-term unfairness appears
to be due to the granularity of the lookup table used to im-
plement the HS-TCP cwnd update rules. The current im-
plementation uses a simple nearest neighbor type of table
lookup to find the and values for the current value of
cwnd. The granularity of this process could be readily re-
duced, e.g., by including more table entries or by interpo-
lating between entries when performing a lookup, and our
measurements indicate that it would be of benefit to refine
the implementation in this manner.

• BIC-TCP: Fig. 8 shows examples of the cwnd time history
of BIC-TCP following startup of a second flow. It can seen
that as the path propagation delay increases the cwnd’s
converge increasingly slowly, not reaching fairness within
the 10-min duration of these tests when the path propaga-
tion delay is large. This behavior manifests itself in Fig. 3
as a fall in the measured fairness as propagation delay in-
creases.

• HTCP: Fig. 9 shows cwnd time histories of H-TCP
following startup of a second flow. The equal sharing
achieved between the two competing flows is evident.

B. Fairness With Different RTTS

Fig. 10 shows the ratio of measured throughputs when the
propagation delay of the first flow is held constant at 162 ms and
the propagation delay of the second flow is varied. Again, results

Fig. 8. BIC-TCP cwnd time histories following startup of a second flow. RTT
is 42 ms (top), 162 ms (middle), and 324 ms (bottom). Bottleneck bandwidth is
250 Mb/s, queue size 20% BDP, no Web traffic.

Fig. 9. H-TCP cwnd time histories following startup of a second flow. RTT is
42 ms (top), 162 ms (middle), and 324 ms (bottom). Bottleneck bandwidth is
250 Mb/s, queue size 20% BDP, no Web traffic.

are shown both for a bottleneck link bandwidth of 10 and 250
Mb/s. Results are shown when the queue is sized at 20% BDP,
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Fig. 10. Ratio of throughputs of two competing flows as the propagation delay
of the second flow is varied. Results are shown for 10-Mb/s (top) and 250-Mb/s
(bottom) bottleneck bandwidths. Flow 1 has RTT of 162 ms, the RTT of Flow
2 is marked on the x axis of the plots. Queue size is 20% BDP, no Web traffic.

but similar results are also obtained when the queue is 100%
BDP. The results shown are also for no Web traffic as we find
that the level of Web traffic has little impact on the measured
fairness (see Section V-G for further details). As a check on our
experimental setup, also plotted on Fig. 10 are the throughputs
for standard TCP predicted by theory [19].

It can be seen from Fig. 10 that scalable-TCP, HS-TCP,
BIC-TCP, and FAST-TCP all exhibit significantly greater
RTT unfairness than standard TCP. The degree of unfairness
can be nearly an order of magnitude greater than that with
standard TCP and is such that long round-trip time flows may
be essentially starved of bandwidth. To give a feel for this, a
ratio of 0.003 in flow throughputs (the lowest ratio observed
with FAST-TCP, HS-TCP in Fig. 10; note that scalable-TCP
exhibits still greater unfairness) corresponds to a throughput
of approximately 249.5 Mb/s for the short RTT flow and a
throughput of only 0.5 Mb/s for the long RTT flow. This com-
pares with throughputs of 245 Mb/s and 5 Mb/s for a ratio of
0.02 (the lowest ratio observed with standard TCP)—observe
that the throughput of the long RTT flow is now an order of
magnitude greater—and 200 Mb/s and 50 Mb/s for a ratio of
0.2 (the lowest ratio observed with H-TCP).

With regard to scalable-TCP, as noted previously this adopts
an MIMD strategy. In the case of MIMD flows with different
round-trip times, theory predicts that the flow with the shortest
round-trip time can seize essentially the entire link capacity [3],
and this is indeed what we observe.

