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Abstract

We provide an account of Milnor's construction of an exotic 7-sphere and the subsequent
rapid development of di�erential topology used to produce and classify exotic manifolds.
We begin by giving some necessary background, assuming only previous knowledge of real
analysis and linear algebra. Smooth manifolds, vector bundles, and �bre bundles are intro-
duced, along with some operations on manifolds not usually seen in a �rst course, before
giving a review of all necessary algebraic topology. We pay particular attention to the ho-
mology of smooth manifolds, as this will form the basis for the constructions of the following
section. We then introduce characteristic classes, which are one of the main ingredients
in constructing smooth manifold invariants. Using this setup, we develop Milnor's original
smooth invariant and a generalisation of it to a wider class of manifolds. We give a brief
introduction to Morse theory, which we use to characterise topological spheres. Having set
up the necessary background, we construct a number of examples of exotic spheres. We �rst
present Milnor's original example, and then develop a more general tool, plumbing disk bun-
dles, to give a much larger class of examples. Finally, we turn to the classi�cation of smooth
structures on spheres of dimension greater than four, developing the necessary background
to state Milnor and Kervaire's classi�cation results on homotopy groups of spheres, before
indicating a number of future directions of study to the reader, as this thesis is ultimately
intended to be an introduction to a vast �eld.
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Introduction

A naïve goal of manifold topology would be to classify all manifolds up to homeomorphism,
though this is far too optimistic. A more realistic goal would be to classify all manifolds
of a certain homotopy or homology type up to homeomorphism. This idea led to one of
the most fruitful problems in topology - is it possible to classify all compact manifolds with
the homology of a sphere? In [Poi00], Poincaré claimed1 that every compact n-dimensional
manifold with the homology of the n-sphere is homeomorphic to Sn. However, Poincaré
himself provided a counterexample in [Poi04]. He constructed the Poincaré homology sphere.
This is a compact 3-dimensional manifold with the homology of S3 as required. However,
its fundamental group is the binary icosahedral group. Poincaré's sphere then cannot by
homeomorphic to S3, as the 3-sphere has trivial fundamental group. In the same paper
Poincaré stated the Poincaré conjecture.

Poincaré conjecture. Every compact 3-dimensional manifold with trivial fundamental
group is homeomorphic to S3.

This conjecture would remain open for 98 years. The question has a natural generalisation.
De�ne a homotopy sphere to be a compact manifold which is homotopy equivalent to a
sphere.

Generalised Poincaré conjecture. Is every n-dimensional homotopy sphere homeomor-
phic to the n-sphere?

We can replace homeomorphism with either di�eomorphism or piecewise linear (PL) homeo-
morphism to obtain the smooth Poincaré conjecture and the PL Poincaré conjecture respec-
tively.

For n < 4, the topological, smooth, and PL conjectures are equivalent. For n = 0 the
conjecture is trivially true. The n = 1 and n = 2 conjectures are true by the classi�cation
of closed 1-manifolds and surfaces respectively [Mun00].

The classical Poincaré conjecture remained open until 2002. In 1983 Thurston [Thu82] stated
his geometrisation conjecture. This stated that every compact oriented 3-manifold can be
cut along spheres and tori in a unique way to decompose the manifold into pieces with one of
eight geometric structures. This opened the door to attacking the Poincaré conjecture using
methods from di�erential geometry and di�erential equations. Hamilton [Ham82] set out a
program in 1982 to solve Thurston's geometrisation conjecture and the Poincaré conjecture
simultaneously. This program was eventually completed in a pair of papers of Perelman
[Per02], [Per03].

The four dimensional conjecture wasn't resolved until the 1980's. Freedman [Fre82] proved
two closed simply connected 4-manifolds are homeomorphic if and only if they have the
same intersection form and Kirby-Siebenmann invariant. In particular, homotopy 4-spheres
have trivial intersection forms and Kirby-Siebenmann invariant zero. Hence, the Poincaré

1This is a restatement of the original problem in modern terminology.
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conjecture is true in dimension 4. However, the 4-dimensional conjecture for PL and smooth
manifolds has proven much more complicated than all others. The smooth and PL conjecture
are equivalent in dimension 4. Most of the results come from the study of smooth manifolds
in physics. Donaldson [Don83] developed a connection between gauge theory and smooth
4-manifolds. This would grow into its own �eld, Donaldson theory. Taubes used Donaldson
theory to show that there are uncountably many distinct smooth structures on R4 in [Tau87].
There is very little known about the Poincaré conjecture itself in dimension 4. In fact, it is
still unclear whether or not the conjecture is true in this dimension.

Surprisingly, all dimensions n ≥ 5 can be handled simultaneously in the topological setting.
The problem is actually simpler in high dimensions due to increased freedom to manipulate
low dimensional submanifolds. Smale proved that if Mn is a smooth homotopy sphere of
dimension n ≥ 5, then M is homeomorphic to Sn in [Sma61]. The key idea is to build
up a manifold from an n-disk, Dn, using handles. A λ-handle is a copy of Dn, given as a
product, Hλ ∼= Dλ ×Dn−λ. A handle presentation of M is then a sequence of attachments
of handles to Dn to arrive at a manifold homeomorphic to M . Two manifolds with identical
handle presentations will then be homeomorphic. A handle presentation can be simpli�ed by
"cancelling" handles, leading to a minimal presentation ofM . Smale showed that all smooth
homotopy n-spheres had the same minimal presentation as Sn. This resolved the generalised
topological Poincaré conjecture for smooth manifolds, though the smooth requirement was
eventually removed.

It was initially assumed that the smooth version of the conjecture for high dimensions would
follow quickly from the topological version as homeomorphisms can be approximated with
arbitrarily close di�eomorphisms. However, there is no way to ensure the two approximated
di�eomorphisms are inverses of one another. Still, it was expected that these problems
would be easily resolved in time. As such, when Milnor �rst discovered a homotopy 7-
sphere which wasn't di�eomorphic to S7, he assumed he had found a counterexample to the
topological Poincaré conjecture [Mil00]. However, the Reeb sphere theorem con�rmed that
Milnor's manifold was homeomorphic to S7. He was left to conclude in [Mil56] that he had
discovered an exotic sphere, a sphere homeomorphic to Sn, but not di�eomorphic to it.

This and the work in the years following, led to the birth of di�erential topology as its
own �eld and earned Milnor the Fields Medal in 1962. Many questions posed themselves
immediately- how many distinct smooth structures can a topological manifold possess? Can
a manifold possess no smooth structure? In the seven years following Milnor's initial dis-
covery, an understanding of smooth structures on manifolds as an additional and interesting
structure emerged. In 1957, Shimada [Shi57] extended Milnor's work to construct a number
of exotic 15-spheres. Milnor went on to discover exotic spheres in all dimensions of the form
4n− 1 in [Mil59a]. Perhaps most strangely of all, Kervaire constructed a 10-manifold which
does not admit any smooth structure in [Ker60]. The smooth Poincaré conjecture was �nally
resolved for n ≥ 5 in 1963 with the joint work of Milnor and Kervaire in [KM63]. They made
use of Smale's h-cobordism theorem to convert the problem of counting smooth structures
on homotopy n-spheres to the computation of stable homotopy groups.

The goal of this paper is to give an account of Milnor's discovery and the results which
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followed in the years after. In particular, we will construct Milnor's exotic 7-sphere and
give a generalisation to the invariant he used to other dimensions. We then de�ne plumbing
of manifolds to construct a large number of exotic spheres in various dimensions. Finally,
we explore the structure of homotopy n-spheres and related structures, and outline the
classi�cation of homotopy spheres carried out by Milnor and Kervaire.
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1 Smooth Manifolds

A �rst course on manifolds will often focus on either topological or smooth manifolds. There
usually isn't much emphasis placed on the extra structure smoothness enforces. However
many natural questions arise from the de�nition of a smooth structure, as outlined in the
introduction. To explore these questions, we �rst recall the de�nition of a topological mani-
fold, then introduce smooth structures and smooth manifolds. In section 1.3 we introduce an
important structure associated to a smooth manifold, the tangent bundle. This allows us to
de�ne the notion of a smooth submanifold and de�ne a smooth version of general position.

1.1 Topological Manifolds

A topological space, M , is an n-dimensional topological manifold if it is:

1. Locally Euclidean. Each point x ofM has a neighbourhood U that is homeomorphic
to an open subset of Rn.

2. Hausdor�. For any pair of distinct points x, y of M there exist disjoint open subsets
of M which contain x and y respectively. i.e. any two points can be separated.

3. Second-countable. The topology of M has a countable basis.

The second and third conditions exclude pathological examples.

Some extra terminology is useful when working with manifolds. A chart for M is a pair
(U,ϕ) where U is an open subset ofM and ϕ is a homeomorphism from U to an open subset
ϕ(U) ⊂ Rn. We call U a coordinate neighbourhood and ϕ a coordinate map. The component
functions (x1, . . . , xn) given by

(x1(p), . . . , xn(p)) = ϕ(p)

are local coordinates on U . An atlas for a manifoldM is a collection of charts which coverM .
We will sometimes use the notation Mn to indicate that M is an n-dimensional manifold.
We will use the convention that a function refers to a continuous mapping into the real
numbers and a map is a continuous mapping between topological spaces.

Example 1.1 The space Rn is a topological manifold of dimension n with one coordinate
chart given by the identity map. It is Hausdor� as points of Rn are separable and has
countable basis given by the collection of open balls with rational radii and rational centre
coordinates.

Example 1.2 Let U be an open subset of Rn and f : U → Rk be a continuous function.
The graph of f is the set

G(f) =
{

(x, y) ∈ Rn × Rk : x ∈ U, y = f(x)
}
.
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Equip this set with the subspace topology. It is both second countable and Hausdor� as it is
a subspace of Rn×Rk. On G(f), the map π1 which projects to the �rst factor is continuous
with continuous inverse given by π−1

1 (x) = (x, f(x)). Therefore π1 is a homeomorphism onto
U . Hence G(f) is an n-dimensional manifold homeomorphic to U .

Example 1.3 The n-sphere

Sn := {(x1, . . . , xn+1) ∈ Rn+1 :
∑

x2
i = 1}

is Hausdor� and second countable as it is a subspace of Rn+1. Let U+
i be the subset of Sn

with ith coordinate positive, and U−i be the subset with ith coordinate negative. Note every
point of Sn is in at least one of these sets. De�ne f : Bn → R by

f(v) =
√

1− |v|2.

Then each U±i is the graph of the function

yi = ±f(x1, . . . , x̂i, . . . , xn+1),

where x̂i means xi is omitted. Therefore each of these sets is locally Euclidean and we can
de�ne coordinate maps by

ϕ±i (x1, . . . , xn+1) = (y1, . . . , ŷi, . . . , yn+1).

1.2 Smooth Manifolds

A map F : Rn → Rk is di�erentiable at x if there is a linear map DFx : Rn → Rk such that

lim
h→0

||F (x+ h)− F (x)−DFx(h)||Rk

||h||Rn

= 0.

Recall if F is di�erentiable at x then all partial derivatives of F at x exist and DFx is the
Jacobian matrix of partial derivatives. A map F : Rn → Rk is smooth if its partial derivatives
of all orders exist. A map is a di�eomorphism if it is smooth and has a smooth inverse. We
would like to transfer as much of this machinery as possible to manifolds by using charts,
however, we need a de�nition of smoothness which is well de�ned when changing between
charts.

We de�ne a smooth compatibility condition between charts as follows. Let (U,ϕ), (V, θ) be
two charts with non-empty intersection. The map θ ◦ ϕ−1 : ϕ(U ∩ V ) → θ(U ∩ V ) is called
the transition map from ϕ to θ; see Figure 1. Note transition maps are just maps between
open subsets of Rn. We say two charts are smoothly compatible if either the transition map
is a di�eomorphism or their intersection is empty. An atlas A for a manifold M is a smooth
atlas if any two charts in A are smoothly compatible. A smooth structure A on M is a
maximal smooth atlas � that is, A is not a proper subset of any larger smooth atlas. A
smooth manifold is a pair (M,A), though usually we write M , the smooth structure being
clear from context.
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U
V

ϕ θ

θ ◦ ϕ−1

ϕ(U)
θ(V )

M

Figure 1: Transition maps between charts

Example 1.4 Consider the following 3 atlases for R:

1. A1 = {(R, IdR)}.

2. A2 = {(B1(x), IdB1(x)) : x ∈ R}.

3. A3 = {(R, ϕ), ϕ(x) = x3}.

The �rst two are di�erent atlases, but both clearly determine the same maximal atlas,
therefore the same smooth structure. We call this the standard smooth structure for R.
However the smooth structure determined by A3 is not the standard one. We can see it is
not compatible with the standard structure as the transition map

IdR ◦ ϕ−1(x) = x1/3

is not smooth at the origin.

In fact, if a manifold has a smooth structure, it has uncountably many distinct smooth
structures. The intuitive idea is as follows. Construct a family of homeomorphisms Fs of
Bn which are not di�eomorphisms. Then replace a chart (U,ϕ) with (ϕ−1(Bn), Fs ◦ϕ). The
new chart will then not be compatible with the original atlas, and so this new atlas must
de�ne a new smooth structure. Some care must be taken in how we replace this chart to
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make the argument rigorous. This is less than ideal if we want to classify smooth manifolds.
We would like an idea of equivalence between smooth manifolds which is weaker than having
identical smooth structure. For this we need the concept of smooth maps.

To de�ne a smooth map between manifolds we use the de�nition of smoothness in the real
case.

Let Mm, Nn be smooth manifolds. A map F : M → N is smooth if for every point p ∈ M
there exist a pair of smooth charts (U,ϕ) and (V, θ) containing p and F (p) respectively such
that F (U) ⊂ V and

θ ◦ F ◦ ϕ−1 : ϕ(U)→ θ(V )

is a smooth real function.

Note that if M , N above are subsets of Rn we recover the usual de�nition for smoothness of
real functions.

Just as we de�ne a homeomorphism to be a continuous bijection with continuous inverse, a
di�eomorphism is a bijective smooth map with smooth inverse. We say the manifolds M ,
N are di�eomorphic to each other if there exists a di�eomorphism between them, and write

M
di�∼= N . We consider two smooth manifolds to be equivalent if they are di�eomorphic.

Example 1.5 Returning to the atlases A1, A3 of example 1.1 we can see the smooth
manifolds M1 = (R,A1), M3 = (R,A3) are di�eomorphic through the di�eomorphism
F : M1 →M3 given by

F (x) = x1/3.

This is a di�eomorphism as both (ϕ ◦F ◦ Id−1
R )(x) = x and its inverse are smooth functions.

Oriented Manifolds

Recall that an orientation for a real vector space, F n, is given by an equivalence class of
bases, {v1, . . . , vn}, where two bases are equivalent if any only if the change of basis between
them has positive determinant. As such, every vector space has exactly two orientations.
The vector space Rn has a canonical orientation given by {e1, . . . , en}, where ei has a one in
the ith coordinate and is zero in all other coordinates.

Let M be a smooth manifold and consider a pair of charts (U,ϕ), (V, θ) for M . The transi-
tion function between these charts, θ ◦ϕ−1, is a smooth real map, hence we may consider the
determinant of the Jacobian matrix. Recall if this determinant is positive then the transition
map is an orientation preserving map, and if it is negative then it is orientation reversing.
We say the charts (U,ϕ), (V, θ) are oriented compatibly if the transition function is orienta-
tion preserving. An atlas of charts such that each pair of charts is oriented compatibly is
called an oriented atlas. We say the atlas determines an orientation for M . If there is an
oriented atlas for M we say that M is orientable. If M is orientable, we may compose each
chart with an orientation reversing di�eomorphism of Rn. This de�nes an oriented smooth
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manifold di�eomorphic to M but with a di�erent orientation. We call this manifold M with
orientation reversed, and denote it by −M . We will give some alternative de�nitions of
oriented manifolds later.

Manifolds with Boundary

Our de�nition of manifold does not allow for any kind of boundary - every point must
locally look like Rn. There is a natural generalisation by allowing our manifolds to be locally
homeomorphic to relatively open subsets the closed upper half plane,

Rn
≥0 := {(x1, . . . , xn) ∈ Rn : xn ≥ 0} .

We de�ne a manifold with boundary to be a second countable Hausdor� space for which
every point has a neighbourhood which is either homeomorphic to an open subset of Rn or
to a relatively open subset of Rn

≥0. Charts with image open in Rn are called interior charts
and charts with image open only in Rn

≥0 are called boundary charts. Similarly a point x ∈M
is called an interior point of M if it is contained in some interior chart and a boundary point
if it is in some boundary chart (U,ϕ) such that ϕ(x) ∈ ∂Rn

≥0. The set of all boundary points
of M is called the boundary of M and denoted ∂M . The set of all interior points, denoted
M̊ , is called the interior.

Lemma 1.6 The boundary and interior of a manifold M are disjoint sets whose union is
M . That is, every point of M is either an interior point or boundary point.

1. M̊ is an open subset of M and an n-manifold without boundary.

2. ∂M is a closed subset of M and an (n− 1)-manifold without boundary.

Note that every manifold is a manifold with boundary. However a manifold with boundary
is only a manifold if it has empty boundary. "Manifold" will always mean manifold without
boundary, but if we want to emphasise that a result cannot be extended to manifolds with
boundary we say a closed manifold is a compact manifold without boundary.

Let S be a subset of Rn. Recall a map f : S → Rk is smooth if for each point x of S there is a
neighbourhood x ∈ U ⊂ Rn and an extension F of f such that F is smooth on U . We de�ne
a smooth structure for a manifold with boundary exactly as before - it is a maximal smooth
atlas of charts whose domains coverM and whose transition maps are smooth. However now
smoothness is de�ned in terms of open subsets of Rn and Rn

≥0 as above. A manifold with
boundary equipped with a smooth structure is a smooth manifold with boundary. De�ne an
orientation for a manifold with boundary as an orientation of its interior. This induces an
orientation on the boundary by restriction.

12



1.3 The Tangent Bundle

Tangent Vectors

The derivative of a map F : Rn → Rk at a point p is a linear approximation to F . For
example, the best linear approximation of a map of one variable given by the tangent line
to its graph, and a tangent plane is the best linear approximation of a map of two variables.
We think of tangent vectors as existing in a copy of Rn attached to p. To extend this idea
to manifolds we need to de�ne a tangent space which will hold the derivatives of functions
at a point.

Let p ∈ Rn, to every tangent vector v ∈ Rn at p we can associate a directional derivative Dv

acting on smooth real valued functions f : Rn → R by

Dvf(p) =
d

dt

∣∣∣∣
t=0

f(p+ tv).

For p ∈ Rn a derivation at p is a linear map X : C∞(Rn) → R which satis�es the product
rule

X(fg) = f(p)X(g) +X(f)g(p)

for all smooth functions f, g on Rn. The directional derivate above is a derivation. Denote
by TpRn the space of derivations at p.

Theorem 1.7 The map vp → Dv|p is an isomorphism from the space of tangent vectors at
p to TpRn. We call TpRn the tangent space to Rn at p.

For any p ∈ Rn the partial derivatives ∂/∂xi|p = Dei |p are derivations which form a basis for
TpRn at any point, hence TpRn is an n-dimensional vector space.

We now want to adapt the above to smooth manifolds. The set of smooth functions on M
forms a ring under pointwise addition and multiplication. Denote this ring by C∞(M). A
derivation of C∞(M) at p ∈M is a linear function X : C∞(M)→ R which satis�es

X(fg) = X(f)g(p) + f(p)X(g) ∀f, g ∈ C∞(M).

The tangent space of M at p, TpM is the set of all derivations of C∞(M) at p. Elements of
TpM are called tangent vectors at p.

For M , N smooth manifolds and F : M → N a smooth map we can de�ne a linear map
F∗ : TpM → TF (p)N by

(F∗X) (f) = X(f ◦ F ).

We call this map the pushforward of F at p, and sometimes use the notation dFp. The
pushforward is a linear map. It follows directly from the de�nition that (F ◦G)∗ = F∗ ◦G∗
and that the pushforward of the identity map is the identity on TpM , hence if F is a
di�eomorphism then F∗ is an isomorphism of of tangent spaces.

13



Let (U,ϕ) be a coordinate chart centered at p ∈ Mn. The map ϕ induces a vector space
isomorphism through the di�erential,

dϕ : TpM
∼=→ Tϕ(p)Rn ∼= Rn.

Hence the tangent space at each point carries the structure of a real n-dimensional vector
space; see Figure 2.

p

TpM

dϕp

ϕ

ϕ(p)

Tϕ(p)Rn

M

Rn

U

ϕ(U)

Figure 2: The tangent space to a point is a vector space.

We form a basis for TpM as follows. Recall the partial derivatives form a basis for Tϕ(p)Rn.
As dϕ is an isomorphism, the preimage of the partial derivatives under dϕ must therefore
form a basis for TpM . De�ne the i-th coordinate vector at p, ∂/∂xi|p as

∂

∂xi

∣∣∣∣
p

= (dϕp)
−1

(
∂

∂xi

∣∣∣∣
ϕ(p)

)
.

These vectors act on a function f ∈ C∞(U) by

∂

∂xi

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1)

It follows that any tangent vector v ∈ TpM can be written as a linear combination

v =
∑
i

vi
∂

∂xi

∣∣∣∣
p

.
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We will usually want to work with all of the tangent spaces of a manifold simultaneously.
De�ne the tangent bundle, TM , as the disjoint union of the tangent spaces to every point of
M ,

TM =
⊔
p∈M

TpM.

Elements of TM are denoted by pairs (p, v), p ∈M , v ∈ TpM . We usually do not distinguish
between (p, v) ∈ TM and v ∈ TpM . Note that the tangent bundle has a natural projection
map π : TM → M sending a pair (p, v) to the point p. The tangent bundle has a natural
topology and smooth structure making it into a smooth manifold.

Theorem 1.8 Let M be a smooth manifold. The tangent bundle of M , TM , has a natural
topology and smooth structure such that TM is a smooth 2n-dimensional manifold and that
the projection map π : TM →M is smooth.

Proof. Let (U,ϕ) be a chart for M and let (x1, . . . , xn) be the local coordinates of ϕ. De�ne
a chart (π−1(U), ϕ̃) by

ϕ̃

(
vi

∂

∂xi

∣∣∣∣
p

)
= (x1(p), . . . , xn(p), v1, . . . , vn)

The map ϕ̃ : π−1(U)→ ϕ(U)× Rn has smooth inverse given by

ϕ̃−1(x1(p), . . . , xn(p), v1, . . . , vn) = vi
∂

∂xi

∣∣∣∣
ϕ−1(x)

It follows that TM is locally homeomorphic to R2n. Verifying that these charts de�ne a
smooth structure for TM and that TM is a manifold is largely routine. For full details see
[Lee03] Lemma 4.1.

Vector Fields

A vector �eld X for a smooth manifoldM is a choice of tangent vector X(p) ∈ TpM for each
p ∈M . That is, a vector �eld is a map X : M → TM such that

π ◦X = IdM .

A smooth vector �eld is a vector �eld which is a smooth map from M to the tangent bundle.

Example 1.9 Let (U, (x1, . . . , xn)) be a smooth chart forM . De�ne the ith coordinate vector
�eld, ∂/∂xi, as the vector �eld given locally by (0, . . . , 1, . . . , 0), with a 1 in the ith position.
This is a smooth vector �eld on U .
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Integral Curves

Let I denote the unit interval [0, 1]. On a smooth manifold M , a smooth curve γ : I → M
de�nes a tangent vector γ

′
(t) ∈ Tγ(t)M at each point γ(t) of the curve. For a general vector

�eld, X, we can ask whether there exist a smooth curve γ : I → M starting at γ(0) = p on
some interval such that on I

γ
′
(t) = X(γ(t));

γ(0) = p.

