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Abstract: Extraocular muscles (EOMs) represent a specialized type of contractile tissue with unique
cellular, physiological, and biochemical properties. In Duchenne muscular dystrophy, EOMs stay
functionally unaffected in the course of disease progression. Therefore, it was of interest to determine
their proteomic profile in dystrophinopathy. The proteomic survey of wild type mice and the
dystrophic mdx-4cv model revealed a broad spectrum of sarcomere-associated proteoforms, including
components of the thick filament, thin filament, M-band and Z-disk, as well as a variety of muscle-
specific markers. Interestingly, the mass spectrometric analysis revealed unusual expression levels of
contractile proteins, especially isoforms of myosin heavy chain. As compared to diaphragm muscle,
both proteomics and immunoblotting established isoform MyHC14 as a new potential marker in wild
type EOMs, in addition to the previously identified isoforms MyHC13 and MyHC15. Comparative
proteomics was employed to establish alterations in the protein expression profile between normal
EOMs and dystrophin-lacking EOMs. The analysis of mdx-4cv EOMs identified elevated levels of
glycolytic enzymes and molecular chaperones, as well as decreases in mitochondrial enzymes. These
findings suggest a process of adaptation in dystrophin-deficient EOMs via a bioenergetic shift to more
glycolytic metabolism, as well as an efficient cellular stress response in EOMs in dystrophinopathy.

Keywords: Duchenne muscular dystrophy; dystrophinopathy; extraocular muscle; glyceraldehyde-
3-phosphate dehydrogenase; myosin-14; myosin heavy chain

1. Introduction

As one of the most abundant cellular entities in the human body, the diverse types
of skeletal muscle fibre form the contractile units of over 650 individual muscles. Vol-
untary striated muscles differ considerably in their histological, anatomical, metabolic,
biochemical, and physiological specialization between predominantly slow-twitching ver-
sus fast-twitching phenotypes [1]. A distinctly different subtype of skeletal muscles, as
compared to non-craniofacial muscles, is presented by extraocular muscles (EOMs) [2,3],
which control the movements of the eyes [4]. The finely tuned and highly coordinated
actions of six EOMs, i.e., M. obliquus superior, M. obliquus inferior, M. rectus medialis, M.
rectus lateralis, M. rectus superior, and M. rectus inferior [5], provide the eyeball with a wide
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range of complex movements about its horizontal and vertical axis. This includes a diverse
range of eye movements ranging from gaze-holding to slow vergence, smooth pursuit
convergence, optokinetic responses, vestibulo-ocular reflexes, and rapid saccades [6].

Characteristic biological features of EOMs include (i) unique developmental processes
with specific upstream activators [7,8], (ii) longitudinal dispersion of multiterminal neuro-
muscular junctions [9–11], (iii) morphologically distinct muscle spindles as compared to
conventional somatic spindles [12], (iv) an unusually high capacity for cellular remodelling
and fibre regeneration [13,14], (v) an efficient calcium handling and extrusion system [15],
(vi) high levels of fatigue resistance even in extremely fast-twitching fibres [16] and (vii)
distinguishing combinations of contractile protein isoform expression patterns [17]. An-
other striking biomedical feature of EOMs is their apparent resistance to degeneration in
X-linked muscular dystrophy [18–20].

Duchenne muscular dystrophy is an X-chromosomally inherited and severely debili-
tating disorder of early childhood that primarily affects contractile tissues [21]. Mutations
in the DMD gene result in the almost complete loss of the full-length isoform of dystrophin,
which exhibits high levels of sequence similarity with membrane cytoskeletal proteins, and
the concomitant reduction in a variety of sarcolemmal glycoproteins [22]. The extremely
large DMD gene contains seven different promoters that are involved in the tissue-specific
expression of several small dystrophin isoforms, i.e., Dp45 (central nervous system), Dp71-
G (ubiquitous), Dp116-S (Schwann cells), Dp140-B/K (brain and kidney) and Dp260-R
(retina), as well as the large dystrophins, i.e., Dp427-M (skeletal muscle, heart muscle,
smooth muscle), Dp427-B (brain) and Dp427-P (Purkinje cells) [23].

The collapse of the dystrophin-associated glycoprotein complex, which acts as a
key signaling hub in normal muscles [23,24], causes weakening of the actin cytoskeleton–
sarcolemma–extracellular matrix axis. This results in micro-rupturing events at the level
of the sarcolemmal membrane system and triggers abnormal lateral force transmission,
impaired cellular signaling and enhanced levels of calcium-induced proteolysis [25,26].
These pathophysiological changes affect the majority of the skeletal musculature, which
undergoes cellular degeneration, partial replacement by fatty tissue, severe fibrotic scarring
and chronic inflammation [27,28]. In addition, respiratory deficiencies, late-onset cardiomy-
opathy and scoliosis, as well as neuronal and metabolic complications, are characteristic
features of the complex pathology of X-linked muscular dystrophy [26,29,30].