The increased level of RTT unfairness evident with HS-TCP
is associated with the AIMD increase and decrease parameters
being functions of flow cwnd. This means that unfairness tends
to be amplified. For example, suppose the network is perturbed
so that the cwnd of one flow is increased while that of another
flow is decreased. The flow with larger cwnd adjusts its AIMD
parameters to become more aggressive; at the same time, the
flow with the smaller cwnd adjusts its AIMD parameters to be
less aggressive. There is thus a reinforcing action that tends to
increase the level of unfairness. A similar effect also appears to
occur with BIC-TCP.

The lower level of RTT unfairness in H-TCP compared
with standard TCP is associated with the use of RTT scaling
in H-TCP. This yields RTT unfairness whereby the measured
throughput ratio is proportional to the ratio of flow RTTs. With
standard TCP, the measured throughput ratio is, of course,
proportional to the square of the flow RTT ratio.

C. Backward Compatibility

Fig. 11 plots the ratio of measured throughputs of two flows
with the same propagation delay and a shared bottleneck link.
The first flow operates the standard TCP algorithm, while the
second flow operates a new TCP variant. Results are shown both
for bottleneck link bandwidths of 10 and 250 Mb/s. It can be
seen that scalable-TCP and FAST-TCP exhibit the greatest de-
gree of unfairness in both low and high-speed conditions.

The unfairness between scalable-TCP and standard TCP
in low-speed conditions is perhaps surprising in view of the
mode switch whereby scalable-TCP behaves as standard TCP
at low cwnd sizes. The observed unfairness appears to occur
due to the following effect. When the flow cwnd is below the
Low Window threshold, it indeed behaves as standard TCP,
and in the low-speed tests, fair operation has the flow cwnd’s
below this threshold. However, perturbations in cwnd (e.g.,
due to unsynchronized packet drops) can lead to it crossing the
Low Window threshold. When this occurs, the flow switches to
the scalable algorithm. The scalable algorithm is more aggres-
sive than standard TCP and so once it is activated this can lead
to long-term unfairness whereby the flow thereafter maintains
its cwnd above Low Window. Note that we did not observe
such behavior with HS-TCP, which employs a similar mode
switch. This appears to be due to the fact that the transition to
high-speed operation is smoother in the sense that a relatively
large increase in cwnd above Low Window is required before
the HS-TCP becomes significantly more aggressive than Stan-
dard TCP.

D. Efficiency

Fig. 12 shows measured aggregate throughput of two TCP
flows with the same propagation delay as a function of queue
size on a 100-Mb/s link. As a validation check, also plotted on
Fig. 12 is the efficiency for standard TCP predicted by sim-
ulations. It can be seen that the experimental and simulation
throughputs are in good agreement.
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Fig. 11. Ratio of throughputs of competing new-TCP and standard TCP flows
as path propagation delay is varied. Results are shown for 10-Mb/s (top) and
250-Mb/s (bottom) bottleneck bandwidths. Both flows have the same RTT.
Queue size is 20% BDP, no Web traffic.

It can be seen from Fig. 12 that for buffer sizes above 10%
of the bandwidth-delay product, the new protocols uniformly
achieve better throughput than standard TCP. Observe, however,
that in all cases the throughput falls rapidly when the buffer size
becomes less than about 3% of the bandwidth-delay product
(or less than about 8% BDP in the case of FAST-TCP). It can
be seen from the packet loss measurements in Fig. 12 that the
drop in link utilization corresponds to a substantial (around two
orders of magnitude) rise in packet loss rate.