Such a curve is called an integral curve for X.

The condition can be restated in local coordinates as the system of ordinary di�erential
equations

(γi)
′
(t) = X i(γ1(t), . . . , γn(t));

γ(0) = p.

It follows from the existence and uniqueness of solutions to ordinary di�erential equations
there exists an integral curve γ with γ(0) = p on some interval I for X [TP63].

An alternative perspective on integral curves is given by the notion of a �ow. Suppose X is
a vector �eld on M such that each point p ∈ M has a unique integral curve θ(p) : R → M
starting at p and de�ned for all t ∈ R. Then de�ne a map θt : M →M for each t ∈ R by

θt : p 7→ θ(p)(t).

The map moves points of the manifold along an integral curve through the point for time t.
Note that θ0(p) = p. As the integral curves at a point are unique we have

(
t 7→ θ(p)(t+ s)

)
is an integral curve of X starting at θ(p)(s), therefore θt ◦ θs(p) = θt+s(p).

All together we have an additive group action of R on M given by the map θ : R×M →M ,
(t, p) 7→ θt(p). De�ne a one-parameter group of di�eomorphisms, or global �ow of M to be
a smooth left-R action on M . That is, a global �ow is a smooth map θ : R ×M → M
satisfying

1. θ(0, p) = p.

2. θ(t, θ(s, p)) = θ(t+ s, p).

1.4 Submanifolds

Embeddings and Isotopies

We de�ne the smooth version of a topological embedding. A smooth map f : M → N is
a smooth embedding if f is a topological embedding and df is injective at each point of M .
Unless speci�ed otherwise, embedding will always mean smooth embedding. We say M is a
submanifold of N if the inclusion map is an embedding.
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Note every manifold we have considered so far has been embedded in a Euclidean space.
The following theorem of Whitney says that we can consider any compact n-manifold to be
embedded in RN , for some N .

Theorem 1.10 (Whitney Embedding Theorem) A smooth compact manifold can be
embedded in a Euclidean space.

This N can be much larger than the dimension of the manifold itself. There are a number
of bounds on this dimension, however we will not need them; see [Kos72].

Similar to the notion of homotopic maps, we can de�ne an equivalence between embeddings
by isotopies. Let M , N be smooth manifolds and f, g : M → N embeddings. An isotopy
between f and g is a smooth map F : M × R→ N such that

1. {
F (x, 0) = f(x)

F (x, 1) = g(x)

2. For �xed t ∈ [0, 1], F is an embedding. That is, F (x, t) is an embedding for 0 ≤ t ≤ 1.

Two embeddings of a smooth manifold M into N are isotopic if there is an isotopy between
them. We consider isotopic embeddings to be equivalent.

Transversality

Let Mm, Nn be embedded submanifolds of a smooth manifold Xd. We say that M is
transversal N if for all points p ∈M ∩N ,

TpM + TpN = TpX.

Note this relation is symmetric. This is a smooth version of the topological notion of general
position. If m + n < d we can move M and N through isotopies to be disjoint to each
other in X, hence transversality is vacuously true. When d = m+n the two manifolds must
intersect in a discrete collection of points as

dimM ∩N = dimM + dimN − dimX = m+ n− d = 0.

See Figure 3 below for some typical examples of transversality. Note that the de�nition relies
strongly on the surrounding space. The top left example is a transversal intersection in R2,
however it would not be transversal in R3.

We will need two important facts we need about transversality. First, transversal intersec-
tions are stable under small perturbations of the embeddings ofM and N in X. This can be
seen in Figure 3 above- perturbing either of the non-transversal intersections gives a transver-
sal intersection. The second fact we need is that transversal intersections are generic. That
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is, given any embedding of M into X there is an arbitrarily close embedding which has M
intersect N transversally. This follows from the transversality theorem. Further details and
all proofs can be found in [GP74].

(a) Intersections in R2.

(b) Intersections in R3.

Figure 3: Some examples of transversal and non-transversal intersections. The intersections
on the top row are transversal and the intersections on the bottom are not.

1.5 Operations on Manifolds

The boundary of a smooth manifold is well behaved in the following sense. For any smooth
manifold with boundary there is a smooth embedding α : [0, 1) × ∂M → M which is the
identity when restricted to ∂M . Such an embedding is called a collar embedding ofM and we
call the image of α a collar neighbourhood of ∂M . The intuitive idea is indicated in Figure
4, in a neighbourhood of the boundary M looks like the product of ∂M and a half-open
interval.

Theorem 1.11 (Collar Neighbourhood Theorem) If M is a smooth manifold with non-
empty boundary then ∂M has a collar neighbourhood.

See [Lee03] for a proof.

This theorem allows us to paste together manifolds with di�eomorphic boundaries.

Lemma 1.12 (Gluing Lemma) Let M , N be smooth n-dimensional manifolds with bound-
ary and f : ∂N → ∂M be a di�eomorphism. Then the space

M ∪f N := M tN / (x ∼ f(x))
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∂M

[0, 1)× ∂M

M

Figure 4: A collar neighbourhood of ∂M .

is a smooth manifold with submanifolds M ′, N ′ di�eomorphic to M , N such that

M ′ tN ′ = M ∪f N ;

M ′ ∩N ′ = ∂M ′ = ∂N ′.

Furthermore, suppose M , N are oriented manifolds and f is an orientation preserving dif-
feomorphism. Then we de�ne the gluing of M and N as

M ∪f N := M t (−N) / (x ∼ f(x)) .

The glued manifold will then be oriented such that M
′
is oriented the same way as M and

N
′
is oriented the same way as −N .

Proof. Let X = M ∪f N and let π : M t N → X be the quotient map. The collar
neighbourhood theorem gives a collar embedding αM : [0, 1)×∂M →M . Denote by CM the
image of this map. Similarly de�ne αN and CN for N .

De�ne a map F : CM t CN → (−1, 1)× ∂M by

F (x) =

{
(−t, p) x = αM(t, p) ∈ CN
(t, f(q)) x = αN(t, q) ∈ CM .

F is an embedding on CM and CN with closed image by construction, hence a closed map.
F is constant on �bres of π as when t = 0 we have (0, f(p)) = (0, p). Thus, F descends
to a continuous map F̂ : π(CM t CN) → (−1, 1) × ∂M . F̂ is bijective by construction and
closed as F was closed, hence it is a homeomorphism. Therefore π(CM tCN) is a topological
manifold. However π(M̊ t N̊) ∼= M̊ t N̊ is also a topological manifold. Hence X is covered
by two topological manifolds and so is both locally Euclidean and second countable. Any
two �bres of π can be separated by saturated open sets, so X is also Hausdor�, hence a
topological manifold.
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M
N

πF

F̂

CM
CN

X(−1, 1)× ∂M

f

Figure 5: Gluing manifolds along common boundaries.

De�ne an atlas of charts on X as follows. For each smooth chart (U,ϕ) of the interior of M
or N add the chart (

π(U), ϕ ◦ π−1|π(U)

)
.

Also for each smooth chart (U,ϕ) of (−1, 1)× ∂M add to the atlas the chart(
F̂−1(U), ϕ ◦ F̂ |F̂−1(U)

)
.

These are compositions of homeomorphisms which cover X and are smoothly compatible.
This de�nes a smooth structure for X. The restriction of π to either M or N is continuous,
closed, and injective. We de�ne the image of these embeddings to beM ′ and N ′ respectively.
The required properties follow by construction.

This lemma allows us to de�ne a new construction for manifolds. Let M1, M2 be smooth,
connected, n-dimensional manifolds. Let (Vi, ϕi) be coordinate neighbourhoods at points
pi ∈Mi. By composing di�eomorphisms we can pass to coordinate neighbourhoods Ui such
that

ϕ(Ui) = B1(0), ϕ(Ui) = Dn.

Then the sets Mi − Ui are smooth manifolds with boundary di�eomorphic to Sn−1. Choose
a di�eomorphism f of Sn−1 isotopic to the identity and consider it as a di�eomorphism from
∂M1 to ∂M2.

De�ne the connected sum of M1 and M2, M1 #M2, to be the set

M1 #M2 := M1 tM2 / (x ∼ f(x)) .
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By the gluing lemma, this is a smooth manifold. We can similarly de�ne the connected
sum along the boundary of two manifolds with boundary, denoted M1 #∂ M2. A detailed
construction can be found in [Kos72].

Under the operation of connected sum, the set of connected, oriented, and closed smooth
n-dimensional manifolds forms a commutative monoid with identity Sn. Commutativity and
associativity are clear from the de�nition. Note that Sn with a disk removed is di�eomorphic
to Dn. Hence, the connected sum of a manifold M with Sn amounts to removing a disk
from M and then reattaching a disk, and so Sn is the identity element. We will study
this monoid in chapter 7. In particular, we will show that the invertible elements, An, are
homotopy spheres. This will then lead to a way to count the number of smooth structures
on homotopy n-spheres.

U1 U2

M1
M2

M1 #M2

Figure 6: The connected sum of M1 and M2 along the sets Ui.

Cobordism

Another notion of equivalence between manifolds which will become quite useful in the
following chapters is that of cobordism.

Two closed smooth n-dimensional manifoldsM , N are (unoriented) cobordant if their disjoint
union is the boundary of a compact smooth (n+ 1)-dimensional manifold W , ∂W = M tN .
We say M and N belong to the same cobordism class, [M ]. The triple {M,N ;W} is called
a cobordism between M and N .

The set of unoriented cobordism classes of dimension n, Nn, forms an abelian group with
addition given by disjoint union. The identity is given by the cobordism class of boundaries,
we denote the identity by [∅]. Clearly [M ]+[M ] = [∅], asMtM = ∂(M×[0, 1]). Additionally
the topological product of manifolds descends to an associative, bilinear product on the
cobordism groups

Nm ×Nn → Nm+n.
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Therefore the unoriented cobordism groups form a graded algebra N∗.

For oriented manifolds M , N we can similarly de�ne an oriented cobordism between M and
N as a cobordism between M and N such that the bounding manifold W is oriented with
oriented boundary given by M t (−N). Denote the set of oriented cobordism classes of
dimension n as Ωn. As in the unoriented case, Ωn forms a group under disjoint union and
products of manifolds de�nes a graded ring structure with identity {pt} ∈ Ω0. However, the
oriented cobordism ring is graded commutative as

Mm ×Nn ∼= (−1)mnNn ×Mm.

Lemma 1.13 Let M1, M2 be smooth, oriented manifolds of dimension n > 0. The disjoint
union of M1 and M2 is cobordant to their connected sum.

Proof. Consider the disjoint union of the cylinders M1 × I and M2 × I. Let W be the
boundary connected sum of these cylinders along Mi × {1},

W = M1 × I #∂ M2 × I.

At the upper boundary, this boundary connected sum is just the connected sum M1 #
M2. At the lower boundary, we have M1 tM2 by construction. Hence W is the required
cobordism.

It follows that for n > 0 the group operation of disjoint union can be replaced with connected
sum. This is occasionally a more convenient operation to work with.

Both notions of cobordism are very coarse relations. As 0-dimensional manifolds are col-
lections of points we can pair them o� as in Figure 7, hence N0 = Z/2Z. For oriented
0-manifolds each point is assigned ±1. We pair o� points with opposite sign to ensure the
orientations are compatible. It follows that Ω0 = Z.

M NW

Figure 7: Unoriented collections of points can be paired o� and connected by a line segment.
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Any compact 1-dimensional manifold is a disjoint union of circles, which can clearly be given
as the boundary of a surface; see Figure 8. Hence N1 = Ω1 = 0.

M
N

W

Figure 8: A collection of circles bounds a surface.

Higher cobordism groups are considerably harder to compute. The main tool to compute
these groups is a connection between homotopy groups and cobordism groups, developed by
Pontrjagin and Thom independently. We will describe a particular example of this connection
in chapter 7. See Table 1 below for a list of the �rst eight groups.

n 0 1 2 3 4 5 6 7 8
Nn Z/2Z 0 Z/2Z 0 Z/2Z⊕ Z/2Z Z/2Z (Z/2Z)3 Z/2/Z (Z/2Z)5

Ωn Z 0 0 0 Z Z/2Z 0 0 Z⊕ Z

Table 1: Table of cobordism groups.
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2 Fibre Bundles

The concept of attaching some structure to every point of a topological space turns out to be
useful in a wide variety of contexts. We �rst de�ne vector bundles as the result of "attaching"
a vector space to every point of a manifold, generalising tangent bundles to manifolds. We
then extend this idea to �bre bundles, attaching instead arbitrary topological spaces, called
the �bre, to a manifold. These spaces will then locally be products of the manifold and the
�bre. We will see that they can be quite twisted and non-trivial globally.

2.1 Vector Bundles

A real vector bundle, ξ, over a topological space X is a triple (E,X, π), usually denoted
π : E → X where:

1. X called the base space.

2. E is a topological space, called the total space.

3. π is a continuous surjective map, called the projection map.

4. For every point x ∈ X the �bre Fx = π−1(x) is a �nite dimensional real vector space.

5. The bundle satis�es the local trivility condition.

Local triviality condition. For every point x ∈ X there exists a local coordinate system
(U,ϕ) for ξ. That is, a pair, (U,ϕ), where U is an open neighbourhood of p and ϕ is a
homeomorphism

ϕ : U × Rn → π−1(U)

such that for all p ∈ U :

1. π ◦ ϕ(p, v) = p for all v ∈ Rn.

2. v 7→ ϕ(p, v) is a vector space isomorphism between Rk and Fp = π−1(p).

We call such a coordinate system a local trivialisation.
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E

U × Rn

π

π

ϕ

U

π−1(U)

X

Figure 9: Vector bundles are locally a product of a manifold with Rn.

We will sometimes use the total space to refer to the whole vector bundle when the rest of
the structure is clear from context.

If it is possible to cover the entire bundle ξ with a single coordinate system (U,ϕ) then ξ is
called a trivial bundle.

The dimension of the �bres is locally constant due to the triviality condition. It follows that
vector bundles over connected manifolds have �bres of �xed dimension, called the rank of
the vector bundle. We will usually be interested in spaces with constant �bre dimension.

A vector bundle is a smooth vector bundle if the base and total space are smooth manifolds,
π is a smooth map, and the trivialisations in the de�nition above are di�eomorphisms.

Example 2.1 The rank k trivial bundle, εk, over X is the vector bundle with total space
X×Rk. The projection map is given by projection onto the �rst factor and the vector space
structure is inherited from Rk.

Example 2.2 The tangent bundle, TM , of a smooth manifoldMn is a rank n smooth vector
bundle by construction.

Example 2.3 The normal bundle, NM , of a manifoldM embedded in RN is de�ned to have
total space the set of all pairs (x, v) with x ∈M and v ⊥ TxM .
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Example 2.4 We will construct a rank one bundle over the real projective space, RP n,
called the tautological line bundle. Let E(γ1

n) ⊂ RP n × Rn+1 be the set of all pairs

E(γ1
n) = {({±x}, tx) : x ∈ Sn, t ∈ R} .

De�ne π : E(γ1
n)→ RP n as

π({±x}, v) = {±x}.
We give each �bre the usual vector space structure on R. To show the bundle is locally
trivial, let U ⊂ Sn contain no pairs of antipodal points. Denote the image of this set in RP n

by U
′
. Then the map

h : ({±x}, t) 7→ h({±x}, t) = ({±x}, tx)

is a homeomorphism h : U
′ × R→ π−1(U

′
).

The resulting vector bundle has base RP n and �bre at x the line through x and −x. Denote
this bundle by γ1

n. When n = 1 the total space of this bundle is the open Möbius band,
which is non-trivial. This bundle is in fact non-trivial in each dimension.

Two vector bundles ξ1, ξ2 over X are isomorphic if there exists a homeomorphism of total
spaces f : E1 → E2 which maps each �bre Fp(ξ1) isomorphically into the corresponding �bre
Fp(ξ2).

More generally, we can de�ne morphisms between bundles. Let ξ1, ξ2 be vector bundles.
A bundle map from ξ1 to ξ2 is a continuous function f : E1 → E2 which carries each �bre
Fx(ξ1) isomorphically onto one of the �bres Fy(ξ2).

Given a topological space Y and a continuous map f : Y → X we can pull back bundles
over X to bundles over Y . If ξ is a bundle over X then the pullback bundle, f ∗ξ, is de�ned
as follows. The total space, f ∗(E), is given by

f ∗(E) := {(x, p) ∈ Y × E : f(x) = π(p)} .

The projection map π∗ is de�ned by π∗(x, v) = x. Given local coordinates (U, h) for ξ we
de�ne local coordinates (U∗, h∗) for f ∗ξ by

U∗ = f−1(U);

h∗(x, v) = (x, h(f(x), v)).

Consider two bundles ξ1 and ξ2. The product bundle ξ1 × ξ2 is de�ned as follows. The total
space is the product of the total spaces of ξ1 and ξ2, similarly for the base. The projection is
given by the product of the projection maps. Each �bre is given the structure of the product
vector space Fp1(ξ1)× Fp2(ξ2). All together we have a triple (E1 × E2, B1 ×B2, π1 × π2).

Consider two bundles ξ and η over the same base B. Let d : B → B × B be the diagonal
map. The bundle d∗(ξ× η) = ξ⊕ η over B is the Whitney sum of ξ and η. The �bres of the
Whitney sum are isomorphic to the direct sum of the �bres:

Fx(ξ ⊕ η) = Fx(ξ)⊕ Fx(η).
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Example 2.5 LetMn be a smooth manifold embedded in RN with tangent bundle TM and
normal bundle NM . The tangent bundle to RN is trivial, hence

TM ⊕NM ∼= εN .

We call NM is the orthogonal complement of TM .

We extend the idea of vector �elds to general bundles as sections of a bundle. A section of
a vector bundle is a continuous function s : X → E which takes each x ∈ X into its �bre.
That is,

π ◦ s = IdM .

Example 2.6 A section of a tangent bundle is a vector �eld.

Example 2.7 Let π : E → X be a vector bundle. De�ne the zero section to be

s(p) = (p, 0) ∈ E.

The image of this section, S(X), is homeomorphic to X. As the �bres are contractible, it
follows that E deformation retracts onto X.

A collection of k sections is called a linearly independent k-frame if its image is linearly
independent at each point x ∈ X.

Theorem 2.8 A rank n bundle ξ is trivial if and only if ξ admits n linearly independent
cross sections.

A smooth manifold Mn is parallelisable if its tangent bundle is trivial. This is equivalent
to admitting a collection of n linearly independent sections. A slightly weaker condition is
sometimes useful. A smooth manifold M is stably parallisable2 if its tangent bundle TM is
stably trivial. That is,

TM ⊕ εk ∼= εn+1.

Example 2.9 All n-spheres are stably parallelisable. Let Sn be the n-sphere in Rn+1. The
normal bundle to a sphere in Rn+1 is trivial. Hence, as in Example 2.5 we have

TSn ⊕NSn ∼= TSn ⊕ ε1 ∼= εn+1.

Note that a bundle ξ is stably trivial if ξ ⊕ εk is trivial for any k ≥ 0. Every parallelisable
manifold is stably parallelisable. Stable parallelisability is generally better behaved than
parallelisability. In particular, the product of two manifolds is stably parallelisable if and
only if each factor is stably parallelisable. A proof of this and conditions for the two notions
to coincide is in [Kos72].

2Sometimes also called s-parallelisable or a π-manifold.
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Consider a vector bundle ξ with a continuous function g : E → R for which the restriction of
g to each �bre is a positive de�nite quadratic form. Then this function de�nes a continuously
varying inner product on the �bres of ξ. We call ξ a vector bundle with inner product, or
Euclidean vector bundle, and g is called the metric on ξ. When ξ is the tangent bundle to
a smooth manifold M and g is smoothly varying then g is called a Riemannian metric and
M is called a Riemannian manifold.

Given this we can de�ne the normal bundle to a submanifold X of a Riemannian manifold
Y , N(X;Y ), as the bundle over Y with total space

N(X;Y ) = {(x, v) ∈ TxY : 〈v, w〉 = 0,∀w ∈ TpX} .

Smoothly embedded submanifolds lay within a smooth manifold in a particularly nice way,
described by the following theorem.

Theorem 2.10 (Tubular Neighbourhood Theorem) Let X be a submanifold of Y .
There exists a neighbourhood U of X in Y di�eomorphic to a neighbourhood of X in N(X, Y ).

See [Lee03] Theorem 10.19 for a proof.

An orientation for a rank n real vector bundle ξ is a function which assigns an orientation
to each �bre F and obeys the following local compatibility condition. For every x0 ∈ X,
there must exist local coordinates (U, h) around x0 such that for each �bre over x ∈ U the
isomorphism v 7→ h(x, v) is orientation preserving. If there is an orientation for a bundle ξ
we say ξ is orientable.

Let M be a smooth manifold. An orientation for M gives rise to an orientation for the
tangent bundle, TM , using the natural coordinates on TM . Similarly, an orientation for
TM induces an oriented atlas onM through the local trivialisations. HenceM is an oriented
manifold if and only if TM is an oriented vector bundle.

2.2 Fibre Bundles

We can generalise the idea of vector bundles by replacing the �bres Rn with an arbitrary
topological space F .

A �bre bundle with �bre F is a triple (E,X, π) such that π : E → X is a continuous surjective
map and the bundle satis�es the following condition.

Local triviality condition. Every point x ∈ X has a neighbourhood Ux and a homeomor-
phism

hx : π−1(Ux)→ Ux × F,
taking π−1(b) to {b} × F for every b ∈ Ux.

As before we call X the base space and E the total space. A vector bundle is then a �bre
bundle with �bre Rn such that each �bre has the structure of a �nite dimensional vector
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space. We can generalise the notion of the �bres having additional structure using the
following construction.

For a point p ∈ X choose two di�erent trivialisations (Uα, hα), (Uβ, hβ). De�ne the transition
map, gαβ : Uα ∩ Uβ × F → Uα ∩ Uβ × F , to be the composition

gαβ = hα ◦ h−1
β .

By the local triviality condition, this map takes

gαβ : (p, f) 7→ (p, gαβ(p)f).

That is, gαβ are homeomorphisms of F . The smallest subgroup G of Homeo(F ) which
contains each possible gαβ is called the structure group of the �bre bundle.

We have already seen a number of examples. A rank n vector bundle has structure group
GL(n). Suppose that we give this vector bundle a metric. The transition maps must respect
this metric, and so the structure group reduces to O(n). Furthermore, if the vector bundle
is oriented, the structure group will reduce to SO(n). Any covering space over a connected
base is a �bre bundle. Conversely, any �bre bundle with discrete �bre is a covering space.

Consider a vector bundle ξ with inner product 〈 , 〉. Then the subspace S(E) of vectors of
length one is a �bre bundle with �bre the unit sphere.

S(E) := {(x, v) ∈ E : 〈v, v〉 = 1} ⊂ E

We call this the sphere bundle of E. Choosing local trivialisations for E which are isometries
gives local trivialisations for S(E), hence the structure group for a sphere bundle reduces is
SO(n).

Similarly de�ne the disk bundle D(E) to be the bundle with �bres the unit disks in the �bres
of ξ.

D(E) := {(x, v) ∈ E : 〈v, v〉 ≤ 1} ⊂ E.

Example 2.11 One notable example of a sphere bundle is the Hopf �bration

S1 S3 S2.
p

Here the map p is the Hopf map, de�ned as follows. Identify R4 with C2 and R3 with C×R.
Then S3 is the set of unit vectors in C2. De�ne p by

p(z0, z1) = (2z0z
∗
1 , |z0|2 − |z1|2).