In contrast to other types of skeletal muscle, as previously reviewed in detail [31–33],
relatively limited numbers of studies on the normal EOM proteome [34–36] or proteome-
wide changes in dystrophin-deficient EOMs [37,38] have been carried out. We therefore
performed a systematic mass spectrometric analysis of EOM preparations and potential
adaptations in the dystrophic mdx-4cv phenotype, as compared to the recently established
proteomic changes in the severely affected mdx-4cv diaphragm [39]. Initially, the proteomic
profile of wild type EOMs was determined with the help of an Orbitrap Fusion Tribrid
mass spectrometer, which identified unusual expression levels of contractile proteins,
especially isoforms of myosin heavy chain. Subsequently, comparative proteomics was
used to identify changes in the protein expression profile between unaffected EOMs and
dystrophin-lacking EOMs. The mass spectrometric characterization of mdx-4cv EOMs
showed increases in a variety of proteins, including glycolytic enzymes and molecular
chaperones.

2. Materials and Methods
2.1. Materials

For the mass spectrometric analysis of extraocular muscle preparations, analytical
grade reagents and general materials were obtained from Sigma Chemical Company
(Dorset, UK), GE Healthcare (Little Chalfont, Buckinghamshire, UK) and Bio-Rad Labora-
tories (Hemel-Hempstead, Hertfordshire, UK). MS-grade trypsin protease was obtained
from ThermoFisher Scientific (Dublin, Ireland), as was the Pierce 660 nm Protein Assay
Reagent. Spin filters of the type Vivacon 500 (VN0H22; 30,000 MWCO) were purchased
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from Sartorius (Göttingen, Germany) for carrying out filter-aided sample preparations. Gel
electrophoretic separation and immunoblotting was performed with precast Invitrogen Bolt
4–12% Bis-Tris gels and Whatman nitrocellulose transfer membranes from Bio-Science Ltd.
(Dun Laoghaire, Ireland), respectively. InstantBlue Coomassie Protein Stain was obtained
from Expedeon (Heidelberg, Germany). For immunoblot analysis and immunofluorescence
microscopy, primary antibodies were obtained from R&D Systems, Minneapolis, MN, USA
(MAB5718 against glyceraldehyde-3-phosphate dehydrogenase), ProteinTech, Rosemont,
IL, USA (20716-1-AP against myosin heavy chain 14) and Abcam, Cambridge, UK (ab2413
against fibronectin). Secondary peroxidase-conjugated anti-mouse IgG and anti-rabbit
IgG were purchased from Sigma Chemical Company (Dorset, UK) and Cell Signalling
Technology (Danvers, MA, USA), respectively.

2.2. Extraocular Muscle Specimens

The harvesting of post mortem EOMs and diaphragm muscle specimens from 12-
month-old wild type mice and the mdx-4cv mouse model of dystrophinopathy, which lacked
the dystrophin isoforms Dp140, Dp260 and Dp427 due to a point mutation in exon 53, was
carried out according to institutional regulations. Animals were handled in strict adherence
to local governmental and institutional animal care regulations and were approved by the
Institutional Animal Care and Use Committee (Amt für Umwelt, Verbraucherschutz und
Lokale Agenda der Stadt Bonn, North Rhine-Westphalia, Germany). Frozen specimens
were transported on dry ice to Maynooth University in accordance with the regulations
of the Department of Agriculture (animal by-product register number 2016/16 to the
Department of Biology, National University of Ireland, Maynooth). The eyeball and its
surrounding tissues were carefully removed from the ocular cavity by bulbar exenteration.
The EOM cone excluding the retractor bulbi muscle was then dissected out and extracted for
the isolation of the combined EOM proteome. The establishment of multi-consensus files
was carried out with muscle samples from 6 wild type and 6 dystrophic mice. Comparative
proteomics was performed with specimens from 3 wild type versus 3 dystrophic mice.
Verification analyses were carried out with samples derived from a minimum of 4 wild type
and 4 dystrophic mice. Comparative tissue proteomics was carried out by standardized
procedures, as previously described in detail [40,41]. Mice were sacrificed in the Bioresource
Unit of the University of Bonn and muscle specimens were quick-frozen in liquid nitrogen
and then transported on dry ice to Maynooth University [42]. Samples were stored at
−80 ◦C prior to proteomic analysis. Muscle samples were homogenised in lysis buffer (4%
SDS, 100 mM Tris-Cl, pH 7.6, 0.1 M dithiothreitol) using a handheld homogeniser from
Kimble Chase (Rockwood, TN, USA), briefly treated in a sonicating water bath, and then
heated for 3 min at 95 ◦C. Suspensions were centrifuged at 16,000× g for 5 min and the
protein-containing supernatant extracted for subsequent analysis [43]. The Pierce 660 nm
Protein Assay system was used to determine protein concentration [44]. EOM extracts
were further processed for mass spectrometric analysis. Samples were mixed with 200 µL
of 8 M urea, 0.1 M Tris pH 8.9 in filter units and centrifuged at 14,000× g for 15 min. For
filter-aided sample preparation, processing was carried out according to the standardized
FASP protocol [45].