The drop in link utilization appears to be associated with an
increased incidence of packet bursts flooding the buffer when
it becomes very small. In this example, a 2% BDP buffer is
only 13 packets, while a 1% BDP buffer is only six packets,
compared with a BDP of 683 packets. Delayed acking leads to
many back-to-back pairs of data packets being sent. Growth of
the flow cwnd’s leads to injection of new packets following re-
ceipt of an ACK, thereby also generating regular packet triples.
In fact, we have observed frequent transmission of six to ten
packets per ACK, presumably due to end host scheduling gran-
ularity—the 1-ms clock tick used corresponds to approximately
eight 1500-byte packets at 100 Mb/s. Since the packet streams
of two flows are aggregated at the router, we therefore have that

Fig. 12. Aggregate throughput (top) and packet loss (bottom) of two competing
TCP flows with 100-Mb/s bottleneck bandwidth. Both flows have end-to-end
round-trip propagation delays of 82 ms. BDP is 683 packets.

bursts of 1%–2% BDP at the router are common. It is interesting
to note that, despite the more aggressive nature of scalable-TCP,
HS-TCP, BIC-TCP, and H-TCP, the corresponding threshold in
queue size below which throughput rapidly falls is similar to
that for standard TCP. This suggests that this short time-scale
burst structure of the packet stream is largely unaffected by the
changes introduced in these congestion control algorithms.

In the case of FAST-TCP, rate pacing is used, but the accu-
racy of the pacing is limited by end host scheduling granularity.
At 100 Mb/s, it takes 0.12 ms to transmit a 1500-byte packet
and 0.24 ms to transmit a packet pair, whereas the scheduling
granularity is on the order of 1 ms. Pacing, therefore, has only a
limited impact in the context of the buffer sizes considered here.
In addition, as noted previously, two FAST flows will attempt to
maintain a standing queue of packets, with 8 packets
at 10 Mb/s and 20 packets at 100 Mb/s. This standing queue re-
duces the space within the router buffer to accommodate packet
bursts. Hence, a 5% BDP buffer of 34 packets may be reduced
to an effective buffer of only 14 packets i.e., a similar effective
buffer size to that at which the throughput of the other conges-
tion control algorithms collapses.

E. Response Function

Measurements of the response functions are shown in Fig. 13.
Also marked are the response functions for standard TCP, scal-
able-TCP, and high-speed TCP predicted by theory [8]. It can
be seen that the measured response functions of standard TCP,
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Fig. 13. Measured response functions, 250-Mb/s bottleneck, 162-ms RTT.

scalable-TCP, and HS-TCP are in fairly good agreement with
theory, although some discrepancy is evident around the mode
switch transition from standard to high-speed operation.

F. Convergence Time

Fig. 14 plots the measured convergence time following
startup of a second flow. The values plotted are the average of
multiple tests and a range of random start times for the second
flow. The convergence time is plotted versus path propagation
delay (both flows have the same propagation delay in this
experiment), and results are presented for link rates of 10 and
250 Mb/s.

It can be seen that, in line with the previous discussion, that
scalable-TCP, HS-TCP, and BIC-TCP all exhibit extremely slow
convergence times (or, indeed, nonconvergence). We comment
briefly on H-TCP and FAST-TCP.

• H-TCP. H-TCP exhibits similar convergence times to stan-
dard TCP under low-speed conditions. In higher speed con-
ditions, the 80% convergence time levels off at around 30
s. This is illustrated, for example, in Fig. 9.

• FAST-TCP. FAST-TCP has the smallest measured conver-
gence time of all the algorithms studied. These results need
to be interpreted with some care, however. For example, it
can be seen from Fig. 5 that while FAST may converge

Fig. 14. Mean 80% convergence time following startup of a second flow.
Results are shown for 10-Mb/s (top) and 250-Mb/s (bottom) bottleneck
bandwidths. Both flows have same RTT. Queue size is 20% BDP. Missing
points along the ordinate axis indicate that the flows did not converge to within
the 80% fairness ratio over the 10-min duration of the test—this is especially
evident with scalable-TCP and standard TCP at 250 Mb/s.

quickly initially, flows may later diverge again. It is impor-
tant to emphasize that only the initial convergence time is
captured by our convergence time metric.