If p(z0, z1) = p(w0, w1) then we must have (z0, z1) = u(w0, w1) for u a unit complex number.
The set of unit complex numbers in C is a circle, so for each x ∈ S2 we have

p−1(x) ∼= S1.

It follows that this is a �bre bundle over the sphere with �bre the circle and total space S3.
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A more geometric construction of the bundle can be given by considering rotations of S2

in R3. The group of rotations SO(3) has a double cover, SU(2), which is constructed as
follows. Identify x = (x1, x2, x3) ∈ R3 with the imaginary quaternion x = x1i + x2j + x3k.
Recall quaternion multiplication is de�ned as follows. Let u = a1 + b1i + c1j + d1k, v =
a2 + b2i+ c2j+ d2k then

u · v = a1a2 − b1b2 − c1c2 − d1d2

+ (a1b2 + b1a2 + c1d2 − d1c2)i

+ (a1c2 − b1d2 + c1a2 + d1b2)j

+ (a1d2 + b1c2 − c1b2 + d1a2)k.

Let q be a unit length quaternion. Then the map

x 7→ qxq∗

is a rotation in R3. SO(3) can be identi�ed with the group of these mapping modulo the
identity q = −q. The set of quaternions which �x a given x is a subgroup homeomorphic
to a circle. The Hopf bundle can then be de�ned as the map which sends a quaternion q to
qxq∗ for a �xed x.

2.3 Complex Bundles and Complex Manifolds

Complex Bundles

So far we have only considered real manifolds and vector bundles with real �bres, however
much of the work so far can be carried out with complex structures. We sketch the basic
constructions here.

A complex rank n vector bundle, ω over X is a triple, (π,E,X), where X, E are topological
spaces and π : E → X is a projection map. Furthermore, each �bre π−1(x) has the structure
of a complex vector space and we have the following local triviality condition. For every
point x ∈ X there exists a neighbourhood U of x such that π−1(U) is homeomorphic to
U × Cn with each �bre mapped complex linearly to {x} × Cn. That is, a complex rank n
vector bundle is a �bre bundle with �bre Cn and structure group GLn(C).

We can construct a complex vector bundle from a real rank 2n bundle ξ by adding a complex
structure to each real �bre. A complex structure on a bundle E is a continuous map J : E →
E which maps each �bre complex linearly to itself. That is, J is R-linear and

J2(v) = −v.

With a complex structure we can make each �bre a complex vector space by de�ning

(x+ iy)v = xv + J(yv).

This makes ξ a complex vector bundle.
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Example 2.12 Let U be an open subset of Cn. Then the tangent bundle TU = U ×Cn has
a canonical complex structure

J0(u, v) = (u, iv).

From any complex bundle ω we can form an oriented rank 2n real vector bundle ωR by
forgetting the complex structure. We call this the underlying real vector bundle.

Lemma 2.13 The underlying real vector bundle ωR for any complex vector bundle ω has a
canonical orientation.

Proof. Let F be any �bre of the bundle ω. Choose a basis v1, . . . , vn for F . Now a basis for
the underlying real 2n-dimensional �bre FR is given by v1, iv1, v2, . . . , vn, ivn. As GLn(C)
is connected we can pass continuously from any given basis for F to v1, . . . , vn. Hence this
uniquely determines an oriented basis for FR. Applying this construction to each �bre we
obtain an orientation for ωR.

Lemma 2.14 For complex bundles ω, θ there is an oriented bundle isomorphism

ωR ⊕ θR ∼= (ω ⊕ θ)R.

Proof. Let v1, . . . , vn be a basis of F determining the orientation v1, iv1, v2, . . . , vn, ivn in ω.
Similarly let w1, . . . , wm be a basis of F

′
determining the orientation w1, iw1, w2, . . . , wm, iwm

in θ. Then the preferred orientation for FR ⊕ F
′
R is given by

v1, iv1, . . . , vn, ivn, w1, iw1, . . . , wm, iwm,

which is the preferred orientation of (F ⊕ F ′)R.

Complex Manifolds

We de�ne a complex structure on a manifold M similarly to a smooth structure, replacing
di�eomorphisms with holomorphic maps.

Let U ⊂ Cn, V ⊂ Ck be open sets. Recall a smooth map F : U → V is holomorphic if the
di�erential,

dFz : TzU → TF (z)V,

is a complex linear map at all points z ∈ U . That is, dF is R-linear and

dF ◦ J0 = J0 ◦ dF.

De�ne a complex structure on a manifold M2n to be a complex structure J on the tangent
bundle TM such thatM is locally holomorphic to an open subset of Cn. That is, every point
z ∈ M has a neighbourhood U and a holomorphic di�eomorphism h : U → V ⊂ Cn such
that

dh ◦ J = J0 ◦ dh.
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We say (M,J) is an n-dimensional complex manifold. As with smooth manifolds we usually
omit reference to the complex structure.

Example 2.15 The n-dimensional complex space, Cn, is a complex manifold with its usual
complex structure.

Example 2.16 The complex projective space, CP n, is a complex manifold. De�ne charts
(Ui, ϕi) by

Ui = {z ∈ CP n : zi 6= 0} ;

ϕi([z0, . . . , zn]) =

(
z0

zi
, . . . , ẑi, . . . ,

zn
zi

)
.

The open sets Ui clearly cover CP n and it is easy to check that the transition maps are
holomorphic.

Example 2.17 Similarly to Example 2.4, we can de�ne the tautological complex line bundle
over CP n, γ1

nC. This is the bundle with base space CP n and total space all pairs (`, v) where
` is a complex line through the origin and v ∈ ` with obvious projection.

Corollary 2.18 Every complex manifold is orientable.

Proof. The tangent space TM of a complex manifold is a complex vector bundle, hence
orientable.

A smooth map F between two complex manifolds is holomorphic if dF is complex linear,
that is

dF ◦ J = J ◦ dF.
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3 Algebraic Topology

Topology is the study of spaces up to continuous deformation, that is, spaces up to homotopy.
Let f , g be continuous maps between topological spaces X and Y . A homotopy between f
and g is a continuous map F : X × [0, 1]→ Y such that F (x, 0) = f(x) and F (x, 1) = g(x)
for all x ∈ X. We then say that f and g are homotopic. De�ne X and Y to be homotopy
equivalent if there exists maps f : X → Y , g : Y → X such that f ◦ g is homotopic to idX
and g ◦ f is homotopic to idY .

Algebraic topology aims to solve topological problems through the use of algebraic invariants
associated to a space. The �rst such invariant usually introduced in an algebraic topology
course is the fundamental group. Intuitively, the fundamental group is the set of loops at
a point in a space up to continuous deformation. For a topological space X, de�ne the
fundamental group of X at x0 ∈ X, π1(X, x0), to be the set of based homotopy classes of
maps from the circle into X,

π1(X, x0) := [S1, X].

We will often omit the basepoint from the notation. A space with trivial fundamental group
is called simply connected. We recall some basic facts about the fundamental group.

Theorem 3.1 Let X, Y be path connected topological spaces.

1. The fundamental group of the circle is in�nite cyclic, π1(S1) ∼= Z.

2. The fundamental group of Sn is zero for n ≥ 2.

3. The fundamental group of the product of two spaces is the product of their fundamental
groups, π1(X × Y ) ∼= π1(X)× π1(Y ).

Theorem 3.2 (Seifert-Van Kampen Theorem) Let X be the union of two open, path
connected subspaces U1, U2. Furthermore suppose U1∩U2 is path connected, simply connected,
and non-empty. Then π1(X) ∼= π1(U1) ∗ π1(U2), where ∗ denotes the free product of groups.

The natural generalisation to maps from Sn to X is explored in section 3.3, however, this is
often di�cult to work with. We introduce the much more easily computed homology theory
in section 3.1, and the dual notion of cohomology theory in section 3.2. We assume some
familiarity with basic algebraic topology, all necessary background can be found in [Hat00].
Finally, in section 3.4 we explore the homology and cohomology of manifolds.

3.1 Homology

Singular Homology

We would like to model a space using simple n-dimensional building blocks, similarly to
a triangulation of a surface. For this we will need an n-dimensional generalisation of the
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triangle. Let v0, . . . , vn be a�nely independent points of Rm. De�ne the n-simplex [v0, . . . , vn]
to be the smallest convex set in Rm containing v0, . . . , vn. The points v0, . . . , vn are called
the vertices of [v0, . . . , vn]. Note that we include the ordering of the vertices as part of the
de�nition.

Recall the standard n-simplex ∆n ⊂ Rn+1 is the set{
(t0, . . . , tn) ∈ Rn+1 | ti ≥ 0,

∑
ti ≤ 1

}
.

This allows us to more explicitly de�ne the n-simplex [v0, . . . , vn] as the image of the home-
omorphism ϕ : ∆n → [v0, . . . , vn]

ϕ : (t0, . . . , tn) 7→ ϕ(t0, . . . , tn) =
∑

tivi.

The coe�cients ti are called the barycentric coordinates of the point
∑
tivi. We distinguish

one point, the barycentre, as the point of [v0, . . . , vn] with all barycentric coordinates equal
to 1/(n+ 1). Intuitively, the barycentre is the centre of gravity of the simplex.

Deleting the ith vertex of an n-simplex leaves an (n − 1)-simplex with ordering inher-
ited from the n-simplex. We call this simplex the i-face of [v0, . . . , vn] and denote it
by [v0, . . . , v̂i, . . . , vn]. The union of all the faces of a simplex is the boundary, denoted
∂[v0, . . . , vn].

We use these simplices to detect features of a topological space X. De�ne a singular n-
simplex of X to be a continuous map σ : ∆n → X. Let Cn(X) be the free abelian group
generated by the set of all singular n-simplices of X. Elements of Cn(X), called n-chains,
are �nite formal sums of n-simplices with coe�cients in Z. We de�ne a boundary map from
an n-simplex to an (n− 1)-simplex by

∂n(σ(v0, . . . , vn)) =
∑
i

(−1)iσ(v0, . . . , v̂i, . . . , vn)

That is, we take a signed sum of the faces of σ. We can extend this map linearly to a
boundary map on the chain groups

∂n : Cn(X)→ Cn−1(X).

We will sometimes write ∂ when n is clear from context.

Lemma 3.3 The composition of the boundary map with itself is zero, that is ∂2 = 0.

Proof. Computing ∂2 for an n-chain σ from the de�nition

∂n−1∂n(σ) =
∑
j<i

(−1)i(−1)jσ(v0, . . . , v̂j, . . . , v̂i, . . . , vn)

+
∑
i<j

(−1)i(−1)j−1σ(v0, . . . , v̂i, . . . , v̂j, . . . , vn)

= 0,

as switching i, j in the second sum makes it the the negative of the �rst.

34



The n-th singular homology group Hn(X) is de�ned to be

Hn(X) =
Ker ∂n
Im ∂n+1

.

Intuitively these groups detect n-dimensional "holes" in a space. We consider the set of
n-dimensional boundaries in a space and quotient out anything which is the boundary of an
(n+1)-dimensional chain in the space. For example, rank(H0(X)) is the number of connected
components of X. Also note that when X is path connected, H1(X) is isomorphic to the
abelianisation of the fundamental group, π1(X), see [Hat00] Theorem 2A.1 for a proof. The
following example illustrates the intuitive idea of homology.

Example 3.4 Consider the chains on T 2 indicated in Figure 10 below.

α

β

γ

σ

T 2

Figure 10: Examples of chains on the torus.

The 1-chain γ is the boundary of the 2-chain σ. Hence this is represented by the zero ho-
mology class. Similarly any closed curve which does not enclose a latitudinal or longitudinal
circle will bound a 2-chain. The 1-chains α, β clearly do not bound a 2-chain in T 2. Any
other 1-chain can be represented as a sum of these two curves. Also note that α and β do
not satisfy any algebraic relations. Hence

H1(T 2) = Z× Z.

Any pair of points is the boundary of a path between them. Then, as T 2 is path connected,

H0(T 2) ∼= Z.

Clearly ker ∂2 is generated by a 2-chain with image T 2. Note also that ∂3 = 0 as dimT 2 = 2.
Hence

H2(T 2) ∼= Z.

In summary,

Hk(T ) =


Z k = 0, 2

Z× Z k = 1

0 else.
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Example 3.5 For a point x there is a unique singular n-simplex σn for each n and ∂σn =∑n
i=0(−1)iσn−1 which is 0 for n odd and σn−1 for n even. Therefore the chain complex of

chain groups for x is

. . . Z Z Z Z 0
∼= 0 ∼= 0 ∼=

Hence H0(x) = Z and all other homology groups are 0.

Example 3.6 Both Rn and the n-dimensional ball have the homology of a point as they
deformation retract to a point.

Example 3.7 For the n-sphere we have

Hk(Sn) =

{
Z k = 0, n

0 else.

This requires some work, though we point out that this can be proven directly from the
homology axioms below.

For non-empty spaces X it is sometimes useful to work with the reduced homology groups,
H̃n(X) de�ned as follows. We introduce the homomorphism ε : C0(X) → Z which acts on
chains by

ε

(∑
i

niσi

)
=
∑
i

ni.

The reduced singular homology of X is then given by the homology of the complex

. . . C1(X) C0(X) Z 0.
∂1 ε∂2

This gives an identical collection of groups to ordinary homology, except in dimension zero,
where we have

H0(X) ∼= H̃0(X)⊕ Z.

Reduced homology has the bene�t that a point has trivial homology in all dimensions.

We can use the homology groups of a space to de�ne a useful invariant. The Euler charac-
teristic of X, χ(X), is de�ned as the alternating sum

χ(M) =
∑
i=0

(−1)i rank Hi(X).

It is easy to check that for polyhedra this is equivalent to the usual de�nition of the Euler
characteristic as the alternating sum of vertices, edges, and faces.

It is often useful to ignore all chains contained in some subspace. Let X be a topological
space and A ⊂ X. De�ne the relative n-chain group, Cn(X,A), as the quotient

Cn(X,A) = Cn(X)/Cn(A).
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Chains contained in A are then zero in Cn(X,A). The boundary map descends to a boundary
map on the relative chain groups. Hence we may de�ne the relative homology groups of X
with respect to A as the homology groups of the chain complex of Cn(X,A). Note that
Hn(X, ∅) = Hn(X).

In the de�nition of Cn(X) we could replace the integer coe�cients with any abelian group.
For G an abelian group, de�ne Cn(X;G) to be the set of �nite formal sums of n-chains with
coe�cients in G. We then de�ne singular homology with G-coe�cients to be the homology
of the chain complex for Cn(X;G) with ∂ as before. Di�erent coe�cient groups have various
advantages. For example, we will often work with rational coe�cients in later chapters to
avoid torsion elements.

Homology Axioms

There are a wide variety of tools available to compute singular homology groups, though
constructing them usually takes a lot of work. We will instead introduce axioms for a
general homology theory which singular homology satis�es. Singular homology is just one
example of a more general idea of homology theory. Instead of restricting ourselves to just
singular homology we introduce a homology theory to be an assignment from topological
spaces to abelian groups as follows.

A homology theory is a map (X,A) 7→ H∗(X,A) which assigns to each pair of topological
spaces, (X,A), a sequence of abelian groups, Hn(X,A), and to each map f : (X,A)→ (Y,B)
between pairs, a sequence of homomorphisms f∗ : Hn(X,A)→ Hn(Y,B). Furthermore there
is a homomorphism, ∂ : Hk(X,A) → Hk−1(A), called the boundary map, which commutes
with maps between pairs and induced maps of homology groups. This can be restated in
categorical language as a functor H∗(·) from topological pairs to abelian groups along with
a natural transformation ∂. We require the following axioms to hold.

1. Homotopy: Homotopic maps induce equal maps in homology. That is, if f ∼ g then
f∗ = g∗.

2. Excision: For a pair (X,A), if U ⊂ A is such that the closure of U is in the interior
of A then i : (X\U,A\U)→ (X,A) induces a homology isomorphism.

3. Dimension: For a point x, Hk(x) = 0 for all k 6= 0.

4. Additivity: If (X,A) is the disjoint union of pairs tα(Xα, Aα) then

Hn(X,A) ∼=
⊕
α

Hn(Xα, Aα).

5. Exactness: Each pair (X,A) with inclusions i : A ↪→ X, j : X → (X,A) induces a
long exact sequence

. . . Hk(A) Hk(X) Hk(X,A) Hk−1(A) . . .i∗ j∗ ∂
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Our de�nition of relative singular homology satis�es these axioms. There are many properties
to check, with some steps being very lengthy. Full detail can be found in [Hat00].

3.2 Cohomology

Singular Cohomology

For a given ring R we de�ne the n-th singular cochain group, Cn(X;R), to be the dual of
the n-th singular chain group:

Cn(X;R) := HomR(Cn(X), R).

That is, Cn(X;R) is the group of R-linear maps from Cn(X) to R, we call these maps
cochains. Note we can pair any chain α with a cochain f by applying f to α to obtain an
element of R. Denote this pairing by 〈f, α〉 = f(α).

With this we can de�ne the n-th coboundry map δn by the relation

< δnf, α >= (−1)n+1 < f, ∂nα > .

That is, δnf = f∂n−1. As for the boundary map we will sometimes write δ when n is clear
from context. It follows from the de�nition that δ2 = 0.

The n-th singular cohomology group Hn(X) is de�ned to be

Hn(X;R) =
Ker δn
Im δn−1

.

There is a close connection between cohomology groups and homology, though the situation
isn't usually as simple the the cohomology groups being the dual of the homology groups.
However, in the following situations cohomology is the dual of homology.

Theorem 3.8 Let R be a principal ideal domain. If Hn−1(X) is zero or a free R-module
then

Hn(X;R) ∼= HomR(Hn(X), R).

Theorem 3.9 Let F be a �eld. Then

Hn(X;F ) ∼= HomF (Hn(X), F ).

Both of these are consequences of the Universal Coe�cient Theorem, see [Hat00] Chapter
3.1 for a proof.

Example 3.10 The cohomology of a point x is given by H0(x) = Z and 0 in other dimen-
sions.
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Given two cochains f ∈ Cm(X;R), g ∈ Cn(X;R) de�ne the cup product f ^ g ∈
Cm+n(X;R) to be the cochain whose value on a singular simplex σ is

(f ^ g)(σ) = f(σ|[v0,...,vm]) · g(σ|[vm,...,vm+n]) ∈ R.

Lemma 3.11 For f , g as above we have

δ(f ^ g) = δf ^ g + (−1)mf ^ δg.

Proof. Compute the action of each term on a (m+ n+ 1)-chain σ

(δf ^ g)(σ) =
m+1∑
i=0

(−1)if(σ|[v0,...,v̂i,...,vm+1])g(σ|[vm+1,...,vm+n+1]);

(−1)m(f ^ δg)(σ) =
m+n+1∑
i=m

(−1)if(σ|[v0,...,vm])g(σ|[vm,...,v̂i,...,vm+n+1]).

Adding these two expressions, the last term of (δf ^ g)(σ) cancels the �rst term of
(−1)m(f ^ δg)(σ). What remains is (f ^ g)(∂σ) = δ(f ^ g)(σ), by de�nition.

This implies that the cup product descends to a well de�ned multiplication on relative
cohomology

Hm(X,A;R)×Hn(X,B;R)
^−→ Hm+n(X,A ∪B;R).

Cohomology groups of a space X together with the cup product forms a graded ring,
H∗(X;R), called the cohomology ring of X. The multiplication of H∗(X;R) is graded com-
mutative when the ring R is commutative. That is, for f ∈ Hm(X;R), g ∈ Hn(X;R)

f ^ g = (−1)mng ^ f.

See [Hat00] for a proof. The main idea is to note that the two cup products only di�er
by a permutation of the vertices of a simplex, then con�rming that permuting the vertices
produces the required change of sign.

The cup product allows us to de�ne an external product, called the cross product, which
relates the cohomology of a product to the cohomology of the factors. Let f ∈ Hk(X;R),
g ∈ H l(Y ;R). Denote by pX the inclusion of X into X×Y , similarly for pY . We then de�ne
the cross product of f and g,

× : Hk(X;R)×H l(Y ;R)→ Hk+l(X × Y ;R)

as f × g = p∗X(f) ^ p∗Y (g). This is a bilinear map which descends to a ring homomorphism

× : Hk(X;R)⊗R H l(Y ;R)→ Hk+l(X × Y ;R)

This map is actually an isomorphism is many cases.
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Theorem 3.12 (Künneth Isomorphism Theorem) Let X, Y be CW complexes and
suppose H i(Y ;R) is a �nitely generated free R-module for all i. Then the cross product
Hk(X;R)⊗R H l(Y ;R)→ Hk+l(X × Y ;R) is a ring isomorphism.

For a proof see [Hat00] Theorem 3.15.

Given an n-chain α ∈ Cn(X) and a k-cochain f ∈ Ck(X) de�ne the cap product,

_: Ck(X)⊗ Cn(X)→ Cn−k(X),

to be the unique element of Cn−k(X) such that for all cochains g ∈ Cn−k(X)

〈g, f _ α〉 = 〈f ^ g, α〉.

It follows from the de�nition and the corresponding property for cup products that

∂(f _ α) = (δf) _ α + (−1)kf _ (∂α).

The cap product then descends to a bilinear pairing on homology and cohomology

_: Hk(X)⊗Hn(X)→ Hn−k(X).

Cohomology Axioms

Just as for homology, singular cohomology is just one type of more general cohomology
theory.

A cohomology theory is map (X,A) 7→ H∗(X,A;R) which assigns to each pair of topological
spaces (X,A) a sequence of abelian groups Hn(X,A;R) and to each map f : (X,A)→ (Y,B)
between pairs a sequence of homomorphisms f ∗ : Hn(X,A;R)← Hn(Y,B;R). Furthermore,
there is a homomorphism, δHk(X,A;R)→ Hk+1(X,A;R), called the boundary map, which
commutes with maps between pairs and induced maps of groups. In categorical language,
we have a contravariant functor, H∗(·), and a natural transformation, δ. We require the
following axioms to hold.

1. Homotopy: Homotopic maps induce equal maps in cohomology. That is, f ∼ g then
f ∗ = g∗.

2. Excision: For a pair (X,A), if U ⊂ A is such that the closure of U is in the interior
of A then i : (X\U,A\U)→ (X,A) induces an isomorphism on cohomology groups.

3. Dimension: For a point x, Hk(x) = 0 for all k 6= 0.

4. Additivity: If (X,A) is the disjoint union of pairs tα(Xα, Aα) then

Hn(X,A) ∼=
⊕
α

Hn(Xα, Aα).
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5. Exactness: Each pair (X,A) with inclusions i : A ↪→ X, j : X → (X,A) induces a
long exact sequence

. . . Hk(X,A) Hk(X) Hk(A) Hk+1(X,A) . . .i∗ j∗ δ

3.3 Homotopy

The de�nition of the fundamental group leads to a natural extension. For n ≥ 0 de�ne
πn(X) to be the set of based homotopy classes of maps from Sn to X. That is,

πn(X) = [Sn, X].

The set π0(X) is given by based maps from {−1, 1} to X. These maps correspond to a choice
of one point in X. It is clear that any two maps to points in the same path component of
X will be homotopic through a path between the points, so elements of π0(X) correspond
to path components of X.

For n ≥ 2, πn(X) is an abelian group called the n-th homotopy group of X. The group action
is concatenation, de�ned similarly to the fundamental group. Details and proof can be found
in [Hat00]. A space with πi(X) = 0 for i ≤ n is called n-connected.

All proofs of the results in the remainder of the section may be found in [Hat00].

The following theorem gives the main connected between homotopy and homology.