2.3. Label-Free Liquid Chromatography Mass Spectrometry and Proteomic Data Analysis

The label-free liquid chromatography mass spectrometric analysis of EOMs from wild
type versus mdx-4cv mice was carried out using a Thermo Orbitrap Fusion Tribrid mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Details of the proteomic
workflow describing all preparative steps and analytical procedures using data-dependent
acquisition, as well as bioinformatic data handling, were recently outlined in detail [41]. A
Thermo UltiMate 3000 nano system was used for reverse-phased capillary high-pressure
liquid chromatography and directly coupled in-line with the Thermo Orbitrap Fusion
Tribrid mass spectrometer. The qualitative data analysis of mass spectrometric files was
carried out with the help of the UniProtKB-SwissProt Mus musculus database with Proteome
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Discoverer 2.2 using Sequest HT (Thermo Fisher Scientific) and Percolator. For protein
identification, the following crucial search parameters were employed: (i) a value of
0.02 Da for MS/MS mass tolerance, (ii) a value of 10 ppm for peptide mass tolerance, (iii)
variable modification settings for methionine oxidation, (iv) fixed modification settings in
relation to carbamido-methylation and (v) tolerance for the occurrence of up to two missed
cleavages. Peptide probability was set to high confidence. A minimum XCorr score of
1.5 for 1, 2.0 for 2, 2.25 for 3 and 2.5 for 4 charge state was employed for the filtering of
peptides [40]. The software analysis programme Progenesis QI for Proteomics (version
2.0; Nonlinear Dynamics, a Waters company, Newcastle upon Tyne, UK) was used to
carry out quantitative label-free data analysis. Proteome Discoverer 2.2 using Sequest HT
(Thermo Fisher Scientific) and a percolator were employed for the identification of peptides
and proteins. Datasets were imported into Progenesis QI software for further analysis.
Following the review of protein identifications, only those data that agreed with a crucial
set of criteria were deemed as differentially expressed species between experimental groups
based on statistical significance and high confidence. The criteria included an ANOVA
p-value of ≤0.01 between experimental groups, and proteins with ≥2 unique peptides
contributing to the identification. The Progenesis QI programme calculated the mean
abundance for individual protein species in each experimental condition to determine
the maximum fold change for particular proteins. Condition-vs-condition matrixes with
mean values were then used to determine the maximum fold change between any two
condition’s mean protein abundances [41]. The raw MS files generated by this proteomic
study were deposited under the unique identifier ‘j4867’ to the Open Science Foundation
(https://osf.io/j4867/ (accessed on 15 June 2021)). The standard bioinformatic analysis
tools PANTHER [46] and STRING [47] were utilized for the identification of protein classes
and for the characterisation of potential protein interaction patterns, respectively.

2.4. Comparative Immunoblot Analysis

For the independent evaluation of the differential expression levels of myosin isoform
MyHC14 in wild type EOM versus wild type diaphragm, as identified by mass spectrome-
try, comparative immunoblotting was carried out under standard conditions [48]. Labelling
of glyceraldehyde-3-phosphate dehydrogenase and fibronectin were used to evaluate con-
centration levels in mdx-4cv EOM as compared to wild type EOM preparations. EOM and
diaphragm samples were prepared in Laemmli-type sample buffer and heated for 30 min at
37 ◦C. For gel electrophoresis and immunoblotting analysis, 20µg protein per lane were ran
on Invitrogen Bolt 4–12% Bis-Tris gels. Coomassie staining of protein gels was performed
with InstantBlue Coomassie Protein Stain [39]. For immunoblotting, gel electrophoretically
separated proteins were transferred to nitrocellulose membranes, blocked in fat-free milk
solution, and incubated in 1:1000 diluted primary antibody overnight. The subsequent
detection with 1:1000 diluted peroxidase-conjugated secondary antibodies was carried out
using the enhanced chemiluminescence method [40]. Statistical analysis of immunoblots
was carried out using ImageJ software (NIH, Bethesda, MD, USA), along with Microsoft
Excel, in which statistical significance was based on a p-value ≤ 0.05.

2.5. Immunofluorescence Microscopy

In order to evaluate the expression of glyceraldehyde-3-phosphate dehydrogenase
in wild type versus mdx-4cv EOM muscle, immunofluorescence microscopy was carried
out by standardized methodology in combination with histological staining [49]. Freshly
dissected skeletal muscle specimens from mice were quick-frozen in liquid nitrogen-cooled
isopentane and 10 µm sections were cut in a cryostat [50]. Tissue sections were fixed in a
1:1 (v/v) mixture of methanol and acetone for 10 min at room temperature and then blocked
with 1:20 diluted normal goat serum for 30 min at room temperature. Primary antibodies
to myosin heavy chain MyHC14 and glyceraldehyde-3-phosphate dehydrogenase were
diluted 1:200 and 1:400, respectively, in carrageenan-containing and phosphate-buffered
saline for overnight incubation at 4 ◦C. The buffer was made by mixing 100 mL phosphate-

https://osf.io/j4867/
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buffered saline with 0.7 g carrageenan and 10 mg sodium azide. Tissue specimens were
carefully washed and then incubated with fluorescently labelled secondary antibodies,
using 1:500 diluted anti-mouse RRX antibody for 45 min at room temperature [40]. Nuclei
were counter-stained with 1 µg/mL bis-benzimide Hoechst 33,342. Antibody-labelled EOM
sections were embedded in Fluoromount G medium and viewed under a Zeiss Axioskop
2 epifluorescence microscope equipped with a digital Zeiss AxioCam HRc camera (Carl
Zeiss Jena GmbH, Jena, Germany).

3. Results and Discussion

In order to elucidate the unique cell biological and biochemical status of EOMs among
other types of skeletal muscles [2], this study has focused on the refined proteomic analysis
of this subtype of contractile tissue using an Orbitrap Fusion Tribrid mass spectrometer.
Based on the mass spectrometric identification of the accessible EOM proteome, compara-
tive analysis of wild type versus dystrophic mdx-4cv muscle preparations was carried out
to investigate the underlying protein expression profile of the relatively mild phenotype of
dystrophin-deficient EOMs in dystrophinopathy [19].