G. Impact of Web Traffic

We observed that the level of Web traffic present made little
difference to our measurements of fairness and responsiveness.
For example, Fig. 15 plots the RTT unfairness between two
long-lived flows as background Web traffic is varied from 0 to 50
sessions. Note that 50 Web sessions generate significant levels
of traffic: mean throughput is typically around 1.5% link band-
width with bursts (on the order of 1-s duration) in throughput of
around 10% link bandwidth. It can be seen that both the trend
and the actual unfairness values are nevertheless insensitive to
the level of Web traffic.

On the face of it, this result is somewhat surprising. It has,
for example, been well known for many years that deterministic
phase effects can have a strong impact on fairness in networks
with small numbers of long-lived flows, and it is also been ob-
served, e.g., [19], that even small amounts of bidirectional Web
traffic can randomize packet drops sufficiently to mitigate phase
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Fig. 15. Impact of bidirectional Web traffic on RTT unfairness of long-lived flows. Plots show ratio of throughputs of two competing long-lived lows as the
propagation delay of the second flow and the number of background Web sessions is varied. Results are shown for 250-Mb/s bottleneck bandwidth. Flow 1 has
RTT of 162 ms, the RTT of Flow 2 is marked on the x axis of the plots. Queue size is 20% BDP.

effects. We note, however, that these results are based on simu-
lation data. Two differences between our experimental tests and
these simulation studies are i) delayed acking is used in our ex-
perimental tests, and ii) on high-speed links, end host scheduling
granularity can have a significant impact on the burst structure
of the packet stream arriving at a router. Delayed acking intro-
duces additional variable delays. Delayed acking also directly
changes the burst structure of TCP packet streams as each ACK

arriving at the TCP sender generates a back-to-back packet pair
rather than a single packet. This is compounded by end host
scheduling granularity. In our tests, the operating system sched-
uling granularity (determined via the kernel parameter) was
left at its default setting of 1 ms. At 250 Mb/s, 1 ms is the
transmission time of 21 1500-byte packets, and so the sched-
uling granularity can potentially have a significant impact on
packet stream burstiness. Hence, taken together, it seems plau-
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sible that these factors may well be sufficient to disrupt the del-
icate timing patterns that underly phase effects even when no
Web traffic is present. This is of importance because once phase
effects are mitigated, previous simulation studies [19] indicate
that the impact of additional Web traffic on the fairness of com-
peting long-lived flows is relatively minor, and this would be
consistent with our present experimental measurements.

VI. RELATED WORK

Performance measurements are included in many papers
proposing modifications to the TCP congestion control algo-
rithm and we briefly mention here the main studies relevant
to the present paper. In [12], Kelly presents an experimental
comparison of the aggregate throughput performance of scal-
able-TCP and standard TCP. In [11], Low and coauthors present
throughput and packet loss measurements from a lab-scale test
network for FAST-TCP, HS-TCP, scalable-TCP, BIC-TCP, and
TCP-Reno. In [10], aggregate throughput measurements are
presented for FAST-TCP and TCP-Reno. In all of these studies,
measurements focus on aggregate throughput i.e., link utiliza-
tion. Measurements are also essentially confined to single-case
studies. Hence, efficiency as a function of queue size is not
considered, nor fairness, friendliness, responsiveness, and
convergence times.

In [9], throughput and cwnd time histories of FAST-TCP,
HS-TCP, scalable-TCP, and TCP-Reno are presented for a lab-
scale experimental testbed. Aggregate throughput, throughput
fairness (measured via Jain’s index) and a number of other mea-
sures are presented. However, results are confined solely to an
800-Mb/s bottleneck link with a 2000-packet buffer. No attempt
is made to control for changes to the Linux network stack im-
plementation that are unrelated to the congestion control algo-
rithm. The impact of link rate, RTT, queue size, and level of Web
traffic on fairness and responsiveness are not considered, nor is
the impact of queue size on efficiency. In [20], simulation
results are presented comparing the performance of HS-TCP,
scalable-TCP, BIC-TCP, and standard TCP.