Theorem 3.13 (Hurewicz) If a topological space X is (n − 1)-connected for n > 1, then

H̃k(X) = 0 for k < n and πn(X) ∼= Hn(X).

This can be restated as saying the �rst nonzero homotopy and �rst nonzero homology groups
of a simply connected space occur in the same dimension and are isomorphic.

This has a very important consequence for what follows. Recall a homotopy n-sphere is a
closed n-manifold of the same homotopy type as Sn. De�ne a homology n-sphere to be a
closed n-manifold with the same homology as Sn. By the Hurewicz theorem, every simply
connected homology sphere is a homotopy sphere. It is generally far easier to compute a
manifold's homology groups and fundamental group than it is to �nd homotopy type directly.

Theorem 3.14 For i, n ≥ 1

1. The sphere Sn is (n− 1)-connected. That is, πi(S
n) = 0, i < n.

2. The nth homology group of the n-sphere, Sn, is isomorphic to the integers, πn(Sn) ∼= Z.

For i > n, far less is known and the situation is in general quite complicated. However,
the groups πn+k(S

k) have an important property. Considering a table of homotopy groups
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of spheres it appears that these groups eventually become independent of n. This is a
consequence of the Freudenthal suspension theorem, though we will not go into the details
here. We de�ne the nth stable homotopy group, Πn, as

Πn = πn+k(S
k), k > n+ 1.

Serre proved that for n > 0 these groups are �nite in [Ser53]. These groups are one of the
most important objects in algebraic topology, though we will not need them until chapter 7.

Homotopy of Fibre Bundles

Each �bre bundle has an associate long exact sequence in homotopy. See [Hat00] Theorem
4.41 for a proof.

Theorem 3.15 Let X be a path connected space and π : E → X a �bre bundle over X.
Choose basepoints x ∈ X, v ∈ F = π−1(x). Then there is a long exact sequence

· · · πn(F, v) πn(E, v) πn(X, x) πn−1(F, v) . . .
p∗

Example 3.16 Consider the covering space Z/2Z → Sn → RP n. The long exact sequence
in homotopy for k ≥ 2 gives

· · · 0 πk(S
n, s) πk(RP n, x) 0 . . .

p∗

Hence πk(RP n) ∼= πk(S
n), k ≥ 2. We obtain a similar result for any covering space with

discrete �bre.

Example 3.17 Consider the Hopf �bration, S1 → S3 p→ S2, of example 2.11. Consider the
long exact sequence in homotopy for k ≥ 3.

· · · 0 πk(S
3) πk(S

2) 0 . . .
p∗

This gives an isomorphism
πk(S

3) ∼= πk(S
2), k ≥ 3.

For k = 3, this gives π3(S2) ∼= Z. The Hopf �bration is a generator of π3(S2).

Example 3.18 Consider the Lie group of orthogonal transformations of Rn, O(n). This is
the set of symmetries of Sn−1. By restricting to elements which �x the �rst basis vector, we
obtain an inclusion O(n− 1) ⊂ O(n). Denote by p the evaluation of an element of O(n) on
Sn−1. There is a �bre bundle

O(n− 1) O(n) Sn−1p

The homotopy long exact sequence of this bundle links the homotopy groups of spheres and
homotopy groups of O(n). From this, we obtain an isomorphism πk(O(n − 1)) ∼= πk(O(n))
for k < n − 2. The groups πk(O(n)) must then be independent of n for large values of n.
Surprisingly, these groups are periodic of period 8.
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Theorem 3.19 (Bott Periodicity Theorem) Let k < n− 2. Then the following holds.

k mod 8 0 1 2 3 4 5 6 7
πk(O(n)) Z/2Z Z/2Z 0 Z 0 0 0 Z

De�ne the stable orthogonal group, O, as the limit of the inclusions

O(0) ⊂ O(1) ⊂ . . . ⊂
∞⋃
i=0

O(i) = O.

This is a topological space using the direct limit topology [Hat00]. The above theorem then
gives the homotopy groups of the stable orthogonal group, πk(O), by replacing O(n) with
O. A version of Bott periodicity holds for both U(n) and Sp(n), though we will not need
them here.

Recall that O(n) consists of two homeomorphic connected components. The special orthogo-
nal group, SO(n), is the connected component of O(n) consisting of elements whose matrices
have positive determinant. The homotopy groups πk(SO(n)) are then isomorphic to those
of O(n) for k > 0 and π0(SO(n)) = 0.

We have seen that the homotopy groups of O(n) are closely linked with homotopy groups
of spheres. We would like to use the Bott Periodicity Theorem above to learn more about
πk(S

n). We will construct a homomorphism from πn(SO(k)) to the stable homotopy group
Πn. The image of this map is a very important subgroup of Πn.

Elements of the special orthogonal group SO(k) may be considered as symmetries Sk−1 →
Sk−1. Furthermore, the group πn(SO(k)) consists of homotopy classes of maps from Sn to
SO(k). Hence, an element of πn(SO(k)) may be represented by a map Sn × Sk−1 → Sk−1.
From such a map, we may obtain a map Sn+k → Sk using a construction of Hopf. This
construction de�nes a homomorphism,

Jn : πn(SO(k))→ πn+k(S
k),

called the Hopf-Whitehead J-homomorphism. Taking the limit as k goes to in�nity, we have a
homomorphism Jn : πn(SO)→ Πn, where SO is the stable special orthogonal group. Adams
gave a complete description of the image of Jn in [Ada63] and following papers. We will
construct a map between the set of homotopy n-spheres and a quotient of Πn, isomorphic to
the cokernel of Jn, in chapter 7.

3.4 Homology of Manifolds and Orientation

Lemma 3.20 Let x be a point of an n-dimensional manifoldM . Then the groups Hi(M,M−
x;Z) are given by

Hi(M,M − x;Z) ∼=

{
0 i 6= n

Z i = n.
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Proof. By excision Hi(M,M −x) ∼= Hi(Rn,Rn−x). Then applying the long exact sequence
for the pair (Rn,Rn − x) we have

Hi(M,M − x) ∼= Hi(Rn,Rn − x)
∼= Hi−1(Rn − x)
∼= Hi(S

n−1).

We can then choose a preferred generator µx of Hn(M,M − x). We call this preferred gen-
erator a local orientation for M at x. A local orientation at x determines a local orientation
for all points y in a neighbourhood V of x through the isomorphisms

Hk(M,M − x) Hk(M,M − V ) Hk(M,M − y)
rx ry

An orientation for M is a function which assigns a local orientation µx to each point of M
which varies continuously with x. That is, for each x there exists a compact neighbourhood
U of x and a class µU ∈ Hn(M,M − U) such that ry(µU) = µy. A manifold which admits
an orientation is said to be orientable and a manifold equipped with an orientation is called
an oriented manifold.

Theorem 3.21 For a compact oriented manifold M there is exactly one class µ = µM ∈
Hn(M) such that rx(µ) = µx for all x ∈ M . This is called the fundamental homology class
of M .

The proof is quite long and technical, see appendix A of [MS16] for details.

We have now given two di�erent de�nitions of an orientation of a manifold. Let us con�rm
they are equivalent.

Theorem 3.22 An orientation for a manifold M induces an orientation on the tangent
bundle TM . Similarly any orientation for the tangent bundle TM gives rise to an orientation
for the manifold M .

Proof. An orientation for TM gives rise to a generator µp of Hn(TpM,TpM−0) which varies
continuously in p as follows. Let ∆n be the standard n-simplex with standard ordering of
its vertices. Choose an orientation preserving linear embedding σ : ∆n → TpM mapping the
barycentre of ∆n to zero. Then the homology class of σ is a generator µp ofHn(TpM,TpM−0).

Now note that there is a pair of canonical isomorphisms

Hn(TpM,TpM − 0) ∼= Hn(Rn,Rn − 0) ∼= Hn(M,M − p),

hence a generator of Hn(TpM,TpM − 0) varies continuously in p if and only if the corre-
sponding generator of Hn(M,M − p) varies continuously in p. Now note that this is exactly
the homological de�nition of an orientation of M . That is, an orientation of M is a function
which assigns a local orientation µp ∈ Hn(M,M−p) to each point p which varies continuously
in p.
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Note that we can reinterpret the vector bundle de�nition of orientation in terms of cohomol-
ogy. Let F0 = F − {0}. An orientation of a bundle ξ corresponds to a choice of preferred
generator uF ∈ Hn(F, F0;Z) in each �bre. The local compatibility condition ensures that
for each point p in the base there is a neighbourhood U of p and a class

u ∈ Hn(π−1(U), π−1(U)− {0};Z)

such that for every x ∈ U the restriction of u to π−1(x) = F is uF .

The homology and cohomology groups of compact, oriented manifolds are closely related to
one another.

Theorem 3.23 (Poincaré duality) For M a compact, n-dimensional oriented manifold
the correspondence f 7→ D(f) = f _ µM de�nes an isomorphism

D : Hk(M)
∼=−→ Hn−k(M).

The element D(f) ∈ Hn−k(M) is called the Poincaré dual of f . Similarly, the dual of
α ∈ Hk(M) is the unique cohomology class D(α) such that

D(α) _ µM = α.

There is a corresponding version of Poincaré duality for manifolds with boundary, called
Lefschetz duality, providing isomorphisms

D : Hk(M,∂M)
∼=−→ Hn−k(M);

D : Hk(M,∂M)
∼=−→ Hn−k(M).

Proofs and details can be found in both [Hat00] and appendix A of [MS16].

Intersection numbers and the Intersection Form

Let Mm, Nn be closed, oriented submanifolds of the oriented manifold Xm+n intersecting
transversally at points {p1, . . . , pk}. By transversality, there is a tubular neighbourhood of
M such that the �bres Fpi are open neighbourhoods of pi in N [Kos72] IV 1.7. Orient the
tubular neighbourhood of M such that the orientation of M followed by the orientation of
its �bre agrees with the orientation of X.

We can compare the local orientation of Fpi and the local orientation of N at pi. Set
sgn(pi) = 1 if the orientations agree and −1 otherwise. De�ne the intersection number of M
and N to be

[N : M ] =
∑

pi∈M∩N

sgn(pi).

It is not immediately clear that this is invariant in any way. However, consider the following
construction.
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The orientation ofM gives rise to a generator µM ∈ Hn(X,X−M) and similarly for N . Let
µi ∈ Hn(N,N − {pi}) be the local orientation of N at pi. The inclusion of (N,N − {pi})
into (X,X −M) takes µi to sgn(pi)µM .

Let j∗ be the composition

j∗ : Hn(N)→ Hn(N,N − ∪ipi)→ Hn(X,X −M).

Then by de�nition we must have

j∗µN = [N : M ]µM .

Note that we can also express j∗ as the composition

j∗ : Hn(N)→ Hn(X)→ Hn(X,X −M),

and this map does not depend on the embedding of M and N in X. It follows that the
intersection number is an isotopy invariant. We may then consider intersection numbers of
manifolds which do not intersect transversally by isotoping them to be transverse.

Note we could have worked with a tubular neighbourhood of N instead of M throughout to
obtain [M : N ]. The following lemma follows directly from the de�nitions.

Lemma 3.24 Let Mm, Nn be closed, oriented submanifolds of Xm+n. Then

[M : N ] = (−1)nm[N : M ].

There is an equivalent formulation of the intersection number in terms of homology and
cohomology which will be useful later.

We �rst de�ne the intersection product of homology classes. Keeping the notation of above
let α ∈ Hm(X), β ∈ Hn(X). Denote by D(α) ∈ Hn(X) the Poincaré dual of α and similarly
for β. Then the intersection product of α and β is

α · β := 〈D(α) ^ D(β), µX〉.

Note we can also consider the intersection product to be a product on cohomology classes.
We will freely switch between these perspectives.

This product is easily computed in terms of intersection numbers if we can represent the
homology classes by submanifolds.

Theorem 3.25 Let Mm, Nn be closed, oriented submanifolds of Xm+n, and let iM , iN
denote the inclusions of M and N into X. Then

(iM∗(µM)) · (iN∗(µN)) = [N : M ].
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We will mostly be interested in the case n = m and homology with rational coe�cients. In
this case, the dimension of X is 2n and Hn(X;Q) is a vector space. Furthermore, under
taking Poincaré duals, the intersection product pairs with itself. Hence the intersection
product (when interpreted as acting on either homology or cohomology classes) is a non-
degenerate rational valued bilinear form, called the intersection form of X. By Lemma 3.24,
the intersection form is symmetric when n is even and skew-symmetric when n is odd.

Example 3.26 Consider the torus T 2. Submanifolds α, β of T 2 which represent a basis for
H1(T 2;Q) are indicated in Figure 11 below.

α

β

T 2

Figure 11: The longitudinal and latitudinal curves α and β generate a basis of the �rst
homology group of T 2.

The submanifolds α and β intersect at a single point. At this point we have

[α : β] = ±1,

depending on the orientation chosen for T 2. Choose the orientation such that [α : β] = 1.
Then the intersection number of β with α will be −1. Hence the intersection form of T 2 has
matrix (

0 −1
1 0

)
,

which is a skew-symmetric matrix, as expected. Note that perturbing either of the curves
to create additional intersections will result in cancelling pairs of intersections being formed,
and so the intersection number will be �xed.

The Euler characteristic of a manifold can be given in terms of a certain intersection number.
Let M be a compact, oriented manifold. De�ne the self intersection number of M to be the
intersection number of the diagonal of M ×M with itself in M ×M .

Lemma 3.27 The Euler characteristic of a compact oriented M is the self intersection
number of M .

Proofs of this and alternate perspectives on intersection numbers can be found in [Bro63]
and [Kos72].

47



4 Characteristic Classes

Let π : E → X be a vector bundle. The zero section of this bundle is a deformation retract
of X in E. Hence,

π∗(E) ∼= π∗(X);

H∗(E) ∼= H∗(X);

H∗(E) ∼= H∗(X).

We then cannot use the homotopy or homology of the total space to distinguish vector
bundles over X from one another. We will need other tools to study vector bundles. For
brevity, by bundle we will mean a vector bundle unless speci�ed otherwise.

A characteristic class of a bundle, π : E → X, is a distinguished cohomology element of
H∗(X) which depends on properties of the bundle.

We sketch here a construction of a particularly simple characteristic class which detects
orientability of a bundle. Let Mn be a path connected Riemannian manifold and p ∈ M .
Consider an oriented basis {v1, . . . , vn} of TpM and a smooth loop γ at p. Slide the vectors
of the basis along the loop γ such that the vectors are parallel to themselves using parallel
transport.3 Moving the frame around the entire loop, we then obtains a new basis at p,
{v′1, . . . , v

′
n}. The intuitive idea is indicated in Figure 12.

Mγ

(v1, v2)

(v
′
1, v

′
2)

Figure 12: The frame (v1, v2) is transported around the loop γ, giving a new frame (v
′
1, v

′
2)

denoted with dashed grey arrows. Some intermediate steps are drawn around the curve.

De�ne a map w as follows. If the orientation determined by the two bases match, let
w(γ) = 0, otherwise, let w(γ) = 1. This de�nition actually depends only on the homotopy
class of the loop γ, hence we obtain a homomorphism w : π1(M)→ Z/2Z.

3This requires a choice of connection, though the construction is independent of the choice of connection.
For a formal de�nition see [Lee19].
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Note M is orientable if and only if there is no loop γ which reverses orientation. Hence we
have an element,

w ∈ Hom(π1(M),Z/2Z),

which is zero if and only if M is orientable. As Z/2Z is abelian, we can pass to the abelian-
isation of the fundamental group to obtain

Hom(π1(M),Z/2Z) ∼= Hom(H1(M),Z/2Z).

However, as Z/2Z is a �eld, Hom(H1(M),Z/2Z) ∼= H1(M ;Z/2Z) by theorem 3.9. The
element w then descends to a well de�ned cohomology class

w1(TM) ∈ H1(M ;Z/2Z).

De�ne the �rst Steifel-Whitney class of the tangent bundle to M to be w1(TM). This class
is zero if and only if the manifold is orientable. As an immediate application, this class
can distinguish between the tangent bundle to RP 1 and the tautological line bundle γ1

1 as
follows. Recall that RP 1 is a circle, hence TRP 1 = TS1 is orientable, and so w1(RP 1) = 0.
However, note that the total space of γ1

1 is the open Mobius band, which is non-orientable,
and so w1(γ1

1) = 1.

There are further Steifel-Whitney classes wk(TM) ∈ Hk(M ;Z/2Z) which detect further
features of a manifold, though we will not need them.

We �rst introduce the Euler class for oriented vector bundles. This class is closely related to
the Euler characteristic of a manifold. The Euler class can also be viewed as an obstruction
to a bundle possessing an everywhere non-zero section. In fact, characteristic classes in
general can be de�ned as obstructions to the existence of certain linearly independent frames,
however we will not use this perspective.

4.1 The Euler Class

The following theorem on the cohomology groups of oriented bundles will be key to most of
our results on characteristic classes. Let π : E → X be an oriented n-plane bundle. De�ne
the deleted space, E0, to be the set of non-zero vectors in E. That is, E0 is the total space
less the 0-section of the bundle,

E0 = {(x, v) ∈ E : v 6= 0} .

Denote the restriction of the projection to the deleted space by π0 = π|E0 .

Theorem 4.1 (Thom Isomorphism Theorem) Let π : E → X be a rank n oriented
bundle.

1. The relative cohomology groups Hk(E,E0;Z) are zero for k < n.
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2. The top cohomology group, Hn(E,E0;Z), contains exactly one element u, the Thom
class, such that the restriction of u to any �bre F is equal to the preferred generator of
the �bre given by the orientation,

u|(F,F0) = uF ∈ Hn(F, F0;Z).

3. The map x 7→ x ^ u de�nes an isomorphism for all k,

Hk(E;Z)
∼=→ Hk+n(E,E0;Z).

The proof of the Thom isomorphism theorem is both long and not useful for what follows,
a proof may be found in Chapter 10 of [MS16].

As the base space of a vector bundle is a deformation retract of the total space we have an
isomorphism

π∗ : Hk(X)
∼=→ Hk(E).

Combining this with the Thom isomorphism theorem we can de�ne the Thom isomorphism,
φ : Hk(X;Z)→ Hk+n(E,E0;Z), by

φ : x 7→ φ(x) = π∗(x) ^ u.

We will use the Thom class to de�ne a characteristic class in the top cohomology group of
the base space. This class will be used to construct each other characteristic class in this
paper. The inclusion

(E, ∅) (E,E0)i

induces a restriction homomorphism to the zero section in cohomology. For an oriented
vector bundle ξ we can map the Thom class into Hn(E) using this restriction. De�ne the
Euler class to be the inverse image of this element under π∗. That is, e(ξ) ∈ Hn(X;Z) is
given by

e(ξ) = (π∗)−1 ◦ i∗(u).

Consider the following diagram.

Hn(E,E0) Hn(E) Hn(X)

u i∗(u) e(ξ).

i∗ (π∗)−1

From this we see that the Euler class is the restriction of the Thom class to the zero section.
The Euler class has many useful properties.

Lemma 4.2 Let ξ be an oriented rank n bundles π : E → X. Then

1. Naturality. If f : Y → X is covered by an orientation preserving bundle map then
e(f ∗ξ) = f ∗e(ξ).
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2. Orientation. If the orientation of ξ is reversed then e(ξ) changes sign. That is,
e(−ξ) = −e(ξ).

3. Triviality. If ξ is trivial then e(ξ) = 0.

Proof. The �rst two follow directly from the de�nition of the Euler class and the properties
of the Thom class. Triviality follows from naturality by pulling back to a bundle over a
point.

Corollary 4.3 If the rank of the bundle is odd then 2e(ξ) = 0.

Proof. Every odd dimensional vector bundle has an orientation reversing automorphism f
given by (x, v) 7→ (x,−v). This map covers the identity map on the base. Then, by naturality
and part 2 of Lemma 4.2,

e(ξ) = e(−ξ) = −e(ξ).

Lemma 4.4 If an oriented vector bundle ξ possesses a non-vanishing section then the Euler
class of ξ is zero.

Proof. Consider a section s : X → E and suppose it is non-vanishing. Then we can consider
it to be a map s : X → E0. Let j : E0 → E be the inclusion. Note the composition π ◦ j ◦ s
is the identity as s is non-vanishing. We then have the following commutative diagram

X

E0 E (E,E0)

s

j i

π

Pass to cohomology and note that the bottom row is the segment of the cohomology long
exact sequence of (E,E0). We obtain

Hn(X)

. . . Hn(E,E0) Hn(E) Hn(E0) . . .i∗ j∗

s∗π∗

Then, by exactness and commutativity, we have

e(ξ) = (π∗)−1i∗(u) = s∗j∗i∗(u) = 0.
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Lemma 4.5 (Whitney Product Formula) The Euler class of a Whitney sum of two
oriented bundles, ξ, η, is given by the cup product of the Euler classes of the bundles. That
is,

e(ξ ⊕ η) = e(ξ) ^ e(η).

Proof. The Thom class of the sum ξ ⊕ η is given by

u(ξ ⊕ η) = u(ξ)× u(η).

Applying the restriction to the zero section to both sides we get

e(ξ ⊕ η) = e(ξ)× e(η).

Now pulling back along the diagonal mapping gives the required result.

We can compare Euler classes of oriented manifolds using the fundamental class. Let M be
a smooth oriented manifold with fundamental class µ ∈ Hn(M). De�ne the Euler number
of M , e[M ], to be the integer

e[M ] = 〈e(TM), µ〉.

The following theorem explains the connection between the Euler characteristic and Euler
class promised in the introduction to this chapter.

Theorem 4.6 Let M be a smooth oriented manifold. The Euler number of M is equal to
the Euler characteristic of M ,

e[M ] = χ(M).

A rather technical proof is given in [MS16] as Corollary 11.12.

4.2 Gysin Sequence

We introduce an exact sequence for oriented vector bundles which proves to be a powerful
computational device. In particular, this sequence can be used to compute cohomology rings
of RP n, CP n, and HP n. We will use it in the following section to construct a family of
characteristic classes.

Let π : E → X be an oriented rank n bundle. As before, denote the restriction of the
projection to the deleted space by π0 = π|E0 .

Theorem 4.7 For every oriented rank n bundle there is an exact sequence

. . . H i(X) H i+n(X) H i+n(E0) H i+1(X) . . .^e π∗0 ^e
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Proof. Recall the cohomology exact sequence of the pair (E,E0)

. . . H i(E,E0) H i(E) H i(E0) H i+1(E,E0) . . .δ

Now we use the isomorphism ^ u : H i−n(E) → H i(E,E0) obtained from multiplication by
the Thom class u to replace H i(E,E0) with H i−n(E).

. . . H i−n(E) H i(E) H i(E0) H i−n+1(E) . . .

Finally we can replace H i(E) with H i(X) as E is a deformation retract of X. Note that the
map on the left above is given by x 7→ x ^ u|E, so when we map π∗ : H i(X) 7→ H i(E) this
becomes x 7→ x ^ e, by the de�nition of the Euler class. We then have

. . . H i−n(X) H i(X) H i(E0) H i−n+1(X) . . .^e

Note that this is the required sequence, shifted down n steps.

4.3 Chern Classes

Recall every complex bundle is oriented, and so the Euler class e(ωR) ∈ H2n(X;Z) is de�ned.
We will use the Euler class to inductively de�ne a collection of characteristic classes for
complex bundles,

ck(ω) ∈ H2k(X;Z).

To do this we will need to associate a rank (n− 1) complex bundle, ω0, to a rank n complex
bundle, ω.

We construct ω0 as a bundle with base the deleted space E0. De�ne the �bre of ω0 over v
to be

F0 = F/{λv; λ ∈ C, v ∈ F − {0}}.