3.1. The Proteomic Profile of Extraocular Muscle

The analytical workflow used in this study is outlined in Figure 1. The mass spectrometry-
based proteomic profiling of crude extracts from the EOM cone resulted in the identifica-
tion of a large number of both muscle-specific marker proteins and core proteins of the
sarcomere-associated contractile apparatus [51].

Figure 1. Overview of the proteomic profiling approach to characterize extraocular muscle (EOM),
as well as determine changes in the mdx-4cv mouse model of Duchenne muscular dystrophy.

The multi-consensus file of unequivocally identified proteoforms was submitted to
a public data repository (Open Science Foundation, OSF Facility, Frankfurt, Germany),
under the unique identifier ‘j4867’ (https://osf.io/j4867/ (accessed on 15 June 2021)). The
proteomic analysis presented in this report identified 2521 protein species in wild type
EOM samples and 2331 protein species in mdx-4cv EOM samples. Table 1 lists the pro-
teomic identification of sarcomeric proteins and related isoforms in EOM preparations
from wild type mice. General marker proteins that exhibit the highest level of enriched

https://osf.io/j4867/
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expression in skeletal muscles according to the Human Protein Atlas [52] were identified
as myosin heavy chain MyHC-IIa (MYH2), myosin-binding protein C (MYBPC1), the
Z-disk component myotilin (MYOT), the M-band associated enzyme beta-enolase (ENO3),
the half-sarcomere spanning giant protein titin (TTN), the actin-binding protein nebulin
(NEB) of the thin filament and the skeletal muscle LIM-protein 1 (FHL1) (Table 1). Addi-
tional muscle-associated markers included the fast sarcoplasmic reticulum Ca2+-ATPase
SERCA1 (Q8R429; Atp2a1 gene; 27.5% coverage; 19 unique peptides; 109.4 kDa), the slow
sarcoplasmic reticulum Ca2+-ATPase SERCA2 (O55143; Atp2a2 gene; 16.4% coverage;
12 unique peptides; 114.8 kDa), the muscle-type glycolytic enzyme phosphofructokinase
(P47857; Pfkm gene; 3.9% coverage; 2 unique peptides; 85.2 kDa) and the muscle-specific
oxygen transporter myoglobin (P04247; Mb gene; 28.6% coverage; 5 unique peptides;
17.1 kDa) [39,53,54].

Table 1. Proteomic identification of sarcomere-associated proteins and related isoforms in mouse extraocular muscle.

Accession Protein Gene Score Coverage
% Peptides Molecular

Mass (kDa)

E9Q8K5 Titin, muscle-
specific

TTN 171.5 2.14 52 3713.7

Q5SX40 Myosin-1 heavy chain, MyHC-IId,
fast muscle

MYH1 459.6 31.10 63 223.2

G3UW82 Myosin-2 heavy chain, MyHC-IIa, fast
muscle

MYH2 382.7 31.15 60 223.1

P13541 Myosin-3 heavy chain,
MyHC-embryonic, muscle

MYH3 125.1 11.70 24 223.7

Q5SX39 Myosin-4, MyHC-IIb, fast muscle MYH4 472.9 32.75 68 222.7
Q91Z83 Myosin-7 heavy chain, MyHC-I, slow

muscle
MYH7 96.04 10.70 20 222.7

P13542 Myosin-8 heavy chain,
MyHC-perinatal, muscle

MYH8 277.9 24.68 47 222.6

Q8VDD5 Myosin-9 heavy chain, MyHC-cellular,
type A

MYH9 87.81 10.61 20 226.2

Q61879 Myosin-10 heavy chain,
MyHC-cellular, type B

MYH10 20.79 2.68 5 228.8

A0A2R8VHF9 Myosin-11 heavy chain, smooth
muscle

MYH11 255.1 20.07 44 223.2

B1AR69 Myosin-13 heavy chain, extraocular
muscle

MYH13 217.41 17.03 31 223.4

K3W4R2 Myosin-14 heavy chain, MyHC-eom,
developmental

MYH14 25.40 3.45 6 228.4

E9Q264 Myosin-15 heavy chain, extraocular
muscle

MYH15 10.20 1.56 3 221.7

P05977 Myosin light chain MLC-1/3, muscle MYL1 74.36 45.21 8 20.6
A0A0U1RP93 Myosin light chain MLC-2, muscle MYLPF 28.02 10.07 1 16.9

Q60605 Myosin light chain MLC-3, muscle MYL6 56.91 54.30 7 16.9
D3YU50 Myosin-binding

protein C, slow
MYBPC1 20.96 5.24 4 126.5

A0A571BF46 Nebulin NEB 15.55 1.32 8 866.5
P68033 Actin, alpha,

skeletal muscle
ACTC1 382.05 66.84 26 42.0

P60710 Actin, beta, cytoplasmic ACTB 384.11 52.53 25 41.7
E9Q452 Tropomyosin

alpha-1
TPM1 119.92 40.93 14 32.5

A2AIM4 Tropomyosin beta TPM2 112.31 41.55 16 33.0
D3Z6I8 Tropomyosin

alpha-3
TPM3 47.89 43.72 12 28.7

A0A571BEU1 Tropomyosin
alpha-4

TPM4 4.33 14.56 3 18.4
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Table 1. Cont.