We note that the foregoing papers all propose changes to
the TCP congestion control algorithm and present performance
measurements in support of these changes. The evaluation of
competing proposals, per se, has received far less attention. No-
tably, [4] and [6] present evaluation studies specifically targeted
at measuring the performance of TCP proposals. Experimental
measurements are presented for scalable-TCP, HS-TCP, FAST-
TCP, H-TCP, BIC-TCP, HSTCP-LP, and P-TCP (i.e., 16 par-
allel standard TCP flows) over network paths within the United
States and between the United States and Europe. Measure-
ments presented include aggregate throughput and throughput
fairness (via Jain’s index). RTT unfairness, convergence time,
and impact of queue provisioning are not considered. No at-
tempt is made to control for changes to the Linux network stack
implementation unrelated to the congestion control algorithm.

VII. SUMMARY AND CONCLUSION

In this paper, we present experimental results evaluating the
performance of the scalable-TCP, HS-TCP, BIC-TCP, FAST
TCP, and H-TCP proposals in a series of benchmark tests.

We find that many recent proposals perform surprisingly
poorly in even the most simple test, namely achieving fairness

between two competing flows in a dumbbell topology with the
same round-trip times and shared bottleneck link. Specifically,
both scalable-TCP and FAST-TCP exhibit very substantial
unfairness in this test.

We also find that, with the notable exception of H-TCP, all of
the proposals studied induce significantly greater RTT unfair-
ness between competing flows with different round-trip times.
The unfairness can be an order of magnitude greater than that
with standard TCP and is such that flows with longer round-trip
times can be completely starved of bandwidth.

While the TCP proposals studied are all successful at im-
proving the link utilization in a relatively static environment
with long-lived flows, in our tests many of the proposals ex-
hibit poor responsiveness to changing network conditions. We
observe that scalable-TCP, HS-TCP, and BIC-TCP can all suffer
from extremely slow ( -s) convergence times following the
startup of a new flow. We also observe that while FAST-TCP
flows typically converge quickly initially, flows may later di-
verge again to create significant and sustained unfairness.

With regard to link utilization, for moderate to large buffer
sizes, we find that all of the proposed high-speed algorithms
yield higher throughput than standard TCP on a high-speed
path. With very small buffers, we observe that microscale
packet bursts lead to a rapid fall in throughput efficiency. The
threshold buffer size below which this occurs is approximately
the same for all congestion control algorithms studied, with
the exception of FAST-TCP, where the threshold is somewhat
higher, owing to the standing queue created by the delay-based
congestion control action used in FAST-TCP.

We argue that our results demonstrate that the consistent ap-
plication of standardized tests can yield results of considerable
value. This can not only be used to screen new proposals prior
to full-scale experimental testing, with its associated costs, but
can also provide a useful step towards establishing a sound basis
for the development of new protocols.

APPENDIX I

The base Linux kernel includes rate-halving and delayed
acking. In addition, the altAIMD kernel incorporates the fol-
lowing.

i) New-TCP Stacks. Each of the congestion control algo-
rithms studied have independent patches that are publicly
available. To provide consistency, and control against the
influence of differences in network stack implementation
as opposed to differences in the congestion control algo-
rithm itself, we incorporated the implemented congestion
control algorithms into a common network stack.

ii) Appropriate Byte Sizing (RFC3465) [1]. The counting of
ack’s by the number of bytes acknowledged rather than
the number of ack’s received to counter the problems of
cwnd growth under delayed ack’s.

iii) SACK Processing Improvements [13]. The implementa-
tion of SACK processing in the Linux kernels requires
a processing time that is (cwnd). This has serious per-
formance implications on large bandwidth-delay product
paths. We implemented a more robust algorithm with
complexity of (lost packets).

iv) Throttle Disabled [13]. A build-up of ack packets at the
sender can cause an overflow in the Linux network ring
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buffers which invokes a throttle action that causes all
packets to be dropped. We modified the ring buffers to
operate a pure drop-tail discipline.

v) Web100 [16]. Kernel was instrumented using Web100.
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