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Summary

Lymphocytes, comprising of B and T cells, are important members of the adaptive

immune system of vertebrates that play a crucial role in defending against harmful

pathogens. They are equipped with receptors capable of recognising specific antigens.

After activation, they proliferate to form an exponentially growing clone army.

Eventually, those cells cease to divide and then largely die over a period of weeks,

but leave a small number of cells, called memory cells, that can rapidly respond to

any repeated infection. To study such non-linear population dynamics, experimental

systems have been designed that generate data at the level of populations, families

and single cells to elucidate underlying mechanisms that regulate expansion, cessation,

and contraction of cell numbers.

In this thesis, we report on the development of a novel stochastic model of cellular

population dynamics, based on Hawkins et al. (2007a), that accounts for experi-

mentally observed correlation structure within family members. In particular, the

inheritance of cell division, cessation, and death times within a stochastic model

framework considered, and their impact on cell population dynamics are investi-

gated. Model assumptions are informed by datasets from time-lapse microscopy

experiments and statistically tested within the Bayesian framework. Consequences

of the dependencies are demonstrated with family trees generated by a Monte-Carlo

simulation. To assess the model’s ability to extract meaningful inferences from

population-level data, we design an optimisation strategy to estimate model pa-

rameters and investigate its accuracy and precision for a given dataset from in

vitro murine system. With the analysis pipeline, the model is applied to both

in vitro murine and human lymphocyte populations to test hypotheses and draw

meaningful biological conclusions. For instance, we demonstrate signal integration

for T cells from transgenic mice as a linear sum in a time domain, and as a result,

v



CONTENTS

the model successfully recapitulates the data. Lastly, we extend the remit of the

stochastic modelling framework by exploring mechanisms of B cell differentiation

to antibody-secreting cells and their class switching to different isotypes. A simple

probabilistic model that captures molecular changes within these cells sheds light

on the process of determining the types of antibodies to produce and predicting the

magnitude associated with them.
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1
Introduction

1.1 Abstract

In the following sections, we outline the background of immunology that motivates

our work. In particular, we introduce the overall function of the immune system,

then narrow it down to specific cell types called lymphocytes (B and T cells) as these

cells will be the main topic of this thesis. Lymphocytes are equipped with protective

mechanisms that are capable of eliminating foreign pathogens that cause damage to

host body, generally in the form of an infection. One of the important lymphocytes’

behaviours is creating a large clone of the same type that recognises a specific foreign

substance, after which a majority of the population becomes effector cells to actively

neutralise the invaders and leave a small proportion of memory cells for repeated

infections in the future. To investigate this phenomenon, researchers performed

various experiments and derived mathematical models that aim to elucidate the

underlying mechanism of cell population dynamics. From the literature, we will

report recent findings from experimental methods that were conducted at single-cell

and population-level.

1.2 Functional roles of the immune system

The immune system is a protective mechanism that constitutes a wide variety of

immune cells to defend against harmful microbes or to prevent growth of malignant

cells. Amongst various types of the immune cells in our body, lymphocytes are

the essential cells that are adaptively protecting the host from harmful substances

such as pathogens (e.g. viruses and bacteria) while recognise the host to avoid
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Fig. 1.1: Typical immune response, adapted from Murphy et al. (2008);
Punt et al. (2019). When näıve lymphocytes get activated by a specific antigen,
they undergo a latency phase approximately for 2 days, then begin dividing to
mount a full immune response. A large clone of identical cells is generated during
this proliferation phase, which generally replicates two to four times every 24
hours, that significant proportion of cells differentiate into effector cells to eradicate
the pathogens. Afterwards, a contraction phase begins during which most of the
generated cells die, and leave a small subset of cells that larger in size than the
initial number of responding lymphocytes to equip the host with protection against
the same antigen in the future. Should a second encounter to occur, the response is
faster and larger without the latency phase.

damaging nearby friendly tissue as a form of self-tolerance. These cells are developed

in primary lymphoid organs, which includes the bone marrow and the thymus, and

mount an immune response to fight off the intruders in secondary lymphoid organs

such as the lymph nodes and spleen.

The innate immune system, which can be found in all multicellular plants and

animals, acts as the first line of defence against pathogens. In our body, this system

include not only the epidermis to form a physical barrier between the exterior to

the interior, but also white bloods cells such as macrophages, Natural Killer (NK)

cells, dendritic cells to actively remove the pathogens by phagocytosis or cytotoxic

activity (Murphy et al., 2008). Most of the immune cells are capable of recognising

pathogen-associated molecular patterns (PAMPs) such as lipopolysacharide (LPS)

on Gram-negative bacteria (see Alberts et al., 2002, Chapter 25). These components

are commonly detected in innate cells through specific pattern recognition receptors
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(PRRs). As PAMPs are not present in healthy bodies, the specificity of PRRs estab-

lish extremely well defined self vs non-self discrimination. When these cells recognise

PAMPs, they become activated and mediate a rapid response within minutes or

hours even if the host has never encountered particular pathogen previously (Murphy

et al., 2008). Despite the effective response for eliminating common pathogens, the

innate immune cells have limited number of conserved, germline-coded PRRs so

that they cannot recognise different variants of molecular structure of microbial or

non-microbial molecules. In such cases, the pathogens may have the chance to evade

the system, thus, a more flexible system has evolved. As it can detect and adapt to

seemingly any foreign material this additional protection mechanism is named the

adaptive immune system.

1.2.1 Adaptive immune system

This system is developed in all jawed vertebrates (gnathostomata) as a result of

evolutionary process (Cooper and Alder, 2006). Key characteristics of the adaptive

immune system that distinguish from the innate system are (i) the ability to prepare

and enhance the response for a reoccurring threat (see Secondary Response in Fig.

1.1), and (ii) each of the adaptive immune cells is likely to be specific to different

threats.

Two main actors that orchestrate an adaptive immune response are lymphocytes,

which constitute B and T cells (NK cell is categorised as a lymphocyte but belong

to the innate immune system). These cells are equipped with membrane-bound

randomised receptors called B cell receptor (BCR) and T cell receptor (TCR),

respectively, that only bind to small repertoire of antigen through lock-and-key

mechanism, i.e. specific to the reciprocal shape of each receptor. The strength of

this binding depends on its affinity, and stronger it binds, likely to induce a greater

immune response from these antigen-specific B and T cells. An important study

from Tonegawa (1983) reported stochastic generation of the receptors from somatic

mutation called V(D)J recombination, which explains how variety of BCRs and

TCRs are achieved in a lymphocyte population.

Pathways of lymphocyte activation can be characterised either directly by con-

tacting antigens presented on the surface of a pathogen or secreted in the blood

plasma from harmful cells, or indirectly by help of antigen-presenting cells (APCs).

The APCs, such as macrophages or dendritic cells, present antigens sampled from
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parts of a pathogen via phagocytosis. A lymphocyte that recognises its specific

antigen and receives the appropriate signals will become activated and undergo rapid

cell division to form a large clone of cells with identical specificity. If the cells have

never been exposed to the antigen previously, that is in “näıve” state, they undergo

a latency phase for approximately 2 days before initiating the extensive mitotic

division (see Primary Response Fig. 1.1). The idea that only certain types of B

and T cells are selected in a pre-existing group of lymphocytes, which then produce

identical clones, was first postulated by Frank M. Burnet in 1957 and known as

clonal selection theory (Burnet, 1957). The theory was revised over the years and is

currently a well accepted paradigm of adaptive immunity (Miller, 1963; Bretscher

and Cohn, 1970; Lafferty et al., 1980; Mueller et al., 1989; Janeway, 1989; Matzinger,

1994; Baxter and Hodgkin, 2002; Hodgkin et al., 2007).

A large proportion of clonally expanded B and T cells provides humoral and

cell-mediate immunity, respectively, in their effector state (Punt et al., 2019, Chapter

1). Effector B cells secrete antibodies (immunoglobulins) that attach to their cognate

antigen to mark a cell for improving recognition and death by phagocytic cells,

hindering the cell from binding healthy host cells or biologically inactivating the

pathogens (Alberts et al., 2002, Chapter 24). T cells can be further distinguished

into two sub-types known as CD4+ and CD8+ T cell depending on the presence of

cell-surface molecule (cluster of differentiation or CD) at the end of its development

in the thymus (Murphy et al., 2008, Chapter 8). CD4+ and CD8+ T cell are

also commonly known as helper and killer T cell, for their functional roles in the

immunity. While CD8+ T cells are responsible for directly eliminating abnormal cells

by secreting serine protease (granzyme B) along with perforin to trigger apoptosis

of the targeted cells, CD4+ T cells release cell-signalling protein called cytokines

to modulate the humoral and cell-mediated responses, or to control the growth of

certain cell population (e.g. interleukin-2 or IL-2 for growth of T cell population), or

to enhance/inhibit actions carried by other cell types (e.g. promoting cytotoxicity

of CD8+ T cells).

Once the pathogen is successfully suppressed, the majority of the clonally ex-

panded lymphocytes begin to die, and leave a small subset of long-lived cells known

as memory cells that are larger in population size than the initial number of respond-

ing cells. These cells preserve the same receptor for a long period of time in case of

reappearance of the antigen. Should the body experience a subsequent encounter,

the cells generate larger clones in numbers more rapidly than their näıve progenitors,
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thereby providing the host more effective protection against the same antigen (Fig.

1.1). This long-term protection is a fundamental feature of the adaptive immune

system and main principle of how vaccines work.

1.2.2 Dysfunction of the immune system

A successful immune response is carefully modulated process that could poten-

tially fail at multiple points. There are three major classes of reactions related to

dysfunction of the immune system.

Hypersensitivity. A failure of regulating the immune response and overreaction

to an antigen that normally would be harmless to the host body. This results in an

allergic reaction (Galli et al., 2008).

Autoimmunity. This occurs when lymphocytes fail to distinguish healthy self from

non-self, resulting in attacking ones own body. Studies in human and animal models

reveal that genetic and multiple environmental factors contribute to autoimmunity.

However, the exact causes are generally unknown as it manifests differently organ

to organ: some are limited to particular tissue and others are more system-wide

(Rosenblum et al., 2015). Examples of autoimmune disorders are type 1 diabetes,

coeliac disease, multiple sclerosis and Sjögren syndrome (Romão et al., 2018; Caio

et al., 2019).

Immunodeficiency. This refers to a failure of mounting an appropriate immune

response and responding generally in much weaker form compared to healthy in-

dividuals. There are two distinct classes of immunodeficiency depending on its

cause: primary and secondary (Durandy et al., 2013; Sánchez-Ramón et al., 2019).

A primary immunodeficiency (PID) is caused by intrinsic factors such as genetic

inheritance or developmental defects. Conversely, a secondary (or acquired) immun-

odeficiency is caused by external factors such as HIV infection or malnutrition. A

famous case of PID is a young boy named David P. Vetter (1971-1983) who had

severe combined immunodeficiency. Mild exposure of typically innocuous pathogen

could be fatal for him, so he was also known as the “bubble boy” by the media, for

his intricate containment system that protected him from immediate surroundings

(Tommasini et al., 2018).

From this complex mechanism of the adaptive immune system, we will mainly

consider proliferation dynamics of B and T cells in this thesis. Although full
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understanding of an immune response requires an inclusion of intricate network

of interactions between various types of immune cells, the proliferation dynamics

provides important clues in illuminating inner workings of the response. In the next

sections, we outline experiment techniques to measure the kinetics at population and

single-cell levels, which will be central to our development of a new mathematical

model and to test it subsequently.

1.3 Experiment methods for measuring lymphocyte

populations

Various experimental techniques have been developed that allow quantitative mea-

surement of the number of cells and division rounds in a population. To have

a greater control on the variables of the experiment, these techniques have been

developed for in vitro studies, i.e. a controlled environment such as a cell culture.

Such system minimises unpredictable interactions between other types of cells or

environments so that outcomes can be reproducible under the same condition. The

other type of study is performed in in vivo setting, where cells are allowed to grow

within a living organism to which they naturally belong. Here, the main complexity

arise as it becomes significantly difficult to keep track of all possible factors that

undergo during the growth, thus, the experiment becomes relatively more sensitive

to the exact settings at the time of the study.

As our main focus in this thesis is identifying the fundamental mechanism that

drives the proliferation of cells rather than results from the complex interactive nature,

we will mainly analyse datasets obtained from in vitro system unless mentioned

otherwise. In the following sections, we will introduce descriptions of frequently

used experiment methods in the literature.

Time-lapse microscopy. One popular approach is taking images of a cell sequen-

tially for a fixed period of time in vitro setting (Hawkins et al., 2009; Downey et al.,

2011; Duffy et al., 2012; Dowling et al., 2014; Chakravorty et al., 2014; Kinjyo et al.,

2015; Shokhirev et al., 2015; Mitchell et al., 2018; Zhou et al., 2018; Cornwell and

Nordon, 2019). Several techniques have been developed to help visualise various

features of lymphocytes behave in these cultures. For example, Sakaue-Sawano et al.

(2008) and his colleagues developed a technique called Fluorescent Ubiquitination-

based Cell Cycle Indicator (FUCCI) in order to observe cells in a different cell cycle
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Fig. 1.2: Profiling cell lineage through microscope experiments.
(top) [Adapted from Movie S1 and Supplementary Fig.2A of Hawkins et al. (2009)]
Bright-field images of B cells in a Terasaki well are taken every 2 minutes for 4-5
days, and each founder cell is manually tracked to ensure accuracy.
(mid) [Adapted from Fig.1 of Duffy et al. (2012)] Using B cells from Blimp1 GFP
reporter mice to track differentiation to antibody-secreting cells (ASCs). Blimp1 is
a transcription factor that is expressed in all ASCs. From this transgenic reporter
mice, cells express a GFP when they differentiated into ASCs.
(bottom) [Adapted from Movie S1 of Mitchell et al. (2018)] Bright-field images are
taken every 3 minutes for 5 days. To generate family tree, phase-contrast images
can be analysed with semi-automated software.
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Fig. 1.3: Characteristic of the cell staining dyes for measuring division
profile. (left) A founder cell in a family is initially stained with fluorescence
substance such as CFSE and CTV (Lyons and Parish, 1994). As the cell divides,
two daughter cells inherit half the intensity from their mother cell regardless of
time at which it divides. (right) An example histogram plot of cell population
binned based on the levels of fluorescence. Each peak represents the number of cells
in particular generation. Grey area is typically a measure of auto-fluorescence in
control population, e.g. unstimulated cells, to determine the maximum division
number that can be resolved before the cells become indistinguishable from their
natural emission of light.

phase. In this system, cells express a Green Fluorescent Protein (GFP; discovered

in 1962 by Shimomura et al. (1962)) during S/G2/M phases, while a red fluorescent

protein is expressed during G1 phase in the cell cycle. Hence, the exact timing

of cell division and death can be accurately tracked, e.g. Dowling et al. (2014).

Other examples, such as studies in Duffy et al. (2012); Zhou et al. (2018), used B

Lymphocyte-Induced Maturation Protein 1 (Blimp1) GFP reporter mice to observe

B cell differentiation to antigen-secreting cells (ASCs). Blimp1 is a transcription

factor known to be critical for ASC differentiation (Kallies et al., 2004). The cells

can be identified as they express GFP during the development (see mid Fig. 1.2).

FUCCI or reporter mice are particularly useful for measuring times at which cells

change their state. However, it is also possible to directly observe without any

fluorescent property exerted in the system (Hawkins et al., 2009; Mitchell et al.,

2018) (see top & bottom Fig. 1.2). The images taken from these methods can be

stacked to reconstruct entire cellular lineages. Time-lapse microscopy has advantages,
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Fig. 1.4: Example time-series data of lymphocyte population for mod-
elling typical immune response. (left) Total number of cells (black solid-line)
and generational information (colour solid-lines) as a function of time. (right) Cell
numbers per generation at harvested time points from the experiment.

including ability to measure the exact timing of cell fates such as division, death

or differentiation for each offspring, heterogeneity in cell life times and generation

information. Using these measurements and with utilisation of mathematical model,

important characteristics of population dynamics have been revealed: (i) the cell

fates are determined autonomously and stochastically as a consequence of compe-

tition between times to these fates (Duffy et al., 2012; Zhou et al., 2018); (ii) the

existence of correlation structure in cell fates so that it is more likely to observe a

symmetric family tree of proliferating B and T cell (Hawkins et al., 2009; Dowling

et al., 2014; Shokhirev et al., 2015; Mitchell et al., 2018), which was extensively

incorporated in mathematical models in Duffy and Subramanian (2009); Wellard

et al. (2010); Markham et al. (2010) for predicting cell numbers.

This imaging technique has a few limitations: (i) the cells cannot be accurately

traced for a long time as cells become numerous in the field of view. This hinders

determining each cell’s relationship across frames; (ii) the cells continuously move

around the medium and begin to form three dimensional structures (Errington et al.,

2005); and (iii) the technique is best optimised for in vitro studies, but difficult to

implement for in vivo system as it is limited by accessibility and depth of the region

of interest. It is possible to perform in vivo experiment with specialised microscope,

for example using intravital microscopy (Celso et al., 2009; Hawkins et al., 2016),

but are typically sampled at lower frame rates and they fail to keep track of cells
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that leave the immediate field of view. Together, the in vitro experiments typically

yield small sample size and possible to track cell division up to 10 generations.

Division tracking via cell staining. The method of division tracking was first

introduced by Lyons and Parish (1994) using a fluorescent dye called carboxyfluo-

rescein diacetate succinimidyl ester (CFSE), and subsequently further developed

and assessed by Quah and Parish (2012); Tempany et al. (2018) for other colours

including Cell Trace Violet (CTV) or Cell Trace Yellow (CTY). It is one of the most

frequently used high-throughput experimental techniques, used particularly in im-

munology, to estimate the population size while tracking the generation information

of proliferating cells. When cells that are initially stained with fluorescent dye divide,

their offspring inherit half of the intensity level from their parent cell. This dilution

property can be used to infer cells in different generations from their fluorescent

intensity through flow cytometry. We illustrate this method in Fig. 1.3. A typical

measurement in most applications of division tracking assay is distribution of cell

population binned across generation that are usually sampled at a particular har-

vested time, but this can be extended for multiple time points to form a time-series

data (see example Fig. 1.4). Recent study in Horton et al. (2018) further refined this

technique to track the offspring of individual clones using multiple distinct colours

of the dyes.

In the following chapters, we will analyse datasets obtained from both time-lapse

microscopy and division tracking assay to verify our assumptions that are crucial in

developing a new lymphocyte population model, and to test the model for drawing

biologically meaningful inferences.

1.4 Models of lymphocyte population dynamics

In the previous section, we introduced two major experimental techniques to study

evolution of cells at single- and population-level. However, due to the non-linear

nature of cell expansion, it is challenging to extract useful information that captures

features of the dynamics. So, many mathematical models that adopt diverse

techniques had been proposed to determine and calculate quantitative features. A

well-known example is the Smith-Martin (SM) model, where the authors suggested

a semi-stochastic two-state model to represent underlying processes governing a

cell’s lifetime (Smith and Martin, 1973). Elegant studies in Pilyugin et al. (2003);
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Bernard et al. (2003); Ganusov et al. (2005) extended the SM model to estimate

biologically important parameters such as birth/death and turn-over rates. Other

approaches like system of ordinary or partial differential equations (ODEs orPDEs)

were substantially used in Revy et al. (2001); Boer and Perelson (2005); Asquith et al.

(2006); Boer et al. (2006); Ganusov et al. (2007); Luzyanina et al. (2007); Banks et al.

(2010, 2011, 2012); Hasenauer et al. (2012); Boer and Perelson (2013); Luzyanina

et al. (2014); Banks et al. (2015); Luzyanina and Bocharov (2018); and, branching

process in Yates et al. (2007); Subramanian et al. (2008); Hyrien and Zand (2008);

Duffy and Subramanian (2009); Wellard et al. (2010); Hyrien et al. (2010); Miao

et al. (2011); Nordon et al. (2011); Duffy et al. (2012); and, statistical/probabilistic

techniques in Hasbold et al. (1999a,b); Deenick et al. (2003); Leon et al. (2004);

Markham et al. (2010); Yates et al. (2017); Pandit and Boer (2019); Amo et al. (2020);

Belluccini et al. (2022). In addition, a complex network of molecular interactions

and signalling pathways (e.g. Beyer et al., 2011) was used to predict population

dynamics (Shokhirev et al., 2015; Mitchell et al., 2018). However, the vast majority

of these models assume that the cell’s fate is independent of its family’s history,

which is inconsistent with previously published experiment results that trace fates in

cell lineages (Hawkins et al., 2009; Duffy et al., 2012; Marchingo et al., 2016; Pham

et al., 2018; Mitchell et al., 2018).

In this section we will describe one particular model called Cyton model (Hawkins

et al., 2007a; Callard and Hodgkin, 2007; Duffy et al., 2012), built on years of con-

ceptualisation and empirical evidence that cells can control multiple fates internally

independently of each other (Gett and Hodgkin, 1998; Deenick et al., 1999; Gett

and Hodgkin, 2000; Rush and Hodgkin, 2001; Tangye et al., 2003a,b; Hodgkin et al.,

2005; Hodgkin, 2005), that allows capturing the growth of a lymphocyte population.

Our intent is to recapitulate the fundamental concept behind this model, and new

empirical findings over the decades that motivates our work in this thesis.

In Hawkins et al. (2007a), authors proposed that the cell fates are governed by

competition of cellular machineries: times to division and to death of a proliferating

cell. They also coined the term division destiny (DD) to refer to the number of

divisions cells underwent before returning to quiescent, or resting, state. These

machineries were assumed to operate independently of each other (Gett and Hodgkin

(2000) introduces the “Law of Independence”). Together with division tracking

assay and the model, a detailed experimental protocol followed by standardised

quantitative framework was introduced in Hawkins et al. (2007b) and implemented
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in Shokhirev and Hoffmann (2013). This model was applied extensively to analyse

B and T cell populations and deduce influences of one or more external signals in

final immune response (Hawkins et al., 2013; Marchingo et al., 2014).

The Cyton model follows two simple rules for dividing lymphocytes: (i) division

and survival operations are repeated through subsequent generation after the first

division and, (ii) upon division, individual cells will draw new division and death times

from the appropriate distribution (see Fig. 2.1A). Formally, let random variables

(RVs) T gdiv and T gdie be the division and death times, respectively, in generation g such

that P (T gdiv < t) and P (T gdie < t) represent probabilities of division and death times

less than time at t ∈ [0,∞). These RVs are assumed to be log-normally distributed

based on empirical observations, although other right-skewed distribution classes

were shown to be well approximating the data, e.g Weibull or Gamma (Hawkins

et al., 2009). A progenitor cell is initially assigned (T 0
div, T

0
die) independently, and

whichever comes first determines the fate of the cell. If T 0
div < T 0

die, then the cell

generates two daughter cells each of which draws new (T 1
div, T

1
die) values, otherwise

the cell is removed from the system. This process repeats so long as the division time

outcompetes the death time for each offspring. With this construct and assuming

that T gdiv and T gdie are independent and identically distributed RVs, we can formalise

number of dividing cells in each generation by following set of equations:

ngdiv(t) =


N0γ0

[
1− P (T 0

die < t)
]
fT 0

div
(t) if g = 0

2γg

∫ t

0

ng−1div (τ) [1− P (T gdie < t− τ)] fT gdiv(t− τ)dτ if g > 0
,

and, for number of dying cells,

ngdie(t) =


N0

[
1− γ0P (T 0

div < t)
]
fT 0

die
(t) if g = 0

2

∫ t

0

ng−1div (τ) [1− γgP (T gdiv < t− τ)] fT gdie(t− τ)dτ if g > 0
,

where N0 is initial total cell numbers, f(·) is probability distribution function (PDF)

and γg ∈ [0, 1] is progressor fraction (i.e. DD) that captures proportion of the

population that will traverse to the next generation in respond to the stimulation.
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Generally, the progressor fraction is defined using normal distribution,

γg =


γ0 if g = 0

P (G > g + 1)

P (G > g)
if g > 0

,
�� ��1.1

where G ∼ N (µ, σ) is normally distributed RV that describes DD given mean (µ)

and standard deviation (σ). The expected total number of cells is

Ng(t) =


N0 −

∫ t

0

n0
div(τ) + n0

die(τ)dτ if g = 0∫ t

0

2ng−1div (τ)− ngdiv(τ)− ngdie(τ)dτ if g > 0

.

This equation is known as the Cyton model. The parameters for division, death

and progressor fraction can be estimated with a population dataset obtained from

division tracking assay using numerical techniques such as in least-squares sense (e.g.

Marquardt, 1963) or via genetic algorithm (e.g. Storn and Price, 1997). We will use

this model as a basis of our work and adapt it by incorporating recent experimental

findings for predicting cell numbers of in vitro systems.

1.5 Thesis outline

In this thesis we will introduce a mathematical model of lymphocyte proliferation

dynamics that, in contrast to earlier versions, include familial correlation structures,

which has been reported in experimental studies for both B and T lymphocytes.

Despite the non-linear nature of the dynamics and the complexity due to the

correlation, we developed a general framework that neither is over-parameterised

nor computationally expensive in data fitting in order to draw meaningful biological

inferences on the lymphocyte population dynamics.

In Chapter 2, we establish the motivation for revisiting the Cyton model (Hawkins

et al., 2007a), and derive a newer mathematical model called Cyton2 that is more

aligned to the recent experimental studies. To do so, we utilise published B cell

data from Hawkins et al. (2009) and primary T cell data, obtained from murine

in vitro single-cell filming experiments, to substantiate two crucial assumptions

embedded in the model: that the cellular machineries (e.g. time to first division)
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are well approximated as being independent of each other, and to establish the best

distribution class that describes the execution time of modules.

In Chapter 3, we fit the Cyton2 model to lymphocyte population datasets that are

generally acquired from division tracking assays (e.g. CFSE or CTV). We first assess

the robustness of the model by systematically removing the information such as the

repeated samples or data points from one or more harvested times, then evaluate

the model extrapolation. Also, we draw similar but alternative interpretation of

the study published in Marchingo et al. (2014) about the linear additive nature of

the co-stimulatory signals in CD8+ T cells. The majority of the work presented in

Chapters 2 and 3 was published in Cheon et al. (2021). All the analyses, model

implementation and datasets are publicly available on a GitHub repository.

In Chapter 4, another important mechanism of the adaptive immunity was explored:

differentiation. In particular, we modelled switching of antibody subclass of B cells,

which is a feature that changes the functional properties but not the specificity of the

antibody, based on the empirical evidence of the underlying molecular regulations.

To do so, a simple probabilistic approach was employed. We published this work in

Horton et al. (2022).

Finally, in Chapter 5, we tested the model for human systems, in particular, to hypo-

and hyper-immune responses from immuno-compromised patients. We identified

key characteristics of these patients in cell population dynamics when compared

to healthy donors and developed a method to quantify health of näıve human B

cells. Also, we questioned the hypothesis of unlikely event of occurring patient-like

immune response from healthy individuals. More specifically, we investigated B cells

from immunodeficient and autoimmune patients and utilised the model to dissect

division modules that led to those aberrant behaviours.

We provided the details of experiments whose output we analysed, as performed by

our collaborators from WEHI, in Appendix A for completeness. The experiment

details of time-lapse microscopy for the primary CD8+ T cell data presented in

Chatper 2 were shown in Section A.1. Methods for the drug experiment, obtained

from the division tracking assay, in Chapter 3 were listed in Section A.3. In Section

A.2, we reported technical details of the differentiation experiment presented in

Chapter 4, performed by Miles B. Horton.
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2
Cyton2: A mathematical model of

lymphocyte population dynamics

2.1 Abstract

Lymphocytes are the central actors in adaptive immune responses. When challenged

with antigen, a small number of B and T cells have a cognate receptor capable

of recognising and responding to the insult. These cells proliferate, building an

exponentially growing, differentiating clone army to fight off the threat, before

ceasing to divide and dying over a period of weeks, leaving in their wake memory

cells that are primed to rapidly respond to any repeated infection. Due to the non-

linearity of lymphocyte population dynamics, mathematical models are needed to

interrogate data from experimental studies. Due to lack of evidence to the contrary

and appealing to arguments based on Occam’s Razor, in these models newly born

progeny are typically assumed to behave independently of their predecessors. Recent

experimental studies, however, challenge that assumption, making clear that there is

substantial inheritance of timed fate changes from each cell by its offspring, calling

for a revision to the existing mathematical modelling paradigms used for information

extraction.

In this chapter, by assessing long-term live-cell imaging of stimulated murine

B and T cells in vitro, we distilled the key phenomena of these within-family

inheritances and used them to develop a new mathematical model, Cyton2, that

encapsulates them. We established the model’s consistency with these newly observed

fine-grained features. Two natural concerns for any model that includes familial

correlations would be that it is overparameterised or computationally inefficient in
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data fitting, but neither is the case for Cyton2. We demonstrate Cyton2’s utility

by challenging it with high-throughput flow cytometry data in Chapter 3, which

confirms the robustness of its parameter estimation as well as its ability to extract

biological meaning from complex mixed stimulation experiments. Cyton2, therefore,

offers an alternate mathematical model, one that is more aligned to experimental

observation, for drawing inferences on lymphocyte population dynamics.

2.2 Introduction

B and T lymphocytes are central contributors to the adaptive immune response.

When exposed to a foreign pathogen with epitopes that are complementary to their

B or T cell receptors, they respond by proliferating to create a clone army capable

of recognising the threat. These cells differentiate into effector cells to fight the

invasion, and into memory cells primed to fend off repeated insults. The population

size of their response, the proportion of cells allocated to distinct differentiated

effector types, the cytokines that they produce, and other key characteristics of

the immune response are known to be heterogeneous but regulable (Kaech et al.,

2002; Duffy et al., 2012; Buchholz et al., 2013; Gerlach et al., 2013). Variables

that influence the outcome include the affinity of the receptor interaction and the

provision of costimulatory signals from other cells (Marchingo et al., 2014). In

the quest to better understand immune responses and therapeutic intervention, it

remains an essential question to determine how signals are integrated to alter cell

fate and how the cells process such information to yield, diverse, yet appropriate

outcomes. Answering this question requires an understanding of operational aspects

of lymphocyte population dynamics, and the influence of signals on individual fates.

When known, quantitative models and analytical techniques can be developed and

used to monitor lymphocyte control under different conditions; they can recreate,

and predict outcomes for complex situations (Duffy et al., 2012; Hodgkin, 2018).