Accession Protein Gene Score Coverage
% Peptides Molecular

Mass (kDa)

P20801 Troponin C, muscle TNNC2 3.99 11.88 2 18.1
A0A1B0GRY8 Troponin I, fast muscle TNNI2 23.66 13.95 2 20.2

A2A6I8 Troponin T, fast muscle TNNT3 8.66 20.08 4 28.3
A1BN54 Alpha-actinin-1 ACTN1 36.58 8.34 6 102.7
Q9JI91 Alpha-actinin-2 ACTN2 13.09 7.83 6 103.8
O88990 Alpha-actinin-3 ACTN3 11.30 5.11 4 103.0
P57780 Alpha-actinin-4 ACTN4 65.92 20.39 14 104.9
P31001 Desmin DES 27.89 15.99 8 53.5
P20152 Vimentin VIM 72.37 24.89 8 53.7

E9Q3W4 Plectin PLEC 22.89 3.17 12 498.8
P23927 Alpha-B-crystallin CRYAB 14.36 36.57 7 20.1
E9PYJ9 LIM domain-binding protein 3 LDB3 10.34 3.98 2 72.3
Q9JIF9 Myotilin MYOT 10.23 6.45 3 55.3

A0A1L1STC6 Nesprin-1 SYNE1 4.29 0.31 2 1009.3
A0A571BDS0 Xin actin-binding

repeat-containing protein 1
XIRP1 2.03 1.05 2 196.6

Q8VHX6 Filamin-C,
muscle-specific

FNLC 21.04 2.53 6 290.9

Z4YJF5 Myomesin-1 MYOM1 2.09 0.83 1 175.4
A2ABU4 Myomesin-3, slow, extraocular muscle MYOM3 5.42 2.08 2 161.7
P07310 Creatine kinase, muscle-type CKM 48.98 29.92 11 43.0

Q9R0Y5 Adenylate kinase, AK1 AK1 17.30 16.49 2 21.5
P97447 Skeletal muscle LIM-protein 1 FHL1 10.47 5.89 2 61.8
P21550 Beta-enolase,

muscle-specific
ENO3 152.38 42.63 18 47.0

3.2. Proteomic Profile of the Sarcomere from Extraocular Muscle

An extensive list of sarcomeric proteins found in wild type EOM is listed in Table 1,
including proteins of the thick myosin filament, the thin actin filament, the Z-disk, the
M-band region, the titin filament and the auxiliary nebulin filament [55,56], as well as
components of the sarcomere-attached cytoskeletal network [57]. The general arrangement
of these components in the sarcomere is diagrammatically shown in Figure 2a. In total,
this study established 15 different myosin heavy chains [17] to be associated with EOMs.
This included the sarcomeric forms myosin-1 (MyHC-IId, muscle), myosin-2 (MyHC-IIa,
muscle), myosin-3 (MyHC-embryonic), myosin-4 (MyHC-IIb, muscle), myosin-7 (MHyC-I,
slow) and myosin-8 (MyHC-perinatal), as well as the specialized myosins named myosin-
13, myosin-14, and myosin-15 [58,59].

The crucial myosin-binding protein present in EOMs was determined to be the slow-
type MYBP-C1. The identified cytoskeletal myosins included the MyHC-cellular types A
(myosin-9) and B (myosin-10). Besides smooth muscle myosin-11 heavy chain, 4 unconven-
tional myosins were also identified by mass spectrometry, i.e., myosin-6 (E9Q175, Myo6,
144.7 kDa), myosin VC (E9Q1F5, Myo5c, 202.6 kDa), myosin XVIIIa (K3W4L0, Myo18a,
230.8 kDa) and myosin XVIIIb (E9PV66, Myo18b, 288.7 kDa). Myosin light chains included
the muscle-specific isoforms MLC-1/3, MLC-2, and MLC-3 [36,60].

Mass spectrometric analysis established major proteins of the thin filament in EOMs,
including alpha-actin (ACTC1), nebulin, the tropomyosins TPM1 (alpha-1), TPM2 (beta),
TPM3 (alpha-3) and TPM4 (alpha-4), and the troponin subunits TnC (TNNC2), TnI (TNNI2)
and TnT (TNNT3) [59]. In agreement with a previous study [34], a large number of Z-disk-
associated proteins were identified in EOMs, including the alpha-actinins ACTN1, ACTN2,
ACTN3 and ACTN4, desmin, vimentin, plectin, alphaB-crystallin, LIM domain-binding
protein LDB3, myotilin, nesprin-1 and xin actin-binding repeat-containing protein 1, as
well as muscle-specific filamin-C [61]. Established markers of the M-band region in EOMs
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included muscle-type creatine kinase, myomesin-1, myomesin-3, adenylate kinase AK1,
skeletal muscle LIM-protein FHL1 and muscle-specific beta-enolase [62].

Figure 2. Comparative display of mass spectrometrically identified proteins of the sarcomere in
extraocular muscle versus diaphragm from wild type mice. (a) Diagram of the main components of
the contractile apparatus. (b) Venn diagram with the proteomic profile of the two types of investigated
skeletal muscles.