That is, the quotient of F by all non-zero multiples of v. This is the orthogonal complement
to the line spanned by v, an alternate construction which makes this clear can be given by
introducing a Hermitian metric on ω.

Consider the Gysin sequence for ω

. . . H i−2n(X) H i(X) H i(E0) H i−2n+1(X) . . .^e π∗0

For i < 2n − 1, H i−2n(B) and H i−2n+1(B) are zero. Hence this reduces to a collection of
isomorphisms

0 H i(X) H i(E0) 0.
∼=
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For a rank n complex vector bundle ω, de�ne the Chern classes ck(ω) ∈ H2k(X;Z) to be
zero for k > n and inductively as follows for k ≤ n.

cn(ω) = e(ωR)

ck(ω) = π∗−1
0 ck(ω0).

De�ne the total Chern class, c(ω), to be the sum

c(ω) = 1 + c1(ω) + . . .+ cn(ω).

The Chern classes satisfy similar properties to the Euler class.

Lemma 4.8 (Naturality) If f : Y → X is covered by a bundle map then c(f ∗ω) = f ∗c(ω).

It follows that the Chern classes of a trivial bundle are zero.

Lemma 4.9 (Stability) Taking a Whitney sum with a trivial bundle preserves the total
Chern class. That is,

c(ω ⊕ ε) = c(ω).

Proof. The bundle ω⊕ ε has a non-vanishing section, denote it by s. Hence, by Lemma 4.4,

cn+1(ω ⊕ ε) = e((ω ⊕ ε)R) = 0.

The class cn+1(ω) is similarly zero as ω is a rank n bundle.

The section s is covered by a bundle map ω → (ω ⊕ ε)0. By naturality we have

s∗ck((ω ⊕ ε)0) = ck(ω).

Finally, using that s ◦ π0 = id, we have

ck(ω) = s∗ck((ω ⊕ ε)0) = s∗ ◦ π∗0 (ck(ω ⊕ ε)) = ck(ω ⊕ ε).

It follows that the total Chern class of a stably trivial bundle is 1.

Theorem 4.10 (Whitney Product Formula) Let ω, θ be two complex vector bundles
over the same base. Then the total Chern class of their Whitney sum is given by

c(ω ⊕ θ) = c(ω)c(θ).

The proof follows from the de�nition and the corresponding property of the Euler class using
an induction argument.
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Example 4.11 Consider the canonical line bundle γ1
nC over CP n. Denote by E0 the deleted

space of γ1
nC. The Gysin sequence for this bundle is

· · · Hk+1(E0) Hk(CP n) Hk+2(CP n) Hk+2(E0) · · ·^e π∗0

The deleted space is the set of pairs of lines through the origin in Cn+1 and non-zero vectors
in those lines. We may identify this space with S2n+1. Note also that the Euler class is given
by e(γ1

nC) = c1(γ1
nC). For 0 ≤ k ≤ 2n− 2, the sequence reduces to a collection of short exact

sequences

0 Hk(CP n) Hk+2(CP n) 0
^c1

It follows that H2k(CP n) is an in�nite cyclic group generated by c1(γ1
Cn)k. Similarly, the

odd dimensional cohomology groups are all zero. Hence

H∗(CP n;Z) = Z[a]/(an+1),

where a = c1(γ1
Cn).

A similar computation gives

H∗(HP n;Z) = Z[b]/(bn+1),

where b = c2(γ1
nH) ∈ H4(HP n) is the second Chern class of the tautological line bundle over

HP n.

Example 4.12 The total Chern class of the tangent space to complex projective space,
TCP n, is given by

c(TCP n) = (1 + a)n+1,

where a = c1(γ1
nC) ∈ H2(CP n). Hence

ck(TCP n) =

(
n+ 1

k

)
ak.

Similarly, for the quaternion projective space, we have

c(THP n) = (1 + b)n+1,

where b = c2(γ1
nH) ∈ H4(HP n). See [MS16] for a proof.

For any complex bundle, ω, we can de�ne the conjugate bundle, ω̄, to be the complex vector
bundle with the same underlying real bundle but with opposite complex structure. In each
�bre we map v+ iw 7→ v− iw. The Chern classes of a bundle are closely linked to the Chern
classes of its conjugate.

Lemma 4.13 Let ω be a complex vector bundle. The kth Chern class of the conjugate bundle,
ck(ω̄), is given by (−1)kck(ω).
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Proof. Choose a basis v1, . . . , vn for any �bre F of ω. This basis gives rise to an oriented
basis for the underlying �bre FR,

v1, iv1, . . . , vn, ivn.

Similarly, we obtain an oriented basis for the �bre F̄R of ω̄R given by

v1,−iv1, . . . , vn,−ivn.

These bases will have the same orientation if n is even, hence

cn(ω) = e(ωR) = (−1)ncn(ω̄).

Now by induction we have

ck(ω) = π∗−1
0 ck(ω0) = (−1)kπ∗−1

0 ck(ω̄0) = (−1)kck(ω̄).

In the second equality we used that ω0
∼= (ω̄)0.

4.4 Pontrjagin Classes

Complexi�cation

Given a real n-dimensional vector space, F , we can form an n-dimensional complex vector
space by taking a tensor product with C. De�ne the complexi�cation of F to be

F ⊗ C := F ⊗R C.

This vector space is isomorphic to the direct sum F ⊕ iF .

This construction allows us to associate to any real vector bundle a complex vector bundle
with a natural complex structure. Let ξ be a real rank n vector bundle. The complexi�cation
of the bundle, ξ ⊗C, is the complex bundle obtained by replacing each �bre F of ξ with the
complexi�cation, F ⊗C. This is a rank n complex vector bundle with underlying real bundle

(ξ ⊗ C)R ∼= ξ ⊕ ξ,

and complex structure J(v, w) = (−w, v).

Lemma 4.14 The complexi�cation of a vector bundle is isomorphic to its conjugate.

Proof. Consider the map f : E(ξ ⊗ C)→ E(ξ ⊗ C) given by

f(v + iw) = v − iw.

This is a conjugate linear homeomorphism, hence a bundle isomorphism.
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Pontrjagin Classes

As the complexi�cation of a vector bundle is isomorphic to its conjugate bundle, by the
naturality of Chern classes we have

c(ξ ⊗ C) = c(ξ ⊗ C).

Using Lemma 4.13, we �nd

1 + c1(ξ ⊗ C) + . . .+ cn(ξ ⊗ C) = 1− c1(ξ ⊗ C) + . . .± cn(ξ ⊗ C).

This can be true only if
2c2k+1(ξ ⊗ C) = 0.

For a rank n real vector bundle, ξ, de�ne the kth Pontrjagin class pk(ξ) ∈ H4k(X;Z) as

pk(ξ) = (−1)kc2k(ξ ⊗ C).

The total Pontrjagin class is de�ned to be

p(ξ) = 1 + p1(ξ) + . . .+ p[n/2](ξ),

where [n/2] is the largest integer less than or equal to n/2.

Lemma 4.15 (Properties of Pontrjagin Classes) Let ξ be a rank n real vector bundle,
and θ a rank m real vector bundle

1. Dimension. pk(ξ) = 0 for k > n
2

2. Naturality. If f : Y → X is covered by a bundle map then pk(f
∗ξ) = f ∗pk(ξ).

3. Triviality. The Pontrjagin classes of a trivial bundle are zero.

4. Stability. If εj is a trivial bundle then p(ξ ⊕ εj) = p(ξ).

5. Whitney product formula. p(ξ ⊕ θ) is equal to p(ξ) ^ p(θ) modulo elements of
order 2.

Proof. All but the last follow directly from the properties of Chern classes. For the product
formula expand the de�nitions to obtain

pk(ξ ⊕ θ) = (−1)kc2k((ξ ⊕ θ)⊗ C)

= (−1)k
∑

i+j=2k

ci(ξ ⊗ C)cj(θ ⊗ C)

=
∑
i+j=k

(−1)ic2i(ξ ⊗ C) · (−1)jc2j(θ ⊗ C) + {products of odd Chern classes}

=
∑
i+j=k

pi(ξ)pj(θ) + {2-torsion elements}
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Example 4.16 Consider the sphere Sn. The sphere is stably parallelisable, as proven in
Example 2.9, and so, by part 4 of Lemma 4.15 above,

p(TSn) = p(TSn ⊕ ε1) = p(εn+1) = 1.

Hence the Pontrjagin classes of TSn are trivial.

Similarly, it follows that the total Pontrjagin class of a stably trivial bundle is 1.

Given a real, oriented, or complex vector bundle we can take the complexi�cation of the
underlying real bundle to obtain a complex bundle of twice the (real) dimension. The
Pontrjagin classes of complex or oriented bundles have nice properties due to the added
structure on the �bres before complexifying.

Lemma 4.17 Let ω be a complex vector bundle. The complexi�cation of the underlying
bundle, ωR, is isomorphic to the Whitney sum of ω and its conjugate.

ωR ⊗ C ∼= ω ⊕ ω̄.

Corollary 4.18 For a complex bundle, ω, the Chern and Pontrjagin classes satisfy the
relation

n∑
i=0

(−1)ipi(ω) = c(ω̄)c(ω)

The Pontrjagin classes are then given by

pk(ω) = ck(ω)2 − 2ck−1(ω)ck+1(ω) + . . .± 2c1(ω)c2k−1(ω)∓ 2c2k(ω).

See [MS16] for a proof of both.

Example 4.19 For the tangent bundle to complex projective space, TCP n, by Example
4.12 we have

c(TCP n) = (1 + a)n+1,

where a = c1(γ1
n) ∈ H2(CP n). Therefore

n∑
i=0

(−1)ipi = (1− a)n+1(1 + a)n+1 = (1− a2)n+1.

Hence
p(TCP n) = (1 + a2)n+1.

Lemma 4.20 For an oriented real n-plane bundle, ξ, the real rank 2n bundle (ξ ⊗ C)R is
isomorphic to ξ⊕ξ through an isomorphism which either preserves or reverses the orientation
of ξ depending on whether the sign of n(n− 1)/2 is even or odd.
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Proof. Let v1, . . . , vn be a basis determining the orientation of a �bre F of ξ. Then the
vectors

v1, iv1, . . . , vn, ivn

determine the canonical orientation for (F ⊗ C)R ∼= F ⊕ iF . Identify F ⊕ iF with F ⊕ F .
Now a basis determining the orientation for the �bre (F ⊕ F ) of ξ ⊕ ξ is given by

v1, . . . , vn, iv1, . . . , ivn.

These bases can be changed into each other through a sequence of n(n−1)/2 transpositions.
Therefore the orientations will agree if n(n− 1)/2 is even and will disagree otherwise.

Corollary 4.21 For an oriented rank 2n real vector bundle, ξ, the top Pontrjagin class is
the square of the Euler class. That is,

pn(ξ) = e(ξ) ^ e(ξ).

Proof. Expanding the de�nition of pn(ξ)

pn(ξ) = (−1)nc2n(ξ ⊗ C)

= (−1)ne((ξ ⊗ C)R)

= (−1)n(−1)ne(ξ ⊕ ξ)
= e(ξ)2.

In the second last equality we used Lemma 4.20 and in the �nal equality we used Lemma
4.5.

It follows that Pontrjagin classes are orientation invariant. This property will be very im-
portant later in our construction of a smooth invariant for homotopy spheres.

4.5 Chern and Pontrjagin Numbers

Making use of the characteristic classes of tangent bundles of compact oriented manifolds we
can de�ne a collection of smooth manifold invariants. We saw a �rst example of this in the
Euler number, e[M ]. We now de�ne a similar construction for Chern and Pontrjagin classes.

Recall a compact oriented manifold Mn possesses a unique fundamental class µ ∈ Hn(M).
Hence for any cohomology class a ∈ Hn(M) the pairing a[M ] = 〈a, µ〉 ∈ Z is a well-de�ned
homotopy invariant.

De�ne a partition, I, of the natural number n to be a tuple of non-negative integers numbers,

I = (i1, . . . , ik),

such that i1 + · · ·+ ik = n. Denote the number of partitions of n by p(n).
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Let Mn be a compact complex n-manifold. Recall that ci(M) ∈ H2i(M). Hence for a
partition I of n the product

cI(TM) = ci1(TM) · · · cik(TM)

is in the top cohomology group of M , H2n(M). De�ne the Chern number for the partition
I, cI [M ], as

cI [M ] = 〈ci1(TM) · · · cik(TM), µ2n〉 ∈ Z.

These form a collection of integers, cI [M ], associated to a manifold M as I ranges over all
partitions of n. We are usually concerned with every possible Chern number for M . We say
M and N have the same Chern numbers if cI [M ] = cI [N ] for every partition I of n.

Example 4.22 Consider CP n. By Example 4.12 we have

ci(TCP n) =

(
n+ 1

i

)
ai.

Hence

cI [CP n] =

(
n+ 1

i1

)
· · ·
(
n+ 1

ik

)
〈an, µ〉

=

(
n+ 1

i1

)
· · ·
(
n+ 1

ik

)
.

A one dimensional complex manifold has one Chern number- the Euler characteristic c1[M ] =
χ(M). In general, an n-dimensional complex manifold will have p(n) distinct Chern numbers.

Similarly, forMn a compact oriented manifold and I a partition of n, we de�ne the Pontrjagin
number pI [M ] to be

pI [M ] = 〈pi1(TM) · · · pik(TM), µ4n〉 ∈ Z.

Example 4.23 The Pontrjagin classes of the tangent bundle to CP 2n are given by

pk(CP 2n) =

(
2n+ 1

k

)
a4k,

by Example 4.19. Hence the Pontrjagin numbers are given by

pI [CP 2n] =

(
2n+ 1

i1

)
· · ·
(

2n+ 1

ik

)
.

Lemma 4.24 Let M be a compact oriented manifold with Pontrjagin numbers pI(M). Then
M with orientation reversed, −M , has Pontrjagin numbers

pI [−M ] = −pI [M ].
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Proof. The map M 7→ −M �xes the Pontrjagin classes pk(M) as Pontrjagin classes are
orientation invariant. However, reversing orientation changes the sign of the fundamental
class. Therefore

pI [−M ] = 〈pi1(−TM) · · · pik(−TM),−µ〉
= −〈pi1(TM) · · · pik(TM), µ〉
= −pI [M ].

Theorem 4.25 If a smooth, compact, orientable manifold M4n is the boundary of a smooth,
compact, orientable manifold B4n+1 then the Pontrjagin numbers of M are all zero.

Proof. Let B be a smooth, compact, orientable manifold with ∂B = M and let µB, µM
denote the fundamental classes of B and M respectively, the orientation on B chosen such
that the boundary homomorphism ∂H4n+1(B,M)→ H4n(M) maps µB to µM .

Then for any Pontrjagin number pI ∈ H4n(M) we have

pI = 〈pI , µM〉 = 〈pI , ∂µB〉 = (−1)4n+2〈δpI , µB〉.

We need only show 〈δpI , µB〉 = 0. Choose a Euclidean metric on B. Then the outward
facing normal vector �eld along M decomposes the tangent bundle to B restricted to M as
τB|M = τM ⊕ ε1. Therefore pj(τB)|M = pj(τM). The short exact sequence of the pair (B,M)
then gives

δ(pj(τM)) = δ(pj(τB)|M) = 0.

Hence pI = 〈pI , µM〉 = 〈δpI , µB〉 = 0 as required.

This implies that Pontrjagin numbers are a cobordism invariant. Recall the set of oriented
cobordism classes of n-manifolds, Ωn, forms a group under disjoint union. Then, as a corol-
lary of the above, we get the following.

Corollary 4.26 For M4n a smooth, compact, orientable manifold and I a partition of n the
correspondence

M 7→ pI [M ]

de�nes a homomorphism between the oriented cobordism group Ω4n and Z.

4.6 Multiplicative Sequences

Multiplicative sequences of polynomials provide a number of useful relations between charac-
teristic numbers. The main result of this section is the Hirzebruch signature theorem which
will be the key tool used to construct a smooth invariant for spheres. However we must
present a number of algebraic results to build up to this. Omitted proofs and details can be
found in [Hir66] and [MS16].
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Let R be a commutative ring with unit and A∗ = (A0, A1, . . .) be a graded R-algebra which
is commutative (not graded commutative). Consider the commutative ring AΠ of formal
sums

AΠ =

{
∞∑
i=0

ai : ai ∈ Ai
}
.

We will mostly be interested in the group of elements with leading term a0 = 1, denoted AΠ
1 .

That is, an element a ∈ AΠ
1 is of the form

a = 1 + a1 + a2 + . . .

Let xi have degree i and {K1(x1), K2(x1, x2), . . .} be a sequence of polynomials in R such
that each Ki is homogeneous of degree i. Then for any a ∈ AΠ

1 de�ne K(a) ∈ AΠ
1 by

K(a) = 1 +K1(a1) +K2(a1, a2) + · · · .

A sequence, {Kn}, of polynomials as above forms a multiplicative sequence if for all commu-
tative graded R-algebras A∗ we have

K(ab) = K(a)K(b) ∀a, b ∈ AΠ
1 .

Example 4.27 Given a constant r ∈ R, the collection Ki de�ned by

Ki(x1, . . . , xi) = rixi

form a multiplicative sequence with

K
(∑

ai

)
=
∑

rixi.

It is possible to classify all multiplicative sequences using power series. Let A∗ be the graded
polynomial ring R[t] with t of degree 1. Then an element of AΠ is a formal power series

f(t) =
∑

rit
i.

Lemma 4.28 To each formal power series with coe�cients in R, f(t), there is a unique
multiplicative sequence with coe�cients in R, {Ki}, such that

K(1 + t) = f(t).

We say that {Ki} belongs to f(t).

See [Hir66] for a proof.

Example 4.29 The multiplicative sequence Ki of Example 4.27 belongs to f(t) = 1 + rt.
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Let M be a smooth, oriented, compact manifold and consider a multiplicative sequence
{Ki} with coe�cients in Q. We de�ne a characteristic number for the sequence in terms of
Pontrjagin classes. Suppose the dimension of M is divisible by 4. De�ne the K-genus of M ,
K[M ], to be

Kn[M4n] = 〈Kn(p1, . . . , pn), µ〉 ∈ Q.

If the dimension of M is not divisible by 4 we adopt the convention that K[M ] = 0.

The notion of K-genus allows us to de�ne a number of new smooth invariants for manifolds.
First we prove a stronger version of Theorem 4.25, constructing a ring homomorphism from
the oriented cobordism ring, rather than a group homomorphism.

Lemma 4.30 For every multiplicative sequence {Ki} with coe�cients in Q the map M 7→
K[M ] is a ring homomorphism from the oriented cobordism ring, Ω∗, to Q.

Proof. Theorem 4.25 states that the K-genus of a boundary is zero, hence the map is well
de�ned. The map is clearly additive. We need only prove that the map is a homomorphism
with respect to multiplication.

A product manifoldM×N has total Pontrjagin class p(M)×p(N) modulo 2 torsion. However
there are no torsion elements as we are working with rational coe�cients, hence

p(M ×N) = p(M)× p(N).

As {Ki} is multiplicative it follows that

K(p(M)× p(N)) = K(p(M))×K(p(N)).

Therefore

〈K(p(M)× p(N)), µM × µN〉 = (−1)16mn 〈K(p(M))µM〉 〈K(p(N))µN〉
= K[M ]K[N ],

as required.

We will now introduce a homotopy invariant which will be related to a K-genus of a certain
multiplicative sequence.

Let M4n be a smooth, compact, oriented 4n-dimensional manifold and consider cohomology
with rational coe�cients. Recall in this case the intersection form of M is a non-degenerate
symmetric bilinear form

〈·, ·〉 : H2n(M ;Q)⊗H2n(M ;Q)→ Q.

De�ne the signature ofM , σ(M), to be the number of negative eigenvalues minus the number
of positive eigenvalues of the matrix of this form.

We can compute this directly as follows. As the intersection form is a symmetric bilinear
form in dimension 4n, the matrix of the intersection form is diagonalisable. Let b1, . . . , bk
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be a basis of H2n(M ;Q) which diagonalises the matrix. The signature is then the number
of positive entries minus the number of negative entries on the diagonal of

[〈bi ^ bj, µ〉] .

We adopt the convention that the signature is zero when the dimension of M is not divisible
by 4.

The signature has a number of convenient properties.

Lemma 4.31 Let M , N be smooth, compact, oriented manifolds.

1. σ(M ∪N) = σ(M) + σ(N).

2. σ(−M) = −σ(M).

3. σ(M ×N) = σ(M)σ(N).

4. If M = ∂W 4n+1 is an oriented boundary then the signature of M is 0.

Proof. The �rst two follow directly from the de�nition. The third is proven using the Kün-
neth isomorphism theorem. The �nal property follows from linking the cohomology and
homology long exact sequences of the pair (M,N) using Poincaré duality of manifolds with
boundary. Details can be found in [Hir66].

The following theorem of Hirzebruch links together each of the concepts in this section.

Theorem 4.32 (Hirzebruch Signature Theorem) Let {Li} be the multiplicative sequence
belonging to the series √

t

tanh(
√
t)

=
∑
i=0

(−1)i−122iBi

2i!
ti,

where Bi is the i-th Bernoulli number. The signature σ(M) of any smooth, compact, oriented
manifold M4n is equal to the L-genus of M .

By Lemma 4.30 and Lemma 4.31 the correspondences M 7→ L[M ] and M 7→ σ(M) both
de�ne algebra homomorphisms from Ω∗⊗Q to Q. Therefore we need only verify the theorem
on a set of generators of Ω∗. The proof uses the complex projective spaces CP 2n as basis.
However, proving this is a basis and computing the L-genus of these manifolds requires
complex integration and a number of other tools not relevant to the rest of the paper; see
[MS16] Theorem 19.4 for a complete proof.

The �rst two Li are given by

L1(p1) =
1

3
p1;

L2(p1, p2) =
1

45
(7p2 − p2

1).

We will use the signature and L-genus to construct smooth invariants of homotopy spheres
in the following section. The following two corollaries are the �rst steps to this construction.
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Corollary 4.33 The L-genus of any manifold is an integer.

Corollary 4.34 The L-genus of a manifold depends only on the oriented homotopy type of
M .

These results are somewhat surprising. There is no reason to expect the L-genus would be
an integer from the de�nition itself. Furthermore, the signature theorem gives an oriented
homotopy invariant in terms of a rational linear combination of numbers built from smooth
structures on a manifold. This is a signi�cant link between possible smooth structures on a
manifold and its homotopy type.

4.7 A Smooth Invariant for Spheres

We will construct the smooth invariant for homotopy 7-spheres, used by Milnor in [Mil56],
to prove his 7-sphere was exotic. We follow Milnor's construction closely before generalising
the invariant to a class of (4n − 1)-dimensional manifolds. We �rst sketch the motivation
behind the invariant.

Consider a 4n-dimensional manifold B with ∂B = M4n−1. Were B a closed manifold we
could use the signature theorem to show σ(B) = Ln[B]. Note, as each term of Ln has degree
n, the top Pontrjagin class pn appears linearly in Ln. Let sn be the coe�cient of pn in Ln.
Hence we can express Ln(p1, . . . , pn) as

Ln(p1, . . . , pn) = Ln(p1, . . . , pn−1, 0) + snpn,

Using this form, the Hirzebruch signature theorem may be expressed as

1

sn
(σ(B)− Ln(p1, . . . , pn−1, 0)[B]) = pn(B) ∈ Z.

However, B is not closed, so the signature theorem is not necessarily true. We will show that
although the above relation does not hold, it does de�ne a residue class in Q/Z independent
of the choice of B, i.e. is a smooth invariant of W 4n−1.