Much of the understanding regarding lymphocyte population dynamics has come

from assessing in vitro experiments. When isolated ex vivo, B and T cells are small,

non-dividing, resting cells that die after a period of time if placed unstimulated

into culture. The provision of activating signals leads to changes that reprogramme

survival times and initiate cell division in quantitative manner (Gett and Hodgkin,

2000; Hawkins et al., 2007a). After an initial period of intense transcriptional changes

and cellular programming, activated cells initiate and undergo division repeatedly,
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before their offspring return to a non-dividing, quiescent state followed ultimately

by death if no further signals, such as cytokines, are received. Thus mathematical

models for immune dynamics must have features that match biological processes

and allow the alteration of division times, the number of cell divisions, the likelihood

of cell death, and rules for how these parameters are altered by changes in signalling

conditions.

Advances in experimental technologies have provided detailed data on lymphocyte

population dynamics that have informed modelling frameworks. A key development

came in 1994 with the discovery that cell divisions could be followed and enumerated

by flow cytometry with fluorescent dye carboxyfluorescein diacetate succinimidyl

ester (CFSE) (Lyons and Parish, 1994), with subsequent developments deriving

distinct colours (Quah and Parish, 2012) including Cell Trace Violet (CTV). After

a short period of culture with these dyes cells become intensely fluorescent and

measurable by flow cytometry. On division, their offspring inherit half their parent’s

dye and so fluoresce with half their intensity. That methodology allows up to eight

distinct generations to be measurable within a single culture by flow cytometry before

fluorescence falls to a level indistinguishable from background. Data from CFSE and

CTV experiments informed, for example, the mathematical models reported in Gett

and Hodgkin (2000); Boer and Perelson (2005); Ganusov et al. (2005); Asquith et al.

(2006); Hawkins et al. (2007a); Luzyanina et al. (2007); Subramanian et al. (2008);

Duffy and Subramanian (2009); Hyrien and Zand (2008); Zilman et al. (2010); Banks

et al. (2011); Miao et al. (2011); Banks et al. (2012); Shokhirev and Hoffmann (2013);

Mazzocco et al. (2017). Many of these models either ignore cell survival or assume

that it is a fixed feature that is independent of the age of cells. Most of these models

also assume age independent division times to make stochastic systems Markovian or

consider only the evolution of the average system, expressed as ordinary differential

equations.

In contrast, directly performing novel experiments for the goal of mathematical

model design, Hawkins et al. (2007a) measured survival over time and concluded

cell age was important to their fate. They also extended earlier work of (Gett and

Hodgkin, 2000) that demonstrated that division and death times could be regulated

independently within the same cell. Based on those data, they proposed a model

where cell age and stochastic operations govern fate outcomes. Their Cyton model

of the cell was named for the putative molecular machinery creating regulable timers

for division and death.
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In the Cyton model, division and death times are heterogeneous in the cell pop-

ulation and so modelled by random variables whose operation appears independent.

Within each cell, the two timers are in competition, where whichever one completes

its operation first determines the fate of the cell. This model structure gives rise to

the prediction of distinctive correlations that are observed in data (Duffy et al., 2012).

In the absence of detailed information on individual cells and their offspring, the

Cyton model assumed that timers were independently reset at each generation. To

complete the Cyton model, an additional component was introduced: the number of

divisions cells underwent before cessation of expansion and their return to quiescence.

This parameter, termed division destiny (DD), was described by a probability of

continuing motivation to divide after each cell division (Turner et al., 2008).

Thus, in the Cyton model a cell would divide rapidly for a period when division

times outcompeted death times. The fate of a cell that stops dividing by triggering

division destiny is then solely governed by its final death time. By adjusting the

probability distributions of division, death and destiny, the model recreated typical

immune cell population dynamics without further ad hoc assumptions (Hawkins

et al., 2007a; Subramanian et al., 2008; Lee et al., 2009; Wellard et al., 2011). After

its development, the Cyton model was successfully used as a tool in important studies

that extracted information on key features controlling immune dynamics (Hawkins

et al., 2013; Shokhirev and Hoffmann, 2013; Marchingo et al., 2014; Shokhirev et al.,

2015; Mitchell et al., 2018). Some of the assumptions on which the Cyton model

was based were unobserved facets, and needed further experimental confirmation

for their suitability. In particular, questions of familial correlation needed to be

addressed by time-lapse microscopy and other, similarly capable, methods.

Stimulated lymphocytes typically aggregate, adhering together, making individual

cell tracking by microscopy difficult or impossible. However, Hawkins et al. (2009)

noted that B cells stimulated by the Toll-like receptor agonist CpG DNA exhibited

the population dynamics typical of standard immune responses, but remained

separated and individually identifiable (Hawkins et al., 2009). Using microscopy, the

authors tracked over 180 individual family trees enabling statistical features such

as dependencies to be assessed. Strikingly, it became apparent that division and

death times of siblings were highly correlated. Further, division destiny, the number

of divisions cells undergo before returning to quiescence, was a strongly familial

feature (Hawkins et al., 2009). This conclusion, which ran contrary to assumptions

underlying all previous mathematical models, was examined and further extended in
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subsequent studies Duffy and Subramanian (2009); Markham et al. (2010); Wellard

et al. (2010); Duffy et al. (2012); Dowling et al. (2014); Shokhirev et al. (2015);

Mitchell et al. (2018). In a parallel development, a division dye multiplex method,

which provides less lineage information than live cell imaging, but has higher

throughput for identifying families, was developed (Marchingo et al., 2016; Horton

et al., 2018). When used with antigen stimulated CD8+ T cells, similar familial

features to those observed directly for B cells were reported.

In addition to those population dynamics studies, the proto-oncogene Myc was

identified as a molecular correlate that explained one important aspect of familial

sharing of information. Results in Heinzel et al. (2017) established that in B and

T cells Myc levels increase in response to mitogenic stimuli, and, so long as levels

are sustained above a critical threshold, these cells lose their motivation for further

division and re-enter quiescence. Crucially, that experimental work established

that the time between cell divisions was uncoupled from the Myc level. Further,

importantly, Myc levels altered over time, diminishing late in culture, but the

kinetics of change were transmitted to offspring without being affected by mitosis.

Taken together, these results indicate that the control of division destiny should be

viewed as being timed, rather than counted by cell division (Heinzel et al., 2017).

The familial inheritance of division destiny was consistent with the high correlations

in fate within clonal families that were reported for both B and T cells (Hawkins

et al., 2009; Duffy et al., 2012; Marchingo et al., 2016; Zhou et al., 2018; Horton

et al., 2018). Heinzel et al. (2017) also reported evidence that time to death under

these conditions was also programmed early in the stimulated cell and passed to

descendants without being altered in a manner analogous to the transmission of the

division destiny times. As a result, the fate of whole family members can be highly

concordant while allowing significant variation of the times between families from

an otherwise homogeneous cell population.

Collectively, these findings suggest alterations to current model paradigms are

necessary. While the Cyton model was correct in its assessment of competing timers,

assigning them to families rather than individual cells is more consistent with these

data. In the following sections, we propose a new Cyton model where familial

inheritance of times for destiny and survival fates are included. We examine datasets

from time-lapse microscopy of B and CD8+ T cell families, and interrogate these

data to investigate consistency with timed outcomes. We measure correlation in

the likelihood of each alternative fate and determine a suitable class of parametric

19



2.2. INTRODUCTION

C
or

re
la

te
d

Inherit Destiny
Inherit Death

A B

In
iti

al
 ra

nd
om

 a
ss

ig
nm

en
ts

T 0
div

<latexit sha1_base64="AkZl/YgIah8WZhQ1vk5XMES05wU=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4KkkV2+4KblxW6EvasWQymTY0kxmSTKEM/Qo3LhRx6+e482/MtBVU9MCFwzn3cu89Xiy4Ngh9OLm19Y3Nrfx2YWd3b/+geHjU0VGiKGvTSESq5xHNBJesbbgRrBcrRkJPsK43uc787pQpzSPZMrOYuSEZSR5wSoyV7lrD1OfT+T0aFkuojBDCGMOM4OoVsqRer1VwDeLMsiiBFZrD4vvAj2gSMmmoIFr3MYqNmxJlOBVsXhgkmsWETsiI9S2VJGTaTRcHz+GZVXwYRMqWNHChfp9ISaj1LPRsZ0jMWP/2MvEvr5+YoOamXMaJYZIuFwWJgCaC2ffQ54pRI2aWEKq4vRXSMVGEGptRwYbw9Sn8n3QqZXxRrtxelhqNVRx5cAJOwTnAoAoa4AY0QRtQEIIH8ASeHeU8Oi/O67I156xmjsEPOG+f/BKQiA==</latexit>

Tdie
<latexit sha1_base64="X2q6NM1ojs7fGj4SlS400ftNDGk=">AAAB7nicdVDLSsNAFJ34rPVVdelmsAiuQpKGtu4KblxW6AvaUCaTm3bo5MHMRCihH+HGhSJu/R53/o2TtoKKHrhwOOde7r3HTzmTyrI+jI3Nre2d3dJeef/g8Oi4cnLak0kmKHRpwhMx8IkEzmLoKqY4DFIBJPI59P3ZTeH370FIlsQdNU/Bi8gkZiGjRGmp3xnnAYPFuFK1zOtm3XHr2DItq2E7dkGchltzsa2VAlW0RntceR8FCc0iiBXlRMqhbaXKy4lQjHJYlEeZhJTQGZnAUNOYRCC9fHnuAl9qJcBhInTFCi/V7xM5iaScR77ujIiayt9eIf7lDTMVNr2cxWmmIKarRWHGsUpw8TsOmACq+FwTQgXTt2I6JYJQpRMq6xC+PsX/k55j2jXTuXOrrdY6jhI6RxfoCtmogVroFrVRF1E0Qw/oCT0bqfFovBivq9YNYz1zhn7AePsEzfOP4Q==</latexit>

C

<latexit sha1_base64="nCQjWmrfRRg3sMqnil7z31sKTTw=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0VwFTKhbbosunFZoS9oQ5lMJu3YySTMTIQS+g9uXCiIW7/HnX/j9CGo6IELh3Pu5d57gpQzpR3nwypsbG5t7xR3S3v7B4dH5eOTrkoySWiHJDyR/QArypmgHc00p/1UUhwHnPaC6fXC791TqVgi2nqWUj/GY8EiRrA2Urc9ysNwPipXHBu5LqrXoWPXqp5T8wxx6q7XQBDZzhIVsEZrVH4fhgnJYio04VipAXJS7edYakY4nZeGmaIpJlM8pgNDBY6p8vPltXN4YZQQRok0JTRcqt8nchwrNYsD0xljPVG/vYX4lzfIdNTwcybSTFNBVouijEOdwMXrMGSSEs1nhmAimbkVkgmWmGgTUMmE8PUp/J/0XBtVbYRuq5Xm1TqPIjgD5+ASIOCBJrgBLdABBNyBB/AEnq3EerRerNdVa8Faz5yCH7DePgGiiI+o</latexit>

Tdd

<latexit sha1_base64="DrA650Oe4A9L2fFx3sYH78VVsNE=">AAAB8XicdVDLSgMxFM34rPVVdekmWARXw0xb7XRXdOOyQmsr7VgymUwbmmSGJFMoQ7/CjQsFcevfuPNvTB+Cih64cDjnXu69J0gYVdpxPqyV1bX1jc3cVn57Z3dvv3BweKviVGLSwjGLZSdAijAqSEtTzUgnkQTxgJF2MLqa+e0xkYrGoqknCfE5GggaUYy0ke6a/Syk4+m92y8UHdv1ql65DA1xzivVC0NqNa/kOdC1nTmKYIlGv/DeC2OcciI0Zkiprusk2s+Q1BQzMs33UkUShEdoQLqGCsSJ8rP5wVN4apQQRrE0JTScq98nMsSVmvDAdHKkh+q3NxP/8rqpjjw/oyJJNRF4sShKGdQxnH0PQyoJ1mxiCMKSmlshHiKJsDYZ5U0IX5/C/0m7ZLsV23VvKsX65TKPHDgGJ+AMuKAK6uAaNEALYMDBA3gCz5a0Hq0X63XRumItZ47AD1hvn8oRkOM=</latexit>

T 1
div

Gen. 0

Activation No more division

Global Death Timer

Cell 
family 
dies

Time

Re
se

t

<latexit sha1_base64="SrJ8aEqNQh50X7ZP7d4xnao7lWg=">AAAB8XicdVDLSgMxFM34rPVVdekmWARXw0xb7XRXdOOyQmsr7VgymUwbmmSGJFMoQ7/CjQsFcevfuPNvTB+Cih64cDjnXu69J0gYVdpxPqyV1bX1jc3cVn57Z3dvv3BweKviVGLSwjGLZSdAijAqSEtTzUgnkQTxgJF2MLqa+e0xkYrGoqknCfE5GggaUYy0ke6a/Syk4+l9qV8oOrbrVb1yGRrinFeqF4bUal7Jc6BrO3MUwRKNfuG9F8Y45URozJBSXddJtJ8hqSlmZJrvpYokCI/QgHQNFYgT5Wfzg6fw1CghjGJpSmg4V79PZIgrNeGB6eRID9Vvbyb+5XVTHXl+RkWSaiLwYlGUMqhjOPsehlQSrNnEEIQlNbdCPEQSYW0yypsQvj6F/5N2yXYrtuveVIr1y2UeOXAMTsAZcEEV1ME1aIAWwICDB/AEni1pPVov1uuidcVazhyBH7DePgHLlpDk</latexit>

T 2
div

Gen. 1 Gen. 2 Gen. 3

In
iti

al
 ra

nd
om

 a
ss

ig
nm

en
ts

Cyton1 (Hawkins et al. 2007) Cyton2: Correlation and Inheritance Features

Concept of Cyton2 & Clonal Collapse of a Family Tree

Global Destiny Timer

Fig. 2.1: Overview of the two Cyton models. (A) The original Cyton model
(Hawkins et al., 2007a) where stochastic times to divide and to die are chosen
independently after each cell division. Cells cease their motivation to divide based
on division-counting mechanism. (B) The Cyton2 model incorporates significant
correlation in division times between siblings, as well as familial inheritance of death
and division destiny times. (C) A consequence of the correlation and inheritance
is that the resulting family trees are heterogeneous, but highly concordant. By
exploiting this property, a family tree can be summarised by substituting the average
values of its times and fate at each generation. An example of clonally collapsed
family tree and its key variables is shown.
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2.3. MODEL STRUCTURE

distributions for their description. The proposed model is constructed such that

identifiability is improved while computational model fitting burden over the earlier

Cyton model is not increased. We use the model to interrogate CTV stained datasets

obtained using flow cytometry, illustrating its utility and efficacy when used with

both B and T cells.

2.3 Model structure

Recent experimental findings suggest three important modifications to the original

Cyton model for stimulus-induced proliferation bursts (Fig. 2.1A): 1) division destiny

should be converted to a division-agnostic, family-based timed mechanism, replacing

the original generation counter; 2) both division destiny and death times should

be programmed early after each lymphocyte’s activation and applied globally to

the ancestor’s offspring; and 3) family members of the same generation should have

essentially the same division time. As has been observed experimentally (Hawkins

et al., 2009; Marchingo et al., 2016; Horton et al., 2018; Mitchell et al., 2018),

the resulting family trees of activated lymphocytes derived from a single founder

cell, and hence clones, according to Cyton2 rules are largely regular (Fig. 2.1B).

Thus we posit the new Cyton2 stochastic model using sets of random variables

that corresponds to a global death timer, a global destiny timer, and division-time

machinery (Fig. 2.1C).

The development of each family tree in Cyton2 is fully described by a collection of

independent, non-negative, real-valued random variables: (T 0
div, {T kdiv}k≥1, Tdd, Tdie).

Three of these describe times from the addition of stimulus: the time to first division

T 0
div; the time to familial division destiny Tdd, encapsulating the licence to divide

period; and the time to familial death Tdie. The last set of random variables,

{T kdiv}k≥1 are the times from each mitosis to the next, should it complete before

division destiny or death occurs. From these random variables, a family tree is

created according to the following rules:

• Founding cells that give rise to familial clones are initially quiescent, unrelated

and autonomous.

• All cells in the family die at Tdie.

• The family proliferates until min(Tdie, Tdd).
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A B cell (B-exp1)

B B cell (B-exp2)

Fig. 2.2: Example family and clonally collapsed trees of CpG-stimulated
B cells in the filming datasets. Each panel shows one family. A horizontal line
represents the lifetime of a cell in dividing ( ), dying ( ), or lost ( ) state.
Clonally collapsed tree is shown as a single time-line ( ) below the family tree.
Time to first division (•), average time to last division (•), average time to death
(×) and average subsequent division time (tk≥1div ) are annotated on the collapsed line.
These values are shown in the legend. (A) Experiment CpG-stimulated B cells
(B-exp1). (B) Repeat of B cell experiment (B-exp2).

• At time t < min(Tdie, Tdd), cells in the family are in generation G(t) = max{g :∑g
k=0 T

k
div < t}.

To properly assess the appropriateness of the Cyton2 as a fine-grained description

required time-lapse microscopy data. To that end we re-analysed previously published

B cell data sets as well as new, primary CD8+ T cell datasets.

2.4 Analysing data to investigate the model assump-

tions

2.4.1 Time-lapse microscopy of B and T cell families

For B cells, we revisited two datasets for CpG-stimulated B cells published in

Hawkins et al. (2009) consisting of 108 clones (B-exp1) and 88 clones (B-exp2),
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A B cell (B-exp1): Clonal Collapse C B cell (B-exp1): Correlation

B B cell (B-exp1): Cascade Plot

Fig. 2.3: Extracting times to fates from CpG-stimulated B cells (A) Clon-
ally collapsed family trees of B cells. (B) Rank ordered times to events of families.
(C) Correlation coefficient (ρ) estimated using bivariate normal distribution with
95% credible interval is reported for each pair. 90%, 95% and 99% density regions
are plotted over the data. For null, H0: ρ = 0, and alternative, H1: ρ 6= 0, hypothe-
ses, Bayes Factors (BF01 = 1/BF10) were calculated. If the data is more probable
under H0, then it is BF01 times more favoured than H1 (blue-scale), and vice versa
(red-scale). Distributions of the times are collated into 1 hour time intervals and
shown in the diagonal panels.
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A CD8+ T cell [1U, 3U, 10U IL-2]: Clonal Collapse C CD8+ T cell [3U IL-2]: Correlation

B CD8+ T cell [3U IL-2]: Cascade Plot

Fig. 2.4: Extracting times to fates from CD8+ T cells in the presence
of 1U, 3U or 10U IL-2. (A) Clonally collapsed family trees of T cells. (B)
Rank ordered times to events of families. (C) Correlation coefficient (ρ) estimated
using bivariate normal distribution with 95% credible interval is reported for each
pair. 90%, 95% and 99% density regions are plotted over the data. For null, H0:
ρ = 0, and alternative, H1: ρ 6= 0, hypotheses, Bayes Factors (BF01 = 1/BF10)
were calculated. If the data is more probable under H0, then it is BF01 times more
favoured than H1 (blue-scale), and vice versa (red-scale). Distributions of the times
are collated into 1 hour time intervals and shown in the diagonal panels.
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respectively. These datasets had not been analysed for timed global features but

had revealed strong familial correlations previously (Duffy and Subramanian, 2009;

Hawkins et al., 2009; Markham et al., 2010; Wellard et al., 2010). Thus, to explore

familial features we first transformed the data for each family, collapsing the tree

into average features (see Section 2.4.4 for method). This process is illustrated

in Fig. 2.1C and was applied to each B cell family as shown in Figs. 2.2 and

2.3A. Measurements corresponding to key Cyton2 variables are further illustrated

in the cascade plots Fig. 2.3B with the exception of the time to division destiny

(Tdd) as it cannot be identified directly in data. Instead, the time to last division

(Tld), which is necessarily a lower bound, was used as a proxy for it. These data

reconfirmed the well-established understanding that times to first division, ≈40

hours, are substantially longer than times to subsequent divisions. These data also

confirmed the relatively consistent subsequent division times (≈10 hours) and the

strong correlation times between progeny cells within a given generation in each

family.

Using these measurements, we evaluated the discrepancy between Cyton2’s

approximation of perfect within-family correlation in subsequent division time (T kdiv),

time to last division (Tld), and time to death (Tdie). We calculated coefficient of

variation (CV) per clone, and evaluated the average CV for each variable. For T kdiv,

Tld and Tdie, we identified 17.2%, 7.3%, and 9.4%, respectively, as average CVs for

B-exp1. Similar results were found for B-exp2 (see Fig. 2.5A1). This signifies low

variation around the mean times to fates within families, and is consistent with

previously reported synchronous behaviour. We then questioned the independence

of the variables operating at the clone level using information from the collapsed

clones. Here, for statistical purposes, we extracted the time to first division, average

subsequent division time (T k≥1div ), average time to last division, and average time to

death, as the four key variables per clone. For every pair, the correlation coefficient

(ρ) and its 95% credible interval were determined using a Bayesian approach. For

these data, the Bayes Factor (BF) for competing hypotheses (H0 : ρ = 0 and

H1 : ρ 6= 0) were calculated (see Section 2.4.6) (Fig. 2.3C) and tabulated in Table

2.1. With the exception of the pair (Tld, Tdie), CpG-stimulated B cells showed little

to no correlation between any pair of variables, with H0 being favoured. While

at first glance the exception may appear suggestive of shared regulation, another

explanation is possible, which is examined in the next section.

Extending the analysis to T cells, we also interrogated three primary data sets
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A1 Repeat B cell (B-exp2): Cascade Plot A2 Repeat B cell (B-exp2): Correlation

B1 CD8+ T cell [1U IL-2]: Cascade Plot B2 CD8+ T cell [1U IL-2]: Correlation

C1 CD8+ T cell [10U IL-2]: Cascade Plot C2 CD8+ T cell [10U IL-2]: Correlation

Fig. 2.5: Extracting
times to fates from the
repeat of CpG-stimulated
B cells and CD8+ T cells
in the presence of 1U
or 10U IL-2. For CD8+

T cell data, measurements
from two independent but
identical experiment setup
are aggregated. (A1,B1,C1)
Four key Cyton2 variables,
T 0
div, {T kdiv}k≥1, Tld (replacing
Tdd as a proxy measure)
and Tdie for all cells in each
family are shown as a series
of cascade plots. Average
coefficient of variation (CV)
for each variable is annotated.
The lost cells are not shown.
(A2,B2,C2) Pair-plot of the
Cyton2 variables. Distribu-
tions of the times are collated
into 1 hour time interval and
shown in the diagonal panels.
Correlation coefficient (ρ)
was estimated using bivariate
normal distribution with 95%
credible interval for each pair.
90%, 95% and 99% density
regions are plotted over the
data. Given two hypotheses
(H0: ρ = 0 and H1: ρ 6= 0),
Bayes Factor (BF01 = 1/BF10)
was calculated. If the data is
more probable under H0, then
it is BF01 times more favoured
than H1 (blue-scale), other-
wise H1 is BF10 (red-scale)
times more favoured than H0.
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A1 A2

A4

B1 B2

B3 B4

T-exp1 T-exp2

CD8+ T cells [N4] CD8+ T cells [N4+!CD28]

CD8+ T cells [N4+IL-2] CD8+ T cells [N4+!CD28+IL-2]

CD8+ T cells [N4] CD8+ T cells [N4+!CD28]

CD8+ T cells [N4+IL-12] CD8+ T cells [N4+!CD28+IL-12]A3

Fig. 2.6: Extracting times to fates from CD8+ T cell costimulation ex-
periments. Four key Cyton2 variables, T 0

div, {T kdiv}k≥1, Tld (replacing Tdd as a proxy
measure) and Tdie for all cells in each family are shown as a series of cascade plots.
Average coefficient of variation (CV) for each variable is annotated. The lost cells
are not shown. (A1-4) Experiment T-exp1 consists of N4 only, N4 + αCD28, N4 +
IL-2 and N4 + αCD28 + IL-2. (B1-4) Experiment T-exp2 constists of N4 only, N4
+ αCD28, N4 + IL-12 and N4 + αCD28 + IL-12.

of time-lapse microscopy of murine CD8+ T cells not previously published. In each

dataset, TCR transgenic OT-I CD8+ T cells specific for the SIINFEKL (N4) peptide

from the chicken ovalbumin protein (Hogquist et al., 1994) were first stimulated

with αCD3 or cognate peptide N4 along with a range of costimulatory signals and

strengths for 24 hours. In the first dataset (i) the cells were stimulated with αCD3

and co-incubated with 1U/mL, 3U/mL or 10U/mL of the T-cell growth factor IL-2.

IL-2 level was buffered by neutralising endogenously produced IL-2 with blocking

antibody S4B6, and adding human IL-2 at the nominated concentration (Deenick

et al., 2003). By combining datasets obtained from two independent repeats, 109,

90 and 163 clones were recorded. In (ii), the combination of N4, αCD28 and IL-2

were used (T-exp1); and, in experiment (iii) the combination of N4, αCD28 and
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IL-12 (T-exp2). Details for live imaging and data extraction are given in Methods.

In Fig. 2.4, results from CD8+ T cell dataset (i) are aggregated and analysed as

for B cells. Similar to B cells, we observed longer times to first division (≈40h)

than the subsequent division times (≈18h) for 1U, 3U and 10U of IL-2. Also, the

spread of the times within a family show similar or lower average CVs than that

of B cells (Fig. 2.4B for 3U; see Fig. 2.5B1,C1 for 1U and 10U). We applied the

same calculation to (ii) and (iii) datasets and reached the same conclusions (see

Fig. 2.6 for T-exp1 and T-exp2). Taken together, we conclude CD8+ T cells exhibit

synchronous fates, similar to observations from B cells. However, in contrast to B

cells, moderate to strong correlation coefficients were observed (Fig. 2.4C; see Fig.

2.5B2,C2 for 1U and 10U). These were further supported by BF calculations, which

show strong evidence in favour of H1. We noticed the same results for T-exp1 and

T-exp2 datasets (Table 2.1).

At face value, as with the pair (Tld, Tdie) for B cells, these data are suggestive of a

lack of stochastic independence between underlying timers. An alternate explanation

is, however, possible and we next sought to challenge it.

2.4.2 Induced dependency through right censoring of timers

Informed by earlier data, in constructing Cyton2 we assumed that (T 0
div, {T kdiv}k≥1, Tdd, Tdie)

were independent random variables describing times to familial events. In the data,

however, not all of them are observable due to a phenomenon called right-censoring.

In particular:

• If T 0
div or T kdiv is greater than either of Tdd or Tdie, it is not observed in the

data.

• If Tdd is greater than Tdie, it is not observed in the data.

Even if the underlying random variables are independent, right-censoring neces-

sarily induces correlation in times observed in data (Duffy et al., 2012; Duffy and

Hodgkin, 2012) where the greater the competition in these times, the stronger the

observed correlation. While these earlier demonstrations of censorship-induced cor-

relations were seen within one generation, we explored the possibility that heritable

fates times across multiple generations could also lead to a similar effects.