3.3. Mass Spectrometric Identification of Proteins Specifically Expressed in Extraocular Muscle

In order to determine enriched expression levels of specific sarcomere-associated pro-
teins in EOMs, the proteomic analysis of extracts from the wild type EOM cone was com-
pared to the recently established proteome of wild type diaphragm muscle [39]. Figure 2b
shows a Venn diagram of EOM versus diaphragm and illustrates the large cohort of
overlapping expression of proteins belonging to the thick filament, the thin filament, the
Z-disk, the M-band, auxiliary filaments and the sarcomere-associated cytoskeletal net-
work [55–57]. Interestingly, elevated protein levels in EOMs included the myosin heavy
chain isoforms myosin-2 (fast MyHC-IIa; MYH2) [51], myosin-13 (MyHC13; MYH13) [63],
myosin-14 (MyHC14; MYH14) [58,59] and myosin-15 (MyHC15; MYH15) [58,59], as well
as myosin light polypeptide 6 (MYL6; MLC-3 isoform) [60] and slow cardiac alpha-actin-1
(ACTC1) [64]. In contrast, diaphragm muscle contained apparently higher concentra-
tions of myosin light chains MLC-2 (MYL2) and MLC-3 (MYL3), muscle alpha-actin-1
(ACTA1), the troponin isoforms TNNI1, TNNC1 and TNNT1 and myosin-binding protein
MYBP-H [36,39]. These findings confirm that MyHC13 (myosin-13) represents an excellent
marker of EOMs [17,34], and additionally establishes the two ancient myosins MyHC14
(myosin-14) and MyHC15 (myosin-15) as highly enriched components of this type of
skeletal muscle [58,59]. Immunoblotting confirmed the differential expression pattern of
myosin MyHC14 in wild type EOM versus diaphragm muscle. In contrast to comparable
concentration levels of glyceraldehyde-3-phosphate dehydrogenase, the immunoblot anal-
ysis of MyHC14 demonstrated a significant elevation of this myosin isoform in EOMs as
compared to diaphragm muscle (Figure 3).
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Figure 3. Immunoblot analysis of extraocular muscle (EOM) versus diaphragm (DIA) muscle from
wild type mice. Shown is an InstantBlue Coomassie stained protein gel using sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE) with molecular weight standards (lane 1;
MWS), wild type EOM (lane 2) and wild type DIA (lane 3) samples, as well as identical nitrocellulose
replicas used for immunoblotting (IB) and labelled with antibodies to myosin heavy chain MyHC14
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In the adjacent panels are shown the
statistical analysis of immunoblotting (Mann–Whitney U test; n = 8; ** p < 0.01). The value of
molecular mass standards (×10−3 kDa) is marked on the left side of the gel.

The EOM-specific expression and distribution of specialized types of myosin heavy
chains, such as MyHC13, MyHC14 and MyHC15 [17], which surround the globe structure
within the ocular cavity, could be related to the unusual physiological properties of this
type of muscle. In addition, the broad isoform expression pattern in EOMs including
both slow and fast myosin isoforms, i.e., slow MyHC-I, fast MyHC-IIa, fast MyHC-IIb
and fast MyHC-IId, as well as embryonic MyHC3 and perinatal MyHC8, form probably
the functional basis for an extremely wide range of possible eye movements. This allows
complex movements of the eyeball in relation to its horizontal and vertical axis ranging
from slow vergence to rapid saccades [6]. EOMs are capable of both considerable eccentric
contraction patterns and fibre twitching at high frequency without tetanus, and this is at
least partially provided by the kinetic properties of the unique combination of myosins and
their distribution in EOMs. For example, the embryonic MyHC3 isoform is located at the
terminal region of contractile fibres, while the super-fast MyHC13 isoform is positioned at
the central endplate [63].

3.4. Comparative Proteomic Profiling of Extraocular Muscle from the Dystrophic mdx-4cv Model
of Duchenne Muscular Dystrophy

Dystrophinopathy is the most frequently inherited neuromuscular disease of early
childhood and is characterized by progressive skeletal muscle degeneration [21,26], in
combination with reactive myofibrosis [28] and sterile inflammation [40]. Genetic rear-
rangements in the DMD gene cause the almost complete loss of the full-length dystrophin
isoform Dp427-M [21] and the simultaneous disintegration of the dystrophin-glycoprotein
complex [22]. Established genetic animal models of dystrophinopathy, such as the mdx-
4cv mouse [65–67], reflect many of the multifaceted and body-wide alterations seen in
Duchenne patients, including necrosis, fibrosis and inflammation in the diaphragm mus-
cle [39,68], cardiomyopathic changes [69] and neuronal deficiencies [70], as well as sec-
ondary abnormalities in the liver [71], kidney [48], and spleen [40]. The molecular and
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cellular pathogenesis of muscular dystrophy is also mirrored by characteristic protein
changes in biofluids, such as mdx-4cv serum, urine and saliva [72–74]. Building on the
well-established muscle degeneration and accompanying effects on multiple other organ
systems in the mdx-4cv mouse model, it was of interest to determine the pathobiochemical
signature of apparently spared EOMs [75].

Detailed histological, cell biological and biochemical studies of dystrophin-deficient
EOM have been carried out [76–81] and are supplemented here with findings on proteome-
wide changes. Table 2 lists significantly altered proteins in mdx-4cv EOM. This includes
characteristic increases in the glycolytic enzymes glyceraldehyde-3-phosphate dehydroge-
nase, enolase, and lactate dehydrogenase [82], as well as the molecular chaperones heat
shock protein 1 beta (HspB1) and heat shock cognate 71 kDa protein (HspA8) [83]. The
findings from previous immunoblotting and mass spectrometric surveys of EOMs that
were extracted from the spontaneously mutated mdx-23 mouse model of dystrophinopathy
agree with these changes in distinct protein families [37,38]. In contrast to comparable
expression levels of the dystrophin-associated glycoprotein beta-dystroglycan, higher
levels of the molecular chaperones alphaB-crystallin, cvHsp/HspB7, Hsp25/HspB1 and
Hsp90 were previously demonstrated to exist in dystrophin-deficient EOMs. The apparent
up-regulation of heat shock proteins in both mdx and mdx-4cv EOMs is an indication of a
robust cellular stress response in dystrophin-deficient EOMs [84]. Changes in HspB1 might
be suitable to establish this small heat shock protein as a marker of the stress response in
EOMs in the dystrophic phenotype [37].