Milnor's Invariant

Let M be a closed, smooth, oriented 7-manifold satisfying the condition

H3(M) = H4(M) = 0. (∗)

Recall the 7-th oriented cobordism group is zero, and so every closed 7-manifold, M7, is the
boundary of some smooth 8-manifold, B8. The invariant, λ7(M7), will be de�ned as a mod
7 residue class of a function of the signature and the �rst Pontrjagin class of B.

Lemma 4.35 The inclusion i : H4(B,M)→ H4(B) is an isomorphism.
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Proof. Take the long exact sequence of the pair (B,M) and note the outer terms are 0 by
(∗).

. . . H3(M) H4(B,M) H4(B) H4(M) . . .

0 0

∂ i

=
=

Let p1 = p1(TB) ∈ H4(B) be the �rst Pontrjagin class of B. Using the lemma we can de�ne
a relative Pontrjagin number q(B) by

q(B) = 〈i−1(p1)2, µB〉.

De�ne the invariant λ7(M) = 2q(B)− σ(B) mod 7.

Theorem 4.36 λ7(M) is a di�eomorphism invariant of M . Furthermore, λ7(M) does not
depend on the choice of manifold B.

Proof. Let M1, M2 be closed, smooth, oriented manifolds di�eomorphic to M , and let
f : M1 → M2 be a di�eomorphism. Furthermore, suppose B1 is a smooth manifold with
boundary M1, similarly for B2. Then, by the gluing lemma, C = B1 ∪f B2 is a closed,
smooth, oriented 8-manifold.

Let q(C) = 〈p2
1(C), µC〉. The signature theorem applied to C gives

σ(C) = 〈 1

45
(7p2(C)− p2

1(C)), µC〉.

Hence
45σ(C) + q(C) = 7〈p2(C), µC〉 ≡ 0 mod 7.

This implies 3σ(C) + q(C) ≡ 45σ(C) + q(C) ≡ 0 mod 7. Therefore we have

2q(C)− σ(C) ≡ 2q(C)− σ(C)− 3(3σ(C) + q(C)) mod 7

≡ −q(C)− 10σ(C) mod 7

≡ 3σ(C) + q(C) mod 7

≡ 0 mod 7.

(1)

We want to show that 2q(B1) − σ(B1) ≡ 2q(B2) − σ(B2) mod 7. To do this we will relate
the signature of C to that of B1 and B2 and q(C) to q(B1) and q(B2).

Let im : H4(Bm,Mm) → H4(Bm) and j : H4(C,M) → H4(C) be the homomorphisms
induced by the inclusions. Consider the diagram

H4(B1,M1)⊕H4(B2,M2) H4(C,M)

H4(B1)⊕H4(B2) H4(C)

i1⊕i2 j

k

h
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Here k is the map from the Mayer-Vietoris sequence for (C,B1, B2) and h is the map from
the relative Mayer-Vietoris sequence for (C,B1, B2) relative to M ∼= M1

∼= M2.

Both h and k are isomorphisms by the Mayer-Vietoris sequence and condition (∗). Also,
i1 ⊕ i2 is an isomorphism by Lemma 4.35. This diagram is commutative by the naturality
of Mayer-Vietoris sequences; hence j is an isomorphism.

Take α1 ∈ H4(B1,M1), α2 ∈ H4(B2,M2) and consider

α = jh−1(α1 ⊕ α2) ∈ H4(C).

Then applying commutativity and duality

〈α2, µC〉 = 〈jh−1(α2
1 ⊕ α2

2), µC〉
= 〈k−1(i1 ⊕ i2)(α2

1 ⊕ α2
2), µC〉

= 〈(i1 ⊕ i2)(α2
1 ⊕ α2

2), k(µC)〉
= 〈α2

1 ⊕ α2
2, µB1 ⊕−µB2〉

= 〈α2
1, µB1〉 − 〈α2

2, µB2〉.

(2)

Hence the intersection form of C is the direct sum of the intersection forms of B1 and −B2.
It follows from the de�nition of the signature that

σ(C) = σ(B1)− σ(B2). (3)

Note that k(p1(C)) = p1(B1) ⊕ p1(B2), since k is the restriction of p1(C) to Bi. Therefore
using that the above diagram commutes

jh−1(i−1
1 p1(B1)⊕ i−1

2 p1(B2)) = k−1(i1 ⊕ i2(i−1
1 p1(B1)⊕ i−1

2 p1(B2)))

= k−1(p1(B1)⊕ p1(B2))

= p1(C).

Choosing p1(C) for α in (2) we �nd

q(C) = 〈p1(C)2, µC〉
= 〈i−1

1 p1(B1)2, µB1〉 − 〈i−1
2 p1(B2)2, µB2〉

= q(B1)− q(B2).

(4)

Now substitute (3) and (4) into (1) to obtain

0 ≡ 2q(C)− σ(C) mod 7

≡ 2q(B1)− 2q(B2)− σ(B1) + σ(B2) mod 7

=⇒ 2q(B1)− σ(B1) ≡ 2q(B2)− σ(B2) mod 7.

Hence λ7 is well de�ned smooth invariant of M , independent of the choice of B.
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Corollary 4.37 If λ7(M7) 6= 0 then M is not the boundary of any 8-manifold B with
H4(B) = 0.

Proof. As H4(B) = 0, σ(B) and q(B) must both be zero by de�nition.

Lemma 4.38 If the orientation of M7 is reversed then λ7(M) is multiplied by −1.

Proof. Reversing the orientation of M reverses the induced orientation on B, hence µB is
mapped to −µB. However Pontrjagin classes and cup products are unchanged under change
of orientation. Hence the sign of q(B) and σ(B) are reversed by de�nition.

Corollary 4.39 If λ7(M7) 6= 0 then M7 possesses no orientation reversing di�eomorphism.

Proof. Suppose f : M → M is an orientation reversing di�eomorphism. As λ7 is a di�eo-
morphism invariant

λ7(M) = λ7(f(M)) = λ7(−M).

However, by Lemma 4.38
λ7(M) = λ7(−M) = −λ7(M).

Hence λ7(M) = 0, a contradiction.

Now the 7-sphere does possess an orientation reversing di�eomorphism, as do all spheres,
and so if λ7(M7) 6= 0 then M7 is not di�eomorphic to the 7-sphere.

The generalised λ-invariant

Milnor noted in his original paper that his invariant could be generalised to higher dimen-
sions. Shimada, [Shi57], de�ned a 15-dimensional version of the invariant to prove a collection
of manifolds were exotic 15-spheres using similar methods to Milnor. Milnor himself de�ned
the general invariant in [Mil59b].

We need slightly di�erent conditions to de�ne the general invariant. Let M be a closed,
oriented (4n− 1)-dimensional smooth manifold satisfying the following conditions.

1. M has the same rational homology as S2n−1.

2. M is the boundary of a smooth 4n-manifold B.

Note the second condition is not trivial, as generally Ω4n−1 is non-zero. However both
conditions hold for homotopy spheres.

Then, as above, i : Hj(B,M ;Q)→ Hj(B;Q) is an isomorphism for 0 < j < 4n− 1. Hence
the Pontrjagin classes p1(B), . . . , pn−1(B) can be lifted to the relative classes i−1(pk(B)) ∈
H4k(B,M ;Q).
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De�ne the invariant λ(M4n−1) as the rational number

λ(M4n−1) :=
1

sn

(
σ(B)− Ln(i−1p1(B), . . . , i−1pn−1(B), 0)

)
mod 1.

Note in the n = 2 case that the L-polynomial is given by

L2(p1, p2) =
1

45
(7p2 − p2

1).

Hence,

λ(M7) =
45

7

(
σ(B) +

1

45
i−1p2

1[B]

)
mod 1.

Multiplying by 14 we obtain the mod 7 invariant of Theorem 4.36.

Theorem 4.40 λ(M) ∈ Q/Z is a smooth invariant of M .

Proof. The proof is very similar to the seven dimensional case. Let B1, B2 be two smooth
manifolds such that ∂B1 = ∂B2 = M and de�ne C := B1∪M B2. As before this is a smooth,
compact, oriented manifold with σ(C) = σ(B1)−σ(B2) and each of the Pontrjagin numbers
are equal to the di�erence of the Pontrjagin numbers of B1 and B2, other than 〈pn(C), µC〉.

Therefore
1

sn

(
σ(B1)− Ln(i−1p1(B1), . . . , i−1pn−1(B1), 0)

)
−(

1

sn

(
σ(B2)− Ln(i−1p1(B2), . . . , i−1pn−1(B2), 0)

))
= 〈pn(C), µC〉
= 0 mod 1.

In the �nal line we used that 〈pn(C), µC〉 is an integer.

The following corollaries are proven identically to the corresponding claims in dimension 7.

Corollary 4.41 For M a closed, oriented (4n− 1)-dimensional smooth manifold which is a
homology sphere and the boundary of a smooth 4n-dimensional manifold:

1. If λ(M4n−1) 6= 0 then M is not the boundary of any 4n-manifold B with H2n(B) = 0.

2. If the orientation of M is reversed then λ(M) is multiplied by −1.

3. If λ(M) 6= 0 then M possesses no orientation reversing di�eomorphism.

We will use this invariant and the third part of Corollary 4.41 in chapter 6 to prove certain
smooth homotopy spheres are not di�eomorphic to Sn.
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5 Morse Theory

Morse theory involves the study of the relationship between smooth real valued functions
on a space and the topology of that space. A simple example of this idea is the extreme
value theorem- a continuous function from a compact space to R attains a maximum and
a minimum, whereas there are functions on R which obtain values of arbitrary size, such
as f(x) = x3. Morse theory decomposes a manifold M in terms a the critical points of a
smooth function, f : M → R, which behave like a height function for M . We �rst give a
rough sketch of the main ideas.

De�ne M c = f−1((−∞, c]) as the set of points p ∈M with f(x) ≤ c. If dfc 6= 0 then, by the
implicit function theorem, M c is a smooth manifold with boundary given by f−1(c).

Let a, b ∈ R be the maximum and minimum values of f respectively. Then

M c =


∅ c < a;

{pt} c = a;

M c ≥ b.

Between a and b the homotopy type of M c changes from a point to that of M . We claim
that the homotopy type of M c changes exactly at the critical points of f , that is, points c
where dfc = 0. Furthermore, we claim that if there are k "decreasing directions" at a critical
point x, then Mx+ε has the homotopy type of Mx−ε with a k-cell attached.

For example, embed the torus T 2 upright in R3 with its base on the xy-plane as in Figure
13. Let f : T 2 → R be given by the z-value of T 2. Then the critical values of T 2 are at the
base and top of the torus, and at the opening, and closing of the hole. Denote these points
by p, q, r, s as in Figure 13.

p

q

r

s T 2
R

f

f(p)

f(q)

f(r)

f(s)

Figure 13: An embedding of the torus in R3 and its height function.
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Note near the point p that T 2 is bowl shaped, and so there are no decreasing directions of
f at p. Hence, we begin with a 0-cell. Around the point q the torus is saddle shaped, hence
there is one decreasing direction. We then attach a 1-cell to obtain a manifold homotopic
to a cylinder. Similarly, at r there is one decreasing direction, so we attach a 1-cell to give
a torus with a disk removed. Finally, at s there are two decreasing directions, and so we
attach a 2-cell along the boundary. This has the e�ect of capping o� the boundary to form
T 2. Figure 14 depicts this process.

'

'

−→

−→

Figure 14: A Morse decomposition of the torus.

5.1 Morse Functions

Let f : M → R be a smooth real valued function on a manifold M . A point p ∈ M is
called a critical point and f(p) a critical value if the di�erential dfp : TpM → Tf(p)R is zero.
Equivalently, in local coordinates (x1, . . . , xn) around p we have

∂f

∂x1

∣∣∣∣
p

= · · · = ∂f

∂xn

∣∣∣∣
p

= 0.

The Hessian matrix at p,

(Hij) (p) =

(
∂2f

∂xi∂xj

) ∣∣∣∣
p

,

determines the behaviour of f at a critical point p. It is a symmetric bilinear form on
TpM [Mil63]. A critical point p is non-degenerate if the Hessian is non-degenerate, that is,
det H(p) 6= 0.

The index of f at p is de�ned as the dimension of the maximal subspace of TpM on which
H(p) is negative de�nite. The Morse lemma states that around a non-degenerate critical
point, a function is determined by its index.
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Lemma 5.1 (Morse lemma) Let f be a smooth real valued function and p be a non-
degenerate critical point of index λ. Then there is a local coordinate system (U, (y1, . . . , yn))
in a neighbourhood of p with yi(p) = 0 and

f(y1, . . . , yn) = f(p)−
λ∑
i=1

(yi)
2 +

n∑
i=λ+1

(yi)
2.

Proof. Suppose there is a local coordinate system (y1, . . . , yn) around p such that

f(y1, . . . , yn) = f(p)−
λ∑
i=1

(yi)
2 +

n∑
i=λ+1

(yi)
2.

In these coordinates, the entries of the Hessian matrix of f at p in these coordinates are
given by

∂2f

∂yi∂yj
=


−2 i = j ≤ λ,

2 i = j > λ,

0 else.

Therefore there is a λ-dimensional space on which H(p) is negative de�nite and an (n −
λ)-dimensional space where H(p) is positive de�nite. Any negative de�nite subspace of
dimension greater than λ would intersect this positive de�nite subspace, a contradiction, so
the index of f at p must be λ.

Given arbitrary local coordinates (x1, . . . , xn) of f around p, translate them such that p
and f(p) are both zero in these coordinates. As f(0) = 0, we can use the n-dimensional
fundamental theorem of calculus to write f as

f(x1, . . . , xn) =
n∑
i=1

xigi(x
1, . . . , xn),

where gi are smooth functions de�ned on a neighbourhood of p with gi(0) = ∂f
∂xi

(0) = 0. We
can then apply the fundamental theorem of calculus to the gi to obtain smooth functions hij
such that

f(x1, . . . , xn) =
n∑
i=1

xixjhij(x
1, . . . , xn).

Note that if we replace (hij) with the symmetric matrix (hij)
sym = 1

2
((hij)+(hji)) we still have

f(x) =
∑
xixjhsymij (x), as the above expression is symmetric in x, also (hij(0))sym = (hij(0)).

Hence we may assume hij is symmetric. Now note the matrix (hij(0)) at zero is non-
degenerate as

(hij(0)) =

(
1

2

∂2f

∂xi∂xj

∣∣∣∣
0

)
.

Then hij(0) is a symmetric, real valued, non-degenerate matrix, and so we can �nd a coordi-
nate system in which it is diagonal. Note that in this coordinate system f takes the required
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form. That the standard diagonalisation process de�nes a smooth transformation of the co-
ordinates (x1, . . . , xn) can be seen by explicitly writing out the coordinate transformations.
Full details can be found in [Mil63].

Corollary 5.2 Non-degenerate critical points are isolated.

A Morse function f ∈ C∞(M) is a smooth real valued function on a manifold M with only
non-degenerate critical points. For the remainder of the chapter we will restrict our attention
to Morse functions. This is not a very strong restriction, due to the following corollary of
Sard's theorem. Recall that C∞(M) may be given the structure of a topological space, see
[Mat02] for a construction of this space.

Theorem 5.3 Let M be a smooth closed manifold. The set of Morse functions of M is
dense in C∞(M).

See [Mat02] for a proof of both Sard's theorem and this result.

5.2 Morse Functions and Handle Attachments

We will now describe how the homotopy type of M c changes with c and prove the claims
made in the opening of this chapter.

Theorem 5.4 Let f : M → R be a smooth function and a, b ∈ M be two points such
that a < b and f−1([a, b]) is compact and contains no critical points of f . Then Ma is
di�eomorphic to M b, and Ma is a deformation retract of M b.

Proof. The intuitive idea of the proof is indicated in Figure 15. We push M b along the
trajectories of f . Choose a Riemannian metric on M and denote the inner product by 〈·, ·〉.
De�ne the gradient of f as the vector �eld ∇f given by

〈X,∇f〉 = X(f).

Note that ∇f vanishes at the critical points of f .

Let r : f−1([a, b])→ R be the smooth function

r(x) =
1

〈∇f,∇f〉
.

Extend this to a smooth function onM which vanishes outside a neighbourhood of f−1([a, b]).
Then the smooth vector �eld X given by

X(p) = r(p)∇f(p)

generates a 1-parameter group of di�eomorphisms ϕt : M →M given by the integral curves
of X.
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f−1(b)

f−1(a)

M

X(p)

Figure 15: The �ow lines generated by the gradient vector �eld form a retraction.

If ϕt(p) ∈ f−1([a, b]) then

d

dt
f(ϕt(p)) = 〈dϕt(p)

dt
,∇f〉 = 〈X,∇f〉 = 1.

The integral curve then climbs at constant speed from the level set f−1(a) at t = 0 to f−1(b)
at t = b − a. Therefore the map ϕ(p, t) is a di�eomorphism of f−1(a) × [0, b − a] onto
f−1([a, b]). It follows that the di�eomorphism ϕb−a maps Ma di�eomorphically onto M b.

De�ne a deformation retract of M b to Ma by

rt(p) =

{
p f(p) ≤ a

ϕt(a−f(p))(p) a ≤ f(p) ≤ b.

Theorem 5.5 Suppose p ∈ M is a non-degenerate critical point of f with index λ and set
f(p) = c. Let ε > 0 be such that f−1([c− ε, c+ ε]) is compact and contains no other critical
points of f . Then M c+ε is homotopic to M c−ε with a λ-handle attached.

Proof. We give the main idea of the proof; for details refer to [Mil63]. By the Morse lemma,
there is a coordinate neighbourhood U around p such that f is of the form

f(x1, · · · , xn) = −
λ∑
i=1

x2
i +

n∑
i=λ+1

x2
i .

In these coordinates, the level sets of f are as depicted in Figure 16.
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(x1, . . . , xλ)

f−1(c− ε)

f−1(c+ ε)

U

(xλ+1, . . . , xn)

f−1(c)

f−1(c)

f−1(c− ε)

f−1(c+ ε)

Figure 16: A schematic representation of M in Morse coordinates.

As f is of the above form around p, the tangent space of M at p, TpM , is split into a
λ-dimensional decreasing subspace and an (n− λ)-dimensional increasing subspace.

Consider the sets M c+ε ∩ U and H = (M c+ε ∩ U) −M c−ε. Observe that H is homotopy
equivalent to Dλ ×Dn−λ, a λ-handle. Figure 17 below gives a schematic representation.

We can construct a deformation retraction between M c+ε and M c−ε ∪ H by introducing a
new function F : M → R which agrees with f everywhere but in the neighbourhood U
where F < f . We then show that F contains no critical points in U and use Theorem 5.4 to
�nish.

With this we have a direct correspondence between the critical points of a Morse function
on M and a handlebody presentation of M . A full account of this connection is given in
[Mat02].
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H

U

M c−ε

M c−ε

Dλ ×Dn−λ

(x1, . . . , xλ)

(xλ+1, . . . , xn)

Figure 17: The Handle H is shaded lightly. The deformation retract of H onto Dλ ×Dn−λ

is indicated with arrows.

5.3 A characterisation of topological spheres

We can now give a criterion to determine if a given manifold is homeomorphic to a sphere.

Theorem 5.6 (Reeb Sphere Theorem) If Mn is a compact manifold which admits a
Morse function f with exactly two critical points then M is homeomorphic to the n-sphere
Sn.

Proof. As M is compact, the two critical points a, b must be the maximum and minimum of
f . Scale f such that f(a) = 0 and f(b) = 1. Both f−1(0) = a and f−1(1) = b are homotopy
equivalent to Dn. By the Morse lemma, f−1([0, ε]) and f−1([1− ε, 1]) are homeomorphic to
Dn for some ε > 0.

Remove disks Da, Db around a and b. Then f restricted to M
′

= M − (Da ∪Db) has no
critical points. Hence, by Theorem 5.4 above, M

′
is homeomorphic to Sn−1× [ε, 1− ε]. This

provides an explicit homeomorphism between the boundary of the top and bottom disks
of M , therefore M is homeomorphic to two copies of Dn matched along their boundary, a
sphere.
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a

b

Figure 18: The critical points a and b are marked. The arrows denote the retraction between
the level sets of M .

Note that this lemma only tells us that M is homeomorphic to Sn, not di�eomorphic to
it. However we do know that M is the union of two n-disks matched along their boundary.
Hence M less a point is di�eomorphic to Sn less a point.

This theorem does not imply M is di�eomorphic to Sn. However, M is di�eomorphic to
a manifold obtained by gluing two n-disks along Sn−1. If the gluing is a di�eomorphism
isotopic to the identity then we can conclude that M = Sn. This raises the question, can
there be di�eomorphisms

g : Sn−1 → Sn−1

such that g is not isotopic to the identity? If so, we could produce a manifold homeomorphic
to Sn but not di�eomorphic to it by attaching two copies of Dn along the boundary using
g. In chapter 7 we will study Di�(Sn−1), the set of di�eomorphisms of Sn−1 up to isotopy,
and show that it can contain non-trivial elements. This is very di�erent to the topological
setting, where all homeomorphisms of Sn can be extended to Dn+1, and hence are isotopic
to the identity map [Mat02].
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6 Some Constructions of Exotic Spheres

In this chapter we will construct a number of examples of exotic spheres. We �rst describe
a method for easily generating �bre bundles over spheres. We then follow Milnor's original
construction as in [Mil56]. Finally, we introduce one of the two main methods of explicitly
constructing exotic spheres.

6.1 Clutching Functions

We introduce a simple way to generate �bre bundles over an n-sphere using clutching func-
tions. Write Sn as the union of the northern and southern hemispheres Dn

N , D
n
S. Note the

intersection is the equator, Dn
N ∩ Dn

S = Sn−1. Let Dn
N × Rk be a trivial Rk bundle with

structure group G over DN . Similarly let Dn
S×Rk be a trivial bundle over DS. Furthermore,

let f : Sn−1 → G be a map from the equator into G. De�ne a new bundle over the whole
sphere as follows. Let

Ef =
(
Dn
N × Rk

)
t
(
Dn
S × Rk

)
/ ∼,

where (x, v) ∈ ∂Dn
S ×Rk is identi�ed with (x, f(x)v) ∈ ∂Dn

N ×Rk. This forms an Rk-bundle
over Sn, π : Ef → Sn, with structure group G. The map f is called a clutching function for
Ef .

Lemma 6.1 If two functions f and g are homotopic then Ef ∼= Eg.

Proof. Let F : Sn−1 × [0, 1] → G be a homotopy from f to g. By a similar construction as
above we may de�ne a �bre bundle EF → Sn × [0, 1] that restricts to Ef on Sn × {0} and
to Eg on S

n × {1}. It follows that Ef is isomorphic to Eg, see [Hat] Proposition 1.7 for a
proof of this fact.

The resulting bundle will then only depend on the homotopy class of f . As such, we have
a correspondence between �bre bundles with structure group G and homotopy classes of
maps Sn−1 → G, that is, elements of πn−1(G). Oriented vector bundles are particularly
well behaved. Recall that the structure group of an oriented rank k vector bundle is SO(k),
hence a clutching function will de�ne a homotopy class of maps in πn−1(SO(k)). Denote by
Vectk+(X) the set of isomorphism classes of oriented rank k vector bundles over X.

Theorem 6.2 The map f 7→ Ef de�nes a one-to-one correspondence

Vectk+(Sn)
1−1←−→ [Sn−1, SO(k)] = πn−1(SO(k)).