In Section 2.4.1, most of the variable pairs for B cell families were reported to

be more probable under the no-correlation hypothesis, while for the CD8+ T cell
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Cell

Type
Stimulation

Number of clones (N) & Bayes Factora (BF01 = 1/BF10) & Correlation Coefficient (ρ [CI])

(T 0
div, T

k≥1
div ) (T 0

div, Tld) (T 0
div, Tdie) (T k≥1div , Tld) (T k≥1div , Tdie) (Tld, Tdie)

B

CpG (B-exp1)

N = 56

BF01 = 1.05

0.24 [0.01, 0.48]

N = 69

BF01 = 3.92

0.12 [-0.10, 0.35]

N = 69

BF01 = 5.12

0.09 [-0.14, 0.31]

N = 56

BF01 = 6.00

0.0 [-0.25, 0.25]

N = 56

BF01 = 2.82

0.16 [-0.08, 0.40]

N = 69

BF10 > 100

0.57 [0.42, 0.72]

CpG (B-exp2)

N = 63

BF01 = 6.31

-0.02 [-0.25, 0.22]

N = 73

BF10 > 100

0.44 [0.26, 0.62]

N = 73

BF10 = 3.33

0.28 [0.08, 0.48]

N = 63

BF10 = 1.04

-0.24 [-0.46, -0.01]

N = 63

BF01 = 6.36

0.00 [=0.24, 0.24]

N = 73

BF10 > 100

0.58 [0.43, 0.73]

CD8+ T

1U IL-2

N = 4

BF01 = 1.70

-0.01 [-0.86, 0.85]

N = 28

BF10 = 39.09

0.55 [0.29, 0.78]

N = 28

BF01 = 2.53

0.19 [-0.15, 0.53]

N = 4

BF01 = 1.53

-0.15 [-0.96, 0.71]

N = 4

BF01 = 1.43

0.20 [-0.66, 0.98]

N = 28

BF10 > 100

0.59 [0.35, 0.81]

3U IL-2

N = 13

BF10 = 17.17

0.67 [0.36, 0.93]

N = 34

BF10 = 50.05

0.52 [0.28, 0.75]

N = 34

BF10 = 1.46

0.32 [0.03, 0.61]

N = 13

BF10 = 28.96

0.70 [0.41, 0.94]

N = 13

BF10 = 3.13

0.52 [0.12, 0.87]

N = 34

BF10 > 100

0.64 [0.44, 0.82]

10U IL-2

N = 16

BF10 = 7.55

0.57 [0.23, 0.86]

N = 50

BF10 > 100

0.58 [0.41, 0.75]

N = 50

BF10 = 15.39

0.40 [0.18, 0.62]

N = 16

BF10 > 100

0.76 [0.55, 0.94]

N = 16

BF10 = 1.56

0.42 [0.02, 0.79]

N = 50

BF10 > 100

0.63 [0.46, 0.78]

CD8+ T

(T-exp1)

N4
N < 2

NA

N = 20

BF10 > 100

1.00 [1.00, 1.00]

N = 20

BF10 = 8.31

0.53 [0.22, 0.82]

N < 2

NA

N < 2

NA

N = 20

BF10 = 8.31

0.53 [0.22, 0.82]

N4 + αCD28
N < 2

NA

N = 19

BF10 = 85.63

0.67 [0.42, 0.89]

N = 19

BF10 = 18.83

0.59 [0.30, 0.86]

N < 2

NA

N < 2

NA

N = 19

BF10 = 60.52

0.66 [0.40, 0.89]

N4 + IL-2

N = 4

BF01 = 1.30

0.24 [-0.64, 0.99]

N = 28

BF10 = 29.98

0.54 [0.28, 0.78]

N = 28

BF10 = 2.09

0.38 [0.06, 0.67]

N = 4

BF01 = 1.31

-0.24 [-0.99, 0.63]

N = 4

BF01 = 1.58

-0.12 [-0.96, 0.73]

N = 28

BF10 > 100

0.69 [0.49, 0.87]

N4 + αCD28 + IL-2

N = 13

BF10 = 4.17

0.55 [0.17, 0.89]

N = 33

BF10 = 1.03

0.30 [-0.01, 0.59]

N = 13

BF01 = 3.28

0.14 [-0.18, 0.45]

N = 13

BF01 = 1.26

0.33 [-0.14, 0.78]

N = 33

BF01 = 1.77

0.26 [-0.23, 0.72]

N = 33

BF10 > 100

0.71 [0.54, 0.87]

CD8+ T

(T-exp2)

N4

N = 12

BF10 = 15.12

0.68 [0.35, 0.94]

N = 27

BF01 = 2.04

0.22 [-0.13, 0.56]

N = 27

BF01 = 2.31

0.20 [-0.15, 0.54]

N = 12

BF10 = 2.69

0.52 [0.10, 0.89]

N = 12

BF10 = 3.53

0.55 [0.15, 0.90]

N = 27

BF10 > 100

0.95 [0.91, 0.98]

N4 + αCD28

N = 12

BF01 = 1.34

0.33 [-0.18, 0.78]

N = 17

BF01 = 2.84

0.13 [-0.32, 0.57]

N = 17

BF01 = 2.75

0.15 [-0.30, 0.59]

N = 12

BF01 = 2.82

-0.02 [-0.55, 0.52]

N = 12

BF01 = 1.48

0.30 [-0.19, 0.78]

N = 17

BF10 > 100

0.83 [0.67, 0.96]

N4 + IL-12

N = 9

BF10 = 14.97

0.74 [0.41, 0.98]

N = 13

BF01 = 2.58

0.13 [-0.38, 0.63]

N = 13

BF01 = 2.39

0.17 [-0.34, 0.66]

N = 9

BF01 = 2.21

0.14 [-0.48, 0.72]

N = 9

BF01 = 2.24

0.13 [-0.48, 0.73]

N = 13

BF10 > 100

0.95 [0.88, 0.99]

N4 + αCD28 + IL-12

N = 7

BF01 = 1.33

0.32 [-0.33, 0.90]

N = 11

BF01 = 2.47

0.12 [-0.43, 0.66]

N = 11

BF01 = 2.48

0.12 [-0.44, 0.66]

N = 7

BF01 = 1.00

0.40 [-0.23, 0.93]

N = 7

BF10 = 1.16

0.44 [-0.17, 0.95]

N = 11

BF10 = 29.19

0.74 [0.45, 0.96]

aBF Interpretation: Anecdotal (1 < BF ≤ 3); Moderate (3 < BF ≤ 10); Strong (10 < BF ≤ 30); Very strong (30 < BF ≤ 100); Extreme (BF > 100)

Table 2.1: Bayesian independence test of the times to fates extracted
from B and CD8+ T cell filming datasets. For each pair of the times to fates,
the correlation coefficient was estimated with 95% credible interval using bivariate
normal distribution and Bayes Factor (BF) was calculated. Given two hypotheses
(H0: ρ = 0 and H1: ρ 6= 0), if the data is more probable under H0, then it is BF01

(blue-scale) times more favoured than H1, otherwise H1 is BF10 (red-scale) times
more favoured than H0. The variable pairs that marked with N < 2 or NA indicate
that the analysis could not be performed, for it requires minimum of two clones to
be observed in the sample.
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2.4. ANALYSING DATA TO INVESTIGATE THE MODEL ASSUMPTIONS

families we found mixed results. The key difference between the two datasets is

the depth of the trees: many of the B cell families had divided six times, whereas

the CD8+ T cell families had divided at most three times (Figs. 2.3B and 2.4B).

This suggests the possibility that more of the variables are rendered unobserved for

the CD8+ T cell families. To challenge that possible explanation, we simulated a

Cyton2 process with an agent-based model (see Section 2.4.5). As Tdd is not directly

observable in data, we use Tld as a proxy for it. As Tdd ≥ Tld, this approximation

may lead to an increase in the level of induced censorship. Under the assumption

that Tld = Tdd, each variable was independently sampled from respective lognormal

distributions that were fit to the data (see Section 2.4.3). In Fig. 2.7A, three

example realisations of family trees are shown for a parameterisation corresponding

to CpG-stimulated B cells.

For B cells, with each point representing a single family, the underlying simulated

variable values as well as those that would appear in the data due to the right-

censorship described above are shown in Fig. 2.7B. By construction, the BFs for

each pair in the underlying timers favour the null hypothesis (H0 : ρ = 0). For

the right-censored values that would be observed in practice, however, the BFs

are consistent with the experimental data in favouring the alternative hypothesis

(H1 : ρ 6= 0) for some pairs (Table 2.2). As the underlying Tdie distribution is well

separated from the T 0
div distribution for these data, it is unlikely that death would

censor the time to first division, hence, it explains why the absence of correlation in

the observed data is favoured in that case. Similar results were found for B-exp2.

We followed a similar protocol for the CD8+ T cell data where a higher degree of

right-censorship occurs due to the underlying distributions having greater overlap

(Fig. 2.8). The BFs of all right-censored pairs were in favour of H1, indicating

strong correlation between times to fates for CD8+ T cells are to be expected in

the observed data as a result of high degree of right-censorship. Thus, despite the

temporal-correlations observed in the data, right-censorship supports our assumption

in the Cyton2 model that the underlying stochastic variables are independent. This

statistical conclusion complements the experimental evidence for fate independence

obtained by slowing division times and preventing cell death without altering other

outcomes (Heinzel et al., 2017).
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A MC Realisation B B cell (B-exp1)

Fig. 2.7: Simulation under the independence assumption. 106 Cyton2
families were simulated given fitted lognormal distributions of T 0

div, T
k≥1
div , Tld, Tdie

from respective filming datasets. (A) Three example families from MC simulation
parameterised as CpG-stimulated B cells: dividing ( ) and dying ( ) states. The
realisations of T 0

div (•), T k≥1div (tk≥1div ), Tld (•), Tdd (?) and Tdie (×) are annotated on
a collapsed line. As a feature of inheritance, the progeny cells double in number
synchronously whenever division occurs, and likewise, they reach destiny and death
at the same time. (B) For all simulated families, each variable was randomly sampled
from the fitted Cyton distribution (inset), and the samples are labeled as true sample
time (•). Their corresponding observable sample times (•) are shown along with
the data points (•) from the filming datasets. Distributions of the sampled true and
observable times of each variable are shown in the diagonal panels. The observable
and unobservable regions are separated by upper and lower sections of y = x line
( ), respectively. The Bayes factors are reported for the true and observable pairs.

31
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A CD8+ T cell [1U IL-2]

CD8+ T cell [3U IL-2]B

CD8+ T cell [10U IL-2]C

Fig. 2.8: Simulation under
the independence assump-
tion. 106 Cyton2 families were
simulated given fitted lognor-
mal distributions of T 0

div, T
k≥1
div ,

Tld, Tdie from respective film-
ing datasets. For all simulated
families, each variable was ran-
domly sampled from the fit-
ted Cyton distribution (inset),
and the samples are labeled as
true sample time (•). Their
corresponding observable sam-
ple times (•) are shown along
with the data points (•) from
the filming datasets. Distribu-
tions of the sampled true and
observable times of each vari-
able are shown in the diago-
nal panels. The observable and
unobservable regions are sepa-
rated by upper and lower sec-
tions of y = x line ( ), re-
spectively. The Bayes factors
are reported for the true and
observable pairs. (A) 1U IL-2.
(B) 3U IL-2. (C) 10U IL-2.
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Cell

Type
Stim.

Percentage of number of observable times (NObs./NTrue) & Bayes Factora (BF01 = 1/BF10)

(T 0
div, T

k≥1
div ) (T 0

div, Tld) (T 0
div, Tdie) (T k≥1div , Tld) (T k≥1div , Tdie) (Tld, Tdie)

True Obs. True Obs. True Obs. True Obs. True Obs. True Obs.

B (B-exp1) CpG BF01 = 71.91
63.2%

BF10 > 100
BF01 = 67.76

91.4%

BF10 > 100
BF01 = 58.11

91.4%

BF01 = 69.32
BF01 = 5.28

63.2%

BF10 > 100
BF01 = 71.87

63.2%

BF01 = 35.09
BF01 = 2.56

91.3%

BF10 > 100

CD8+ T

1U IL-2 BF01 = 74.17
17.6%

BF10 > 100
BF01 = 61.43

51.0%

BF10 > 100
BF01 = 15.37

51.0%

BF10 > 100
BF01 = 20.88

17.6%

BF10 > 100
BF01 = 64.46

17.6%

BF10 > 100
BF01 = 1.25

51.0%

BF10 > 100

3U IL-2 BF10 = 1.20
13.8%

BF10 > 100
BF01 = 68.99

64.4%

BF10 > 100
BF01 = 69.02

64.4%

BF01 > 100
BF10 > 100

13.8%

BF10 > 100
BF01 = 61.01

13.8%

BF10 > 100
BF01 = 71.59

64.4%

BF10 > 100

10U IL-2 BF01 = 28.42
14.1%

BF10 > 100
BF01 = 66.05

63.2%

BF10 > 100
BF01 = 73.74

63.2%

BF10 > 100
BF01 = 1.05

14.1%

BF10 > 100
BF01 = 73.92

14.1%

BF10 > 100
BF01 = 58.86

63.2%

BF10 > 100

aBF Interpretation: Anecdotal (1 < BF ≤ 3); Moderate (3 < BF ≤ 10); Strong (10 < BF ≤ 30); Very strong (30 < BF ≤
100); Extreme (BF > 100)

Table 2.2: Bayesian independence test of the times to fates from simula-
tion. The test was performed with NTrue = 106 simulated families via Cyton2-like
Agent-Based Model. Each family was assigned randomly sampled times (True), and
corresponding observable (Obs.) times were recorded. Depending on the order of the
true times to fates, the number of observable times (NObs.) may vary. For both true
and observable times, Bayes Factor (BF) was calculated given null and alternative
hypotheses (H0: ρ = 0 and H1: ρ 6= 0). Here BF01 indicates the simulated data are
more probable under H0 (blue-scale), otherwise it is indicated by BF10 (red-scale).

2.4.3 Using filming data to determine appropriate distribution classes for the

timers

In order to fit the model to commonly available non-microscopy data where direct

observation of times is not possible, it is necessary to determine appropriate para-

metric distribution classes that well-capture the structure of the timers. Probability

distributions governing the times to first division and to death for B cell cultures

have been reported to be well approximated by a right-skewed distribution such

as Lognormal, Weibull, Gamma or Beta (Hawkins et al., 2009). In particular, the

time to first division is known to be better described by a Lognormal rather than

other skewed distributions, whereas Gamma or Weibull distribution can be used to

approximate the time to death distribution (Hawkins et al., 2007a).
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For B cells, the empirical cumulative distribution function (eCDF) measured times

overlaid with CDFs of four candidate distributions with 95% confidence bands in

Fig. 2.9A1. Each candidate is parameterised by: (i) (αG, βG) for Gamma; (ii) (m, s)

for median and shape of Lognormal; (iii) (µ, σ) for mean and standard deviation

for Normal; (αW , βW ) for Weibull; (λ, c) rate and shift for delayed Exponential;

and, (md, sd, c) median, scale and shift for delayed Lognormal. Qualitatively, most

of the candidates appear to be excellent descriptors for each of the measurements

except for the delayed Exponential distribution for B cells. Here, we used the Widely

Applicable Information Criterion (WAIC - see Section 2.4.6) to quantitatively

determine the best fit (Fig. 2.9A2) (Watanabe and Opper, 2010). For T 0
div in

the B cell data, the Lognormal distribution was top-ranked (416.3) while delayed

Exponential was least favoured (468.9, ∆SE = ±12.3). The delayed Lognormal

was most preferred candidate for T k≥1div (263.4), but the Lognormal was a close

second (264.2, ∆SE = ±2.7). While the delayed Exponential was consistently

worst fit for all measurements in B cells, the other five candidates well approximate

Tdie measurements as reported in previous studies. Interestingly, the Normal was

favoured (526.9), or on par with the Weibull and Gamma, for Tld as indicated by the

standard error of the difference. The delayed Lognormal was second least preferred,

however, the difference was relatively marginal compared to the Normal (534.3,

∆SE = ±4.9). We observed similar results in the repeat of B cell data (B-exp2),

except for Tdie where the Weibull provided the best fit (Fig. 2.10A1-2).

For CD8+ T cells, we present the rank-ordered WAIC plot for all IL-2 concentra-

tions in Fig. 2.9B1-3 (see Fig. 2.10B1-3 for corresponding CDF plots). We observed

either the delayed Lognormal or the delayed Exponential to be the best descriptor for

all measurements with the exception of T k≥1div in 10U IL-2 in which Weibull was top-

ranked (80.5), but only marginally so compared to the Normal (81.3, ∆SE = ±1.6),

the Gamma (83.0, ∆SE = ±3.3) and the Lognormal (83.3, ∆SE = ±2.6). Note

that the estimates of WAIC for T k≥1div in 1U IL-2 are unreliable as there are only

four data points due to lack of progression of cell division in those conditions. We

reached similar conclusions for both T-exp1 and T-exp2 datasets where the delayed

Lognormal and the delayed Exponential were strongly and consistently preferred or

was on par with other candidate distributions (Fig. 2.11).

In summary, these data suggest that several parametric classes of distributions

are well-suited as descriptors. We will, however, provide one example analysis of flow

cytometry data where use of Gaussian distributions offer an interpretative advantage
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Cell

Type
Stimulation

Initial

# clones

Observed cells: # divided cells (# dead cells) [# lost cells]

Gen 0 Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7

B
CpG (B-exp1) 108 108 (0) [0] 169 (30) [17] 204 (67) [67] 153 (147) [108] 82 (134) [90] 37 (95) [32] 1 (58) [15] 0 (0) [2]

CpG (B-exp2) 88 88 (0) [0] 145 (24) [7] 150 (99) [41] 175 (101) [24] 75 (203) [72] 18 (93) [39] 2 (18) [16] 0 (4) [0]

CD8+ T

1U IL-2 109 29 (79) [1] 6 (50) [2] 0 (12) [0] - - - - -

3U IL-2 90 68 (22) [0] 77 (48) [11] 46 (35) [73] 2 (4) [86] 4 (0) [0] 1 (0) [7] 0 (0) [2] -

10U IL-2 163 101 (62) [0] 122 (71) [9] 94 (59) [91] 12 (12) [164] 0 (0) [24] - - -

CD8+ T

(T-exp1)

N4 45 20 (25) [0] 0 (40) [0] - - - - - -

N4 + αCD28 41 22 (19) [0] 8 (36) [0] 0 (4) [12] - - - - -

N4 + IL-2 37 28 (9) [0] 6 (50) [0] 0 (12) [0] - - - - -

N4 + αCD28 + IL-2 47 36 (11) [0] 31 (41) [0] 20 (38) [4] 0 (19) [21] - - - -

CD8+ T

(T-exp2)

N4 37 30 (7) [0] 27 (33) [0] 12 (34) [8] 0 (16) [8] - - - -

N4 + αCD28 38 33 (5) [0] 52 (14) [0] 8 (30) [66] 0 (16) [0] - - - -

N4 + IL-12 29 22 (7) [0] 33 (11) [0] 12 (18) [36] 5 (17) [2] 0 (6) [4] - - -

N4 + αCD28 + IL-12 36 32 (4) [0] 55 (9) [0] 22 (20) [68] 0 (8) [36] - - - -

Table 2.3: Number of cells observed for division, death and lost events
in each generation. For each condition of CD8+ T cell with 1U, 3U and 10U IL-2,
measurements from two independent but identical experiment setup are pooled. The
total number of cells in each generation (i.e. divided + dead + lost cells) is equal to
twice of divided cells from previous generation. A cell is considered lost if it becomes
indistinguishable to the nearby cells, or survives until the end of given experiment
time frame.

over the right-skewed distributions. Moreover, as time to subsequent division has

little variability, when fitting fluorescence-activated cell sorting (FACS) data, we

will use a reduced model that assumes it is an unknown constant that is fit.

2.4.4 Data selection and tree collapse

For each family tree c ∈ N≥0, the times to divide {T xdiv}c, to die {T xdie}c and to loss

{T xloss}c of all cells were recorded using time-lapse microscope. Total number cells

observed for each of these variables are tabulated in Table 2.3. All of these variables

were measured from t = 0h, i.e. the beginning of the experiment. Tloss is defined as

the time at which the cell becomes indistinguishable to the nearby cells, or survives

until the end of given experiment time frame, thus, were lost from the experiment.

In order to keep track of the cells’ relation, a unique label was given to each cell by

x. Let Xc be the collection of all x for a family c, where x = 〈x1, x2, . . . , xj〉 with

xj ∈ {1, 2} is a finite and ordered sequence of 1s and 2s. Beginning with a founder

cell, defined as x = 〈0〉, we denote its first and second daughter cells in generation 1

by x = 〈1〉 and x = 〈2〉, respectively. In general, 〈x1, x2, . . . , xj〉 represents the xthj

daughter of the . . . of the xth2 daughter of the xth1 daughter of the founder cell (see

Harris, 1963, Ch.6). For example, x = 〈1, 1, 2〉 denotes the second daughter of the
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A B cell (B-exp1): All clones B Repeat B cell (B-exp2): All clones

C CD8+ T cell [1U, 3U, 10U of IL-2]: All clones D CD8+ T cells [N4, !CD28, IL-2] (T-exp1): All clones

E CD8+ T cell [N4, !CD28, IL-12] (T-exp2): All clones

Fig. 2.12: Clonally collapsed clones for all founder B and CD8+ T cells.
For CD8+ T cell data with 1U, 3U and 10U of IL-2, measurements from two
independent but identical experiment setup are aggregated. The collapsed trees
are rank-ordered with respect to the total life time. (A-F) Clonally collapsed trees
for all families before the filtering. The average division (•) and death (×) times
are marked per family, where the colours represent generation that the event was
observed. The lost times are not shown.
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Cell Type Stimulation
Number of clones

Time to first div. (T 0
div) Subsequent div. time (T kdiv) Time to last div. (Tld) Time to death (Tdie)

B
CpG (B-exp1) 69 (63.9%) 56 (51.9%) 69 (63.9%) 69 (63.9%)

CpG (B-exp2) 73 (83.0%) 63 (71.6%) 73 (83.0%) 73 (83.0%)

CD8+ T

1U IL-2 28 (25.7%) 4 (3.7%) 28 (25.7%) 28 (25.7%)

3U IL-2 34 (37.8%) 13 (14.4%) 34 (37.8%) 34 (37.8%)

10U IL-2 50 (30.7%) 16 (9.8%) 50 (30.7%) 60 (30.7%)

CD8+ T

(T-exp1)

N4 20 (44.4%) 0 (0%) 20 (44.4%) 20 (44.4%)

N4 + αCD28 19 (46.3%) 1 (2.4%) 19 (46.3%) 19 (46.3%)

N4 + IL-2 28 (75.7%) 4 (10.8%) 28 (75.7%) 28 (75.7%)

N4 + αCD28 + IL-2 33 (89.2%) 13 (35.1%) 33 (89.2%) 33 (89.2%)

CD8+ T

(T-exp2)

N4 27 (73.0%) 12 (32.4%) 27 (73.0%) 27 (73.0%)

N4 + αCD28 17 (44.7%) 12 (31.6%) 17 (44.7%) 17 (44.7%)

N4 + IL-12 13 (44.8%) 9 (31.0%) 13 (44.8%) 13 (44.8%)

N4 + αCD28 + IL-12 11 (30.6%) 7 (19.4%) 11 (30.6%) 11 (30.6%)

Table 2.4: Number of clones used in the analysis of the filming datasets.
The numbers were obtained by filtering on clones that had divided at least once
and whose last event was a death event (not a loss or a division). The percentage is
expressed in relation to the total number of clones in the experiment. For a given
cell type and stimulation, the values of each Cyton2 variable were extracted for the
statistical analyses.

first daughter of the first daughter of the founder cell. Given a unique identifier of

the cell, the generation k is noted g(x) := k with g(〈0〉) = 0. With this construct,

we define the raw measurement of times as a set Tc = {T xdiv, T xdie, T xloss : x ∈ Xc}.
For the analyses in Section 2.4.1 and 2.4.3, we filtered for families that had

at least divided once and satisfied the condition max(Tc) = T xdie. In essence, we

eliminated incomplete family trees that contain unusually long-surviving cells, but

allowed lost cells to be in place as long as the last observed event is death in a

given family. Indeed, there is an increasing chance of observing more lost cells as

the family gets larger. However, it was previously shown that the regularity of a

family is a result of correlated cell divisions as a biological feature inherited within

the family even when considering the unrecovered samples (Marchingo et al., 2016).

Therefore, it is highly likely that the lost cells due to indistinguishable circumstances

might had undergone similar fates with its sibling, thereby maximising the number

of data points while reducing any potential selection bias, whereas it is difficult to

weigh how including the long-surviving cells might affect all the other analyses. We

noted the long-surviving and “no division” cells constitute approximately 23% and
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29% on average, respectively, across all the experiments (data not shown).

Given the heritable feature, we summarise a family tree by collapsing it to a

single representative line (Fig. 2.1C). By collapsing, we mean substitute average

time to divide (and to die) of the cells in a given generation k. We also enumerated

all dead cells within a family and calculated mean time to last division (Tld) as a

proxy to the division destiny time. In summary, we represent a single family by

T(c) = (T 0
div, . . . , T

k
div, T

0
die, . . . , T

k
die) so long as we observed division or death events

in each generation k (see Fig. 2.12 for clonally collapsed trees for all clones from

B and CD8+ T cells). Table 2.4 shows the number of retained clones used in all

analyses presented in this chapter after applying the filtering rule.

2.4.5 Monte-Carlo simulation

We used Monte-Carlo (MC) method to simulate cells in a single family with the cor-

related structure proposed for the Cyton2 model. Each realisation of the simulation

represents one clonal family. Upon initialisation, the founder cell is assigned time

to first division, global destiny and global death times, which are drawn randomly

from three independent lognormal distributions. Also, the subsequent division times

are randomly sampled for each generation from a lognormal distribution, but the

progeny cells of the same generation share the division time. If the founder cell

reaches time to first division, it creates two daughter cells, which inherit global

destiny and death times. If the cell reaches its division destiny, we immediately

classify it as a destiny cell and prevent it from further division. When the cells reach

death time, they are removed from the simulation. The model was implemented in

Python (version 3.8.6).

2.4.6 Bayesian framework

In Section 2.4.1 and 2.4.2, the correlations of all possible pairs between time to first

division (T 0
div), average subsequent division time (T k≥1div ), time to last division (Tld)

and time to death (Tdie) were estimated using Bayesian inference. For a given pair

of variables and its observed data, say di ∈ D = {(xi, yi) : i = 1, 2, . . . , n} where n

is the number of observations, we used bivariate normal distribution to estimate

the correlation coefficient (ρ). This entails xi ∼ N (µx, σx) and yi ∼ N (µy, σy).

With uninformative priors on the hyper-parameters µx, µy ∼ U(0, 1000), σx, σy ∼
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Bayes Factor: BF01 (BF10) Interpretation

>100 Extreme evidence for H0 (H1)

30 - 100 Very strong evidence for H0 (H1)

10 - 30 Strong evidence for H0 (H1)

3 - 10 Moderate evidence for H0 (H1)

1 - 3 Anecdotal evidence for H0 (H1)

1 No evidence

Table 2.5: Bayes factor interpretation (Jeffreys, 1961).

U(0, 1000) and ρ ∼ U(−1, 1), we define the bivariate normal distribution,

di ∼ N (µ,Σ),

where µ = (µx, µy) is a vector of means for xi and yi, and Σ =
[

σ2
x ρσxσy

ρσxσy σ2
y

]
is a

covariance matrix. We used an extension of the Hamiltonian MCMC algorithm,

No-U-Turn Sampler (Hoffman and Gelman, 2014), implemented in PyMC3 (version

3.9.3) (Salvatier et al., 2016) to obtain the marginal posterior distributions of

ρ, µx, σx, µy, σy. Given these distributions, we calculated 95% credible interval for

ρ, and 90%, 95% and 99% density regions of (x, y). In addition, we formulated

Bayesian hypothesis testing, where the null hypothesis is H0: ρ = 0 and alternative

hypothesis is H1: ρ 6= 0 (which translates to H1: ρ ∼ U(−1, 1)) (Jeffreys, 1961).

This is formally stated as a ratio of likelihoods of hypotheses given the data,

P (H0|D)

P (H1|D)
=
P (H0)

P (H1)
× P (D|H0)

P (D|H1)
.

In order to grade if the data is more probable under H0 or H1, the Bayes factor

BF01 = P (D|H0)/P (D|H1) was used given priors of P (H0) and P (H1). When H1:

ρ ∼ U(−1, 1), it can be computed by evaluating the following integral (Jeffreys,

1961; Wagenmakers et al., 2016):

BF01 = 1/BF10, where BF10 =
1

2

∫ 1

−1

(1− ρ2)n−1
2

(1− ρr)n− 3
2

dρ,
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Candidates Priors Target Distribution

A αG, βG ∼ U(0, 200) T 0
div, T

k≥1
div , Tld, Tdie ∼ Gamma(αG, βG)

B m, s ∼ U(0, 200) T 0
div, T

k≥1
div , Tld, Tdie ∼ LN(m, s)

C µ, σ ∼ U(0, 200) T 0
div, T

k≥1
div , Tld, Tdie ∼ N(µ, σ)

D αW , βW ∼ HalfNormal(500) T 0
div, T

k≥1
div , Tld, Tdie ∼Weibull(αW , βW )

E λ ∼ U(0, 2), c ∼ U(0,∞) T 0
div, T

k≥1
div , Tld, Tdie ∼ Delayed Exp(λ, c)

F md, sd ∼ U(0, 200), c ∼ U(0,∞) T 0
div, T

k≥1
div , Tld, Tdie ∼ Delayed LN(md, sd, c)

Table 2.6: List of candidate parametric distribution classes.

where r denotes for the sample correlation defined as r =
∑n

i=1(xi − x̄)(yi −
ȳ)/
√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2. For the interpretation of Bayes factor, we

adopted the discrete categories of evidential strength proposed in Jeffreys (1961)

(Table 2.5).

In Section 2.4.3, six probability distributions were assessed for T 0
div, T

k≥1
div , Tld, Tdie

under the Bayesian framework in a similar manner to estimating the correlation

coefficient. Table 2.6 shows the list of candidate distributions and the uninformative

priors prescribed for respective hyper-parameters.

Given posterior distributions of the parameters, we adopted WAIC (Watanabe

and Opper, 2010) score to quantitatively assess the candidates, which is estimated

as follows:

WAIC(z,Θ) = −2

(
n∑
i=1

log

[
1

S

S∑
s=1

P (zi|Θs)

]
−

n∑
i=1

VarSs=1 log(P (zi|Θs))

)
,

�� ��2.1

where z is the data with n independent number of observations, Θ is the posterior

distribution, Θs is the s-th set of sampled parameter values in the posterior distri-

bution with S number of samples and VarSs=1as = 1
S−1

∑S
s=1(as − ā)2 denotes for

the sample variance (see McElreath, 2020, Ch.7; Vehtari et al., 2017). The first

and the second terms in Eq. 2.1 are known as the log-pointwise-predictive-density

(lppd) and the penalty term, respectively. For direct comparison of the candidates,

we computed the standard error by calculating the variance over the individual
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observations instead of their summation under the assumption of normality of WAIC.

se(WAIC) =

√√√√n× Varni=1

(
−2

(
log

[
1

S

S∑
s=1

P (zi|Θs)

]
− VarSs=1 log(P (zi|Θs))

))
.

Let us denote WAICi to be the term in
√

(·) such that WAIC =
∑n

i=1 WAICi, then

the standard error of the difference of WAIC between, for instance, candidate A and

B can be calculated,

se(WAICA −WAICB) =
√
n× Varni=1

(
WAICA

i −WAICB
i

)
.

2.5 Equations for the mean population size

In commonly employed division diluting dye experiments, individual families are

not observed and initial cell numbers are typically in their thousands suggesting the

use of mean system behaviour as an appropriate descriptor. Thus to fit the model

to such data we derive equations for the mean population dynamics per generation

for Cyton2.

Let Zg(t) denote the number of cells alive in generation g ∈ {0, 1, . . . , G} at

time t ≥ 0. Then, Zg(t) can be expressed with the variables shown in Section 2.3

for any chosen probability density functions for the random variables. Here, we

separately derived E[Zg(t)] for g = 0 and g > 0 cases as lymphocytes generally take

longer to divide for the first time than at later generations. In essence, we begin

the derivation with parameters θ = (T 0
div, {Mg}g≥1, Tdd, Tdie) denoting time to first

division, subsequent division time per generation, time to destiny and time to death,

respectively.

Generation zero (g = 0)

We assume we are following the activation dynamics of a set of resting cells and

these cells are provided with signals that program a limited proliferative response.

For the purposes here, we also assume that all cells are activated at time t = 0,

erasing the prior cell programming and survival characteristics. Situations where

only a proportion of cells are activated, or where the activated cells take some

extended time to transition to the new programming, leading to some early cell
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death are useful modifications suited to particular applications. Such modifications

are discussed further in Section 2.7.

For a given family tree, the number of live cells dividing, dying or reaching

destiny in generation g = 0 at time t is given by

Z0(t) = 1{Tdie>t}1{min(t,Tdd)<T
0
div},

�� ��2.2

where 1 is an indicator function. Assuming that the random variables Tdie, Tdd and

T 0
div are independent of each other as we established in Section 2.4.1, the expected

number is given by

E[Z0(t)] = P (Tdie > t)P ({min(t, Tdd) < T 0
div}).

We expand the second term, and by the law of total probability we obtain

P ({min(t, Tdd) < T 0
div}) = P (T 0

div > t)P (Tdd > t) + P (T 0
div > Tdd)P (Tdd ≤ t).