The relatively mild phenotype of EOMs in X-linked muscular dystrophy [19,20]
is probably closely related to the special biochemical and physiological features of the
muscles surrounding the eyeball, such as the longitudinal distribution of neuromuscu-
lar junctions [9–11], the considerable capacity for fibre regeneration [13,14], exceptional
fatigue resistance even in fast-twitching fibre populations [16], and an extensive calcium
extrusion system [15]. In most skeletal muscles, dystrophin deficiency causes a collapse
of sarcolemmal integrity and a concomitant increase in micro-rupturing of the surface
membrane, which triggers influx of Ca2+-ions into myofibres and associated enhanced
Ca2+-dependent proteolytic activity in the sarcosol [25,27]. The efficient and swift removal
of cytosolic calcium from EOM fibres and the enhanced ion buffering capacity of EOMs
might therefore play a key role in the protection from dystrophic changes [18,76,79]. An-
other important factor might be the relatively low concentration of dystrophin isoform
Dp427-M in EOMs. The sub-sarcolemmal dystrophin lattice might not play the same
crucial role in the membrane cytoskeleton and linkage of the intracellular actin filaments to
extracellular laminin via the dystrophin-glycoprotein complex in EOMs as compared to
other skeletal muscles [36]. Importantly, previous studies established an up-regulation of
the autosomal dystrophin homologue named utrophin Up-395 and associated rescue of sar-
colemmal glycoproteins such as beta-dystroglycan in dystrophin-deficient EOMs [37,77,78].
Thus, full-length utrophin might substitute for dystrophin in EOMs and thereby stabilize
its trans-sarcolemmal cytolinker function and prevent secondary damage to myofibres.

The bioinformatic analysis of the proteomic survey of mdx-4cv EOMs is summarized
in Figure 4, which displays the PANTHER analysis of the overall protein profile [46], the
heat map of proteomic changes and the findings from the STRING analysis of potentially
altered protein interaction hubs [47]. The overall distribution of protein families was
shown not to be majorly different between wild type and dystrophic mdx-4cv EOM and
agrees with previous mass spectrometric surveys [37,38]. The heat map illustrates the
distribution pattern of changes between normal and dystrophic specimens. In contrast to
other sub-types of dystrophin-deficient skeletal muscles [31,39,42,84–87], Dp427-lacking
EOMs seem to exhibit relatively minor proteome-wide changes.
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Table 2. Comparative proteomic analysis of the mdx-4cv extraocular muscle cone.

Accession Protein Gene Peptides Annova
(p)

Fold
Change

P16858 Glyceraldehyde-3-phosphate dehydrogenase GAPDH 14 0.01427 +18.45
P14602 Heat shock protein 1, beta HSPB1 25 0.04444 +15.62
P63017 Heat shock cognate 71 kDa protein HSPA8 24 0.00894 +10.22

G3XA25 Acetyl-CoA acetyltransferase 2 ACAT2 24 0.04001 +7.56
P06151 Lactate dehydrogenase 1, A chain LDHA 14 0.02856 +5.93
P19536 Hydroxyacyl-coenzyme A dehydrogenase HADH 22 0.04369 +3.38
P17182 Alpha-enolase ENO1 19 0.04825 +3.13
P47740 Aldehyde dehydrogenase family 3 member A2 ALDH3A2 15 0.04301 +2.94

E9QNH7
Acyl-CoA-binding
domain-containing

protein 5
ACBD5 6 0.03134 +2.43

P07724 Albumin ALB 45 0.03520 +1.76
P19096 Fatty acid synthase FASN 119 0.02425 +1.69
G5E8R1 Tropomyosin alpha-1 chain TPM1 11 0.03985 −1.98
Q9DB20 ATP synthase subunit O, mitochondrial ATP5PO 7 0.03449 −2.07
P37040 NADPH-cytochrome P450 reductase POR 12 0.04813 −2.45
Q9R0P5 Destrin DSTN 9 0.03484 −2.66
Q9D3D9 ATP synthase subunit delta, mitochondrial ATP5F1D 4 0.04228 −2.71