Sketch proof. De�ne an inverse map as follows. Let ξ be an oriented rank k bundle, π :
E → Sn. Denote by EN , ES the restrictions of the bundle over DN and DS respectively.
As Dn is contractible, these restrictions are trivial bundles. Let hN : EN → Dn

N × Rk be a
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trivialisation, similarly for hS. Then hN ◦h−1
S will be a map Sn−1 → SO(k) by construction.

De�ne
ϕ(E) = hN ◦ h−1

S ∈ πn−1(SO(k)).

We claim this is the required inverse. Clearly ϕ(E) is the clutching function for E, we need
only check the map is well de�ned. Note, as Dn is contractible, any choice of maps hN , hS
di�er by a map homotopic to a constant. To �nish, use that SO(k) is path connected to
conclude that hN ◦ h−1

S is unique up to homotopy. For details see [Hat].

Example 6.3 Consider S1 as a subset of C and let f : S1 → SO(2) be given by

f(u)v = u · v.

The resulting bundle from this clutching function, Ef , is the tautological line bundle over
CP 1 ∼= S2. That is, Ef ∼= γ1

1C. This bundle generates Vect
2
+(S2) as

Vect2
+(S2) ∼= π1(SO(2)) = π1(S1) ∼= Z.

Note that the sphere bundle of γ1
1C is the Hopf �bration of Example 2.11.

Similarly, the tautological line bundle over RP 1 ∼= S1, γ1
1 , may be realised as the bundle

resulting from the clutching function f : S0 → O(1) given by f(u)v = uv.

Finally, consider S3 as a subset of the quaternions, H. Then de�ne the clutching function
f : S3 → SO(4) as f(u)v = u · v. The bundle Ef is then the tautological line bundle over
the quaternion projective plane, HP 1.

6.2 Milnor's Construction

We will construct a family of homotopy 7-spheres out of 3-sphere bundles over S4, and then
use Milnor's invariant to prove that some of these spheres are exotic. We construct these
bundles as follows. Recall we de�ned sphere bundles in terms of oriented vector bundles
with inner product. By Theorem 6.2, oriented R3-bundles with inner product over S4 are in
bijection with elements of π3(SO(4)). The space SO(4) is the Lie group of rotations in R4.
We may decompose this space as

SO(4) ∼= SO(3)× SU(2) ∼= RP 3 × S3.

Hence
π3(SO(4)) ∼= π3(RP 3)× π3(S3) ∼= Z⊕ Z.

That is, orientable 3-sphere bundles over S4 are in bijection with pairs (h, j) ∈ Z ⊕ Z.
To explicitly represent these bundles, recall that, using quaternion multiplication, the map
f(u)v = u · v generates the tautological line bundle over HP 1 ∼= S4. Similarly, de�ne the
map g : S3 → SO(4) by g(u)v = vu. The maps f and g de�ne a basis of π3(SO(4)). We
may then represent any such vector bundle by a clutching function

fh,j(u)v = uhvuj.
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Let ξh,j be the vector bundle with clutching function fh,j.

We now want to compute Milnor's invariant for the total space of these bundles. Let α
denote a generator of H4(S4).

Lemma 6.4 The �rst Pontrjagin class of ξh,j, p1(ξh,j), is given by

p1(ξh,j) = ±2(h− j)α.

Proof. The �rst Pontrjagin class is a linear function of h and j taking values in H4(S4).
That is,

p1(ξah,bj) = (ah+ bj)α.

Pontrjagin classes are independent of the orientation of the �bre. However, ξh,j with reversed
orientation is the bundle ξ−j,−h, and so

p1(ξ−j,−h) = (−aj − bh)α = p1(ξh,j) = (ah+ bj)α.

Hence, p1(ξh,j) = `(h− j)α, for some constant `.

Now to compute `, consider the case h = 1, j = 0. Then

f1,0(u)v = u · v,

and so ξ1,0 is the tautological line bundle over HP 1. This is a complex vector bundle, hence
we may apply Corollary 4.18 to compute

`α = p1(ξ0,1) = c1(ξ0,1)2 − 2c2(ξ0,1).

By Example 4.12, c1(ξ0,1) = 0 and c2(ξ0,1) = ±α. Hence ` = ±2.

Let k be an odd integer and suppose h+ j = 1, h− j = k. We de�ne the 7-manifold Mk to
be the total space of the sphere bundle for this ξh,j. We may de�ne Pontrjagin classes for a
sphere bundle as the corresponding Pontrjagin class for the underlying vector bundle. Then,
by the above lemma,

p1(Mk) = p1(ξh,j) = ±2kα.

Lemma 6.5 For Mk as above, Milnor's λ invariant is given by

λ(M7
k ) =

3

7
+

4

7
k2 mod 1.

Proof. Recall the de�nition of the invariant in dimension 7. Let Bk be a smooth compact
manifold such that ∂Bk = Mk. Then

λ(M7
k ) =

45

7

(
σ(B8

k) +
1

45
p2

1[B8
k]

)
mod 1.
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We then must construct such a manifold Bk and compute its signature and �rst Pontrjagin
class. Construct Bk as follows.

Replace each �bre of Mk with a 4-disk to obtain a 4-disk bundle

ρk : B8
k → S4.

The total space, Bk, is a smooth manifold with boundary Mk. Furthermore, H4(Bk) is
generated by β = ρ∗k(α). Choose orientations for Mk, Bk such that

σ(Bk) = 〈(i−1β)2, µBk
〉 = 1.

Embed the manifold Bk in a Euclidean space RN . The tangent bundle of Bk, TBk, is then
the Whitney sum of the bundle of vectors tangent to the �bre induced from TMk and the
bundle of vectors normal to the �bre. However, the normal bundle is trivial as it is induced
from TS4. By the Whitney product theorem,

p1(Bk) = p1(BK |Mk
⊕ S4) = ρ∗k(p1(Mk)) = ±2kβ.

Using this, we compute

p2
1[B] = 〈(i−1(±2kβ))2, µBk

〉 = 4k2〈i−1(β)2, µBk
〉 = 4k2.

Combining our results,

λ(M7
k ) =

45

7

(
1 +

4

45
k2

)
mod 1

=
3

7
+

4

7
k2 mod 1,

as required.

Multiplying by 14 we obtain that the invariant of Theorem 4.36 is given by

λ7(Mk) = 2q − σ = k2 − 1 ≡ k2 − 1 mod 7,

as in [Mil56].

In either case, we have that the invariant is non-zero for k2 6= 1 mod 7. Then M7
k possesses

no orientation reversing di�eomorphism, and so it is not di�eomorphic to S7 for k2 6= 1
mod 7.

Corollary 6.6 The manifold M7
k is not di�eomorphic to S7 when k2 6= 1 mod 7.

We will now prove that M7
k is homeomorphic to S7 using the Reeb sphere theorem. Recall

the theorem required a Morse function on Mk with exactly two critical points.

Lemma 6.7 There is a smooth function, h : Mk → R, possessing exactly two critical points,
both non-degenerate.
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Proof. The main idea is as follows. We use the e�ect of the clutching construction on the
stereographic coordinates of Mk to construct explicit coordinates for Mk. We then de�ne a
Morse function in these coordinates.

Denote by (UN , xN) the chart given by stereographic projection from the north pole of S4.
Similarly denote by (US, xS) the chart given by stereographic projection from the south pole.
Recall the transition map between these two charts is given by

xS =
xN
|xN |2

.

Consider the vector bundle associated to Mk. Let VN ∼= R4×R4 be the chart corresponding
to the trivialisation of the southern hemisphere of S4 used in the clutching construction
with stereographic coordinates, similarly for VS. As the sphere with a point removed is
contractible, we may extend these charts to S4 minus the north and south pole respectively.
The transition map is then

(xS, vS) =

(
xN
|xN |2

,
xiNvNx

j
N

|xN |

)
.

This extends the clutching function to VN ∩ VS. Restrict these charts and maps to the total
space of Mk.

De�ne a function, h : Mk → R, in these coordinates by

hN(xN , vN) =
Re(vN)√
1 + |xN |2

;

hS(xS, vS) =
Re(xSv

−1
S )√

1 + |xS|2
.

The real part and absolute value of a quaternion is invariant under conjugation, hence, on
the intersection of the charts we have hN(xN , vN) = hS(xS, vS). That is, h is well de�ned on
Mk. Note hS is an increasing function, hence has no critical points. It follows that all critical
points of h must be of the form (0, vN). However, hN(0, vN) is just the height function of
S3, which has exactly two critical points at (0,−1) and (0, 1), both non-degenerate.

By the Reeb sphere theorem we �nd.

Corollary 6.8 The manifold M7
k is homeomorphic to S7.

Combining Corollary 6.6 and Corollary 6.8 we obtain our main result.

Theorem 6.9 For k2 6= 1 mod 7 the manifold M7
k is homeomorphic to S7 but not di�eo-

morphic to it.

We have �nally completed our �rst goal of constructing an exotic sphere. However, this
leads to many questions. Are there in�nitely many exotic 7-spheres? Are these the only
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possible exotic 7-spheres? Computing λ(Mk) for k = 0, 2, 3 we get 3/7, 5/7, 4/7, and so we
have at least three exotic 7-spheres. We will construct an in�nite collection of exotic spheres
in the following section, and then explore how many possible exotic spheres there are in each
dimension in chapter 7.

6.3 Plumbing of Disk Bundles

Here we describe a process of obtaining a large number of exotic spheres in various dimen-
sions.

Let πi : Ei →Mn
i be two n-disk bundles over n-dimensional, smooth, oriented manifoldsMi.

Choose a point xi ∈ Mi in each manifold. There exist trivialisations of Ei in a neighbour-
hood Ui of each point. By restricting to a small disk and composing with di�eomorphisms
we obtain trivialisations over unit n-disks, Di. The trivialisations of Ei then provide di�eo-
morphisms

π−1
i (Di) ∼= Di ×D

′

i.

Now we glue E1 and E2 along these neighbourhoods by attaching the �bre of E1 to the base
of E2 and vice versa. In detail, let h± : D1 → D

′
2, k± : D

′
1 → D2 be di�eomorphisms which

either preserve or reverse orientation according to sign. We then de�ne the plumbing of E1

and E2 with sign ±1 to be
E1 � E2 := E1 t E2/ ∼,

where ∼ is the relation D1 ×D
′
1 3 (x, y) ∼ (k±(y), h±(x)) ∈ D2 ×D

′
2. A schematic idea of

this construction is given in Figures 19 and 20 below.

D2

(k±, h±)

D1

E1
E2

D
′
1

D
′
2

Figure 19: Plumbing of two trivial disk bundles over a circle. The zero sections are given by
the long dashed lines and a �bre is shown in each with a dense dashed line. The plumbed
neighbourhoods are shaded.
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E1 � E2

E1 E2

Figure 20: The result of plumbing of two trivial disk bundles over a circle.

The space E1�E2 will not be a smooth manifold by construction, however we can straighten
the corners to give E1 � E2 the structure of a smooth disk bundle in a unique way, up to
di�eomorphism. This straightening is described explicitly in [Kos72].

Note that we may choose several points on M1, M2 and plumb on each of these points with
sign ±1. Away from the plumbed points E1 �E2 is still locally a product of either M1 or M2

with Dn. Hence we can continue to plumb more bundles to E1�E2, choosing new basepoints
in the base spaces each time. It is convenient to represent the results of plumbing a number
of bundles together in a weighted multigraph. We add a vertex for each bundle Ei and label
it with the Euler number of Ei. We then attach an edge between vertex vi and vj for each
plumbing between the bundles Ei and Ej.

From any graph de�ne the adjacency matrix as follows. Let the o�-diagonal entries, mij, be
the number of (signed) edges between vertex vi and vertex vj, and let the diagonal entries
be zero. It will be convenient for our purposes to de�ne a slightly di�erent matrix. Let mij

be the number of edges between vi and vj, as before. On the diagonal, let mii = e[Ei], the
Euler number of the bundle Ei.

e[E1] e[E2]

e[E3]

e[E4]

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0




Figure 21: An example of a graph arising from plumbing and its associated matrix.

Theorem 6.10 Let M be a symmetric, integer valued k× k matrix with even entries on the
diagonal. Then, for any n > 1, there is a 4n-dimensional smooth manifold W such that
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1. W is (2n− 1)-connected and ∂W is (2n− 2)-connected.

2. H2n(W ) is free abelian.

3. M is the matrix of the intersection form H2n(W )⊗H2n(W )→ Z.

Proof. We begin by constructing a manifold V according to the plumbing prescribed by
the matrix M and showing that it has some of the above properties. We then perform
surgery on each connected component of V to kill o� its fundamental group. Finally, the
required manifoldW will be obtained by taking the boundary connected sum of these altered
connected components.

Let Si be a 2n-sphere. The sphere Si is orientable, and so by Theorem 6.2 we may associate
to TS2n an element τ ∈ π2n−1(SO(2n)). Let Ei be the sphere bundle over S

2n associated to

1

2
miiτ ∈ π2n−1(SO(2n)).

Recall the Euler characteristic of S2n is 2. It follows that the self intersection number of S2n

in Ei will be 2mii/2 = mii. That is, the Euler number of Ei is mii.

Plumb these bundles together by plumbing Ei to Ej in |mij| points with sign sgn(mij). The
resulting manifold, V , contains as deformation retract the union of the Si's joined together
in |mij| points.

The union of two 2n-spheres intersecting in l points is homotopic to

S2n ∨ S2n ∨l−1 S
1,

where ∨l−1 denotes l−1 wedges of circles. As the total space contains the base as deformation
retract, it follows that each component of V is homotopic to a wedge of 2n-spheres and circles.

We will prove that the boundary resulting from plumbing k disk bundles over 2n-spheres is
a union of (2n− 2)-connected components ∂Ei with (2n− 2)-connected intersections, hence
is (2n− 2)-connected itself. For a plumbing at one point the boundary is given by

∂(Ei � Ej) =
(
∂Ei − (D2n

i × S2n−1)
)
∪
(
∂Ej − (D2n

j × S2n−1)
)
.

Note ∂Ei − (D2n
i × S2n−1) is homotopic to ∂Ei − S2n−1. As S2n−1 has codimension 2n, the

inclusion
πk(∂Ei − (D2n

i × S2n−1))→ πk(∂Ei)

is an isomorphism for k ≤ 2n − 2. It then follows that ∂Ei is (2n − 2)-connected. The
intersection of Ei and Ej is given by(

∂Ei − (D2n
i × S2n−1)

)
∩
(
∂Ej − (D2n

j × S2n−1)
)

= S2n−1 × S2n−1,

which is (2n − 2)-connected. Hence ∂(E1 � . . . � Ek) is the union of (2n − 2)-connected
components along (2n− 2)-connected intersections, as required.
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Let n > 1 and consider E1 � . . .� Ek. Each component C of E1 � . . .� Ek is the union of
simply connected spaces along simply connected intersections, denote these intersections by
Aj. Similarly for ∂C, denote the corresponding intersections by Bj. Therefore π1(C) and
π1(∂C) are free by the Seifert-Van Kampen theorem. Furthermore, each Bj ∈ ∂C is a copy
of S2n−1×S2n−1. This space is the boundary of a copy of D2n×D2n which corresponds to an
Ak ⊂ C. Similarly, each Aj has boundary corresponding to a Bl. That is, the components
of the intersections for the boundary are in one to one correspondence with components of
the intersections for C. Hence,

π1(C) ∼= π1(∂C).

Similarly, as C is the union of (2n − 2)-connected components along (2n − 2)-connected
intersections, applying the Mayer-Vietoris sequence for each component we obtain

Hi(∂C) ∼= Hi(C) = 0, 1 < i < 2n− 1.

Let S1 ⊂ ∂C represent a free generator of π1(∂C). We can kill o�4 this element by attaching
a copy of D2 along S1

1 . Note the resulting space, C1, is homotopic to C∪S1D
2. Furthermore,

as π1(C) is free,
π1(C1) ∼= π1(C)/[S1];

Hi(C1) ∼= Hi(C), i 6= 1;

Hi(∂C1) ∼= Hi(∂C), 1 < i < 4n− 2.

As S1 is a free generator of the free group π1(∂C) ∼= π1(C), it follows that π1(∂C1) ∼= π1(C1)
are both free groups on one less generator. We may continue this process for each generator
[Si] of π1(C). Denote the resulting space by Cl. Then

π1(Cl) ∼= π1(∂Cl) = 0;

Hi(Cl) ∼= Hi(C), i 6= 1;

Hi(∂Cl) ∼= Hi(∂C), 1 < i < 4n− 2.

De�ne W to be the boundary connected sum of the Cl's. Then V ⊂ W , W is connected,
simply connected, and Hi(W ) ∼= Hi(V ), i 6= 1. We proved Hi(V ) = 0 for 1 < i < 2n − 1.
Hence, W is (2n− 1)-connected. Similarly ∂W is (2n− 2)-connected.

Finally, as V ⊂ W , we have a set of embedded spheres S2n
i ∈ W which generate a basis for

H2n(V ) ∼= H2n(W ). Hence, by construction, the intersection matrix of W is M . Further
details can be found in [Bro63].

Theorem 6.11 Let the manifold W 4n come from the plumbing prescribed by a symmetric,
integer valued matrix M with even entries on the diagonal. Then ∂W is a homotopy sphere
if and only if detM = ±1.

4This does not work in general, there are certain obstructions to performing surgery to kill of homotopy
groups, see [Bro63] for exact conditions.
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Proof. Consider the following part of the long exact sequence of the pair (W,∂W ).

· · · H2n(∂W ) H2n(W ) H2n(W,∂W ) H2n−1(∂W ) · · ·i∗ j∗ ∂

The manifold W is (2n− 1)-connected, hence by the Hurewicz theorem we have

Hi(W ) = 0, i ≤ 2n− 1.

This gives a zero on the right. By Poincaré duality with boundary,

H2n+1(W,∂W ) ∼= H2n−1(W ) = 0,

which gives a zero on the left. The sequence then reduces to

0 H2n(∂W ) H2n(W ) H2n(W,∂W ) H2n−1(∂W ) 0
i∗ j∗ ∂

H2n(W ) and H2n(W,∂W ) are free, hence the intersection form H2n(W )⊗H2n(W,∂W )→ Z
is non-singular. Therefore the map

α : H2n(W )⊗H2n(W )→ Z

is injective if and only if ker j∗ = 0 and is surjective if and only if ∂ = 0. By exactness,
ker j∗ = Im i∗. However, i∗ is injective. It follows that α is injective if and only if H2n(∂W ) =
0. Similarly, ∂ is surjective, and so α is surjective if and only if H2n−1(∂W ) = 0.

All together we have α is an isomorphism if and only if

H2n(∂W ) = H2n−1(∂W ) = 0. (*)

However, α is an isomorphism exactly when detM = ±1.

Recall ∂W is a closed, (2n − 2)-connected manifold, hence simply connected. Now if (∗)
holds then we have

Hk(∂W ) =

{
Z k = 0, 4n− 1;

0 else.

That is, ∂W has the homology of a sphere. Then ∂W is a simply connected homology sphere,
hence a homotopy sphere by the Hurewicz theorem.

We then have ∂W is a homotopy (4n−1)-sphere when M has determinant ±1. Then by the
Generalised Poincaré Conjecture, Theorem 7.9 of the following chapter, ∂W is homeomorphic
to S4n−1 if and only if M has determinant ±1.

Example 6.12 Consider the manifold W obtained from the graph of the Dynkin diagram
of E8.
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2 2 2 2 2

2

2 2

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2





We diagonalise the matrix associated to W to obtain the matrix

diag

(
2,

3

2
,
4

3
,
5

4
,

7

10
,
4

7
,
1

4
, 2

)
.

This matrix has determinant 1 and, as all entries are positive, its signature is 8. Therefore
W has signature 8 and ∂W is a homotopy sphere.

Now we have a homotopy sphere, Σ4n−1 = ∂W , and a (2n − 1)-connected manifold, W ,
which bounds Σ and has signature 8. We want to compute

λ(Σ) =
1

sn

(
σ(W )− Ln(i−1p1(W ), . . . , i−1pn−1(W ))

)
mod 1

Note that as W is (2n− 1)-connected all induced Pontrjagin classes in this expression other
than i−1pn/2 are zero by the Hurewicz theorem and Poincaré duality.

We claim W is stably parallelisable. We proceed by proving the deformation retract V of
W from Theorem 6.10 is stably parallelisable, and hence W is. Note each sphere bundles
in the construction of W is equivalent. As such, consider the associated vector bundle to
E1. As the Euler number of this bundle is 2, we may take TS2n as representative of this
bundle. Recall, TS2n was shown to be stably trivial in Example 2.9. Then V is the union of
stably parallelisable manifolds, and so is stably parallelisable itself. Hence W is also stably
parallelisable. Recall that Pontrjagin classes of a stably parallelisable manifold are zero, and
so i−1pn/2 = 0.

All together we have
λ(Σ) = 8/sn mod 1.

The coe�cient sn is given by

sn =
22n(2n−1 − 1)Bn

(2n)!

Then for n = 2, 3, 4 we have λ(Σ4n−1) = 3
7
, 8

31
, 8

127
. It follows that Σ is exotic in these

dimensions. We have con�rmed numerically that sn does not divide 8 for n < 12000, however,
we have not been able to directly prove that this holds for all n.5 Later results in surgery

5Milnor himself was not sure whether this was true in [Mil59b]
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theory guarantee that Σ4n−1 is exotic for all n > 2. This implies that sn never divides 8,
though we are not sure if this identity has any application outside of this. These spheres are
known as the Milnor spheres. Milnor constructed them and proved some were exotic spheres
through similar methods in [Mil59a].

Example 6.13 Let k be odd and consider the 2k-dimensional manifold, K(2k), obtained
from plumbing k-spheres according to the matrix[

0 1
−1 0

]
The boundary ∂K(2k) is known as the Kervaire sphere. For k = 1, 3, 7 it is di�eomorphic to
S2k−1. In [Ker60], Kervaire proved that ∂K(10) is not di�eomorphic to S9, and used this to
show K(10) does not admit any smooth structure. Determining for which k the homotopy
sphere ∂K(2k) is di�eomorphic to S2k−1 turns out to be very important in counting exotic
spheres, we will discuss this in the following chapter. The strongest result for these manifolds
was proven by Browder in [Bro69], where he proved ∂K(2k) is not di�eomorphic to S2k−1

unless k = 2j − 1.

We have now established exotic spheres exist in many dimensions and constructed a number
of examples. We now move on to the question of exactly how many smooth structures a
topological sphere can have.
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7 Groups of Homotopy Spheres

Having established that exotic spheres exist and constructed a number of examples of them,
the next natural question is to ask how many distinct smooth structures on spheres there
can be in each dimension, and whether they have any additional structure. Milnor and
Kervaire resolved the question for spheres of almost all dimensions in [KM63]. They proved
the surprising result that there are a �nite number of distinct smooth structures on spheres
in all dimensions other than three and four6. We introduce a number of structures which
are closely related to the set of smooth structures of Sn. We also de�ne the notion of h-
cobordism and and state a number of powerful theorems. Finally, we sketch the main ideas
of Milnor and Kervaire's paper and state the main results on the classi�cation of homotopy
spheres.

7.1 Homotopy Spheres and Connected Sum

Consider the monoid of closed, connected, oriented n-manifolds under connected sum. De-
note by An the group of invertible elements of this monoid. We claim all elements of this
group are n-dimensional homotopy spheres.

Lemma 7.1 Let M , N be closed, connected, oriented n-manifolds. Then

1. For 0 < k < n, Hk(M #N) ∼= Hk(M)⊕Hk(N).

2. For n ≥ 3, π1(M #N) ∼= π1(M) ∗ π1(N), where ∗ is the free product.

Proof. Let M
′
be the image of M −{pt.} in M #N , similarly for N

′
. Note M

′ ∩N ′ ∼= Sn−1.
Hence, the Mayer-Vietoris sequence of the pair (M

′
, N

′
) gives the �rst claim. Similarly, the

Seifert-Van Kampen theorem applied to (M
′
, N

′
) gives the second claim.