Thus, the expected number of cells in generation zero is,

E[Z0(t)] = P (Tdie > t)

[
P (T 0

div > t)P (Tdd > t) +

∫ t

0

dP (Tdd ≤ τ)P (T 0
div > τ)

]
.�� ��2.3

This equation can be interpreted as follows: a cell in generation zero remains alive

when Tdie > t, and it is sorted either in initial state or in destiny state. The cell

in the initial state can divide, reach destiny or die whichever event comes first.

However, the destiny cell can no longer divide but only awaits for death.

Subsequent generations (g > 0)

To calculate the expected number of live cells for g > 0, we limit the windows of cells

being in generation g by constraining with t ∈ [T 0
div +

∑g−1
k=1Mk, T

0
div +

∑g
k=1Mk),

that is

Zg(t) = 2g1{Tdie>t}1{T 0
div+

∑g−1
k=1Mk≤min(t,Tdd)<T

0
div+

∑g
k=1Mk}.

�� ��2.4

The factor 2g is required to include the effect of clonal expansion of the cells that

have divided g times. Assuming Tdie, Tdd,Mk and T 0
div are independent of each other,
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the expected value is

E[Zg(t)] = 2gP (Tdie > t)P

(
T 0
div +

g−1∑
k=1

Mk ≤ min(t, Tdd) < T 0
div +

g∑
k=1

Mk

)
.

Defining Xg = T 0
div +

∑g−1
k=1Mk, then, similarly to the g = 0 case, we expand and

employ the law of total probability to obtain

P (Xg ≤ min(t, Tdd) < Xg +Mg) =P (Xg ≤ t < Xg +Mg)P (Tdd > t)

+ P (Xg < Tdd < Xg +Mg)P (Tdd ≤ t).

Hence, the expected number of cells in g > 0 is

E[Zg(t)] = 2gP (Tdie > t)×[
P (Tdd > t)

∫ t

0

dP (Xg ≤ τ)P (Mg > t− τ) +

∫ t

0

dP (Tdd ≤ τ)P (Xg < τ < Xg +Mg)

]
.�� ��2.5

Together with Eq. 2.3 and 2.5, we can calculate the average number of live cells

for a family in generation g at time t for any distribution class of T 0
div, {Mg}g≥1, Tdd

and Tdie. Since the equations are equally applicable for N0 number of initial founder

cells, we generalise these by multiplying N0 such that

yg(t;θ) := E[N0Zg(t;θ)] = N0E[Zg(t;θ)],

where θ = (T 0
div, {Mg}g≥1, Tdd, Tdie) are the parameters of the Cyton2 model. Typi-

cally, the random variables are equipped with a lognormal distribution, which has

two additional parameters, thus, we have total of 6 + 2g free parameters to estimate.

Reduced Cyton2 model

To fit FACS data, we simplify the model by assuming that the subsequent division

time is a constant rather than a set of random variables, that is Mg = m ∈ R>0

for all g > 0. This is based on the empirical observation made from filming data

that, after the first division, the cells divide at a consistent rate with little inter-

and intra-clonal variability (Figs. 2.3B, 2.4B, 2.5A1,B1,C1 and 2.6A1-4,B1-4). This

step drastically reduces the number of free parameters, and it no longer depends on

the number of generations but purely on the choices of probability density function
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of T 0
div, Tdd and Tdie. Essentially, the reduced model has θ̃ = (T 0

div,m, Tdd, Tdie)

parameters. Since Eq. 2.3 does not depend on the subsequent division time, it

remains the same:

E[Z̃0(t)] = E[Z0(t)] = P (Tdie > t)

[
P (T 0

div > t)P (Tdd > t) +

∫ t

0

fTdd(τ)P (T 0
div > τ)dτ

]
,

where fTdd is the probability density function of Tdd. However, Eq. 2.5 can be further

simplified to

E[Z̃g(t)] = 2gP (Tdie > t)×[
P (Tdd > t)P (t− gm < T 0

div < t− (g − 1)m) +

∫ t

0

fTdd(τ)P (τ − gm < T 0
div < τ − (g − 1)m)dτ

]
.

We used the reduced Cyton2 model for all our analyses of FACS data presented

throughout the thesis.

ỹg(t; θ̃) := N0E[Z̃g(t; θ̃)].
�� ��2.6

2.5.1 Optimisation strategy for estimating the model parameters

Division structured population datasets obtained from FACS were fitted to the

reduced Cyton2 model (i.e. Eq. 2.6). In total, there are 7 parameters to be

estimated for each dataset assuming that the random variables are lognormally or

normally distributed, thus if we have N number of conditions, we have a maximum

of 7N free parameters to be fitted. For all conditions, we always used cell numbers

at the beginning of the stimulus (typically at t = 0) as a fixed initial cell number.

For each set of cell numbers {ng,r(ti)} from the data, where i ∈ {0, 1, . . . , I},
g ∈ {0, 1, . . . , G} and r ∈ {0, 1, . . . , R} are time, generation and replicate indices,

respectively, we obtained point estimates of the parameters. To achieve this, we used

least-squares method with Levenberg-Marquardt (Marquardt, 1963) optimisation

algorithm implemented in Python library LMFIT (version 1.0.2) (Newville et al.,

2014). We defined the residual sum of squares (RSS) as our cost function,

C(θ̃) =
I∑
i=0

G∑
g=0

R∑
r=0

(
ng,r(ti)− ỹg(ti; θ̃)

)2
,
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such that we find an approximate minimum,

{θ̃∗} ∈ arg min
θ̃

C(θ̃).

As the algorithm requires a set of starting parameter values, we prescribed 100 sets

of initial values drawn uniformly at random from the appropriate parameter ranges,

and recorded RSS for each set to identify the best fitted parameters by the lowest

RSS. For fitting multiple datasets simultaneously, which requires an extra sum over

all datasets in the cost function, the algorithm needs to explore higher dimension of

the parameter space compared to fitting one dataset at each iteration. Therefore, we

used 200 sets of initial values to increase range of the exploration. After identifying

the best fit, we performed bootstrap method (Efron, 1979) with an artificial dataset

that was resampled with replacement (per time point) from the original measured

data. We repeated this process 1000 times, which resulted in 1000 additional

estimates for each parameter. This allowed us to calculate 95% confidence intervals

on the best fitted parameter values. Additionally, we also obtained confidence

bands for extrapolated cell numbers by calculating 95% percentile range at each of

discretised time point from the model.

2.6 Equations for the variability around the mean

In the previous section, we derived equations for the mean population size at

time t and showed that the variability in parameter estimates can be obtained by

employing bootstrap method as a part of fitting procedure. There are two sources

of variability in the system: measurement variability; and intrinsic variability due

to the stochastic nature of the dynamics. The bootstrap method propagates the

measurement variability in estimating parameters for a given dataset. Here, we will

derive analytic expressions for the variance of the reduced Cyton2 model to examine

the intrinsic variability of the system. With Eqs. 2.2 and 2.4, we derive it by

substituting to the usual variance formula Var(X) = E[(X−µX)2] = E[X2]−E[X]2

for generation zero and subsequent generations separately. First, let us define the
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AExample Model Setting

BModel Prediction

Fig. 2.13: Variability of the reduced Cyton2 model. (A) Example Cyton2
parameter estimates from fitting B cell data presented in Fig. 3.1A3. Initial
number of cells (N0), maximum generation (G) and subsequent division time (m)
are annotated as a plot title. Probability density and cumulative distribution
functions are shown for T 0

div, Tdd and Tdie. (B) Predicted population size of 0th (left)
and 1st through 8th generations (right). Each solid-line represents average number of
cells. Shade area represents upper and lower bounds around the mean (µ± 1.96σ).
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following sets to simplify the equations,

A ≡ {Tdie > t},

B ≡ {min(t, Tdd) < T 0
div},

C ≡ {T 0
div + (g − 1)m ≤ min(t, Tdd) < T 0

div + gm},

such that the primitive form of Z̃g(t) becomes,

Z̃g(t) =

{
1A1B if g = 0

2g1A1C if g > 0
.

�� ��2.7

Generation zero. Substituting the g = 0 case of Eq. 2.7 into the variance equation

yields,

Var
(
Z̃0(t)

)
= E[Z̃0(t)

2]−
(
E[Z̃0(t)]

)2
= E[Z̃0(t)](1−E[Z̃0(t)]),

as E[(1A · 1B)2] = E[12A · 12B] = E[1A · 1B] from the independence assumption. We

substitute the expected cell number to obtain the following variance equation for

generation zero,

Var
(
Z̃0(t)

)
=P (Tdie > t)P (T 0

div > t)P (Tdd > t)

×
[
1− P (Tdie > t)P (T 0

div > t)P (Tdd > t)
]

+ P (Tdie > t)

∫ t

0

fTdd(τ)P (T 0
div > τ)dτ

×
[
1− P (Tdie > t)

∫ t

0

fTdd(τ)P (T 0
div > τ)dτ

]
− 2P (Tdie > t)2P (T 0

div > t)P (Tdd > t)

∫ t

0

fTdd(τ)P (T 0
div > τ)dτ.

Subsequent generations. Similar to generation zero, we use g > 0 of Eq. 2.7 to

obtain,

Var
(
Z̃g(t)

)
= E[Z̃g(t)

2]−
(
E[Z̃g(t)]

)2
= E[Z̃g(t)](2

g −E[Z̃g(t)]).
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A Total Number of Cells

BCoefficient of Variation

Fig. 2.14: Total number of cells vs time and analysis of the evolution of
the variance. (A) Predicted population size. Solid-line represents the sum of
average cell numbers through all generations. Shade area represents upper and lower
bounds around the mean (µ ± 1.96σ). (B) Coefficient of variation as a function
of time. The onsets (more than 1% of population) and ends (more than 99% of
population) of division and destiny events are marked as solid- and dashed-lines.
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Cyton1 Parameters

T 0
div T 0

die T g>0
div T g>0

die γg

m0
div s0div m0

die s0die mg>0
div sg>0

div mg>0
die sg>0

die γ0 µ σ

39.81* 0.28* 41.49 0.14 9.2* 0.03 93.34 0.810 1.0 3.72 1.277

Cyton2 Parameters

T 0
div Tdd Tdie

m
m0
div s0div mdd sdd mdie sdie

39.81* 0.28* 71.82 0.11 115.88 0.84 9.2*

Table 2.7: Cyton1 and Cyton2 parameter settings for MC simulation.
The asterisk denotes the parameter values that were set and fixed from the Cyton2
estimates. Other Cyton1 parameters were obtained by fitting the model to the
same dataset presented in Fig. 2.13. For Cyton1 simulation, (T 0

div, T
0
die) denotes

times to first division and death; (T g>0
div , T

g>0
die ) denotes times to subsequent division

and death; and, γg is progressor fraction, c.f Eq. 1.1. The times are lognormally
distributed with corresponding median and shape parameters.

Thus,

Var
(
Z̃g(t)

)
= 22g

{
P (Tdie > t)P (Tdd > t)P (t− gm < T 0

div < t− (g − 1)m)

×
[
1− P (Tdie > t)P (Tdd > t)P (t− gm < T 0

div < t− (g − 1)m)
]

+ P (Tdie > t)

∫ t

0

fTdd(τ)P (τ − gm < T 0
div < τ − (g − 1)m)dτ

×
[
1− P (Tdie > t)

∫ t

0

fTdd(τ)P (τ − gm < T 0
div < τ − (g − 1)m)dτ

]
− 2P (Tdie > t)2P (Tdd > t)P (t− gm < T 0

div < t− (g − 1)m)

×
∫ t

0

fTdd(τ)P (τ − gm < T 0
div < τ − (g − 1)m)dτ

}
.

Provided initial cell number N0, the standard deviation can be computed by

σ(Z̃g(t)) =
√
N0Var(Z̃g(t)) for each generation. An example model output for

first 8 generations is shown in Fig. 2.13B based on the estimated parameter

values from B cell data discussed in Chapter 3 (c.f. Fig. 3.1A3). Given the
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A Total Number of Cells B Coefficient of Variation

Fig. 2.15: MC simulation of Cyton1 and Cyton2 processes. (A) Average
population size (solid line) and 95% confidence band (shade area). (B) Coefficient
of variations.

average cell numbers for each generation, the total number of cells is simply

the sum µZ̃(t) := N0

∑G
g=0E[Z̃g(t)]. Similarly, the total variance is given by

σ2
Z̃

(t) := N0

∑G
g=0 Var(Z̃g(t)) (see Fig. 2.14A). Using the coefficient of variation

(CV), defined as

CV(t) =
σZ̃(t)

µZ̃(t)
=

√
N0

∑G
g=0 Var(Z̃g(t))

N0

∑G
g=0E[Z̃g(t)]

,

we evaluated the evolution of the variability in relation to the mean of the cell

population. As reported in Subramanian et al. (2008), our results show that the CV

increases at two distinct stages: onsets of division and of destiny (Fig. 2.14B). At

long time-scales, particularly after the end of destiny stage, the CV continues to rise

at a rapid rate, indicating a greater variability due to newly introduced correlation

structure. A similar conclusion using branching process formulation was reported in

Duffy and Subramanian (2009) that compares different degrees of correlation in a

family.

We compared Cyton1 and Cyton2 to investigate the impact of familial correlation

in the inherent variability of the population dynamics. To do so, we utilised MC

simulation and estimated the variances empirically. As these models have slightly

different stochastic process (e.g. generation versus timer mechanism for DD), the
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parameters of Cyton1 were matched by fitting the model to the same dataset.

However, the time to first division and mean subsequent division time were set

and fixed to the values obtained from fitting the Cyton2 model (Fig. 2.15A). The

parameter settings for the simulation are summarised in Table 2.7. Here, we ran 1000

iterations and simulated 7477 families per iteration to match the aforementioned

model settings. In Fig. 2.15B, the estimated CVs of Cyton1 and Cyton2 as a

function of time were plotted. The result indicates that both models follow a similar

trend as cells begin to divide and reach DD. However, at long time-scale, the CV from

Cyton2 continuously rises, while its value from Cyton1 remains steady despite the

average number of cells decreases. Similar conclusion was reported in Subramanian

et al. (2008); Duffy and Subramanian (2009).

The variance equations are useful for estimating error in parameter estimation.

For example, Milutinović and Boer (2007) considered contribution of the inher-

ent stochasticity of cell dynamics with respect to the total variance of the data

fluctuations. Using ordinary differential equations to model an immune response

and with Gillespie’s simulations, they concluded that a significant portion of the

variance originates from the intrinsic noise, thus, suggested an approach to include

the noise for parameter estimation. We appreciate the advantage of utilisation of

the variance equations, however, the mean equations will be largely used for the

following chapters.

2.7 Modifications for calculating number of cells in

generation zero

In Section 2.5 we derived a formula for calculating expected number of cells in

generation zero, assuming cells are immediately programmed upon activation to

adopt RVs for Cyton2 evolution. Here we offer a series of revised formulas for

immune activation situations where the calculation of cells in generation zero is

more complex.

2.7.1 Partial activation, no death

In many culture arrangements, only a fraction of the cells receive the activation

stimulus and adopt the new program governed by Cyton2 parameters. Here the

population is first divided into fractions. The number of stimulated cells is given as
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N0 · p, where p ∈ [0, 1] is stimulated cell fraction, and is treated as in Section 2.5

to calculate overall expected number of cells. The unstimulated cells, N0(1 − p),
remain undivided. This introduces one new parameter, p.

In essence, it is equivalent of introducing a Bernoulli RV, A : Ω 7→ {0, 1},
that represents an event of activation for the founder cell in a family tree, where

E[A] = p ∈ [0, 1] is the probability of activation. Then, the number of cells in a

given family Zg(t) (c.f. Eq. 2.2 and 2.4) needs to be modified to

Zg(t) =

(1− A) + A1{Tdie>t}1{min(t,Tdd)<T
0
div} for g = 0

2gA1{Tdie>t}1{T 0
div+

∑g−1
k=1Mk≤min(t,Tdd)<T

0
div+

∑g
k=1Mk} for g > 0

�� ��2.8

2.7.2 Partial activation, death program

Here the arrangement is as above, but the unstimulated cells will die according to a

distinct probability. To do so, we need an extra RV for the unstimulated time to

death distribution, TU . After splitting the population into the fractions by parameter

p, the unstimulated cells remain in generation zero, but die according to distribution

of TU . Similar to Eq. 2.8, the modified equation will be

Zg(t) =

(1− A)1{TU>t} + A1{Tdie>t}1{min(t,Tdd)<T
0
div} for g = 0

2gA1{Tdie>t}1{T 0
div+

∑g−1
k=1Mk≤min(t,Tdd)<T

0
div+

∑g
k=1Mk} for g > 0

�� ��2.9

2.7.3 Slow reprogramming

In a common situation, cells in culture take some time to integrate the activation

signals and reprogram survival from the unstimulated fate. The signals leading

to reprogramming are in a race with the initial survival program of the cells. For

this we define an activation time for completion of the program and assume that

cells behave as if unstimulated to that activation time. If adopting this method,

the activation time becomes time zero for the calculation of PDFs/CDFs of RVs.

This scenario can also occur when only a fraction of cells are stimulated in culture.

Hence, calculation of cells requires values for p, tA ∈ R>0 (activation time), and TU
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according to

Zg(t) =


1{TU>t} for t ≤ tA, g = 0

1{TU>tA}

[
(1− A)1{TU>t} + A1{Xdie>t}1{min(t,Xdd)<X

0
div}

]
for t > tA, g = 0

1{TU>tA}

[
2gA1{Xdie>t}1{X0

div+
∑g−1
k=1Mk≤min(t,Xdd)<X

0
div+

∑g
k=1Mk}

]
for t > tA, g > 0�� ��2.10

where X0
div, Xdd, Xdie : Ω 7→ (tA,∞) are shifted RVs such that X = T + tA. Note

that Eq. 2.10 reduces to Eq. 2.9 when tA = 0.

2.8 Discussion

The vast majority of published mathematical models of lymphocyte population

dynamics employed assume that a newly born cell’s fate is independent of its family’s

history (Smith and Martin, 1973; Nordon et al., 1999; Revy et al., 2001; Ganusov

et al., 2005; Yates et al., 2007; Lee et al., 2009; Hasenauer et al., 2012; Banks et al.,

2012; Mazzocco et al., 2017), with a few notable exceptions (Wellard et al., 2010;

Zilman et al., 2010; Hyrien et al., 2010; Shokhirev et al., 2015; Yates et al., 2017).

These assumptions are adopted, not because they are consistent with experimental

data from, for example, filming, FACS and lineage tracing, but for reasons of

parsimony, model identifiability and computational ease of fitting (Dowling et al.,

2005; Boer et al., 2006). In this work, we have presented a variant of the original

Cyton model that encapsulates features of inheritance and correlation structure of

cell fates. This was achieved by introducing new random variables that describe

the time to division destiny of a family and a global death time, which describes

a single death time for all members in a family tree. Similar to the Cyton model,

this variant offers a general tool for analysing lymphocyte proliferation and survival,

including from the data obtained from CFSE/CTV-labeled division tracking assays.

Despite concerns that the inclusion of familial effects might result in a model with

too many parameters or one that is hard to fit, neither proves to be the case, making

the model suitable for general use.

The analysis of the B and CD8+ T cell filming data allowed direct tests on the

model’s assumptions of independent timers. Additionally, it enabled us to assess the

suitability of classes of parametric distributions of random variables of the Cyton2

model, which is necessary for when the model is used with commonly available
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non time-lapse microscopy data. As there is no theoretical reason to favour one

distribution class over another and several classes provide good fits to data, for most

of our fitting examples we adopted the lognormal distribution class.

To fit Cyton2 to ubiquitous FACS data, we derived an expression for the mean

population dynamics with one constant and three sets of distribution parameters.

The random variables represent times to first division, to division destiny and to

death, and the constant captures the subsequent division time. In the present work,

the model was designed for cell populations exposed to newly available stimuli. In

future work we will consider the inclusion of repeated challenges and continuous

feedback mechanisms as occur, for example, with autocrine signalling via IL-2.

Alterations to the model that allow the inclusion of ongoing signalling, as likely

occurs when fighting replicating pathogens such as viruses or bacteria, will be the

subject of future development. Moreover, the cell population model considered

here does not include differentiation or other developments that would create

asymmetries through altered division times, destiny or survival. Such alternative

fates can arise from analogous competing outcomes promoting differentiation (Duffy

et al., 2012), and we anticipate that the basic Cyton2 framework introduced here

will be expanded to encompass additional fates as experimental information for the

control of differentiation is acquired.

We provided two illustrative uses of the model through the analysis of FACS data

from stimulated B and CD8+ T cell cultures. The first one provides quantitative

support for the standard experiment design of triplicates per time-point, but also

elucidates the importance of including time-points around the initial expansion

and final contraction of the population. The second example revisits the work of

Marchingo et al. (2014) addressing the question of signal integration by T cells.

While the original study was informed based on modelling paradigms available at

the time, reconsideration of it terms of family-based timers draws similar conclusions

on additivity, but with a distinct temporal understanding that will influence all

subsequent studies. Taken together these results suggest Cyton2 will prove to be a

powerful tool in the quantitative assessment of immune responses. We anticipate the

model will be useful in evaluating signal processing and genetic differences in both

murine and human T and B cells, and will facilitate comparisons between healthy

and unwell individuals.

The model is informed by, and the worked examples are for, data from in vitro

experiments where stimulation is provided to a group of T or B cells, and the resulting
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proliferation occurs in a burst that can be followed by division tracking dyes or

direct filming. Those population dynamics follows the pattern of an exponential

rise, a period of division cessation, and then of cell loss that characterises immune

responses in vivo (Veiga-Fernandes et al., 2000; Amo et al., 2020). As such, as

with the original Cyton model (Hawkins et al., 2007a; Subramanian et al., 2008;

Marchingo et al., 2014), Cyton2 can be successfully fit to in vivo data (data not

shown). We note, however, that for most in vivo data stochastic models offer no

advantage over models, such as those based on ODEs, that assume transitions to

distinct phases and require fewer parameters (Boer and Perelson, 2005; Ganusov

et al., 2005; Boer et al., 2006). Furthermore, these latter models often include

parameters for transitioning to the memory phase through a second, slower rate

of loss, and this has not been implemented into the Cyton framework yet as the

mode of transition is not known. The difference between fitting parsimonious

models to in vitro and in vivo data may eventually be reconciled as the community

continues to improve methods that introduce differentiation, memory formation and

reveal additional features of responding cell phenotype, such as cell cycle status, as

originally envisaged by Antia et al. (2003).
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3
Cyton2 applications: Model evaluation;

Predicting effects of signal addition

3.1 Abstract

In this chapter, three applications are discussed using B and T cell population

datasets obtained from fluorescence-activated cell sorting (FACS) analysis, which is

a type of flow cytometry, performed by our WEHI collaborators: (i) We assessed the

model using root-mean-squared-error (RMSE) with respect to amount of information

in the dataset and reported identifiability of the parameters. Here, the B cell

experiment was designed to test robustness and reproducibility of the assay such

that larger sample size was collected; (ii) We reanalysed CD8+ T cell data published

in Marchingo et al. (2014) to show a novel perspective of linear sum of signals from

costimulants. This additive process was performed in time domain, that is sum of

Cyton2 random variables, and predicted the population dynamics in the presence

of multiple costimulatory molecules; and (iii) A primary CD8+ T cell dataset was

analysed to address whether the additivity of the signal integration can be applied

to immunosuppressive drugs, in particular Rapamycin and Dexamethasone which

are known for limiting the cell expansion, thereby predicting the negative signal

effect when used in combination.
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3.1. ABSTRACT

A11 Replicate

B PCA of Estimated Parameters C Marginal Coefficient of Variation

A2 3 Replicates A3 9 Replicates

Fig. 3.1: The precision of the parameter estimates with CpG-stimulated
Bim−/− murine B cell FACS data. (A1-3) The best-fit reduced Cyton2 model
(top), which has seven fitted parameters (bottom): T 0

div ∼ LN (m0
div, s

0
div), Tdd ∼

LN (mdd, sdd), Tdie ∼ LN (mdie, sdie) and, subsequent division time, m. For a given
replicate number, the model was fitted to 1000 synthetic datasets, which were
created by randomly sampling the original data with replacement per time point.
(B) From the sets of estimated parameter vectors, biplot of principle component
analysis (PCA) result is shown. (C) The marginal coefficients of variation (CV)
was calculated with 95% confidence interval from bootstrapping.
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3.2 Precision and accuracy of the model estimates

using B cell data

While information from time-lapse microscopy in Chapter 2 has informed core

elements of the Cyton2 model, in practice higher-throughput methodologies are

typically employed in immunological investigation. In particular, it is common

to have bulk experiments that start with a large number of initial cells that have

been cultured with a division tracking dye and are then exposed to stimuli for

a time-course of measurements by flow cytometry. Thus it is essential that any

mathematical model can be fit to such data and extract biologically meaningful

information from them. To that end, we derived expressions for the expected time-

course per generation of the Cyton2 model and a least-squares fitting methodology,

as described in Section 2.5, for fitting to such data to challenge Cyton2’s applicability.

We challenged the model with both B and CD8+ T cell datasets.

We interrogated a primary dataset consisting of in vitro CpG-stimulated murine

Bim−/− B cells with cell numbers recorded in each generation via flow cytometry.

Cells taken from this mouse strain are deficient in the pro-apoptotic molecule Bim

(B-cell-lymphoma-2-like protein 11, or Bcl2l11). As a result, these cells survive

longer in culture without impacting any other population dynamic feature (Turner

et al., 2008). Here, we asked if a standard division tracking assay, which typically

has three replicates at each of five or six harvested time points, provides sufficient

information to well constrain model fits. To that end, the dataset that we used

consists of nine replicates, collected at nine distinct time points.
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To assess the amount of data required to ensure a constrained model fit, we

altered the amount of data used according to two scenarios: (i) varying the number

of replicates sampled at all time points; and (ii) removing some of the time points

while maintaining the number of replicates. In Fig. 3.1A1-3, the best-fit model and

the estimated parameters with 95% confidence intervals are shown (see Section 2.5.1

in Chapter 2). Qualitatively, we observed that the confidence bands of the model fit

get narrower around the mean as we increase the number of replicates, indicating

an improvement in the model constraints, albeit with a law of diminishing returns.

As estimated model parameters are coupled, we assessed their vector values using

principle component analysis (PCA) (Fig. 3.1B). The PCA result signifies that the

first two principle components explain 79% variability in the set and, furthermore, is

suggestive that there is no notable correlation amongst components of the parameter

vector. To assess the precision of the estimated parameters, we computed coefficients

of variation for individual parameters as a function of the number of replicates (Fig.

3.1C). Again, a law of diminishing returns is observed with no significant benefit in

precision of the estimates beyond three replicates. This suggests that the existing

operational standard of three replicates offers a good balance between obtaining a

precise estimate and managing experimental burden.

We turned our attention to evaluating the model accuracy as time points were

removed while maintaining a fixed number of replicates (Fig. 3.2). For time-point

removal, we imposed the following rules to avoid any ambiguity and ensure the

feasibility of the model fits:

(1) At least three time points must be retained.

(2) Either the first or second time point must remain in order to provide an initial

cell number for the model.

Given these rules, there are 366 cases to consider in total. For each case, we

constructed 1000 artificial datasets by randomly sampling three replicates with

replacement per remaining time point, fitted the model assuming all random vari-

ables were log-normally distributed and then calculated the root-mean-square error

(RMSE) of the model-fit from the original unaltered dataset with nine replicates at

nine time points. In Fig. 3.2, we present rank ordered values of the RMSE when

one, two or three time-points are removed (see Fig. 3.3 for greater than three). The

RMSE of model fits using all time points with three replicates is also shown as a
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A Removing 4 time points

B Removing 5, 6 time points

Fig. 3.3: The accuracy of the model fit with CpG-stimulated Bim−/−

B cell FACS data. The root-mean-squared error (RMSE) was evaluated over
all available data points after fitting the reduced Cyton2 model to the synthetic
datasets. Similarly, the reference RMSE (purple) was obtained after fitting the
model to datasets assuming only three replicates are available while maintaining
all time points. (A) All possible combinations of positions of time points for k = 4
case. The best (blue) and worst (red) examples of Cyton fits are shown. (B) Best
examples for k = 5, 6 are shown. The worst cases failed to provide good fits (not
shown), resulting in large confidence bands and an order of magnitude difference in
RMSE.
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reference. Perhaps unsurprisingly, the results showed that capturing a measurement

at the time at which cells are expanding is the most important information to be

kept for the model accuracy. Intuitively, this would represent a regression of a

non-linear curve in which data points around “inflection point” are missing while

two ends points are present. Furthermore, we noticed that the first time point is

generally more important than the later ones as RMSEs are higher if the first time

point was removed. We found little to no difference in the RMSE compared to that

of the reference when the positions of the removed time points are sparsely located.

As an extreme example with six removed time-points, the model was capable of

accurately fitting the data as long as there were three time points that correspond

to the early (prior to first division), expansion and contraction phases (e.g. first,

fourth and ninth time points, see Fig. 3.3B). Knowing in advance those three time

points prior to an experiment is unrealistic, and so it represents a lower bound on

the number of time-points needed. Removing more than six time-points, the model

failed to fit due to the lack of information (results not shown). In summary, this

analysis illustrates that Cyton2 is well constrained by data employing standard

experimental protocols for following cell expansion by flow cytometry.

3.3 Positive signal integration from multiple stimuli in

CD8+ T cell

To evaluate the utility of the model in drawing biologically useful inferences, we

used it to reassess the non-linear population dynamics of experiments reported in

Marchingo et al. (2014). That study established that CD8+ T cells integrated a

range of distinct mitogenic stimuli via a simple, additive rule for the number of

rounds of division they provoked. We questioned how the phenomenon could be

understood in light of the new paradigm of familial concordance and global timers

as realised in Cyton2.