Q9CRB9 MICOS complex
subunit Mic19 CHCHD3 11 0.04353 −2.90

Q9DBC7 cAMP-dependent protein kinase type I-alpha PRKAR1A 2 0.02217 −2.91
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Figure 4. Bioinformatic analysis of the comparative proteomic profiling of extraocular muscle (EOM)
from wild type (wt) versus the mdx-4cv model of X-linked muscular dystrophy. Shown is the result
of the bioinformatic PANTHER analysis [46] of the distribution of protein classes within the EOM
proteome from normal versus dystrophic mice. In addition, the heat map of the comparative pro-
teomic analysis of wt versus mdx-4cv EOM is displayed, which shows the findings from hierarchical
clustering of the mean protein expression values of statistically significant differentially abundant
EOM proteins. Potential changes in protein–protein interaction patterns in mdx-4cv EOMs were
determined with the help of the bioinformatics software programme STRING [47].
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The STRING interaction network indicates that the drastically increased enzyme
glyceraldehyde-3-phosphate dehydrogenase is positioned centrally within an altered pro-
tein hub in dystrophic EOMs. Immunofluorescence microscopy and immunoblotting was
employed to compare the expression of glyceraldehyde-3-phosphate dehydrogenase. As
illustrated in Figure 5, immunofluorescence labelling of this glycolytic enzyme shows
elevated levels in dystrophin-deficient EOMs, as compared to relatively comparable levels
of myosin MyHC14. Immunoblotting also indicates increased levels of glyceraldehyde-
3-phosphate dehydrogenase in mdx-4cv EOMs, as compared to comparable expression
of fibronectin. An approximately 2-fold increase in the expression of glyceraldehyde-3-
phosphate dehydrogenase has previously been identified in dystrophic mdx-23 diaphragm
preparations [84]. Thus, a potential shift to more glycolytic metabolism appears to be asso-
ciated with the dystrophic phenotype, and this seems to be especially striking in mdx-4cv
EOMs, suggesting these types of metabolic enzymes as biomarker candidates for studying
dystrophinopathy-related changes in bioenergetic pathways. The comparable levels of
fibronectin in wild type versus dystrophin-deficient EOMs indicates the lack of reactive
myofibrosis in this type of muscle, which is otherwise seen in most contractile tissues
affected in the dystrophic phenotype [28,33,68].

Figure 5. Histological and immunofluorescence microscopical characterization, as well as im-
munoblot analysis, of extraocular muscle (EOM) from the mdx-4cv mouse model of Duchenne
muscular dystrophy. Shown are transverse cryosections of wild type (wt) and mdx-4cv EOMs stained
with haematoxylin and eosin (H&E) and labelled with antibodies to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and myosin heavy chain MyHC14. Bar equals 30 µm. Shown is an In-
stantBlue Coomassie (CBB) stained protein gel with wild type EOM (lane 1) and mdx-4cv EOM (lane
2) samples, as well as identical nitrocellulose replicas used for immunoblotting and labelled with
antibodies to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and fibronectin (FN). In the
below panels are shown the statistical analysis of immunoblotting (Mann–Whitney U test; n = 4;
* p < 0.05). The value of molecular mass standards (x10−3 kDa) is marked on the left side of the gel.

In addition, elevated expression levels were shown for cytosolic acetyl-CoA acetyl-
transferase ACAT2, aldehyde dehydrogenase family 3 member A2 and acyl-CoA-binding
domain-containing protein 5, albumin, hydroxyacyl-coenzyme A dehydrogenase and
fatty acid synthase. The proteomic changes in key enzymes of the glycolytic pathway
and anaerobic metabolism suggest a potential metabolic shift in mdx-4cv EOMs [88]. A
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concomitant decrease was observed in certain mitochondrial proteins including the ATP
synthase subunit O, NADPH-cytochrome P450 reductase, ATP synthase subunit delta and
MICOS complex subunit Mic19. Decreased proteins also included Tropomyosin alpha-1
chain, the actin-depolymerizing protein destrin and cAMP-dependent protein kinase type
I-alpha.

A potential weakness and bioanalytical limitations of this report relate to the usage
of an animal model of Duchenne muscular dystrophy instead of patient samples, and
the focus on changed protein concentration using peptide mass spectrometry. With the
exception of the diaphragm, the mdx-4cv mouse exhibits relatively mild symptoms of fibre
wasting in its general musculature. Thus, the findings from this study should ideally be
extended to characterize muscle specimens from Duchenne patients, which is, however,
extremely difficult in the case of EOMs. Proteomics focuses on the mass spectrometric
identification of individual proteoforms and can be routinely employed for comparative
studies. However, it is important to realize that the establishment of abundance changes in
individual proteins does not provide detailed information on the underlying regulatory
mechanisms. It will therefore be important to supplement the new proteomic datasets
with future analyses of the biochemical, physiological and cell biological properties of
dystrophin-deficient EOMs.

4. Conclusions

The systematic mass spectrometry-based proteomic survey of EOM specimens es-
tablished distinct myosin isoforms of the MyHC category as new sarcomeric marker
candidates of this specialized type of skeletal muscle, i.e., MyHC14 and MyHC15, besides
confirming MyHC13 as an EOM enriched component. The drastically elevated levels of
MyHC14 in wild type EOMs as compared to wild type diaphragm muscle were clearly
confirmed by immunoblotting. This makes MyHC14 a suitable biomarker of EOMs and it
remains to be elucidated what exact physiological role this particular proteoform of the
myosin complex plays in the contractile kinetics and functional adaptability of EOMs. Com-
parative proteomics of wild type versus dystrophic specimens indicates that an apparent
metabolic shift from oxidative metabolism to a more glycolytic pathway and heightened
cellular stress response exists in mdx-4cv EOM. Elevated levels of the glycolytic enzyme
glyceraldehyde-3-phosphate dehydrogenase appear to be associated with dystrophic alter-
ations in mildly affected EOMs. These alterations in the cellular homeostasis may serve
as mechanisms to compensate for deficits induced by the dystrophin loss in this model of
Duchenne muscular dystrophy.
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