Corollary 7.2 Let n ≥ 3. The connected sum of two n-manifolds is a homotopy sphere if
and only if they are both homotopy spheres.

As Sn is the identity of the monoid, every invertible element must be a homotopy sphere.
In dimensions n ≥ 5, we have that every invertible element of An must be a topological
sphere by the generalised Poincaré conjecture. Hence each element of this group must carry
a distinct smooth structure on the sphere. The invertible elements are actually topological
spheres in all dimensions, though proving this requires more machinery.

Lemma 7.3 The connected sum of two n-manifolds is homeomorphic to a sphere if and only
if they are both homeomorphic to a sphere.

We prove the following lemma for use later.

6The dimension three case has since been resolved with the proof of the Poincaré conjecture. As the
topological and smooth case coincide in dimension three, there is a unique smooth structure on the 3-sphere.

90



Lemma 7.4 Let Σ be a homotopy n-sphere. The connected sum Σ # (−Σ) bounds a con-
tractible manifold.

Proof. Denote by Σ
′
the manifold Σ with the interior of a disk removed. Then Σ # (−Σ)

can be considered as the quotient space Σ
′ ×{0, 1}/ ∼, where (x, 0) ∼ (x, 1) for all x ∈ ∂Σ

′
.

This is the boundary of Σ
′ × [0, 1], which contains Σ

′
as deformation retract. However, Σ

′
is

a homotopy sphere with the interior of a disk removed, and so homeomorphic to the n-disk,
which is contractible. Hence, Σ # (−Σ) bounds a contractible manifold.

We will show later that for n ≥ 5 all topological spheres are invertible under connected sum.
However, this will require more advanced machinery than just connected sum.

7.2 The h-Cobordism Theorem

We de�ne a h-cobordism to be a cobordism {M,N ;W} such that the inclusions M ↪→ W ,
N ↪→ W are homotopy equivalences. This is equivalent to M and N being deformation
retracts of W . This is considerably stronger than standard cobordism. Directly checking
that a given cobordism is a h-cobordism is di�cult. We instead use the following lemma.

Lemma 7.5 Let {M,N ;W} be an oriented cobordism such that M , N , W are connected
and simply connected. Then {M,N ;W} is a h-cobordism is and only if H∗(W,M) = 0.

Proof. Suppose H∗(W,M) = 0. Then, by the Hurewicz theorem, the inclusion M ↪→ W
is a homotopy equivalence. Conversely, suppose the inclusions M ↪→ W , N ↪→ W are
homotopy equivalences. A version of Poincaré duality for cobordism states that Hi(W,M) ∼=
Hm−i(W,N), where m is the dimension of W [Kos72] VII 5.1. The claim then follows by the
Hurewicz theorem.

From this it follows that h-cobordism is an equivalence relation. The main use of the notion
of h-cobordism is the following result of Smale, which he proved in [Sma62], following his
work on the Poincaré conjecture.

Theorem 7.6 (h-Cobordism Theorem) Let n ≥ 5, and Mn, Nn, W n+1 be connected and
simply connected manifolds such that {M,N ;W} a h-cobordism between M and N . Then
W is di�eomorphic to M × [0, 1].

This theorem has a number of important corollaries.

Corollary 7.7 Let W n be a contractible, simply connected manifold with simply connected
boundary, n ≥ 6. The W is di�eomorphic to Dn.

It follows that there is a unique smooth structure on Dn for n ≥ 6. A weaker theorem holds
for n = 5.
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Corollary 7.8 Let W 5 be a contractible manifold bounded by S4. Then W is di�eomorphic
to D5.

For proofs of both results see [Kos72]. The h-cobordism theorem implies the generalised
Poincaré conjecture in dimensions n ≥ 5.

Corollary 7.9 (Generalised Poincaré Conjecture) Let Σn be a homotopy sphere, n ≥ 5.
Then Σ is homeomorphic to Sn.

Proof. By Lemma 7.4, Σ#(−Σ) bounds a contractible manifold of dimension n ≥ 6. Hence,
by Corollary 7.7, Σ # (−Σ) bounds Dn+1, and so Σ # (−Σ) is homeomorphic to Sn. Finally,
by Lemma 7.3, Σ is homeomorphic to Sn.

7.3 Di�eomorphisms of Spheres

We take a small detour to describe a group closely connected to the set of homotopy n-
spheres. Let M be a smooth oriented manifold. Denote the set of orientation preserving
di�eomorphisms of M by Di�(M). This is both a topological space and a group under
composition of di�eomorphisms. It is usually a very large and non-abelian group. However,
a certain quotient of Di�(Sn−1) is very well behaved.

We will need the following result of Palais, [Pal60].

Theorem 7.10 (Disk Theorem) Let Mn be a connected manifold and f, g : Dk → M be
two embeddings of the disk into the interior M . If n = k then assume f and g are oriented
the same way. Then f is isotopic to g. Furthermore, if f = g on a disk Dl ⊂ Dk then the
isotopy can be made stationary on this disk.

Denote by Di�0(Sn−1) the subgroup of di�eomorphisms isotopic to the identity.

Lemma 7.11 The subgroup Di�0(Sn−1) contains the commutator subgroup of Di�(Sn−1).

Proof. Let f, g ∈ Di�(Sn−1). Let DN , DS be the northern and southern hemispheres of Sn−1

respectively. We will construct di�eomorphisms fN , gS isotopic to f and g respectively such
that fN is the identity on DN and gS is the identity on DS.

By the disk theorem, f |DN
is isotopic to the inclusion of DN into Sn−1. Extend this isotopy

over Sn−1 to obtain an isotopy between f and a di�eomorphism fN . By construction, fN is
the identity on DN . We similarly construct a map gS which is the identity on DS.

Now fN and gS clearly commute, hence their commutator is the identity map. However, as
f and g are respectively isotopic to fN and gS, it follows that the commutator of f and g is
isotopic to the commutator of fN and gS, and hence to the identity.
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As Di�0(Sn−1) contains the commutator subgroup, the quotient Di�(Sn−1)/Di�0(Sn−1) is
abelian.

Consider the di�eomorphisms of Sn−1 which can be extended over Dn. That is, the image

∂ : Di�(Dn)→ Di�(Sn−1).

By the disk theorem, Di�0(Sn−1) ⊂ ∂Di�(Dn). Hence the quotient

Γn = Di�(Sn−1)/∂Di�(Dn)

is an abelian group.

Let f ∈ Di�(Sn−1). De�ne Σ(f) to be

Σ(f) = Dn ∪f (−Dn).

This is a smooth manifold by the gluing lemma. Furthermore, this manifold is obtained
from gluing together two n-disks by a di�eomorphism of their common boundary. As any
homeomorphism of Sn−1 is isotopic to the identity, this manifold is homeomorphic to an
n-sphere. However Σ(f) will be di�eomorphic to Sn if and only if f can be extended over
Dn, that is, f ≡ 0 ∈ Γn. Note that any manifold obtainable from this construction can be
given an atlas with exactly two charts.

These groups are closely connected with An, the group of invertible homotopy spheres under
connected sum.

Lemma 7.12 De�ne a map G : Γn → An by

G : f → Σ(f).

Then, for n ≥ 6.

1. Let f, g ∈ Γn, then Σ(fg)
di�∼= Σ(f) # Σ(g).

2. The map G is a well de�ned homomorphism into An.

3. The map G is injective.

Proof. Removing the interior of a disk from Σ(f) leaves an n-disk, Df , similarly for Σ(g).
Hence, we may view the connected sum Σ(f) # Σ(g) as

Σ(f) # Σ(g)
di�∼= Df tf

(
Sn−1 × I

)
tg Dg,

where we identify ∂Dn×{0} with ∂Df via f and similarly ∂Dn×{1} with ∂Dg via g. Note
that Σ(fg) is di�eomorphic to Σ(fg) # Σ(Id), so we can similarly write

Σ(fg)
di�∼= Dfg tfg

(
Sn−1 × I

)
tId DId.
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We will construct a di�eomorphism between these two manifolds. By Corollary 7.7, Df is
di�eomorphic to Dfg and Dg is di�eomorphic to DId. The two copies of the cylinder are
of course di�eomorphic. By the disk theorem, we may construct an isotopy between these
di�eomorphisms to ones which match on the common boundaries. Hence the compositions
of these maps form a di�eomorphism between the two manifolds, as required.

We show that G actually maps into An as follows. Let f ∈ Γn. Then the map f−1 provides
an inverse to Σ(f) as

Σ(f) # Σ(f−1)
di�∼= Σ(ff−1)

di�∼= Sn.

Hence, Σ(f) is an invertible homotopy sphere, that is, Σ(f) ∈ An.

Now we show G is well de�ned. Let f : Sn−1 → Sn−1 be a representative of the identity
element of Γn. This map can then be extended to a di�eomorphism F : Dn → Dn. We claim
Σ(f) = Sn. Denote the two disks in the construction of Σ(f) by D1 and D2. The restriction
F |D1 is an embedding of the disk in Sn. Hence, by the disk theorem, it is isotopic to a map
sending D1 to the southern hemisphere of Sn. As such, assume F sends D1 to the southern
hemisphere of Sn. Then F sends the common boundary of D1 and D2 to the equator of Sn

by f . Extend f over the disk D2 to a di�eomorphism from D2 to the northern hemisphere
of Sn. These maps match on the boundary by construction, hence Σ(f) = Sn. Combining
this and the �rst part of the lemma gives that G is a well de�ned homomorphism.

Finally, we show G is injective. Let f ∈ kerG, that is, Σ(f)
di�∼= Sn. We show that f may be

extended to a di�eomorphism of Dn, and hence f ∼ Id ∈ Γn. Let F be a di�eomorphism
between Σ(f) and Sn. As above, let F map D1 to the southern hemisphere of Sn. Then F
must map the common boundary of D1 and D2 to the equator of Sn. It follows that F |D2 is
a di�eomorphism onto the northern hemisphere of Sn extending f , as required.

Note this theorem actually holds for all n, however the proof of the �rst claim must be
altered.

7.4 The h-Cobordism Group

As with ordinary cobordism, equivalence classes of manifolds up to h-cobordism form a
group. These groups will connect both An, Γn, and the set of homotopy n-spheres.

Theorem 7.13 Let n ≥ 3. Consider the set of h-cobordism equivalence classes of simply
connected, closed, oriented n-manifolds. This set forms a commutative monoid under con-
nected sum. The identity element is given by the class of manifolds which bound a contractible
manifold. Furthermore, the group of invertible elements, denoted Θn, consists of homotopy
spheres.

We will prove this in a series of lemmas. First we prove that connected sum is well de�ned
on h-cobordism classes.
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Lemma 7.14 Suppose M1 is h-cobordant to M2. Then M1 #N is h-cobordant to M2 #N .

Sketch proof. Let {M1,M2;W} be a h-cobordism between M1 and M2. Consider the h-
cobordism between N and itself, {N,−N ;N × I}. Choose paths L1, L2 in W and N × I
respectively such that they have one endpoint in each boundary component. The manifolds
W and N × I can be "pasted" along these paths to form a simply connected manifold W

′
by

a construction similar to a connected sum; see [Kos72] VI.4. This pasted manifold W
′
will

have boundary (M1 # N) t (−M2 # N), and so will be a cobordism between M1 # N and
M2 # N . To show it is a h-cobordism, we must only check H∗(W

′
,M1 # N) = 0. However,

this follows from Lemma 7.5 applied to W and N × I.

The following lemma states that Sn represents the class of simply connected manifolds which
bound a contractible manifold. Note the simple connectivity assumption is essential here.

Lemma 7.15 A manifold Mn is h-cobordant to Sn if and only if it bounds a contractible
manifold.

Proof. Suppose M = ∂W n+1. Remove the interior of an (n + 1)-disk from W to obtain the
manifold

W
′
= W − int(Dn+1).

The boundary of W
′
is then M t Sn. Hence {M,Sn;W

′} is a h-cobordism between M and
Sn.

Conversely, let {M,Sn;W} be a h-cobordism between M and Sn. The n-sphere is h-
cobordant to the empty set through {Sn, ∅;Dn+1}. Hence,

{M, ∅;W ∪idSn D
n+1}

is a h-cobordism between M and ∅. Then (W ∪idSn Dn+1) is a contractible manifold with
M as boundary, as required.

Finally, we show that M is invertible if and only if M is a homotopy sphere.

Lemma 7.16 There exists a manifold N such that M # N bounds a contractible manifold
if and only if M is a homotopy sphere.

Proof. Assume there exists a manifold N such that M #N bounds a contractible manifold.
By Lemma 7.15, M # N is h-cobordant to Sn. Then, by Corollary 7.2, both M and N are
h-cobordant to homotopy spheres.

Conversely, let M be a homotopy sphere. By Lemma 7.4, M # (−M) bounds a contractible
manifold.
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With this, the proof of Theorem 7.13 is complete. In summary, for n ≥ 3 we have a group, Θn,
consisting of h-cobordism classes of homotopy spheres. The identity element is represented
by the standard sphere Sn and the group operation is connected sum. By the generalised
Poincaré conjecture, this group can be identi�ed with the group of smooth structures on the
topological n-sphere for n ≥ 5.

Recall the group An was de�ned to be the group of invertible smooth structures on the topo-
logical n-sphere under connected sum. The map taking each element of An to its equivalence
class in Θn is a homomorphism. Recall also we had an injective map G : Γn → An. The
following theorem links each of these groups.

Theorem 7.17 Let n ≥ 5. The homomorphisms G : Γn → An and i : An → Θn are
isomorphisms.

Proof. Consider ker i. This is the set of homotopy spheres which bound contractible mani-
folds. However, by Corollary 7.7, the only such homotopy sphere is Sn, hence i is injective
for n ≥ 5. We proved G is injective in Lemma 7.12.

We then need only show the composition Γn → An → Θn is surjective. Let Σ ∈ Θn represent
a homotopy sphere and consider an n-disk D1 embedded in Σ. Denote the complement of
D1 by D2. That is,

D2 = Σ−D1.

Note D2 is a contractible manifold with boundary di�eomorphic to Sn−1. Hence, if n ≥ 6, we
can use Corollary 7.7 to conclude D2 is di�eomorphic to Dn. For n = 5 we apply Corollary
7.8. Denote by h the identi�cation of the boundary of D1 with D2. We then have

Σ = D1 ∪h D2

di�∼= Dn ∪h Dn = Σ(h).

Hence Σ
di�∼= Σ(h) and the map is surjective, as required.

For n ≥ 5, it follows that each of these groups can be interpreted as the group of smooth
structures on the topological n-sphere, that each element is invertible under connected sum,
and each element can be given an atlas with exactly two charts.

We have now given three di�erent ways to interpret the set of smooth structures on the
topological n-sphere for n ≥ 5. Each of these groups are useful in their own right, and each
can be more convenient to work with depending on the context. The objective of the next
section is to prove that Θn is �nite for all n 6= 3, and hence that there are a �nite number of
smooth structures on the n-sphere for all n ≥ 5.

7.5 Classi�cation of Homotopy Spheres

In [KM63], Milnor and Kervaire proved that Θn is �nite in all dimensions but three. The
key step was to use the Pontrjagin-Thom construction to turn problem of computation of
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cobordism groups into a homotopy problem and to use the recently developed surgery theory
to kill homotopy groups.

The main result of [KM63] is the following.

Theorem 7.18 For n 6= 3 the group Θn is �nite.

The proof proceeds by de�ning a subgroup, bPn+1 ⊂ Θn, and proving that Θn/bPn+1 and
bPn+1 are �nite. We de�ne the subgroup bPn+1 as those homotopy n-spheres Σ which bound
parallelisable (n + 1)-manifolds. It is not immediately clear that this is a subgroup. We
sketch the main ideas of the construction, leaving all proofs to [KM63].

We will show bPn+1 is the kernel of a homomorphism from Θn to a subgroup of Πn, and so
is a normal subgroup of Θn. First we need the following.

Theorem 7.19 Homotopy spheres are stably parallelisable.

This appears as theorem 3.1 in [KM63]. The proof uses Adams' work on the stable J-
homomorphism and the Bott Periodicity Theorem to prove there is no obstruction to the
triviality of TΣ⊕ ε.

The following construction, known as the Pontrjagin-Thom construction, associates to a
stably parallelisable manifold,M , a set of elements, p(M) ⊂ Πn, of the n-th stable homotopy
group of spheres. Embed the manifold M into Rn+k. For k � n, there is a unique such
embedding [Lee03]. As the tangent bundle to Rn+k is trivial, a stably trivial n-frame of M
gives rise to a k-frame of the normal bundle to M in Rn+k which gives a trivialisation of
NM , denote this k-frame by ϕ. Consider a tubular neighbourhood U of M . Recall we may
consider Sn as the one point compacti�cation of Rn, Sn = Rn ∪ {∞}. We de�ne a map
Rn+k → Sk = Rk ∪ {∞} as follows. Map the complement of U to ∞. Recall that, as U is a
tubular neighbourhood of M , we may identify it with a neighbourhood of M in the normal
bundle NM . We then map points of U to points of Rk using the k-frame ϕ. Extend this
map to Sn+k = Rn+k ∪ {∞} by sending ∞ to ∞. We then have a map

p(M,ϕ) : Sn+k → Sk.

Intuitively, this map measures asymptotic normal distance from points of Rn+k to points of
Mn. That is, points outside the tubular neighbourhood are at in�nite distance from M and
points inside the tubular neighbourhood are at distance given by the perpendicular direction
to M , using the frame ϕ. The homotopy class of this map is a well de�ned element of the
stable homotopy group Πn depending on bothM and ϕ. Further details and a proof this map
is well de�ned may be found in [Bre93]; see Figure 22 below for a schematic picture of the
construction. Varying ϕ over all possible k-frames, we obtain a set of elements, p(M) ∈ Πn.
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M

U

p(M,ϕ)Rn+k

Sn

∞

Figure 22: The Pontrjagin-Thom construction. The �bres of NM are indicated on the left
and right by dotted lines and M is indicated by a heavily dashed line.

Lemma 7.20 Let Mn, Nn be stably parallelisable manifolds.

1. The set p(M) contains the zero element if and only if M bounds a parallelisable man-
ifold.

2. If M is h-cobordant to N , then p(M) = p(N).

3. p(M) + p(N) ⊂ p(M #N).

Combining this with our results on connected sums of homotopy spheres of the previous
section we get.

Theorem 7.21 The set p(Sn) is a subgroup of Πn. For Σ a homotopy sphere, the set p(Σ)
is a coset of this subgroup. It follows that the map p̃ : Θn → Πn/p(S

n) given by

p̃ : Σ 7→ p̃(Σ) = p(Σ)

is a homomorphism.

By the �rst part of Lemma 7.20, the kernel of this map is the set of homotopy n-spheres
which bound parallelisable (n+1)-manifolds, that is, bPn+1. Then bPn+1 is a normal subgroup
of Θn and Θn/bPn+1 is isomorphic to a subgroup of Πn. As Πn is �nite, this implies the
following.

Theorem 7.22 The group Θn/bPn+1 is �nite.

We then have the following exact sequence.

0 bPn+1 Θn Θn/bPn+1
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Milnor and Kervaire give an alternate description of the subgroup p(Sn) as the image of the
J-homomorphism. Hence, Πn/p(S

n) is the cokernel of Jn, giving the exact sequence

0 bPn+1 Θn coker(Jn)

As Θn/bPn+1 is �nite, Θn will be �nite whenever bPn+1 is �nite. To prove bPn+1 is �nite, let
Σ ∈ bPn+1 and suppose W is an (n + 1)-dimensional parallelisable manifold with boundary
Σ. Our goal is then to construct a simpler manifold, W

′
, such that ∂W

′
is in the same

h-cobordism class as Σ. We obtain this simpli�cation by a series of surgeries on W which
kill the homotopy groups ofW . Ideally, we would end up with a manifoldW

′
homeomorphic

to Dn+1. We could then apply Corollary 7.7 and Lemma 7.15 to conclude Σ is di�eomorphic
to Sn. However, there are certain obstructions to performing this simpli�cation depending
on n. We summarise the main results.

Theorem 7.23 The group bPn+1 is a �nite cyclic group. Let am be 1 if m is even and 2 if
m is odd and denote by num(x) the numerator of x in reduced form. Then

|bPn+1| =


1 n = 2m ≥ 4;

1 or 2 n = 4m+ 1, m ≥ 1;

22m−2(22m−1 − 1)amnum(4Bm/m) n = 4m− 1.

For the groups bP4n+2, the order is 2 exactly when the boundary of the manifold K(4n+ 2)
of Example 6.13 is di�eomorphic to S4n+1. This is known as the Kervaire invariant problem.
The bulk of Milnor and Kervaire's paper is dedicated to this case.

The problem of counting the number of smooth structures on homotopy spheres of a given
dimension is then converted to a computation of the order of stable homotopy groups. See
Table 2 below for a summary of results in the �rst eight dimensions.

n 1 2 3 4 5 6 7 8
|Θn| 1 1 1 1 1 1 28 2
|bPn+1| 1 1 1 1 1 1 28 1
|Θn/bPn+1| 1 1 1 1 1 1 1 2

Table 2: Order of the �rst eight Θn, bPn+1, and the quotient Θn/bPn+1.
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8 Conclusion

To proceed any further into Milnor and Kervaire's paper would require developing a large
amount of surgery theory and homotopy theory. We instead conclude with some comments.
Although we have e�ectively solved the problem of counting the number of exotic spheres in
each dimension, the method was not constructive. A natural problem is then to �nd explicit
constructions of all homotopy spheres in a given dimension. The Milnor spheres Σ4n−1

of Example 6.12 are generators of bP4n, for a proof see [Kos72]. Similarly, the Kervaire
spheres ∂K(2n) of Example 6.13 generate bP4n+2. An alternative construction of homotopy
spheres was given by Brieskorn in [Bri66]. He considered the boundary of neighbourhoods
of isolated singularities of complex varieties. Using this construction, all elements of bP2n

can be constructed. As Θ7/bP8 = 0, every exotic sphere can be obtained from Brieskorn's
construction. These are currently the only known methods of explicitly constructing exotic
spheres.

We also note that although we have converted the problem of counting homotopy spheres to
the problem of computing stable homotopy groups, this problem is far from solved. Much
active research in algebraic topology today is dedicated to exploring the structure of stable
homotopy groups. Furthermore, almost all of the methods of the previous chapter fail
completely in dimension four. The smooth Poincaré conjecture is entirely open, it is still
debated whether the conjecture should be true in this case. Many results on smooth 4-
manifolds have been obtained using Donaldson theory and Seiberg-Witten theory, both of
which arise from theoretical physics. There are also a large number of candidates for possible
exotic 4-spheres, such as those produced by Gluck twists. However, it seems we are still quite
far from any resolution of the conjecture.

Although we have produced a number of exotic spheres and counted them, we have not
explored their properties. It is natural to ask whether exotic spheres may possess interesting
geometry. There are a number of results on curvature of Sn which do not apply to exotic
spheres, though we do not have the space to explore them here.

Finally, we note that we may also consider the classi�cation of other manifolds, such as
homotopy tori. Questions of this type require a generalisation of the h-cobordism Theorem
to non-simply connected manifolds, knows as the s-cobordism theorem. This states that a
h-cobordism {M,N ;W} is trivial if and only if a certain well de�ned invariant, τ(W,M),
known as the Whitehead torsion, is zero.
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