This data was obtained from in vitro CTV-labeled OT-I/Bim−/− CD8+ T cells

stimulated with the peptide N4 and cultured with co-stimulatory antibodies CD27

(5µg/mL) and CD28 (2µg/mL), both alone and in combination. Cells were harvested

at 27h, 44h, 52.5h, 66.5h, 69h, 76.5h, 90h, 101h and 115.5h after the stimulation with

three replicates at each time point (Marchingo et al., 2014). Mirroring the deduction

in the original paper, but expressing it in terms of timers, we sought to ask whether
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AOT-I/Bim-/- CD8+ T cell: Total cells C Estimated Cyton2 parameters

B1N4 B2 !CD27 B3 !CD28

Fig. 3.4: Fitting the Cyton2 model to OT-I/Bim−/− CD8+ T cell FACS
data (Marchingo et al., 2014). The cells were stimulated with N4 as basis for
all other conditions. (A) Harvested total cell numbers (•: mean ± SEM) overlaid
with the model extrapolation and 95% confidence band from bootstrapping. (B1-3)
Live cells per generation and the model extrapolation at harvested time points. (C)
19 jointly fitted parameters (T 0

div, Tdd, Tdie for each of N4, αCD27 and αCD28; a
shared subsequent division time, m) and their 95% confidence intervals. The fitted
and predicted values of mean and standard deviation are labelled in the legend for
normally distributed random variables.
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the contribution to division destiny of each co-stimulatory molecule in terms of time

could be described by a simple additive process. As there is no simple closed form

for the distribution of the sum of two independent lognormally distributed random

variables, for this application we instead chose to fit Gaussian distributions. That

is, assuming that TN4
dd is normally distributed with mean µN4 and variance σ2

N4, i.e

N (µN4, σ
2
N4), T

αCD27
dd is N (µαCD27, σ

2
αCD27), and TαCD28

dd is N (µαCD28, σ
2
αCD28), if the

contributions of αCD27 and αCD28 to division destiny time were problematically

independent and additive, then we would expect that

TαCD27+αCD28
dd ∼ N

(
µN4 + ∆µαCD27 + ∆µαCD28,

√
σ2
N4 + ∆σ2

αCD27 + ∆σ2
αCD28

)
,�� ��3.1

where ∆µx = µx−µN4 and ∆σ2
x = σ2

x− σ2
N4 for x ∈ {αCD27,αCD28}. In Fig. 3.4A,

we present the total number of cells and the best-fit model with a 95% confidence

band around the estimate from the original data. The model was simultaneously

fitted to N4, αCD27 and αCD28 datasets with a shared subsequent division time

(see Section 2.5.1 in Chapter 2) (Fig. 3.4B1-3), omitting the αCD27 plus αCD28

dataset for out of sample testing. The estimated m and cumulative distribution

function (CDF) of T 0
div, Tdd and Tdie are shown in Fig. 3.4C. In comparison to N4

alone, the addition of αCD27 and αCD28 extends both means of Tdd (≈15%) and

Tdie (≈10%). Also, we identified αCD28 reduces mean of T 0
div (13.3%) while αCD27

has minimal impact. Collectively, the compounding effect of these changes results in

larger expansion of cell numbers by allowing cells to enter the first division early and

to reach destiny and death at later times. Given the parameter estimates for N4,

αCD27 and αCD28, we predicted the number of cells for their combined effect by

calculating the T 0
div, Tdd and Tdie according to Eq. 3.1. Strikingly, this successfully

recreated the expansion kinetics of OT-I/Bim−/− CD8+ T cells in the presence of

both αCD27 and αCD28 (Fig. 3.4A), supporting the signal integration as a linear

sum in a time domain of three dimensions and consistent with the independence

of the timers. Additionally, we recapitulated the additive nature of mean division

number presented in Marchingo et al. (2014) using Monte-Carlo simulation given

the fitted and predicted parameter estimates (Fig. 3.5). These results illustrate the

merit of Cyton2 in uncovering how simple operations can underlie highly non-linear

population dynamics.
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Fig. 3.5: Linear sum of the signals from simulated trees (correspond to
Fig.3 in Marchingo et al. (2014)). For each harvested time points from FACS
data, percentage cohort number (with respect to the first time point) as a function
of MDN is shown (•: mean ± SEM). The Agent-Based Model was used to generate
family trees. The times to first, to destiny and to death were randomly sampled
from the estimated normal distributions by fitting the reduced Cyton2 model to N4,
αCD27 and αCD28 datasets simultaneously. Note that the subsequent division time
was set as a constant to be consistent with the model. To match the data, each round
of the simulation was initialised with 6066 (N4), 8252 (αCD27) and 8377 (αCD28)
clones and ran for t ∈ [0, 140] with ∆t = 0.5 in hours. This process was repeated
1000 times to obtain 95% confidence bands around the mean. Increase in MDN is
labelled in each panel with arrows. The predicted MDNs for αCD27+αCD28 were
calculated either by summing the contribution from each individual stimulation
( ) or simulating the trees directly with the summed timers ( ).
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3.4 Predicting negative signal addition from immuno-

suppressive drugs

In the previous section, we found that the combined effect of multiple costimulatory

signals manifests as a linear sum of contributions from each stimulus with respect to

the timers. This additivity recapitulated the larger expansion of the cell population

that was induced from the combination of two “positive” milder stimuli. The

importance of understanding and predicting such dynamics can be extended to

clinical application such as personalised chemotherapy for immunocompromised

patients who suffer from lack of responding cells to fight off infections. However,

it is also possible for the immune cells to overrespond, as seen from autoimmunity,

allergy or organ transplantation, in which case it is often desired to suppress

the reaction to reduce the damage to nearby healthy cells. In this section, we

present an illustration of the model to shed light on cell population dynamics

under the influences that work in combination. To do so, we examined FACS

data collected from our WEHI collaborators, where they investigated the effect of

two immunosuppressive compounds known as Rapamycin and Dexamethasone on

antigen-induced proliferation of CD8+ T cells from OT-I/Bim−/− transgenic mice.

The experimental details are shown in Appendix A.2.

Rapamycin (Sirolimus) was first isolated in 1972 from Streptomyces hygroscopius

bacterium found in Easter Island (Rapa Nui) (Vézina et al., 1975) and is now

commonly used in preventing kidney organ transplant rejection (Ballou and Lin,

2008). It achieves its immunosuppressant function by inhibiting cell cycle progression

that is usually motivated by the protein mammalian Target of Rapamycin (mTOR)

(Fingar et al., 2004), which results in reduced T cell activation and proliferation

(Zheng et al., 2007; Finlay et al., 2012).

Dexamethasone (a corticosteroid) was first synthesised in 1950s, and has been

used for treating autoimmune diseases such as rheumatoid arthritis, multiple sclerosis

and psoriasis (Coutinho and Chapman, 2011). Although it is one of the most

widely used drugs, the underlying mechanism behind immunosuppression is not

well understood. Studies in Galili et al. (1980); Purton et al. (2004); Giles et al.

(2018); Chen et al. (2018) reported a reduction in T cell survival through apoptosis,

however, it still remains unclear if there exists any effect on cell proliferation. An

analysis from our collaborator revealed that the decrease in total cell population
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Fig. 3.6: FACS data and summary statistics of OT-I/Bim−/− CD8+ T
cells in the presence of Rapamycin, Dexamethasone or both. (top-row)
Dose-dependent reduction in total cell numbers are shown for Rapamycin alone,
Dexamethasone alone, two fixed Rapmaycin concentrations as bases for varying
Dexamethasone. (mid-row) Summary statistics of cell survival by cohort numbers,
i.e. removal of doubling effect. While Dexamethasone shows earlier cell death as
dosage increases, Rapamycin has little to no effect. (bot-row) Summary statistics
of cell proliferation by mean division number, i.e. average number of division
rounds. CD8+ T cells undergo similar amount of division rounds irrespective of
Dexamethasone concentration, whereas significant reduction in the division counts for
higher Rapamycin concentration. Consequently, both drugs suppress cell expansion
through reduction in the survival or proliferation, and they achieve so without
affecting one another.
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A Fitted Log-Normal Cyton2 parameters

B Average division time after the first

Fig. 3.7: Parameter estimates of Cyton2 model from OT-I/Bim−/− CD8+

T cells in the presence of Rapamycin, Dexamethasone or both. (A) Esti-
mated Log-normal distributions of time to first division, time to division destiny and
time to death. The same colour represents an equal concentration of Rapamycin.
Different line styles were used to indicate specific concentration of Dexamethasone.
Shaded area around each line represent 95% confidence band. (B) Estimated sub-
sequent division time. The same colour scheme was adopted for consistency. A
vertical dashed-line represents the mean time for a given Rapamycin concentration.
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numbers of stimulated T cells was not mediated by changes in the proliferation, but

rather by shortening of their life time (Lye, 2016, Chapter 4).

To use Cyton2 to assess the effect of each of these drugs, alone and in combination,

on proliferation and survival, time series experiments were performed and analysed

by our collaborator at WEHI. CTV-labeled OT-I/Bim−/− CD8+ T cells were initially

stimulated with N4 peptide and αCD28 (6.32µg/mL) as base positive stimuli to

induce the cell expansion. These cells were further stimulated with or without

various concentrations of Rapamycin (0, 15, 500, 1580 pg/mL) and Dexamethasone

(0, 1, 3.16, 10 ng/mL) after which they were harvested at 18.75h, 41h, 49.75h, 65.5h,

72.5h, 88.5h, 96.5h for all three replicates per time point (see top-row of Fig. 3.6).

We observed a decrease in cell population for both drugs. To further investigate

the effects, we computed total cohort and mean division numbers (MDN) at each

harvested time point, t, given by,

C(t) =
G∑
g=0

cg(t) =
G∑
g=0

ng(t)

2g
,

MDN(t) =

∑G
g=0 g · cg(t)∑G
g=0 cg(t)

,

where ng(t) and cg(t) are the cell number and cohort number, respectively, in

generation g at time t; and G is the maximum observed generation from the FACS

dataset. As C(t) removes the expansion effect contributed from each cell family in

the population, this is a monotonically decreasing function that stays constant if

no cell death has occurred. In mid- and bottom-rows of Fig. 3.6, we observed that

Rapamycin significantly reduces MDN while having little to no effect on cell death.

Conversely, Dexamethasone did not affect MDN and achieved cell reduction via

inducing early cell death as indicated by a rapid drop in C(t). More importantly,

these drugs act independently when used in combination, that is the magnitude of

the reduction is proportional to the contributions from Rapamycin on MDN and

Dexamethasone on the cell death.

To assess the effects quantitatively, we fitted the Cyton2 model and extracted

the model parameters as described in Section 2.5.1. Here, the best fit model was

obtained per drug condition prescribed with three log-normal distributions for times

to first division, to division destiny and to death, and a constant subsequent division

time. We summarised the parameter estimates in Fig. 3.7. The results indicate

72



3.4. PREDICTING NEGATIVE SIGNAL ADDITION FROM
IMMUNOSUPPRESSIVE DRUGS

0

2000

4000

6000

8000

10000
Rapa 0 + Dex 0
m = 9.5h
T0

div (31.5, 0.2)
Tdie (88.1, 0.3)

Rapa 0 + Dex 1
m = 9.8h
T0

div (30.7, 0.2)
Tdie (75.4, 0.2)

Rapa 0 + Dex 3.16
m = 10.4h
T0

div (31.3, 0.3)
Tdie (64.1, 0.2)

Rapa 0 + Dex 10
m = 9.9h
T0

div (31.5, 0.2)
Tdie (59.9, 0.2)

0

2000

4000

6000

8000

10000
Rapa 158 + Dex 0
m = 9.2h
T0

div (36.3, 0.2)
Tdie (90.8, 0.2)

Rapa 158 + Dex 1

Best-fit
Predicted

Rapa 158 + Dex 3.16 Rapa 158 + Dex 10

0

2000

4000

6000

8000

10000
Rapa 500 + Dex 0
m = 13.7h
T0

div (40.3, 0.2)
Tdie (91.1, 0.2)

Rapa 500 + Dex 1 Rapa 500 + Dex 3.16 Rapa 500 + Dex 10

0 30 60 90
0

2000

4000

6000

8000

10000
Rapa 1580 + Dex 0
m = 17.7h
T0

div (44.8, 0.2)
Tdie (87.6, 0.2)

0 30 60 90

Rapa 1580 + Dex 1

0 30 60 90

Rapa 1580 + Dex 3.16

0 30 60 90

Rapa 1580 + Dex 10

Dexamethasone [ng mL 1] 

 R
ap

am
yc

in
 [p

g
m

L
1 ]

C
el

l n
um

be
r

Time (hour)

Gen 0 Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7 Gen 8

Fig. 3.8: Predicting cell population size in combination of Rapamycin
and Dexamethasone. Each panel shows the effect of one or combined drug in cell
population size. Top-left panel is the control i.e. without the drugs. The best-fit
model (solid-line) and predicted cell numbers (dashed-line) are shown. Shade area
around the curves represent 95% confidence band.

that the division times did not change with respect to Dexamethasone but mean

division times slow down due to Rapamycin, resulting in lower number of cells

in the population. Conversely, an earlier time to death was observed for higher

Dexamethasone concentration, while division times were unaffected with Rapamycin.

However, the time to division destiny appears to have no apparent alteration with

either of the drugs. This is consistent with the observation in Fig. 3.6 that the drugs

operate independently and that all three timers, for division, death and destiny

can be regulated independently in the cell. This result also strongly supports the

translation of our interpretation into the time domain, as seen similarly in the

previous section for costimuli. To predict cell numbers for the combined effect, we
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first took parameter estimates from fitting Rapamycin or Dexamethasone alone (see

top-row and first-column of Fig. 3.8), then replaced the division times according

to respective Rapamycin concentration, and similarly, replaced the death time

according to corresponding Dexamethasone dosage. For example, Rapamycin 158

pg/mL plus Dexamethasone 1 ng/mL would require estimates from Rapamycin 158

pg/mL alone for division times and from Dexamethasone 1 ng/mL alone for death

time. Average time to division destiny was used for the prediction. Strikingly, this

simple operation captured OT-I/Bim−/− CD8+ T cells under the influence of two

immnosuppressive drugs in combination. These results further illustrate how Cyton2

unveils complex non-linear effect of negative signal addition with a simple operation.

3.5 Discussion

In summary, we extracted significant biological meaning from time series data from

different stimulation conditions using the Cyton2 model for in vitro B and T cell

populations. The model was quantitatively evaluated by fitting artificial datasets

randomly and conditionally sampled from the observed dataset. The precision of

the parameter estimate increases as we introduce more replicates into the procedure.

This was qualitatively manifested as a small cluster in size from PCA analysis

and tightened lower and upper bounds of 95% confidence intervals in cell number

extrapolation. We also found that the model can accurately capture the B cell

population dynamics even with limited information. It was shown that contributing

factors are availability for data points at early, expansion and contraction phases of

the dynamics. So long as these points are present (as low as three time points, see

Fig. 3.3), the model is capable of estimating parameters with reasonable confidence.

In Marchingo et al. (2014), the authors deduced that CD8+ T cell populations

follows a simple additive rule in handling multiple signals from costimulatory re-

ceptors. To do so, they calculated a summary statistics, mean division number,

and showed that the final outcome (i.e. αCD27 plus αCD28) can be predicted

by algebraic linear sum of those statistics. We reanalysed the same dataset and

successfully captured the dynamics, but with an alternate methodology. Here, we

estimated parameters of the RVs from each stimulation (N4, αCD27, αCD28) by

simultaneously fitting the model, then add the contributions linearly in time to

predict CD8+ T cells stimulated with αCD27 plus αCD28.

A natural question arises from the signal addition is whether it can be applied
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to suppressive signals. An experiment utilising CD8+ T cell proliferation was used

to address this question. Here, the model was capable of predicting the effect of two

immunosuppressive drugs, Rapamycin and Dexamethasone, in combination given

the effects of individual drug.

All analyses performed in this chapter were on the datasets obtained from in

vitro murine experiments. In biology, it is common to extend this type of experiment

to human or human-like systems for its applicability in mind such as a new drug

development. As such, we will discuss further merit of Cyton2 applied to human B

and T cells in Chapter 5.

75



4
Beyond lymphocyte proliferation and

population dynamics: B cell differentiation

4.1 Abstract

In this chapter, we present work, some of which appeared in Horton et al. (2022),

that was accomplished in collaboration with partners from Prof. Philip Hodgkin’s

lab at Walter and Eliza Hall Institute (WEHI). The publication concentrated on

the biological insights that can be drawn from the quantitative analysis of clonal

B cell stimulation data. Here, we expand upon and extend the development, and

application, of the mathematical models and techniques that were required and that

we principally developed. Up to this chapter, we considered population dynamics that

only involve clonal expansion and contraction of activated lymphocytes. However,

a successful immune response involves differentiation to effector cells, for example

antibody-secreting cells (ASCs) for B cells, in order to eradicate foreign pathogens.

Thus, if experimental methods can be designed that can record measurements on

differentiation, it is natural to incorporate the differentiation process into modelling

population dynamics. Furthermore, it is of interest for modelling purposes to know

how patterns of differentiation arise within families. To acquire such data requires

some form of lineage tracing. With collaborators at WEHI having developed a clonal

multiplex assay for lymphocytes (Marchingo et al., 2016; Horton et al., 2018), and

has since been developed for hematopoietic stem cells (Tak et al., 2021), that has the

potential to record information on molecular components as well as division numbers

within clonal families, the development of a mathematical and statistical framework

to assess the resulting information was needed. We analysed in vitro clonal samples
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from murine B cells using multiplex cell-labelling technique and single-cell sorting

to dissect the characteristics of ASC differentiation and antibody isotype switching

at the clonal and molecular level. The regulation of some of the key molecules that

determine the cell’s fate were incorporated in a simple probabilistic model to predict

single or concurrent switching frequency under varying in time conditions.

4.2 Exploring B cell differentiation

A proportion of näıve B cells during the proliferation initiates an isotype class switch

in antibody type (e.g. IgM to IgG), and differentiate into replicating (plasmablast),

non-replicating (plasma cell) antibody-secreting cells (ASCs) and long-lived memory

cells (Stavnezer et al., 2008), thereby creating broad heterogeneous populations

of effector B cells (Kallies et al., 2004; Hasbold et al., 2004). A similar process is

observed for CD4+ and CD8+ T cells, leading to functionally different role in their

effector states such as releasing cytokines and initiating cytotoxic activity (Seder

and Ahmed, 2003; Yates et al., 2004; Kaech and Wherry, 2007; Zhu et al., 2010;

Gerlach et al., 2010, 2013; Verdon et al., 2020).

Various experimental techniques have been employed for observing B cell differen-

tiation. One commonly used method is to stain for markers usually in combinations,

such as Syndecan-1, B220, CD19, CD38, CD43 and CD63L, as indirect indicators

of a cell having differentiated to become an ASC and measure their expression

levels with flow cytometry (Sanderson et al., 1989; Tangye et al., 2003c; Taylor

et al., 2015; Barwick et al., 2016; Krishnamurty et al., 2016; Boonyaratanakornkit

and Taylor, 2019). Alternatively, Kallies et al. (2004) introduced B lymphocyte

induced maturation protein-1 (Blimp-1) GFP reporter mice by utilising the unique

characteristic that Blimp-1 is rapidly induced during the B cell differentiation into

ASCs (Turner et al., 1994; Shapiro-Shelef et al., 2003, 2005; Wang et al., 2019). The

latter technique, together with time-lapse microscopy, was extensively utilised in

studies, for example, Fairfax et al. (2007); Duffy et al. (2012); Zhou et al. (2018) to

shed light on the mechanism of B cell fate determination.

To examine differentiation, B cells need to become activated and undergo clonal

expansion. Here, we present two methods that are commonly used in the lab

environment to induce such reactions in the absence of BCR stimulation by antigen.

One way to achieve this is to provide strong signals from via Toll-like receptors

(TLRs) using lipopolysaccharides (LPS). Unlike CpG DNA, another TLR agonist
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that induces proliferation without differentiation, many of LPS-stimulated cells

differentiate to ASCs while dividing and accumulate and increase in frequency with

successive generations (Hasbold et al., 2004). Furthermore, LPS-stimulated B cells

undergo isotype switching and alter the isotype chosen in response to different

cytokines (Coffman et al., 1988). The other way is to mimic T-cell dependent

activation through CD40, for example, with soluble αCD40 antibody. This system

is typically accompanied with “switching” cytokines such as IL-4, IL-5, Interferon

Gamma (IFN-γ) and Transforming growth factor Beta (TGF-β) to initiate class

switching of immunoglobulin isotype (Coffman et al., 1988; Hodgkin et al., 1994;

Hasbold et al., 1999b; Deenick et al., 1999, 2005; Oracki et al., 2010).

As with studying proliferation dynamics, diverse mathematical models have been

proposed to deduce underlying mechanisms and to estimate biologically relevant

parameters. Quantitative analyses of population datasets from division tracking

assays provided insights on the characteristic of B cell fates: isotype switching

requires cell division and is division-linked (Hodgkin et al., 1996; Tangye et al.,

2003c). Furthermore, it was reported that isotype switching is stochastic and

independent of the decision to become an ASC (Hasbold et al., 2004). Measurements

of exact timings of individual cell’s fate from imaging platform in controlled, in

vitro settings, and using probabilistic model, Duffy et al. (2012); Zhou et al. (2018)

deduced that the cells reached their fates autonomously and accurately predicted cell

numbers subjected to stochastic competition. Another in vitro study from Hawkins

et al. (2013) used the original Cyton model to infer that the rate of differentiation to

ASC depends on the type of stimulation in the system. In particular, LPS induces a

constant rate regardless of its concentration so long as it is above a certain threshold.

However, this rate changes with αCD40 stimulation strength: a higher proportion

of differentiation per generation is seen with lower αCD40 concentrations. Other

mathematical models in the literature cover mechanism of B cell fate in a broader

context. Examples include: (i) modelling a B cell regulatory network in germinal

centre (Mart́ınez et al., 2012); (ii) stochastic compartmental model to describe inter-

and extra-cellular dynamics of B cell maturation and exit from germinal centre

(Thomas et al., 2019); and, (iii) hybrid ODE formulation with a stochastic component

to model the effect of joint regulation of IL-2 and IL-4 in B cell proliferation and

differentiation (Atitey and Anchang, 2022).

In the following sections, we will introduce an analysis of B cell differentiation in

an attempt to unravel clonal characteristics of the process at molecular level based
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on a dataset from an experimental system that was performed in vitro with murine

B cells. As the multiplex lineage tracing assay provides distinctive information than

that of time-lapse microscopy experiments, or other similar methods, development

of a model that is distinct from previous ones was necessary. To do so, we first

performed a gedanken experiment with two simple distinct rules that anticipate

the core characteristics to be expected in the resulting data. The two alternative

generative patterns are: (i) each offspring autonomously determines its cell fate

independently of other cells; and, (ii) cells within a family determine their fates

in a clonally dependent manner. Here, we generated family trees via Monte-Carlo

(MC) simulation to obtain a simulated dataset that can be compared to features

observed within experimental data. In addition to the theoretical work, we analysed

flow cytometry-based lineage tracing (Marchingo et al., 2016; Horton et al., 2018)

datasets and derived a number of simple probabilistic models, based on those two

rules, to predict the proportion of differentiated B cells, particularly, IgG1+ and

IgG2b+ cells.

4.3 Simulation of B cell differentiation process and

expected data structure

In this section, we present MC simulation of the B cell differentiation that generates

clonally-independent and -dependent family trees. Here, clonal independence indi-

cates that each cell’s fate is determined autonomously irrespective of other sibling

cells, whereas clonal dependence means close association of fate change between

related cells. For both cases, we assume that no cell death occurs in the system,

and cell fate is an irreversible process. One distinguishing characteristic between

the two systems is that the offspring in the clonally-dependent case inherit the state

from parent cells. Overall description of the simulation is shown in Fig. 4.1A1,A2.

Ultimately, we aim to extract and compare statistical characteristics in the number

of type-changed cells that are regenerated by those two rules and obtain theoretical

expectations for the data structure that one could expect from experiments.

First we considered generating symmetric family trees to identify unique statisti-

cal features that manifest as a distinguishing factor between the two systems. Let ng

be the number of unchanged cells in a given family for generation, g = 0, 1, . . . , G,

where each simulated family begins with n0 = 1 founder cell. Given division-
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Fig. 4.1: MC simulation of cell-type change and expected data structure.
Members of a family are simulated with two distinct mechanisms of cell fate: (A1)
Autonomous determination of cell fate for each cell; and, (A2) Clonally dependent
fate with positive correlation coefficient, r ∈ [0, 1]. Once cells change their type
with generation-dependent probabilities, {pg : g = 0, 1, . . . , G} (Hasbold et al.,
2004), their offspring inherit the state. For each generation, the events of cell-type
change are simulated with binomial and beta-binomial distributions for autonomous
and clonally dependent cases, respectively, given number of unchanged cells (ng).
Variable, vg, denotes number of type-changed cells. (B) The expected number
and standard deviation of type-changed cells calculated from 107 families. (C)
Simulated with 200 founder cells with randomly assigned division times. Offspring
that reached theirs fates are randomly assigned expression levels from a single
lognormal or multivariate lognormal distribution, parametrised by median and log-
variance, (m, s), and mean vector and covariance matrix, µ ∈ Rvg and Σ ∈ Rvg×vg ,
respectively.
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dependent differentiation probabilities {pg} (Hasbold et al., 2004), the number of

type-changed cells is randomly decided using a binomial distribution, vg = B(ng, pg),

for the clonally-independent case as ng numbers of cells independently determine

their fate. To model the clonally-dependent case, we used a beta-binomial distribu-

tion, vg = BB(ng, αg, βg), to include degrees of correlation between sibling cells in a

given generation such that vg objects were picked out of ng cells with probability pg

and intraclass correlation r ∈ [0, 1]. More specifically, the beta-binomial distribution

is parameterised by αg = pg(1− r)/r and βg = (1− pg)(1− r)/r (Marchingo et al.,

2016). With this formulation, when r = 0 each cell determines the fate independent

of others, whereas for r = 1 all cells in the same generation either maintain or

change their states. We ran simulations for 107 families and recorded n
(i)
g and

v
(i)
g for every ith family. Each realisation of a family tree was set to terminate at

maximum generation G = 6, thus, we obtain sets N = {n(i)} and V = {v(i)} where

n(i),v(i) ∈ ZG+. The expected number and standard deviation of V are shown in Fig.

4.1B. For both hypothesised scenarios, the average numbers of type-changed cells are

approximately the same, however, the variance increases as the correlation coefficient

r increases. This result indicates that the consequence of clonal dependency can be

statistically identified by comparing the variances.

Next, we extended the simulation above and extracted information from simu-

lated trees to establish expected data structure. To do so, we randomly assigned

expression levels that correspond to experimentally observable quantities directly

after determining cells’ fates at each generation per family. In a typical experiment

setup, these levels are measured using one or more biological markers (e.g. cell

surface staining) to identify cell fates in a given population. To reflect correlation

structure and to ensure positive expression values, the assignment was performed

using a multivariate lognormal distribution parameterised by a mean vector µ ∈ Rvg

and covariance matrix Σ ∈ Rvg×vg with correlation coefficient r. The sizes of mean

vector and covariance matrix depend on the number of type-changed cells in each

generation. For the clonally-independent case we set r = 0 in the matrix such that

each cell gets assigned autonomously and independently of the other cells. For the

clonally-dependent case, we set r = 0.9 to remark structural differences in possible

experimental observation subjected to a strong correlation. As all cells exhibit

auto-fluorescence, we assigned these levels separately using a lognormal distribution.

Furthermore, we allocated random division times for each cell to create frayed family

trees, which are often observed in real experiments. At the beginning of each simu-
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lation, a founder cell was randomly assigned time to first division from a lognormal

distribution with median and log-variance (T 0
div ∼ LN (24, 0.3)) and its offspring

picked a random inter-division times from a exponential distribution with mean

of 10 hours (T k>0
div ∼ Exp(10)). We recorded these times and examined expression

levels of cells at 48 hours. In Fig. 4.1C, rank-ordered plot of the expression levels is

shown. As expected, the correlation induces tight clusters of cell expression levels in

a given family and cascade pattern throughout the clones. However, two clouds of

the expression levels are shown for the autonomous case, indicating small portion of

cells has type-changed at random and the rest remains in the initial state. These

structural differences can be utilised to illuminate underlying mechanisms of cell

fate determination.

4.4 Statistical analysis of clonal dependence of differ-

entiation

Lineage tracing

Conventional lineage tracing and fate mapping approaches such as time lapse

microscopy have been widely used to investigate emergence of heterogeneous cell

types in a population. However, scientific discovery and progress have been impeded

by some practical problems such as aggregation of cells in vitro and difficulties in

cell tracing over long period of time in vivo. Recently developed techniques such as

barcoding via retrovirus-tagged progenitors (Gerlach et al., 2010; Naik et al., 2013,

2014) and heritable genome editing via CRISPR technology (McKenna et al., 2016)

have contributed to design higher throughput experiments and led to important

discoveries in the development of diverse cell types across multiple biological systems.

As the detail of division progression is important for understanding the inner

workings of cell fate determination, Horton et al. (2018) introduced utilisation of

multiplexed division tracking dyes used in in vitro settings to simultaneously measure

division progression, typically up to 8 divisions before cells are indistinguishable

from autofluorescence, as well as cell fates with flow cytometry-based phenotyping

(Fig. 4.2A). This method extends well established fluorescence-based assay, for

example with carboxyfluorescein succinimidyl ester, and provides information of

clonal lineage in a high-throughput manner.
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A Multiplex division tracking assay

Different color for each markers Sort founder cells Clonal lineage tracing

Clone #1 Fate

Clone #2 Fate

B Measurements of Blimp and IgG1 expression levels

C Relationship of the expression levels between offspring

Fig. 4.2: Flow cytometry-based multiplex division tracking assay and ex-
periment measurements of Blimp and IgG1 expression levels. (A) Lineage
tracing of activated B cells for ASC and CSR by multiplexed cell labelling. (B)
Distributions of the expression levels of Blimp (red) and IgG1 (blue). Cascade plots
of rank-ordered Blimp and IgG1 expression levels. Generation information is colour
coded. (C) All possible combinations of pairs of the expression levels for cells in the
same generation and family.
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We obtained datasets that contain information on differentiation of B cells into

ASCs and IgG1 lymphoblasts, indicated by Blimp and IgG1 expression, respectively

(see Supplementary Fig. B.1A). Division information and rank-ordered cascade plots

of expression levels are shown in Fig. 4.2B, including the marginal distributions.

We noticed that the expression level of Blimp exhibits a similar pattern with the

simulation result of clonally dependent families. On the other hand, in the culture

conditions used, large proportion of cells remain unswitched (. 500) and those

who switched to IgG1+ appear to reach fates independently of other cells in the

family. Furthermore, the association of fate determination between sibling cells in a

family revealed that Blimp has relatively strong correlation, whereas this association

disappears with IgG1 (Fig. 4.2C). To augment our point, quantitative assessments of

the association is presented in Supplementary Fig. B.1B-D by calculating Spearman’s

correlation coefficient for repeated sampling of cell pairs either within clones or

selected randomly irrespective of family.

Statistical inference

To quantitatively assess the clonal dependence of cell fate determination, we per-

formed permutation tests with the following information from the datasets: (i)

expression level; (ii) generation; and, (iii) clonal membership. Here, we define

multiplex data as a sequence of three elements for every ith cell,

D = {(ei, gi, ci)}Ni=1 ,

where N is the total number of cells, ei ∈ R is the expression level, gi ∈ {0, 1, . . . , G}
is generation and ci ∈ C = {1, 2, . . . , C} is label for clonal membership with G,C ∈ N.

For our tests, we posit two null hypotheses,

• Test 1: Every cell’s expression level is equal in distribution irrespective of

generation and clonal membership.

• Test 2: Every cell’s expression level is equal in distribution irrespective of

clonal membership only.
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Given null hypotheses, we define the variance of the expression level averaged across

all clones as our test statistics,

T (D) =
1

C

∑
x∈C

σ2 ((ei : ci = x, i = 1, . . . , N)) ,

where σ2(A) = 1
|A|−1

∑
a∈A

(
a− 1

|A|
∑

a′∈A a
′
)2

. A collection of data permutations,

denoted Q, is all possible reassignments of the labels of the individual observation,

i→ π̃(i), so that each of a reordered data set is constructed by

π : D → Dπ =
{

(eπ̃(i), gi, ci)
}N
i=1

.

If we have 1,000 cells, then there are 1,000 factorial possible permutations, requiring

MC method to draw B ∈ N number of samples from Q uniformly at random to

evaluate T (Dπ) and estimate the following one-sided test p-values:

p̂ =
1 +

∑B
i=1 1{T (Dπ)≤T (D)}

1 +B
.

With this recipe, we can establish allowable permutations depending on the tests

we wish to proceed. In particular, Test 1 has no restriction, whereas we limit the

permutation of the expression levels between the cells in the same generation for Test

2. Fig. 4.3 presents the results of the tests encoded with p-values estimated from

MC with B = 500, 000, resulting in rejections of the null hypotheses for both Test

1 and Test 2. These rejections indicate that the data have lower average variance

than that of expected variance under the the null hypothesis, thus have greater

clone relatedness. However, the measurement of IgG1 expression level has a peculiar

pattern, where more than half of the cells remain in initial state (≈67% in IgG1−)

and exhibit similar data structure as shown in Section 4.3 (c.f. Fig. 4.1C) even

though we assumed clonal independence in the simulation. In the following section,

we introduce measurements of molecules, in particular germ-line transcripts (GLTs),

that are essential part of the mechanism leading to immunoglobulin class switch

recombination (CSR), and analyse them to elucidate molecular regulation of CSRs

to IgG1 (and later IgG2b) that could lead to the observation of IgG1 expression

level.
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Permutation test: clonal dependence

Fig. 4.3: Testing null hypotheses of clonal dependence. Permutation test
results of the Blimp (left) and IgG1 (right) data presented in Fig. 4.2B. The
vertical dashed-line refers to the data statistics of the original data. The distribution
shows the density of the log10 of the average clonal variance computed for 500,000
permutations of the data. The lower one-sided p-values are shown in legend for both
tests described in the main text. These values indicate rejection of the hypotheses
with a significance level of 0.05.

4.5 Analysis of molecular regulation of Class Switch

Recombination

To understand further the development of the characteristic familial isotype switching

patterns, we examined the familial expression of other key mediators of switching.

There are two main molecular components that are key to the process of isotype

class switching (e.g. from IgM to IgG1) in B cell differentiation. The first is the

DNA-editing enzyme Activation-Induced cytidine Deaminase (AID) (Muramatsu

et al., 2000) and the other is Iγ1 GLT. These components are not expressed in

näıve B cells and both are induced by external stimuli during B cell activation

(Stavnezer-Nordgren and Sirlin, 1986; Zhang et al., 2019). To investigate molecular

regulation of CSR, our collaborators at WEHI obtained measurements of AID

expression and Iγ1 transcription (Supplementary Fig. B.2A,C). AID expression was
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A Proportion of AID+ and Iγ1+ B cells

AID: Division-linked

Inherit

Iγ1: Division-independent

Re-randomise

B Proposed AID and Iγ1 regulation

CModel prediction of IgG1 cells & residual-sum-of-squares of model fit

AID+ Iγ1+
IgM IgG1

Fig. 4.4: B cell antibody class switching is characterised by division-
linked AID expression and division-independent Iγ1 transcription. [Cor-
responding to Figures 3 & 4 from Horton et al. (2022)] (A) Experiment measurements
of proportions of B cells expressing AID (triplicate) and Iγ1. (B) Proposed molec-
ular regulations of AID and Iγ1 at single-cell level. Once a cell expresses AID,
its offspring inherit the state of mother cell and stay AID+. In contrast, each
cell autonomously determines Iγ1, its state is re-randomised at each generation.
(C) experiment measurements (Mean ± SEM) and model prediction of proportion
of IgG1+ cells. Percentage switching efficiency of IgG1 given both AID and Iγ1
expressions.
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measured in clonal families using multiplex fluorescent dyes with flow cytometry

together with a human-CD2 (hCD2) reporter, and Iγ1 transcripts were measured by

single-cell quantitative polymerase chain reaction (sc-qPCR) combined with index-

sorting (see experiment details in Appendix A.3). These measurements are shown in

Supplementary Fig. B.2A,C. Here, repeated random cell pairs and quantification of

clonal correlations indicate noticeable discordance in expression of both molecules.

Furthermore, co-expression analysis of hCD2/AID and Iγ1 exhibits no correlation

between the two molecules (Supplementary Fig. B.3). These results demonstrate

that the molecules are each expressed stochastically and independently of each other.

Next, we sought to develop a model of CSR based on the intersection of expression

of both GLT and AID, by chance, in the same cells, and present results of the

model predictions. Mathematical derivation and reasoning of the model are shown

separately in Section 4.6 to clearly distinguish biological findings inferred from the

data and model.

It was reported that antibody class switching is a division-linked process, that is,

the frequency of switched cells during B cell activation increases with each successive

round of the cell cycle (Hodgkin et al., 1996; Deenick et al., 1999). To dissect

molecular regulation of CSR fates in relation to generation, we inspected expression

of AID and Iγ1 of dividing B cells. Qualitatively, it is evident from inspection of

Fig. 4.4A that these two molecules behave distinctively: AID is division-linked

as the proportion of AID+ B cells increases cumulatively with generation number,

creating non-symmetric families, whereas Iγ1 transcription frequency is constant

and unaffected by cell division (Fig. 4.4A). From these measurements, we proposed

two separate mechanisms to model stochastic emergence of AID and Iγ1 molecules:

(i) A cell can express AID at any generation independent of other sibling cells, and

once it expresses, the subsequent offspring inherit the state and stay AID+. This is

irreversible process as to accommodate increase in frequency of AID+ cells; (ii) Each

cell autonomously expresses Iγ1, and it is re-randomised upon each cell division

irrespective of clonal lineage or generation (Fig. 4.4B). Based on these two rules, we

constructed a simple probabilistic model and asked if it was consistent with, and

could predict, the number of observed IgG1 switched cells in each generation (see

Section 4.6.1 for the equations). In particular, we assumed that the switching occurs

when both AID and Iγ1 are expressed, by chance, in the same cell with some efficiency

which were modelled by a binomial distribution given empirical probabilities of the

two molecules. In Fig. 4.4C, we present the model of predicted proportion of IgG1
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switched cells with estimated switching efficiency of approximately 32%, revealing

excellent accord with the data.

B cells are restricted to expressing a single isotype at a time, however, they

are capable of switching to different isotypes, e.g. IgG2b, directly from IgM and

sequentially by first expressing another switched isotype (Stavnezer et al., 2008).

Here, we investigated dynamics of multiple isotype switching of B cells, particularly

from IgM to IgG1 and/or to IgG2b cells. To do so, we obtained measurements of

another GLT, i.e. Iγ2b expression along with AID and Iγ1, that responsible for

isotype class switch to IgG2b. Induction of concurrent switching to two isotypes was

achieved by stimulating B cells with LPS, IL-4 and TGF-β, and the proportions of

IgG1 and IgG2b switched cells within families were determined with the multiplex

clonal assay. In Fig. 4.5A, we present experimentally measured proportions of AID+,

Iγ1+ and Iγ2b+ cells for five different concentrations of IL-4. While we can observe

a division-dependent accumulation of AID+ cells, as previously described, for all

IL-4, Iγ1 expression frequency increases in a dose dependent manner, consistent

with its role in promoting switching to IgG1 cells. However, Iγ2b remains constant

irrespective of the IL-4 titration. Here, we postulated that the fate decisions during

concurrent antibody class switching are likely resolved by intracellular competition

between GLTs, with more strongly expressed transcripts outcompete the others to

determine outcomes of a switching cell. We included this rule in the probabilistic

model as shown in Fig. 4.5B to predict IgG1 and IgG2b switching, provided empirical

estimates of AID, Iγ1 and Iγ2b probabilities with a constant switching efficiencies

(see Section 4.6.2 for the equations). This model closely recapitulated the dynamics

of multiple isotype switching under varying external IL-4 signal strength, supporting

the hypothesis that conflicting CSR fate decisions are determined by the competition

at molecular level.

4.6 Mathematical modelling

So far, we have presented datasets and model results of isotype class switching in the

previous section. Here, we show derivation of the model equations and parameter

estimation method to predict proportion of IgG1 and IgG2b switched cells. More

specifically, all models of CSR used in Section 4.5 assume that cells express two main

components of the isotype switching stochastically and independently: AID and

GLTs (Iγ1 and Iγ2b), with these molecules exhibiting distinct mechanisms during
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A Proportion of AID+, Iγ1+ and Iγ2b+ B cells

B Model of direct and sequential isotype class switching

Iγ2b+IgM

IgG1

IgG2b

AID+ Iγ1+

AID+ Iγ2b+

Sequential switch

Irreversible
switch

Fig. 4.5: Model of multiple antibody class switching in the presence of
intracellular competition between GLTs. [Corresponding to Figure 5 from
Horton et al. (2022)] (A) Measured proportions of AID+, Iγ1+ and Iγ2b+ cells
for varying concentrations of IL-4. (B) Model predictions of joint probability of
observing IgG1+ and IgG2b+ cells that are in generation g (c.f. Eq. 4.8) given
empirical estimates of hazard probabilities of AID and of constant probabilities
GLTs per IL-4. Shade area represents 95% confidence band.
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the cell proliferation phase. While the frequency of AID positive cells increases

with successive generation as offspring inherit the AID state, the frequencies of

Iγ1 and Iγ2b positive cells remain unaffected by cell division. Consequently, when

cells autonomously express both components in each generation, a fraction of them

switches to either IgG1 or IgG2b depending on the type of the expressed GLT that

corresponds to its final fate. In this section, we construct a probabilistic model

based on the probabilities of expressing AID and GLTs, as well as its switching

efficiency, to calculate proportions of IgG1 and IgG2b.

Let {ρAg ∈ [0, 1] : g = 0, 1, . . . , G} be the expected proportion of cells that are

AID+ in generation g, and {pIk} be the probability that a cell is Iγk positive for

k = 1, 2, representing Iγ1 and Iγ2b, respectively. In addition, if a cell is both AID+

and Iγk+, then it can switch to IgG1 and IgG2b with probability εk ∈ [0, 1], encoded

by k = 1, 2 respectively (recombination efficiency). To begin the model building,

we define A+
g (A−g ) as number of AID+ (AID−) cells and G

(k)
g as number of IgGk+

cells. Here, the model assumes that all cells are initially in the IgM state and that

switching occurs once per-generation and is an irreversible process, i.e., once a cell

switches to IgGk+, it is inherited by its offspring and cannot switch back to a lower

k. Furthermore, we assume there is no cell death occurs during the entire process

and all cells in a family stop dividing at D generation (division destiny).

Prior to building the model, we first need to convert {ρAg }, which are accumulating

hazard as once a cell is AID+ its offspring stay positive, into the per-generation

hazard probabilities {pAg }:

pAg =


ρA0 if g = 0,

ρAg − ρAg−1
1− ρAg−1

if g > 0.

Hence, pAg is the probability that an AID− cell becomes AID+ in generation g, while

ρAg is the overall proportion of AID+ cells in generation g. In summary, the model is

parameterised by {pAg }, {pIk}, εk in which we used empirical estimates of {pAg } and

{pIk} as model inputs.

In the following sections, we derive the equations separately for generation zero

and subsequent generation to then calculate proportions of IgG1 and IgG2b for two

scenarios: (i) IgM → IgG1; (ii) IgM → IgG1/IgG2b.
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4.6.1 IgG1 switching

Generation zero

The number of remaining AID− cells satisfies the binomial distribution with proba-

bility 1 − pA0 , that is, A−0 = Bin(N0, 1 − pA0 ). Assuming that N0 = 1 is a starting

cell in a family, then the expected number of A+
0 is E[A+

0 ] = 1−E[A−0 ] = pA0 . Thus,

the expected number of cells that become IgG1+ in generation zero is

E[G
(1)
0 ] = E[A+

0 ]ε1p
I
1 = pA0 ε1p

I
1.

�� ��4.1

Subsequent generation

For 0 < g ≤ D, similar to generation zero, the remaining AID− cells in generation g

conforms to a recurrence relation A−g = Bin(2A−g−1, 1− pAg ), where the factor two is

required to account for the doubling effect from cell division. Then, the expected

number of A+
g is E[A+

g ] = 2g − E[A−g ] = 2g
(
1−

∏g
i=0(1− pAi )

)
. For IgG1 cells,

A+
g cells switch to IgG1+ with probability ε1p

I
1, but all offspring of cells that have

switched in previous generations remain switched. Thus, the expected number of

G
(1)
g is given by the following recursive formula,

E[G(1)
g ] = 2E[G

(1)
g−1] + (E[A+

g ]− 2E[G
(1)
g−1])ε1p

I
1

= 2g

[
E[G

(1)
0 ](1− ε1pI1)g + ε1p

I
1

g−1∑
i=0

(1− ε1pI1)i
(

1−
g−i∏
j=0

(1− pAj )

)]
.

�� ��4.2

Together with Eq. 4.1 and 4.2, we can calculate the proportion of IgG1 switched

cells by multiplying 2−g,

E[G̃(1)
g ;θ] =


E[G

(1)
0 ] = pA0 ε1p

I
1 if g = 0,

E[G
(1)
0 ](1− ε1pI1)g + ε1p

I
1

g−1∑
i=0

(1− ε1pI1)i
(

1−
g−i∏
j=0

(1− pAj )

)
if g > 0,�� ��4.3

where θ = (pAg , ε1, p
I
1) is the model parameter.
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4.6.2 IgG1/IgG2b switching

In this section, we model the system with multiple isotypes by adding an extra

switching state, IgG2b, which can occur in two ways: (i) directly from the IgM

state; or (ii) sequentially from the IgG1 state. Note that the reverse switching is

strictly prohibited. Here, we assume that both Iγ1 and Iγ2b operate independently

of each other, and should both Iγ1 and Iγ2b be expressed, and both recombinations

be efficient, we assume that IgG1 switching occurs. Furthermore, the efficiencies are

assumed to be constant irrespective of IL-4 concentration.

Generation zero

We adopt the same construct as shown in Section 4.6.1 to calculate the expected

number of A+
0 such that E[A+

0 ] = pA0 . For IgG1 and IgG2b calculation, by addressing

the conflict where A+
0 cells can become both Iγ1+ and Iγ2b+ throughout the

generation, the number of IgGk+ cells at the end of the division must be determined.

We can resolve such conflict by assigning A+
0 cells into three categories: (i) M

(0)
0 ,

number of cells failed to switch with probability (1 − ε1p
I
1)(1 − ε2p

I
2); (ii) M

(1)
0 ,

number of IgG1 switching cells with probability ε1p
I
1ε2p

I
2 + ε1p

I
1(1− ε2pI2); and, M

(2)
0 ,

number of IgG2b switching cells with probability (1− ε1pI1)ε2pI2. More specifically,

(M
(0)
0 ,M

(1)
0 ,M

(2)
0 ) = Mult(A+

0 ,(1− ε1pI1)(1− ε2pI2),

ε1p
I
1ε2p

I
2 + ε1p

I
1(1− ε2pI2), (1− ε1pI1)ε2pI2).

This entails that IgG2b switching is allowed only if Iγ2b is expressed exclusively.

Hence, the expected numbers of G
(1)
0 and G

(2)
0 are

E[G
(1)
0 ] = E[M

(1)
0 ] = pA0 (ε1p

I
1ε2p

I
2 + ε1p

I
1(1− ε2pI2)),

E[G
(2)
0 ] = E[M

(2)
0 ] = pA0 (1− ε1pI1)ε2pI2.

�� ��4.4

Subsequent generation

As both Iγ1 and Iγ2b operate independent of AID, adding IgG2b state in the model

does not alter the AID calculation shown in Section 4.6.1. Thus, for 0 < g ≤ D,

the expected value of A+
g remains the same, i.e., E[A+

g ] = 2g
(
1−

∏g
i=0(1− pAi )

)
.

However, the recursive formula for expected number of G
(1)
g and G

(2)
g needs an extra
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term to accommodate IgG1 to IgG2b transition, that is,

E[G(1)
g ] = 2E[G

(1)
g−1] +E[M (1)

g ]−E[Xg],

E[G(2)
g ] = 2E[G

(2)
g−1] +E[M (2)

g ] +E[Xg],

where Xg = Bin(2G
(1)
g−1, (1 − ε1p

I
1)ε2p

I
2) is sequentially switched cells to IgG2b.

Re-expressing E[G
(2)
g ] yields,

E[G(2)
g ] = 2g

[
E[G

(2)
0 ](1− (1− ε1pI1)ε2pI2)g+

(1− ε1pI1)ε2pI2
g−1∑
i=0

(1− (1− ε1pI1)ε2pI2)i
(

1−
g−i∏
j=0

(1− pAj )

)]
,

�� ��4.5

and for E[G
(1)
g ],

E[G(1)
g ] =2gE[G

(1)
0 ]sg − (ε1p

I
1ε2p

I
2 + ε1p

I
1(1− ε2pI2))×[

g−1∑
i=0

2i+1siE[G
(2)
g−i−1]− 2g

g−1∑
i=0

si

(
1−

g−i∏
j=0

(1− pAj )

)]
,

�� ��4.6

where s = 1 − ε1pI1ε2pI2 − ε1pI1(1 − ε2pI2) − (1 − ε1pI1)ε2pI2. Thus, the proportion of

IgG1 and IgG2b can be obtained by multiplying 2−g to Eqs. 4.4, 4.5 and 4.6 with

the model parameter β = (pAg , ε1, p
I
1, ε2, p

I
2):

E[G̃(1)
g ;β] = E[G(1)

g ]2−g

E[G̃(2)
g ;β] = E[G(2)

g ]2−g
.

�� ��4.7

4.7 Model fitting

Given empirical estimates of {pAg }, {pI1} and {pI2} from experiments, we found optimal

efficiencies, ε∗1 and ε∗2, by fitting the models to the IgG1 and IgG2b datasets using

least-squares with Levenberg-Marquardt (LM) optimisation algorithm (Marquardt,

1963) implemented in LMFIT (Newville et al., 2014). Let {D(1)
g } and {D(2)

g } denote

the sets of measured IgG1 and IgG2b proportions, respectively. The cost function
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for the model in Section 4.6.1 (c.f. Eq. 4.3) is

C(θ) =
G∑
g=0

(
D(1)
g −E[G̃(1)

g ]
)2
,

such that we find the minimum,

ε∗1 = arg min
ε1

C(θ).

We performed grid search on ε1 ∈ [0, 1] with ∆ε1 = 0.001 and stored the best-ranking

100 solutions as candidates according to the residual sum-of-squares (RSS). Then,

these candidates were used as initial values for LM algorithm and recorded RSS for

each candidate to identify the best-fit parameter by the lowest RSS. To obtain the

95% confidence interval, we performed the bootstrap method (Efron, 1979) with

artificial datasets that were resampled with replacement from the original measured

data. In particular, we resampled {pAg }, {pI1} and {D(1)
g } simultaneously at each

iteration to propagate measurement errors from the experiment. We repeated this

process 104 times, which resulted in 104 additional estimates of the parameter.

We identified lower 2.5th and upper 97.5th percentiles as lower and upper limits of

confidence interval.

For the model fit in Section 4.6.2 (c.f. Eq. 4.7), we simultaneously fit across all

IL-4 concentrations, i ∈ I = {1, 2, . . . , I}, for both IgG1 and IgG2b datasets. The

cost function is a weighted sum,

C(β) =
∑
i∈I

G∑
g=0

Fi,g
[(
D(1)
i,g −E[G̃

(1)
i,g ]
)2

+
(
D(2)
i,g −E[G̃

(2)
i,g ]
)2]

,
�� ��4.8

where Fi,g is the measured frequencies of the cells in generation g at ith IL-4

concentration. Here, the term Fi,g ·E[G̃
(k)
i,g ] (and Fi,g · D(k)

ig ) can be interpreted as

a density of joint probability of observing IgGk+ cells and that the cells are in

generation g. We find the minimum of ε2 while fixing ε1 = ε∗1 obtained above:

ε∗2 = arg min
ε2

C(β).

Similarly, we applied grid search on ε2 ∈ [0, 1] with ∆ε2 = 0.001, but we kept top

200 solutions as candidates to widen the search space. Then, we performed LM
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algorithm on each candidate to obtain 200 RSS values and identified the best-fit

by the lowest RSS. For 95% confidence interval, similar bootstrapping technique

was applied: resampling of {pI1}, {pI2}, {D
(1)
i,g } and {D(2)

i,g } per IL-4 concentration.

However, we excluded {pAg } from the resampling as we only have 1 replicate in this

particular instance and included resampling of ε1 from reported 95% confidence

interval above. The resampling process was repeated 104 times to acquire additional

104 estimates from which we calculate 95% confidence interval of ε∗2.

4.8 Discussion

In an adaptive immune response, clonally selected näıve lymphocytes expand and

differentiate to multiple alternative fates. It is evident that delivery of signals

from other cell types in complex microenvironments play a role in this regulation.

However, the emergence of heterogeneous populations, even under controlled in

vitro conditions, implies that variation in the initial state of cells, or a utilisation of

autonomous randomisation process, is an inherent characteristic of the system that

is orchestrated with the external influences. In this chapter, we explored potential

sources of inherent variation in murine B cells by tracing fate differences within

clonal families at the population level using multiplex assay and single-cell qPCR.

Single-cell lineage tracing revealed that ASC differentiation fates are heritable

through generations during proliferation. In particular, we demonstrated that the

characteristic structure of Blimp expression level was quantitatively consistent with

the hypothesis that cells inherit states from their parent cells. The quantifications of

the associativity between siblings or within clones were achieved through calculations

of Spearman’s correlation coefficient and hypothesis testing via permutation tests,

respectively. Our colleagues at WEHI further identified that the variable predisposi-

tion toward ASC differentiation is in part due to broadly distributed TLR expression

within näıve B cell population (Supplemenatry Fig. B.4 and Supplemenatry Fig.

B.5A,B).

In contrast to ASC differentiation, antibody class switching was instead more

consistent with the hypothesis and operated independently of clonal lineage and was

attributable to cell-intrinsic stochastic processes (Supplemenatry Fig. B.5C). This

was identified through observations of AID expression and Iγ1 GLT transcription as

they progressed through generations. While the frequency of AID expressed cells

increased as division progressed, the proportion of Iγ1+ cells was effectively constant.
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This data informed us for building a simple probabilistic model. By assuming that

two independent stochastic events, AID and GLT, must occur in the same cell, we

predicted the rate of isotype switching per generation observed in the experiment.

We extended this model to sequential switching from IgM to IgG1/IgG2b as a

function of IL-4 concentration. One of the key observations is that the probability

of IgG1 and IgG2b switching directly changes with respect to corresponding Iγ1 and

Iγ2b GLT transcripts, which in turn altered the resulting frequencies of switched

cells in a predictable manner (Supplemenatry Fig. B.5D). Knowing the frequency

of AID and GLTs within a population, we account for the proportions of switched

cells, thereby predicting the effect of external signals in B cell differentiation.

Together these results illustrate how stochastic processes based on the simple

rules of molecular regulation recapitulate the generation of diverse antibody types

during the clonal expansion phase that was carefully moderated with external signals

in a controlled in vitro environment.
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5
Cyton2 application to the human system:

hyper- and hypo-immune responses

5.1 Abstract

In this chapter, we present an application of the Cyton2 model for the lymphocytes

that are found from immuno-compromised human patients, when compared with

healthy donors (HDs). In collaboration with the partners from the immunology

division at Walter and Eliza Hall Institute (WEHI) led by Prof. Philip Hodgkin, we

interrogated human B cell data that were obtained from two distinct patient groups

with the following primary diseases: (i) Common Variable Immunodeficiency (CVID);

and (ii) Sjögren Syndrome (SS). CVID is the most common clinically significant

immune defects where the majority of the cases are known to be caused by the

combination of multiple small genetic defects (Bogaert et al., 2016; Ameratunga

et al., 2018). SS is an autoimmune rheumatic disease where hyperactivity of B cell is

considered a hallmark of the disorder. As these diseases exhibit two opposite antibody

responses, hypo- and hyper-response respectively, we questioned the compounding

impact of one or more defects in the proliferation modules of näıve B cells in

comparison to HDs. Utilising the Cyton2 model first introduced in Chapter 2 to

dissect each division components, we developed a method to measure human B cell

health of CVID and SS patients when compared with HD. Furthermore, by assuming

that components of the Cyton2 model are selected at random in the population

at large, we extrapolated to estimate the likelihood of observing these disorders

amongst HD by a Monte-Carlo simulation of the model that resembles Bayesian

inference.
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5.2 Immunodeficiency and autoimmunity

In all the work prior to this chapter, we have explored in vitro stimulated lymphocytes

from the murine system, typically transgenic mice for better control of environmental

factors or for reporting change in states of cells, e.g. differentiation to antibody-

secreting cells. A natural question was whether or not our mathematical model

and analysis techniques developed so far could be useful when applied to data

from human lymphocytes, which have greater variance person-to-person in terms

of immune response due to various conditions such as genetic factors or living

conditions. Nevertheless, an effective immune response must (i) lead to a response

of an appropriate magnitude to protect against pathogens, (ii) prevent uncontrolled

expansion of lymphocytes and (iii) be capable of discriminating between self and

non-self antigens. Given such complexity in regulation, mathematical models and

techniques may be useful in interrogating and dissecting a dysregulated immune

response in quantitative manner.

Primary antibody deficiencies occurring because of defective B cells are the most

common primary immunodeficiency (PID) in the human population (Durandy et al.,

2013). Genetic mutations, such as mutation in Bruton’s Tyrosine Kinase affects

early B cell development (Conley et al., 2009), or malfunctions in any component

in the innate and/or adaptive immune systems, such as T- and B-cell interaction,

can cause PIDs. To diagnose and treat patients of these conditions, it is essential

to characterise their genetic features. The PID was once thought to be caused

by a single-gene abnormality, however, studies (Bykowsky et al., 1996; Kornfeld

et al., 1996) revealed that significant variability can be manifested amongst patients

even with the same gene defect. Amongst many types of PIDs, Common Variable

Immunodeficiency (CVID) is the most prevalent type that typically has a complex

genetic basis (Salzer et al., 2009) with still many unknown genetic causes (Bogaert

et al., 2016). CVID patients are diagnosed to make weak, or deficient antibody

responses following infections. Here, we will focus on the population dynamics

of näıve B cells collected from CVID patients and placed in controlled in vitro

conditions in an attempt to dissect components of the affected division parameters

that led to deficient response. It is our hypothesis that many combinations of small

genetic effects can alter the B cell response and lead to antibody deficiency. However,

the functional assays of proliferation and survival will provide an assessment of the

net health of each of the Cyton elements.
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Autoimmunity, which lies at the opposite spectrum of immune deficiencies,

has specific characteristic features: individuals overproduce antibodies and fail to

distinguish self from non-self, resulting in harm to the host. To date, there are over

80 different autoimmune diseases that have been characterised for humans (Vojdani

et al., 2014). Of those types, we investigated a particular disease, called Sjögren

Syndrome (SS). Similar to CVID, The exact cause of the disease remain unknown,

but hormonal, genetic and environmental factors (e.g. infectious agents) are involved

in the initiation of SS (Voulgarelis and Tzioufas, 2010; Kroese et al., 2014). The

hallmark of SS is hyperactivity of B cells, mainly IgG plasma cells, that leads to

irreversible destruction of the glandular tissue. These hyperactive B cells secrete

auto-antibodies and other various cytokines. In our application, by fitting a variant

of the Cyton2 model to proliferation data, we aim to see if the differences in CVID

and SS responses are reflected in differences in particular timers within the models.

One of key insights to our analysis presented in this chapter is that the defective

components in B cell can be inferred and extracted from the behaviour of cell

expansion. Although identifying the exact genetic cause or other elements that

are responsible for CVID and SS require extensive research at the molecular level,

we aim to obtain high-level overview of the characteristic features and differences

between the disease types when compared with HDs using existing experimental

techniques (e.g. flow cytometry) and the Cyton2 model.

5.3 Exploring features of cell population dynamics

from CVID and SS patients

To identify characteristic differences between the healthy controls and patients, we

interrogated B cell proliferation in vitro from a time-series division assay performed

by WEHI members. Human näıve B cells were stimulated with CpG DNA and

anti-Ig to generate a T cell independent proliferative response. In Fig. 5.1 top-row,

we present cell number counts for 34 HDs, 18 CVID patients and 22 SS donors. We

normalised these measurements with respect to the initial cell numbers seeded for

each donor to remove effect of observing larger cell expansion due to differences

in starting cell numbers, that is ñ(ti) = n(ti)/n(t0) where n(ti) is the total cell

numbers measured at ti hour with typically t0 = 0 hour. Summary statistics were

calculated, in particular total cohorts and mean division counts (i.e. cell survival and
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Fig. 5.1: FACS data and summary statistics of human B cells obtained
from healthy donors, CVID and SS patients. Cells were stimulated with
combined anti-Ig engagement of the B cell receptor and CpG DNA to induce T cell
independent response. (top-row) Total cell numbers, normalised to the initial cell
number. Summary statistics of the responses are given by (mid-row) normalised
total cohort number for cell survival and (bot-row) mean division number for cell
proliferation.
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expansion), to facilitate qualitative comparison between the groups (mid- and bot-

row of Fig. 5.1). With the responses from healthy donors as a reference, we observed

that both patient groups follow similar pattern in decreasing in cell numbers up to

approximately 50 hours, then exhibit aberrant behaviours afterwards. Qualitatively,

it was difficult to infer whether the CVID patients have lower mean division numbers

as the variability between the donors was larger, however, cells tend to die earlier

than those from the HD, leading to deficient cell counts. On the other hand, it was

clear that the most SS cells underwent one more round of division on average than

the HD cells, while the cell survival profile was largely the same.

Next, we applied multiple permutation tests with data points collected at 72h,

96h and 120h to obtain quantitative assessments of those qualitative observations.

The mean numbers of cells, cohorts and division were used as test statistics for

the selected time points, and the null hypothesis was that the difference of means

between HD and patient groups is zero. In Fig. 5.2, a series of Gardner-Altman

plots (Gardner and Altman, 1986; Ho et al., 2019), are shown to report statistical

significance and to capture effect size with estimated 95% confidence interval via

bootstrap method. Here, 107 permutations and bootstrap samples were gathered

to compute p value and confidence interval for each case. We found that rejection

occurred for all tests between CVID and HD, which entails, together with the

negative effect sizes, CVID patients have lower cell counts, earlier cell death and

undergo less cell division compared to cells from the healthy group. Interestingly,

no rejections were found between SS and HD for the cohort number tests, which

suggests the survival of cells from the SS group behaves similarly to those from HD.

However, we observed statistically significant results for the mean division numbers

after 96h. Positive effect sizes are consistent with the known characteristic of SS

(Kroese et al., 2014), where B cells divide more and lead to a hyperactivity.

In summary, the key characteristics of CVID cells are identified as faster cell

death and lower average number of divisions, hence, overall less cell expansion.

Meanwhile, SS cells experience more divisions, likely due to faster division rate, but

the death rate is largely unaltered compared to the HD cells, which results in larger

cell expansion.
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Fig. 5.2: Permutation tests on the measurements and summary statistics
between HD (blue), CVID (red) and SS (green). For time points at 72h,
96h and 120h, the tests were performed in two sets: HD vs CVID and HD vs SS on
total cell numbers (top-row), total cohort numbers (mid-row) and mean division
numbers (bot-row). On each panel, data points are shown in a scatter plot, and
differences of the means are shown below it. Solid horizontal line indicates zero
difference. The error bar is a 95% confidence interval estimated using bootstrap
method, and its distribution is shown as well. The one-sided p values from the
permutation tests are annotated with corresponding colours. 107 permutations and
bootstrap samples were used for the calculation.
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5.4 Reprogrammed death time and activation fraction

In this section, we introduce a new parameter that is necessarily required to explain

a specific phenomenon, observed distinctly from murine cells. Our collaborators at

WEHI performed additional experiments at earlier time points, particularly at 24h

and 48h, for the activation of näıve human B cells stimulated in vitro with CpG,

polyclonal anti-Ig or both. Both stimulants mimic T cell independent activation

in which CpG and anti-Ig signal through Toll-like receptor 9 (TLR9) and B cell

receptor (BCR), respectively. As shown in Fig. 5.1, cell numbers tend to decrease for

all conditions prior to the 50h mark, which raises questions about what proportion

of cells had perceived stimulatory signals and whether they follow an alternate

cell death program before commencing division. Common activation markers of

näıve B cells, CD69, CD86 and Human Leukocyte Antigen–DR (HLA-DR), were

measured after 24h and 48h along with media alone (data not shown). It was found

that expression of CD69, CD86 and HLA-DR increased after 24h in cultures with

CpG, anti-Ig and CpG plus anti-Ig. More specifically, CD69 was upregulated for

approximately 92% of CpG stimulated cells and 86% of anti-Ig stimulated cells at

24h. Furthermore, CD86 was upregulated for 82% of CpG stimulated cells and

64% of anti-Ig stimulated cells at 48h. Similarly, a high proportion of cells were

expressing CD69 and CD86 when stimulated with both CpG and anti-Ig. This

result indicates that the majority of cells are activated in response to CpG and/or

anti-Ig, irrespective of whether they divide. Hence, we postulated that B cells in

culture undergo two distinct death programs and switch to a different survival profile

approximately between 24h and 48h.

Next, we formalised a new method to estimate the reprogrammed death time,

which we denote Tdie, that will be utilised in the Cyton2 model. To do so, our

collaborators conducted experiments to observe behaviour of cells without any

stimulation. As we posit that the death time was reprogrammed only for the cells

that commenced division, we assumed that these unstimulated cells follow a death

program that was initially set in place throughout the course (Hawkins et al., 2007a).

So, using datasets from the experiments, we first defined a new random variable

(RV) that captures the time to death for unstimulated cells, TU , and we assumed

that it is lognormally distributed.

Let ng(ti) denote the set of time-course cell number data, where i ∈ {0, 1, . . . , I}
and g ∈ {0, 1, . . . , G} are time and generation index, respectively. We converted
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the cell numbers to a precursor cohort number according to the equation: cg(ti) =

ng(ti)2
−g (Gett and Hodgkin, 2000) and summed over all generations at each

harvested time-points to obtain the total cohort number given by:

S(ti) =
G∑
g=0

cg(ti).

This cohort conversion removes an effect of cell expansion from the total cell

numbers by incorporating the doubling factor 2−g. As a result, S(ti) is a monotoni-

cally decreasing function, where in particular, if one could follow a time-series of

a single culture, S(ti) would be S(t0) ≥ S(t1) ≥ · · · ≥ S(tI) for t0 < t1 < · · · < tI .

Biologically, this means that the total cohorts decreases only if the culture undergoes

cell death, otherwise it would remain constant. We utilised this property to estimate

the death time distribution with complementary cumulative distribution function

(CCDF) of TU : fTU (t) = 1−FTU (t;mU , sU ), where F is the CDF of TU with median,

mU , and log-variance, sU . In our application, we used a normalised quantity for all

time points, denoted S̃(ti) = S(ti)/S(t0).

Given estimated TU , we then utilised datasets from experiments, where cells

were stimulated with CpG, anti-Ig or both to estimate Tdie ∼ LN (mdie, sdie), which

is essentially the death time in the Cyton2 model. Here, we defined a piece-wise

function to incorporate information of TU ,

s(t;α) =

1− FTU (t;mU , sU) if t ≤ ta

fTU (ta)(1− FTdie(t;mdie, sdie)) if t > ta
,

�� ��5.1

where α = (ta,mdie, sdie) and ta ∈ R≥0 is the activation time and fTU (ta) is effectively

total cohort numbers that represent number of activated cells, entering division

and switching to a new death program. We performed a least-squares fit with the

following objective function,

L(α) =
I∑
i=0

(S̃(ti)− s(ti;α))2,
�� ��5.2
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which we employed numerical methods to find an approximate minimum,

{α∗} ∈ arg min
α

L(α);

s.t. ta ∈ [0, 100];mdie ∈ (0, 500]; sdie ∈ (0, 5].

With the estimated values, we defined a post-hoc parameter activation fraction,

fA = fTU (ta). This quantity is useful to determine the proportion of cells that mount

the immune response and to correctly extract the division parameters.

We utilised a gradient-based Levenberg-Marquardt (LM) algorithm to minimise

Eq. 5.2 and for estimating unstimulated death time. The algorithm is imple-

mented in Python package LMFIT (Newville et al., 2014), a high-level wrapper of

SciPy-optimize library (Virtanen et al., 2020). The LM method requires a starting

guess for each of the parameter values, so we used 100 random initial sets of values

uniformly drawn within the identified parameter ranges. The best-fit was identified

by comparing the lowest residual sum of squares (RSS). We used bootstrap method

(Efron, 1979) to evaluate variability of the point estimate, α∗, by creating 1,000

artificial samples of the original data with replacement. These data were fitted with

the identical optimisation routine to generate 1,000 additional estimates from which

95% confidence interval was computed.

We present a summary of the model fits in Fig. 5.3 using four healthy donors.

In particular, we showed the estimates of the initial cell death program, TU , and the

reprogrammed death time, Tdie, in Fig. 5.3A and 5.3B, respectively. We noticed

that transition to the new death program take approximately 26 hours since the

stimulation. The estimates on the new death time indicate that cells typically

survived for a longer period of time compared to the unstimulated cells. Moreover,

CpG has the largest effect on the cell death time with larger variance of Tdie, while

anti-Ig stimulated cells died at relatively earlier time. For CpG plus anti-Ig, the

death time was estimated between those of CpG and anti-Ig alone. Also, we observed

that the estimated fA varied from donor to donor, but the values were consistent

between different conditions within the same donor, and the mean proportion of

activated cells was estimated to be 75.3%, indicating the majority of healthy cells

commenced division and switched to a new survival program.
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A Estimating unstimulated death program

B Activation time and reprogrammed death time

Fig. 5.3: Initial cell death program and transition to the new repro-
grammed death timer. Activation of human näıve B cells take approximately 25
hours. The time-series total cohort number and the best-fit model for (A) unstimu-
lated cells (orange) and (B) CpG (red), anti-Ig (green) and CpG + anti-Ig (blue)
stimulated cells. Solid-line and shade-area represent the mean and 95% confidence
band, respectively. Vertical dash-line is the activation time. The parameter estimates
are shown in the legend and bottom-left of the plot panel.

107



5.5. MEASURING HUMAN B CELL HEALTH USING THE CYTON2
MODEL

5.5 Measuring human B cell health using the Cyton2

model

In this section, we developed a method to quantify characteristic features of HD,

CVID and SS B cell population dynamics with the Cyton2 model discussed in

Chapter 2. One of our objectives was to assign a meaningful score to indicate

state of health of B cells from CVID and SS relative to healthy cohorts. In this

process, we dissected components that constitute a healthy response in terms of

division parameters, estimated by the model. This enabled us to compute relative

contribution of aberrant parameters and identified compounding effect of multiple

small defects that ultimately led to either a hypo- or hyper-immune response. To do

so, we used datasets in Fig. 5.1 and integrated the method to estimate reprogrammed

death time discussed in Section 5.4 to the Cyton2 estimation routine.

5.5.1 Alternate strategy for estimating Cyton2 division parameters

Since our measurements contain a proportion of cells that die before changing their

survival program and entering the proliferative phase, we needed to isolate these

cells for accurate estimation of the parameters from dividing cells. To do so, we

introduced an extra step prior to the existing Cyton2 fitting routine. First, we

filtered datasets for ti > 24 hour as we observed that the majority of cells became

activated and altered their survival program after approximately one day. Then, we

slightly modified Eq. 5.1 to estimate fA and Tdie using the following equation,

s(t;γ) = C(1− FTdie(t;mdie, sdie)),

where γ = (C,mdie, sdie) and C ∈ [0,∞) is the total cohort number of activated cells

that was further utilised to compute fA = C/S(t0). Essentially, this modification

allowed us to estimate without the information of unstimulated cell death. The

estimated fA and Tdie for the reprogrammed death time were used as a prior

knowledge of the system and fixed during the Cyton2 fitting process.

As the objective was to estimate the Cyton2 parameters of the dividing cells,

the model was provided with an initial cell number, N0 = fA
∑

g ng(t0), to remove

the effect of unactivated cells. This process reduces the number of free parameters

from seven to five in the fitting procedure.

108



5.5. MEASURING HUMAN B CELL HEALTH USING THE CYTON2
MODEL

In summary, we estimated the following set of division parameters: the time to

first division, T 0
div ∼ LN (m0

div, s
0
div); the time to division destiny, Tdd ∼ LN (mdd, sdd);

and the subsequent division time, m ∈ R≥0. Thus, there are total five parameters

to estimate, β = (m0
div, s

0
div,mdd, sdd,m), such that the objective function is in the

form,

L(β) =
G∑
g=0

∑
{ti}>24

(ng(ti)− yg(ti;β)2 ,
�� ��5.3

where yg(ti;β) is the model prediction in unit of cell numbers (c.f. Eq. 2.6). Similarly,

we performed a least-squares fit to find an approximate minimum,

{β∗} ∈ arg min
β

L(β);

s.t. m0
div ∈ (0, 500]; s0div ∈ (0, 5];mdd ∈ (0, 500]; sdd ∈ (0, 5];m ∈ [0, 50],

where we applied the same optimisation and bootstrap method for β∗ as described

previously. With estimated parameter values, γ∗ and β∗, we recapitulated immune

responses measured from HD, CVID and SS cells.

We present the model fits and summary of the parameter estimates in Fig. 5.4.

Examples of the model extrapolation for each of the group are shown in Fig. 5.4A,

along with the cell number measurements, to indicate fit quality. Summary CDF

plots of the key division parameters (i.e. RVs) are presented in Fig. 5.4B to signify

the differences between the groups. Here, we noticed that the estimated medians

of T 0
div were similar for all HD, CVID and SS group, however, the variability was

slightly larger for the CVID donors. We observed similar results for Tdie and the

subsequent division time (Fig. 5.4C). The most prominent difference was observed

for Tdd, where cells from CVID and SS group reached division destiny at earlier and

later times, respectively, compared to the HD average. This result is consistent with

the permutation tests shown in Fig. 5.2. As cells had entered the first division and

died at similar times, this result indicates that CVID cells had less time to grow

in cell numbers while SS cells had more time to divide, thus recapitulating the key

characteristics of immunodeficiency and autoimmune disorder. Moreover, the average

activation fractions for the HD and SS cells were estimated approximately 66% and

61%, however, it was significantly lower for the CVID cells (≈34%), suggesting the

majority of them did not undergo clonal expansion and follow the initial cell death

program.
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B Estimated CDFs of the division timer (RVs)

CMarginal distribution of all Cyton2 division parameters

A Example Cyton2 best-fit

Fig. 5.4: Estimated division parameters of the Cyton2 model from HD,
CVID and SS datasets. (A) Representative best-fit Cyton2 model for one donor
from each group: left-HD, mid -CVID and right-SS. (B) Cumulative distribution
function (CDF) of the estimated RVs that represent time to first division (T 0

div), time
to division destiny (Tdd) and time to death (Tdie). Solid, dashed and dash-dotted
lines indicate mean CDF curves computed across HD, CVID and SS, respectively.
Shade-area is lower and upper 95% percentile of the CDFs, calculated from collection
of individual donors per group. (C) Summary of all Cyton2 parameters. Each dot
in scatter plot represents one donor, and the error bar is 95% confidence interval
from bootstrapping. Marginal distributions of subsequent division time (m) and
activation fraction (fA) are shown. Dashed line represents a mean value.
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5.5.2 Determining relative contribution of division parameters of aberrant re-

sponse

In this section, we reported how each of the parameter deviates from the average HD

response with the parameter estimates using the Cyton2 model. It has been studied

that apart from rare, monogenic forms, the majority of CVID cases are caused by

mutations in multiple genes, where approximately 80% of them have an unknown

cause and their prevalence and significance are currently unknown (Bogaert et al.,

2016). We assessed and determined the relative contribution of each parameter to

quantify B cell healthy and identified the diverse effects that led to an aberrant

immune response.

Define θ
(h)
k , θ

(c)
k and θ

(s)
k be the Cyton2 parameters estimated from

HD, CVID and SS datasets, respectively, where k = 1, 2, . . . , 8 for θ =

(fA,m
0
div, s

0
div,mdd, sdd,mdie, sdie,m) with healthy and patient indices, h =

{1, 2, . . . , 34}, c = {1, 2, . . . , 18} and s = {1, 2, . . . , 22}. Then, we computed the

mean healthy donor parameter vector by marginally averaging the components of θ,

θ̄HD
k =

1

34

34∑
h=1

θ
(h)
k ∀ k = 1, 2, . . . , 8.

The Cyton2 model was evaluated with θ̄
HD

such that we obtained a time at which

the total cell number of the average healthy donor response was maximised,

t∗ = arg max
t

{
G∑
g=0

yg(t; θ̄
HD

)

}

which leads to N̄HD
max =

G∑
g=0

yg(t
∗; θ̄

HD
),

and the corresponding total cell numbers at t∗ for CVID and SS responses,

N
(q)
base =

G∑
g=0

yg(t
∗;θ(q)),

�� ��5.4

where q indicates the patient index, i.e. c or s. We then proceeded by sequentially

substituting the components from θ̄
HD

to θ(c) and θ(s) to acquire the total cell

numbers at each substitution stage via Eq. 5.4. A new vector at each stage was
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given by,

θi = θ(q)
1(k>i) + θ̄

HD
1(k≤i) for i = 0, 1, 3, 5, 7, 8,

where 1(·) is the indicator function, and i denotes the number of ordered substituted

vector components. For example, i = 0 would mean no substitution, i = 1 substitutes

fA, i = 3 substitutes fA,m
0
div, s

0
div, and so on. Finally, we enumerated the following

evaluations,

N
(q)
i =

G∑
g=0

yg(t
∗;θi) ∀ i, q,

to compute fold changes of the total cell numbers, ∆N
(q)
i = N

(q)
i /N

(q)
0 . Evidently,

N
(q)
0 = N

(q)
base and N

(q)
8 = N̄HD

max. With these fold changes, we computed relative

percentage contribution by,

%∆N
(q)
i = 100

(
∆N

(q)
i −∆N

(q)
i−1

∆N
(q)
8

)
= 100

(
N

(q)
i −N

(q)
i−1

N̄HD
max

)
for i = 1, 3, 5, 7, 8,

with ∆N
(q)
0 = 0 for no substitution. We showed an example calculation for one

CVID patient in Fig. 5.5A. Essentially, the percentage quantified deviation from the

HD average for each of the cellular machinery. We applied and repeated this analysis

to all of the CVID and SS donors in Fig. 5.5B. As we picked a fixed time point

for the computation, some of stages well exceeded N̄HD
max, and follow-up substitution

subsequently reduced the total cell numbers to match the HD average. The results

indicated that the relative contributions varied greatly between individual CVID

patients, which highlights that CVID is a multifactorial disorder with collection of

defects in different component lead to immunodeficiency. For example, CVID #1

has approximately equal contribution for all components, whereas CVID #3 suffer

significant deviation for fA and Tdd.

In contrast to the CVID patients, we observed consistent relative contributions

across the SS donors, where fA appeared to be the largest factor and followed up by

the T 0
div and Tdd.

In summary, we developed a method to quantitatively assess B cell health given

the average HD response. By comparing the estimated Cyton2 parameters between

HD and patients, we evaluated how each component altered cell population dynamics

and showed that the accumulation of these changes led to a hyper- or hypo-immune

response.
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A Relative contribution of the Cyton2 parameters compare to the HD avg.

B Relative contribution for all CVID and SS donors

Fig. 5.5: Using the estimated Cyton2 parameters to compute relative
contributions compare to the HD average. (A) An example calculation at
each stage for a CVID patient. Black solid line and dashed line indicate the HD
average and original best-fit model, respectively. Dash-dotted line shows change in
the response at each stage, where the colour represents a substituted parameter.
Stacked bar plot shows percentage contribution using total cell numbers at t∗

relative to that of the HD average. (B) Relative contributions for all CVID and SS
individuals.
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5.6 Computing likelihood of CVID via Bayesian-like

simulation

In the previous section, we found evidence supporting our hypothesis that accumu-

lation of small deviations of the components from average HD could lead to CVID

disorder. Having created a stochastic model, one feature that we could exploit is to

make extrapolations beyond the data. So we questioned whether or not we could

further apply the model to estimate likelihood of these diseases given some degrees

of variability in the HD parameters. That is, we assume that the genetic makeup of

the individual dictates the value in each of the independent modular components of

the Cyton2 model under these controlled conditions. We performed a Monte-Carlo

(MC) simulation by assuming that components of the Cyton2 model are chosen

at random. Essentially, we marginally sampled parameter values to construct a

new “healthy” individual that was compared with the CVID measurements. A

key ingredient of this method is to determine parametric distribution classes that

accurately capture the collection of HD parameter estimates such that a new set of

values could be sampled. To first approximation, we limited our sampling to the

following parameter set, (m0
div,mdd,mdie,m, fA), and used average log-variances for

clear and intuitive demonstration of the method.

First, we investigated correlation structure of the HD parameter estimates to

explore relatedness of the parameters within HD group. In Fig. 5.6A, all possible

pairs of the parameters are shown. Correlation coefficients were estimated using the

Bayesian framework described in Section 2.4.6) along with Bayes Factor (BF) to

indicate if the data is more probable under the null hypothesis (H0 : ρ = 0). Here,

all pairs that consist of m and fA were reported to have little to no correlation.

Interestingly, the medians of T 0
div, Tdd and Tdie had moderate to strong correlation,

which indicates cells from a individual HD tends to have later cell destiny and death

as they entered the first division at relatively later time. One could raise a question

that consideration of these correlations might be crucial during the sampling process,

however, we assumed the independence for simplicity.

To randomly sample the components, we marginally fitted candidate parametric

distribution classes given as follows: Truncated Normal with left truncation at

zero (i.e. a = 0), Lognormal, Normal and Gamma distributions for m0
div,mdd,mdie

and m; and, Truncated Normal with left and right truncation at zero and one (i.e.
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A Bayesian correlation analysis

B Determining parametric distribution class

Fig. 5.6: Marginal dis-
tribution of key fitted
Cyton2 parameters
and parameteric dis-
tribution classes that
describe each of the
components for sim-
ulation. (A) Bayesian
correlation analysis for inde-
pendence of the parameters
between HD individuals
(N = 34). Bayesian Factor
(BF) and correlation coef-
ficient with 95% credible
interval are annotated in
each panel (adopted method
described in Section 2.4.6).
Shade areas represent 90,
95 and 99% density regions.
(B) Fitted various paramet-
ric distribution classes for
each component. Truncated
Normal (tN (a = 0, b, µ, σ)),
Lognormal (LN (m, s)),
Normal (N (µ, σ)) and
Gamma (Gamma(αG, βG))
distributions were used
for m0

div,mdd,mdie and m.
By definition fA ∈ [0, 1],
so Truncated Normal
(tN (a = 0, b = 1, µ, σ))
and Beta (Beta(αB, βB))
distributions were tested.
The best descriptor was
determined by the lowest
AIC value marked with an
asterisk (*).
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A1HD Simulation of five defective parameters

B Probability of observed CVID

A2Comparing HD simulation to CVID

Fig. 5.7: Simulation of HD with parameter sampling and likelihood of
measured CVID. (A1) Total cell numbers and mean division number (MDN) of
500,000 simulated Cyton2 model overlaid with CVID measurements. Each coloured
solid line indicates an individual donor. Dashed-line represents average HD by
sampling m0

div,mdd,mdie,m and fA parameters. Shade-area is 95% confidence band.
(A2) Empirical CDF (eCDF) plot of the normalised total cell numbers for HD and
CVID and the simulation at 96h (top-row) and 120h (bot-row). Location of CVID
data points are shown on the eCDF of the simulated total cells. (B) The likelihood
of lowest five CVID total cell number measurements given the simulation at 96h
for all combination of the parameter components that were sampled from the fitted
distributions.
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a = 0, b = 0), respectively, and Beta distributions for fA. We present the fit results

in Fig. 5.6B. Qualitatively, all candidates appeared to well describe the data. So,

we made decision with the model selection criteria, Akaike Information Criterion

(AIC) in particular, so that whichever class has the lowest AIC value was picked

for further downstream analysis. In our case, Lognormal distribution was the best

descriptor for all m0
div,mdd,mdie and m and Beta distribution was chosen for fA.

These distributions are specifically helpful as they naturally limit the sampling to

positive real values (and fA ∈ [0, 1] for a percentage activation), which is suitable

for our biological application.

Given these distributions, we constructed a new parameter vector by sampling

each component independently of each other for Q = 500, 000 times to create Q

numbers of simulated immune response using the Cyton2 model. Here, we varied

the number of components that were simultaneously sampled at each iteration

to investigate the level of deviation, which ultimately affected the probability of

observing CVID measurements. A summary of sampling all five components overlaid

with experimental measurements from CVID patients is plotted in Fig. 5.7A1.

To compare with the data, we picked 96h and 120h time points and plotted the

locations of CVID data points using empirical CDFs (Fig. 5.7A2). The total cell

numbers were normalised to compensate different starting cell numbers. With these

information, we calculated the average likelihood, denoted P (X < x) where x is

the data, for each combination of the parameter components (Fig. 5.7B). Here, we

chose the lowest five CVID samples at 96h, which are located at the left tail of

the simulated HD distribution, to reflect that not all CVID patients exhibit low

responses in cell counts. Because CVID can be caused by a variety of factors, it is

possible that some people have been diagnosed with a low antibody production rate

but have a normal rate of cell proliferation. The results show that the likelihood

of collectively falling into the very weak overall response range slowly increased as

the number of parameter components was added in the sampling process, which

indicates combined multiple defects play a role in immunodeficiency. In particular,

The defects in fA, and subsequently with mdie and mdd, appeared to dramatically

increase the probability, implying that low cell activation and inadequate control

of cell death and destiny are potentially sufficient to drag cell counts to levels

comparable to CVID patients.
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5.7 Discussion

In this chapter, we explored further application of the Cyton2 model in human

system to investigate B cell population dynamics. In particular, we summarised

key characteristics of CVID and SS cells given the HD cells as the reference point.

The variability in the total cell numbers during cell expansion phase for the CVID

patients was larger than that of SS patients. Moreover, CVID cells tend to die

earlier and undergo less cell expansion, while SS cells on average divided more and

died at later time points. These behaviours captured hallmarks of immunodeficiency

and autoimmune disorders, respectively.

We used the Cyton2 model and designed a new parameter estimation strategy

to capture the proportion of cells that switched to a reprogrammed cell death

after activation. This was particularly useful method as it was observed that the

majority of human B cells perceived signals but only some fractions of cells actually

commenced division. Therefore, we introduced a new parameter called activation

fraction that summarised behaviour of cells for the first 24 hours since stimulation

and was further utilised in estimating Cyton2 parameters. Ultimately, the model

was able to accurately recapitulate cell population dynamics for all CVID and SS

patients.

With the new fitting strategy and parameter estimates, we quantitatively assessed

B cell health by computing contribution of each parameter components relative

to the average HD response. For our application, we used the maximum total

cell numbers as a reference metric to measure the B cell health. Here, we found

that each CVID patient has diverse defects and their compounding effect led to

reduced cell numbers. In contrast, SS patients had comparatively consistent relative

contributions across all parameters, where the activation fraction, time to first

division and time to division destiny appeared to be the largest contributors to

changes associated with this form of autoimmunity.

We then further utilised the Cyton2 model to simulate the immune response of a

individual HD by allowing variability around the parameter estimates for the average

HD. To do so, each component of estimated Cyton2 parameters was marginally fitted

to candidate parametric distribution classes. These distributions were used to sample

new parameter values such that a new parameter vector was constructed to feed into

the model. This process ultimately allowed us to compute likelihood of observing

CVID measurements using normalised total cell number as our comparison point.
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5.7. DISCUSSION

For CVID measurements, the likelihood was increased as we introduced number

of parameter components that could be sampled from. Currently, there are no

precise data on the prevalence of CVID in the literature, however, it is estimated

at between 1 in 100,000 and 1 in 10,000 of the population (Bonilla et al., 2016;

Bogaert et al., 2016), which is 25 times smaller than our estimation. Despite with

the discrepancy, our result is consistent with the previous finding that CVID is a

multifactorial disorder, and the model opens a new possibility to decompose such

complex disorder into smaller components to identify governing factors.

Taken together, these results demonstrated valuable applications of the Cyton2

model not only in murine but also in human systems. Despite the complex and

different behaviour of cells that normally were not observed in murine cells at early

time points, the model was able to dissect non-linear cell population dynamics and

could be used as a tool to quantitatively assess and standardise human system.
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6
Conclusion

In this thesis, we have proposed a novel stochastic model of lymphocyte population

dynamics and demonstrated its various applications in in vitro experiments of murine

and human B and T cells. Our model extends the original Cyton model (Hawkins

et al., 2007a) by incorporating recent findings on lymphocyte behaviours, such as

correlated cell fates of progeny cells within a family (Hawkins et al., 2009; Markham

et al., 2010; Duffy et al., 2012; Dowling et al., 2014; Mitchell et al., 2018). Using

this model, we have developed an analysis framework that can be readily applied to

population datasets, particularly those obtained from cell division tracking assays,

such as cell staining with fluorescent dyes and Fluorescence-activated cell sorting

(FACS).

In Chapter 2, we developed the Cyton2 model, which incorporates the inheritance of

death and division stopping times (i.e. division destiny) (Heinzel et al., 2017), and

provided a derivation of the mean and variance equations of lymphocyte population

dynamics. In this model, cells in a family were assumed to follow internal timers that

govern division, cessation, and death. We analysed the stochastic competition of

these cellular machineries in detail using datasets from time-lapse microscopy, which

provided accurate recordings of the times to each cell’s fate (Hawkins et al., 2009).

We adopted Bayesian hypothesis testing and Monte-Carlo (MC) simulation to infer

the independent operation of the timers. Additionally, we determined the parametric

distribution class that best describes the measurements, namely the Lognormal

distribution. These results support the crucial assumptions that constitute the

model. Using the least-squares method and an appropriate optimisation algorithm,

such as Levenberg-Marquardt or genetic algorithms, the model parameters can be

estimated for lymphocyte populations under various conditions.
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In Chapter 3, we presented three model applications for in vitro experiments of

murine B and T cells. Firstly, a dataset from CpG-stimulated B cells was used to

assess the accuracy and precision of the model estimates. This was a particularly

suitable set for testing as it contains larger samples than a typical time-series

lymphocyte population dataset. The model was capable of recaptitulating the

immune response with as little as three time points in the data. Moreover, we

demonstrated three replicates per time point, which is a standard sample size in the

field, was sufficient to obtain accurate parameter estimates.

We then applied the model to analyse previously published CD8+ T cell data from

Marchingo et al. (2014) to provide alternate, but functionally consistent, perception

of the signal integration. Here, we showed that multiple positive signals, which

amplify T cell expansion when combined, add linearly and operate independently in

the time domain. In particular, we introduced a simple sum of normally distributed

random variables, i.e. the timers, to predict the amplified cell expansion.

Lastly, we investigated the effects of combination of negative signals on CD8+

T cells, carried by two immunosuppresants, Rapamycin and Dexamethasone, at

various concentrations. These drugs act independently of each other by either

inhibiting cell cycle progression, thus slowing down cell division, or reducing cell

survival, respectively. Utilising this characteristic and the model, we predicted the

cell population sizes at different degrees of drug concentrations by a simple rule of

replacing the affected Cyton2 parameters.

In Chapter 4, we introduced probabilistic models of B cell differentiation into

antibody-secreting cells (ASCs) and isotype class switching recombination (CSR).

The development of the models and associated analyses were based on the expression

measurements, such as Activation-Induced cytidine Deaminase (AID) and Germline

Transcription (GLT), obtained from multiplexed division tracking assays (Horton

et al., 2018) and single-cell quantitative polymerase chain reaction (sc-qPCR) to

record cell fates for each generation. Here, we tested clonal dependencies of these

molecules via MC simulation as well as hypothesis testing, and deduced the heritabil-

ity of AID and the re-randomisation of GLT expression. Moreover, the regulation of

these molecules operates independently of each other. Using these distinct familial

features, we formulated a stochastic model that captures differentiation of IgM+ to

IgG1+ and/or IgG2b+ B cells depending on the AID and GLT states and predicted

proportion of antibody switching outcomes under varied conditions.

121



In Chapter 5, we presented the model application to human lymphocytes to interro-

gate datasets obtained from immuno-compromised patient groups. Specifically, B

cells from Common Variable Immunodeficiency (CVID) and Sjögren Syndrome (SS)

patients were analysed to compare with immune responses from healthy donors (HDs)

for identifying distinguishing features. The summary statistics and non-parametric

hypothesis testing via permutation test revealed that the CVID cells tend to undergo

fewer cell divisions and to die earlier than HD cells, leading to an overall small

population size. However, the SS cells divide, on average, one additional round of

division than HD cells while they both follow a similar death profile, resulting in

larger cell numbers over a given period of time. These observations were further

dissected using the Cyton2 model to identify specific modules that may be defec-

tive and responsible for hypo- and hyper-immune responses. Here, the marginal

distributions of each Cyton2 parameter estimates indicated that a low activation

fraction, which is defined as the proportion of cells that commence the division

program, for the CVID patients was clearly one of the key factors, and that slow

time to division destiny for the SS patients was what allowed cells to traverse further

generation. More importantly, comparing the results between individuals revealed

that the CVID patients exhibited defects in different components, indicating that

CVID is a multifactorial disorder. In comparison, the SS patients displayed relatively

consistent defects across individuals.

As we found evidence that the compounding effect of small defects could lead to

CVID disorder, we utilised the Cyton2 model to simulate an immune response by

sampling the parameters at random based on average HD estimates. This enabled

us to extrapolate beyond the data and collect instances that, by chance, have lower

cell counts, resembling the responses from the CVID cells. For example, a random

parameter set that sampled low activation fraction and earlier cell death would

result in limited cell expansion. This procedure was repeated to estimate likelihood

of CVID. Here, we observed an increase in the probability as we allowed more

parameters to be sampled from.

Finally, the implementation of Cyton2 and isotype switching models presented

in this thesis are publicly available at https://github.com/hodgkinlab in the

repositories called cyton2-paper for Chapters 2 and 3 and ism-paper for Chapter

4.
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6.1. FUTURE WORK

6.1 Future work

Our research focused on modelling the kinetics of lymphocyte population based

on the stochastic nature of the cellular machineries and accurately captured im-

mune responses in diverse circumstances. However, there are numerous potential

improvements can be made and limitations to overcome.

One of major aspects we can improve the Cyton2 model is to incorporate the full

stochastic feature of the timers, that is, introducing a random variable, instead of a

constant, for the subsequent division times to allow for variability around the mean.

Although we have exploited concordant cell fates in a single family, number of recent

experiments in the literature suggest a proportion of frayed families due to slight

discrepancies in times and quasi-symmetric fates between progeny cells. In terms of

model fitting, adopting a Bayesian framework to obtain posterior distributions of the

parameters, rather than their point estimates and confidence intervals via bootstrap

method, would provide a more robust and intuitive statistical interpretation of a

given system. For example, Approximate Bayesian Computation (Beaumont, 2019)

can be a great approach for complex systems where the likelihood function cannot

be easily derived. Belluccini et al. (2022) presented such implementation for similar

research questions as those shown in our work.

From a more overarching perspective, incorporating the differentiation process of

B and T cells into the model would provide a more realistic depiction of a complete

immune response. In Chapter 4, we explored B cell differentiation and isotype

class switching at the molecular level to deduce the inner workings and stochastic

regulation of the process. However, this work requires further investigation as B cells

can differentiate to different classes (e.g. IgM secreting cells), and the stochastic

competition involving multiple alternate paths would exhibit non-trivial outcomes.

Ultimately, a model that includes processes of cell proliferation, cessation, death, and

differentiation concurrently would have potential to unravel complex interactions

and elucidate how our immune system protects against harmful pathogens from

activation to eradication in a predictable manner.
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A
Experiments designed and conducted by

collaborators

In this appendix, we present sources of data studied in this thesis, particularly the

experimental systems, as implemented by our collaborators, for completeness so

that the reader has the full context for the data used in the mathematical models

developed in this thesis. Section A.1 provides additional information of the time-

lapse microscope experiment for CD8+ T cells from Chapter 2. This experiment was

planned, analysed and performed by Simone C. Oostindie, Edwin D. Hawkins, Julia

M. Marchingo, Susanne Heinzel and Philip D. Hodgkin in Cheon et al. (2021). In

Section A.3, the details for drug experiments presented in Chapter 3 are shown. In

Section A.2, we report the details for the experiments used in Chapter 5, performed

by Miles B. Horton.

A.1 Chapter 2: Time-lapse microscopy experiment

A.1.1 Mice

All mice were maintained under specific pathogen-free conditions in the WEHI

animal facilities (Parkville, Victoria, Australia) and used at 5 to 12 weeks of age.

All experiments were performed under the approval of the WEHI Animal Ethics

Committee. FUCCI red/green (RG) mice were acquired by crossing FUCCI Red

(B6.B6D2-Tg(FUCCI)639Bsi) with FUCCI Green (B6.B6D2-Tg(FUCCI)492Bsi)

mice, both obtained from Riken BioResource Centre (Sakaue-Sawano et al., 2008).

FUCCI RG mice were then crossed to OT-I or OT-I/Ly5.1 mice to obtain OT-
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A.1. CHAPTER 2: TIME-LAPSE MICROSCOPY EXPERIMENT

I/FUCCI RG and OT-I/FUCCI RG-Ly5.1 respectively (Dowling et al., 2014). In one

experiment (stimulation with N4, αCD28 and IL-12) cells from C57BL/6 mice that

were irradiated and reconstituted with bone marrow from OT-I/FUCCI RG-Ly5.1

were used.

A.1.2 CD8+ T cell isolation

OT-I CD8+ T cells were isolated from single cell suspensions prepared from lymph

nodes (axillary, branchial, inguinal) by negative selection using EasySep Mouse

CD8α+ T cell Isolation kit (StemCell technologies) according to the manufacturer’s

protocol. Purity (CD8+ Vα2+) was typically between 80% and 95%. Splenocytes

were used for the isolation of CD8+ Vα2+Ly5.1+ T cells from C57BL/6 mice that

were irradiated and reconstituted with bone marrow from OT-I/FUCCI RG-Ly5.1.

Purified CD8+ T cells were labelled with 5µM Cell Trace Violet (CTV, Invitrogen) to

track and monitor cell division in parallel bulk cultured by flow cytometry. Labelling

was performed for 20 minutes at 37°C in PBS + 0.1% BSA.

A.1.3 in vitro cell culture

All T cell cultures were prepared using filming medium (GIBCO advanced RPMI

1640 without phenol red + 5% GIBCO FCS) at 37°C and 5% CO2 in a humidified

atmosphere. All cell cultures contained 25µg/mL anti-mouse IL-2 antibody (S4B6:

WEHI antibody facility) which neutralises mouse IL-2 but does not recognise human

IL-2 (Deenick et al., 2003).

Cells were either stimulated with plate bound anti-CD3 (αCD3: WEHI antibody

facility, clone 145-2C11: 10µg/mL) or with the peptide for the OT-I TCR, SIINFEKL

(N4) (Auspep) at 0.01µg/mL.

For stimulation with αCD3, CD8+ T cells were cultured on 24-well plates coated

with αCD3 at 40000 cells in 1mL per well in the presence of 1, 3.16 or 10U/mL

recombinant human IL-2 (Peprotech) and 25 µg/mL S4B6. After 24 hours of culture

cells were harvested, washed twice with filming medium, counted and resuspended

at 5000 to 10000 cell/mL in filming medium supplemented with 25µg/mL S4B6 and

1, 3.16 or 10U/mL recombinant human IL-2.

In experiments using N4 peptide CD8+ T cells were cultured with 0.01µg/mL

N4 at 2× 104 cells per mL in 200µL of a 96-well U-bottom plate in the presence of

25µg/mL S4B6. 2µg/mL αCD28 (clone 37.51, WEHI antibody facility) or 1ng/mL
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A.1. CHAPTER 2: TIME-LAPSE MICROSCOPY EXPERIMENT

IL-12 (Peprotec) were added as indicated. Cells were cultured for 24 hours, washed

and resuspended at 5000 to 10000 cells/mL in filming medium containing 25µg/mL

S4B6.

For one experiment CD8+ T cells cultured for 24 hours with N4 in presence or

absence of αCD28 were split and supplemented or not with 1U/mL rhIL-2 before

replating for filming.

In one experiment CD8+ T cells were cultured with N4 alone and addition of

either αCD28, IL-12 or both for 24 hours, then washed, resuspended and replated

for filming without any further stimuli added.

For filming, 250µL cell suspension was added per chamber of an 8 well µ-Slide

chamber (Ibidi) containing 125µm (MGA-125-01) or 70µm (MGA-7-01) microgrids

(Daniel Day, Microsurfaces). These conditions resulted in a significant portion

of microwells containing one cell per well. Before the start of filming, cells were

incubated for ≈2 hours at 37°C with 5% CO2 in a humidified atmosphere. Slide

chambers were then transferred to an environmentally controlled microscope (Carl

Zeiss) and incubated at 37°C with 5% CO2 in a humidified atmosphere.

A.1.4 Live cell imaging and cell tracking

For single cell filming, microgrids (70/125µm, Daniel Day, Microsurfaces) were placed

into an 8 well chamberslide (Ibidi µ-slide). Chambers were UV sterilised with 40µL

100% ethanol in a laminar-flow cabinet for at least 30 minutes until dry. Another

40µL ethanol was added and rinsed 10x with filming medium (advanced RPMI 1640

without phenol red). 250µL filming medium was added to each chamber and left

in the incubator at 37°C overnight to dissolve air bubbles. To reduce background

fluorescence of the medium, chambers (grids) were bleached for 2 hours using a

470nm LED, just prior to adding the cells.

Live cell imaging was conducted on an environmentally controlled 37°C + 5%

CO2 humidified Zeiss Axiovert 200M microscope. Brightfield images were captured

with a Zeiss AxioCam MRm (1.4 megapixels) attached to a 0.63x C-mount, using a

Plan-Apochromat 20x objective (0.8 n.a.). A GFP/DsRed-A (Semrock) filter block

(excitation LED 470/555nm set at 25%/100%, respectively, with an exposure time of

200µs) was used for detecting green and red fluorescence. Red, green, bright-field and

out-of-focus images were taken at 165 second intervals for 5 or 6 days. Bright-field

and fluorescent raw images of single cells in microgrids were digitally processed
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A.2. CHAPTER 3: DRUG EXPERIMENT

resulting in overlaid red/green images corrected for background noise of the medium.

Cell tracking was performed using the image processing package FIJI (Schindelin

et al., 2012). Lineage Tracker plug-in was used for cell segmentation and tracking

(Downey et al., 2011). Gaps or mistakes in segmentation and tracking were adjusted

manually to ensure data accuracy. Cells in each well were followed until they either

died, indistinguishable from nearby cells or the experiment ended.

For CD8+ T cell data in the presence of IL-2, measurements from two independent

experiments were aggregated.

A.2 Chapter 3: Drug experiment

A.2.1 Cells

OT-I Bim−/− CD8+ T cells isolated from lymph nodes using EasySepTM Mouse

CD8+ T Cell Isolation Kit (Stemcell Technologies). Cells were labelled with CTV

(final concentration 5µM) before being cultured.

A.2.2 Culture conditions and stimulation

Cells were placed in 96 well plates at 8000 cells/well in 200µL of T cell medium. All

cells stimulated with SIINFEKL peptide (N4) 10ng/mL and αCD28 0.2µg/mL; anti

mouse IL-2 Ab clone S4B6 (25µg/mL) added to neutralise endogenously produced

IL-2.

A.2.3 Drugs

Dexamethasone (Calbiochem) final concentrations in culture: 10ng/mL, 3.16ng/mL,

1ng/mL. Rapamycin (LC laboratories) final concentrations in culture: 1580pg/mL,

500pg/mL, 158 pg/mL. Cells were cultured at 37°C, 5% CO2, humidified atmosphere

and were harvested at 7 distinct time points: 18.75h, 41h, 49.75h, 65.6h, 72.5h,

88.5h and 96.5h.
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A.3. CHAPTER 4: DIFFERENTIATION EXPERIMENT

A.3 Chapter 4: Differentiation experiment

A.3.1 Mice

C57BL/6, Blimp-1gfp/+, Aicda-Cre and Ly5.1 mouse strains were maintained under

specific pathogen-free conditions in the Walter and Eliza Hall Institute (WEHI)

animal facilities and were used at 6-12 weeks of age. All procedures were performed

with approval by the WEHI animal ethics committee. The Blimp-1gfp/+ and Aicda-

Cre mice have been previously described (Kallies et al., 2004; Buchholz et al.,

2015).

A.3.2 B cell isolation and labelling

Small resting B cells were isolated from spleens by Percoll gradient of single-cell

suspensions and subsequent purification by negative isolation using the EasySep

Mouse B cell Isolation Kit according to the manufacturer’s protocol (STEMCELL

technologies). For experiments that measure cell division in bulk B cell populations,

isolated B cells were labelled with 5µM CellTraceViolet (CTV, Invitrogen) in sterile

PBS containing 0.1% Bovine Serum Albumin (PBS 0.1% BSA).

A.3.3 B cell culture

For all cell cultures medium consisted of RPMI1640, 10% fetal calf serum (FCS),

1mM sodium pyruvate, 10mM HEPES, 100 U/ml Penicillin, 100µg/ml Streptomycin,

non-essential amino acids, 2mM GlutaMAX (all Invitrogen), and 50µM 2-ME (Sigma-

Aldrich). Purified B cells were stimulated with 15µg/ml lipopolysaccharide (LPS,

Sigma-Aldrich) with or without indicated concentrations of recombinant mouse IL-4

(purified from baculovirus-transfected Sf21 insect cells) and/or recombinant mouse

Transforming growth factor beta (TGF-β, Invitrogen), as described per experiment

in the main text. For cultures containing TGF-β, the cytokine was added to cells

after 24-hours of culture in order to minimise its suppression of cell proliferation

as previously described (Deenick et al., 1999, 2005). For bulk cultures cells were

either stimulated in 6-well plates at a density of 106 cell/ml or in 96-well plates at

104 cell/well where indicated.
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A.3. CHAPTER 4: DIFFERENTIATION EXPERIMENT

A.3.4 Multiplexed cell labelling, stimulation and sorting

For clonal lineage tracing experiments purified B cells were sequentially labelled

with three division-tracking dyes (all Invitrogen) as previously described (Marchingo

et al., 2016; Horton et al., 2018). Briefly, cells were labelled with either 10µM,

5µM or 0µM CellTrace Yellow (CTY), followed by 5µM or 0µM CTV and then

5µM or 0µM Cell proliferation dye eFluor670 (CPD). This generates 8 uniquely

labelled cell populations. Labelled cells were stimulated in bulk at a density of 106

cell/ml for 18-22 hours under indicated conditions before harvesting and single-cell

sorting into 96-well plates according to the unique fluorescent label combinations

to generate clonal samples. Bulk population controls for the uniquely labelled

populations were also sorted to provide references for gating of clonal lineage and

division number. Samples were returned to culture under the same conditions as

indicated, clonal samples included approximately 2000 Ly5.1 filler B cells to assist

with cell pelleting. All sorting was performed on either a FACSAria III or an Aria

Fusion (BD Biosciences).

A.3.5 Antibody staining and flow cytometry

Cells were harvested at indicated time points and following surface FcgRII/III

blocking with 24G2 antibody, stained on ice for 30 minutes in FACS buffer (PBS

with 1% BSA 1mM EDTA and 0.05% sodium azide) with the following antibodies

as described; anti-IgG1 FITC (1:400), anti-IgG1 APC (1:1000), anti-IgG1 PE-Cy7

(1:400), anti-IgG1 BV786 (1:200), anti-IgG2b PE-Cy7 (1:400), anti-IgD APC (1:200),

anti-TLR4/MD2 PE-Cy7 (1:100), anti-RP105 PE (1:200), anti-CD45.1 BV650

(1:100), anti-CD45.2 PE-Cy7 (1:100), anti-CD45.2 BUV737 (1:100), anti-B220 BV510

(1:800), anti-CD138 BV711 (1:800), anti-CD38 PerCP-eFluor710 (1:600), anti-CD95

PE-Cy7 (1:600) and anti-human-CD2 BV786 (1:100). For IL-4R staining, cells were

first stained with purified anti-IL-4R unconjugated (1:100), followed by anti-rat IgG

A647 (1:500). Dead cell exclusion was performed using 0.2µg/ml propidium iodide

(PI) for in vitro experiments or using fixable viability dye Alexa 700 (1:100) for

analysis of ex vivo samples. Analysis of FACS samples was performed on Fortessa

X20 or a FACSCanto (BD Biosciences).
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A.3. CHAPTER 4: DIFFERENTIATION EXPERIMENT

A.3.6 Index sorting of multiplex labelled cells for single-cell qPCR

For experiments involving index sorting of multiplex samples, cells were labelled

as described previously, however all cells were incubated with either 10µM or 5µM

CTY but not 0µM, to generate 6 uniquely labelled populations. Samples were

harvested at indicated time points and stained with antibodies described in the

main text and figure legends. Individual clonal samples were then index sorted

into either a 384-well plate for further analysis, labelled and stained bulk controls

were also acquired for assistance with gating during analysis. Index sort files were

analysed using the FlowJo IndexSort plugin v1.1 and fluorescence data was used to

identify cells by their clonal lineage, division number and surface marker expression

in relation to subsequent molecular analysis. Single cell index sorting was performed

using a FACSAria Fusion.

A.3.7 Single-cell quantitative reverse transcription PCR

For analysis of germline transcript expression in single cells, cell samples were

harvested at indicated time points, stained with the described antibodies and index

sorted into 384-well plates containing 1µl nuclease-free water with 0.2% Triton-

X (Sigma-Aldrich) and 5% SuperaseIN (Invitrogen). Cell lysate was subjected

to one-step RT-PCR using the Qiagen QuantiTect multiplex RT-PCR kit with

indicated custom primers and probes from Integrated DNA Technologies (IDT).

Primer and probe sequences are described in Table A.1. RT-qPCR was performed

using an Applied Biosystems Quantstudio 12k system for 40 cycles. Single-cell qPCR

data analysis was performed using LinRegPCR software and expression values are

represented using relative quantities (RQ) as previously described, with a detection

limit of 40 cycles (St̊ahlberg et al., 2013).

A.3.8 Iγ1-sorting using molecular beacons

Molecular beacons were utilised to identify RNA expression in living cells as described

(Wile et al., 2014; Zhao et al., 2016). Appropriate beacons were designed targeting

the Iγ1 germline transcript or β-actin using the PinMol algorithm (Bayer et al.,

2019), which utilises the folded secondary structure of a targeted RNA molecule

as input to identify accessible regions and optimise beacon properties. Beacons

were designed to contain a stem comprised of 2’ O-methyl RNA bases in order to

maximise cytosolic localisation and minimise non-specific stem opening, thereby
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A.3. CHAPTER 4: DIFFERENTIATION EXPERIMENT

Primer/probe Sequence

Iγ1 Fwd 5’-ATATCGAGAAGCCTGAGGAATG-3’

Iγ1 Rev 5’-GGCCAGTGGATAGACAGATG-3’

Iγ1 Probe 5’-ACAGGTTGAGAGAACCAAGGAAGCTG-3’

Iγ2b Fwd 5’-CAGAGTTCTCACACACAGAAGAA-3’

Iγ2b Rev 5’-ATCCCAGAGTCACAGAGGAA-3’

Iγ2b Probe 5’-CCCTGGGTGTGGAGATACAACTGG-3’

ActB Fwd 5’-GACTCATCGTACTCCTGCTTG-3’

ActB Rev 5’-GATTACTGCTCTGGCTCCTAG-3’

ActB Probe 5’-CTGGCCTCACTGTCCACCTTCC-3’

Iγ1 molecular

beacon 1

5’-mCmGmAmCmGmC*mU*mU*mC*mU*mC*mG*mA*mU*

mA*mU*mA*mU*mU*mC*mC*mA*mU*mG*mA*mCmGmUmCmG-3’

Iγ1 molecular

beacon 2

5’-mCmGmCmGmAmG*mU*mC*mU*mC*mU*mG*mU*mU*

mC*mC*mU*mG*mU*mU*mU*mU*mG*mG*mU*mUmCmGmCmG-3’

Negative control

beacon

5’-mCmCmGmCmGmCmG*mU*mU*mG*mA*mG*mA*mG*mA*mA*mC*mC*

mA*mA*mG*mG*mA*mA*mG*mC*mU*mG*mGmCmGmCmGmG-3’

Transfer control

beacon

5’-mAmCmGmAmCmGmC*mG*mA*mC*mA*mA*mG*mC*

mG*mC*mA*mC*mC*mG*mA*mU*mA*mCmGmUmCmGmU-3’

‘m ’ – denotes 2’ O-methyl RNA bases
‘m *’ – denotes phosphorothioated 2’ O-methyl RNA bases

Table A.1: Oligo sequences

limiting false-positive signals. Molecular beacons were transfected into cells by

electroporation using the Lonza 4D-nucleiofector protocol for stimulated mouse B

cells. 6× 105 stimulated cells per reaction were resuspended in nucleofector solution

and 500nM of the indicated molecular beacon, either target-specific, negative control

or transfection control, and electroporated using code DI-100 with a Lonza Amaxa

4D nucleofector system. After electroporation, cells were resuspended in 200µL

pre-warmed 37◦C medium followed by subsequent culture and analysis at indicated

time points by flow cytometry.

131



A.3. CHAPTER 4: DIFFERENTIATION EXPERIMENT

A.3.9 LCMV infection

Mice were infected with 3× 103 plaque-forming units (PFU) of LCMV Armstrong

by intravenous injection. After 5 days spleens were harvested, and B cells were

isolated from single cell suspensions by negative isolation. Purified B cells were then

stained with indicated antibodies for 20 minutes, followed by viability staining for

10 minutes at 4◦C. Samples were then either sorted for single-cell qPCR, or analysed

by flow cytometry.

A.3.10 Statistics

Statistical analysis presented in the Apendix B was performed by Miles B. Horton

using Prism 7. Correlations were analysed using the Pearson’s or Spearman’s rank

correlation coefficient where stated, and bar graph comparisons were performed

using the Holm-Sidak’s multiple comparisons test.
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B
Supplementary materials for Chapter 4

In this appendix, we present some key results of experiments and analyses, which

appear in Horton et al. (2022), performed by our main collaborators at Walter and

Eliza Hall Institute (WEHI). These findings provide important biological founda-

tions that motivated theoretical work of process of B cell differentiation and the

development of the mathematical model, both of which are described in Chapter 4.

B.1 Figures
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B.1. FIGURES

Fig. B.1: Clonal analysis of B cell fates by multiplexed fluorescent la-
belling. [Corresponding to Supplementary Figure S1 from Horton et al. (2022) and
appear in Section 4.4] (A) An example of the flow cytometry gating layout used to
identify clonal populations according to multiplexed labelling status. (B-D) Data
relating to Fig. 4.2, showing distributions of the intraclonal correlations calculated
using Spearman’s for the indicated cell fate following repeated sampling of cell pairs
either from within clones, as experimentally measured, or following randomisation.

134



B.1. FIGURES

Fig. B.2: Emergence of class-switched B cells is characterised by
clonal heterogeneity in division-linked AID expression and division-
independent Iγ1 transcription. [Corresponding to Supplementary Figure 3
from Horton et al. (2022) and appear in Section 4.5] Lineage tracing of individual
B cell clones analysed for (A) AID expression or (C) Iγ1 transcription. Repeated
sampling of cell pairs from within clones or following randomisation for (B) AID
expression and (D) Iγ1 transcription.

135



B.1. FIGURES

Fig. B.3: Clonal and single-cell analysis of hCD2/AID expression and
Iγ1 germline transcription. [Corresponding to Supplementary Figure S3 from
Horton et al. (2022) and appear in Section 4.5] Data as in Supplementary Fig. B.2,
clonal analysis of AID and Iγ1 expression. Distributions of intraclonal correlations by
Spearman’s for (A) AID and (B) Iγ1 from measured data or following randomisation.
(C) hCD2/AID reporter B cells were activated with LPS and IL-4 for 72 hours
prior to staining for surface hCD2, single cell index sorting into a 384-well plate
and analysis of Iγ1 expression by sc-qPCR. Per-cell levels of both hCD2/AID and
Iγ1 were determined by relating single-cell qPCR results to index sort FACS data.
Expression levels are indicated by FACS channel values for hCD2/AID and relative
quantity (RQ) for Iγ1. Rho value represents Spearman’s rank correlation coefficient.
(D) Single-cell analysis of Iγ1 expression in B cells activated with LPS and IL-4 for
72 hours prior to staining for surface IgG1 and index sorting into a 384-well for qPCR.
Iγ1 expression is displayed based on surface expression of IgG1. Representative of 2
independent experiments.
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B.1. FIGURES

Fig. B.4: Pre-existing fate potential is identifiable in näıve B cells for
ASC differentiation, but not CSR, and is linked to receptor sensitivity.
[Corresponding to Figure 2 from Horton et al. (2022) and appear in Section 4.8]
(A) Sorting of näıve Blimpgfp/+ B cells by expression of LPS receptors RP105
and TLR4/MD2, which were subsequently stimulated with LPS for 3 days and
(B) analysed for differentiation. (C) Sort gates for 2 populations of näıve wild-
type B cells by IL-4Rα expression, which were subsequently stimulated with LPS
and varying concentrations of IL-4 for 3 days and (D) analysed for CSR to IgG1.
Representative of 2 independent experiments. Mean ± standard error. Statistical
analysis using the Holm-Sidak’s multiple comparison test. *p < 0.05, **p < 0.005,
***p < 0.0005.
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B.1. FIGURES

Fig. B.5: Diverse clonal mechanisms for controlling fate heterogeneity
in B cells. [Corresponding to Figure 7 from Horton et al. (2022) and appear in
Section 4.8] (A) Individual näıve cells vary in construction, including variation
in receptor expression, to generate a population with diverse potential for ASC
differentiation. (B) ASC fate selection and timing are conserved within clones.
(C) Isotype switching utilises cell autonomous probability modulation that leads
to variegated clones. (D) External cytokines determine the likelihood of binary
GLT expression in a division-independent manner. This intersects with a separate
probability for AID expression to regulate the switching fate decision.
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and Busch, Dirk H. “Disparate individual fates compose robust CD8+ T cell

immunity.” Science 340.6132 (2013): 630–5.

Buchholz, Veit R, Schumacher, Ton N M, and Busch, Dirk H. “T Cell Fate at the

Single-Cell Level.” Annual review of immunology 34.1 (2015): 65–92.

Burnet, F. M. “A modification of Jerne’s theory of antibody production using the

concept of clonal selection.” Australian Journal of Science 20.3 (1957): 67–69.

Bykowsky, M J, Haire, R N, Ohta, Y, Tang, H, Sung, S S, Veksler, E S, Greene, J M,

Fu, S M, Litman, G W, and Sullivan, K E. “Discordant phenotype in siblings

with X-linked agammaglobulinemia.” American journal of human genetics 58.3

(1996): 477–83.

Caio, Giacomo, Volta, Umberto, Sapone, Anna, Leffler, Daniel A., Giorgio,

Roberto De, Catassi, Carlo, and Fasano, Alessio. “Celiac disease: a compre-

hensive current review.” BMC Medicine 17.1 (2019): 142.

Callard, Robin and Hodgkin, Phil. “Modeling T- and B-cell growth and differentia-

tion.” Immunological Reviews 216.1 (2007): 119–129.

Celso, Cristina Lo, Fleming, Heather E., Wu, Juwell W., Zhao, Cher X., Miake-Lye,
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Hasenauer, J., Schittler, D., and Allgöwer, F. “Analysis and Simulation of Division-

and Label-Structured Population Models.” Bulletin of Mathematical Biology 74.11

(2012): 2692–2732.

Hawkins, E D, Markham, J F, McGuinness, L P, and Hodgkin, P D. “A single-cell

pedigree analysis of alternative stochastic lymphocyte fates.” Proceedings of the

National Academy of Sciences 106.32 (2009): 13457–13462.

Hawkins, E D, Turner, M L, Dowling, M R, van Gend, C, and Hodgkin, P D. “A

model of immune regulation as a consequence of randomized lymphocyte division

and death times.” Proceedings of the National Academy of Sciences 104.12 (2007a):

5032–5037.

Hawkins, E D, Turner, M L, Wellard, C J, Zhou, J H S, Dowling, M R, and Hodgkin,

P D. “Quantal and graded stimulation of B lymphocytes as alternative strategies

for regulating adaptive immune responses.” Nature Communications 4.1 (2013):

2406.

Hawkins, Edwin D., Duarte, Delfim, Akinduro, Olufolake, Khorshed, Reema A.,

Passaro, Diana, Nowicka, Malgorzata, Straszkowski, Lenny, Scott, Mark K., Roth-

ery, Steve, Ruivo, Nicola, Foster, Katie, Waibel, Michaela, Johnstone, Ricky W.,

Harrison, Simon J., Westerman, David A., Quach, Hang, Gribben, John, Robinson,

Mark D., Purton, Louise E., Bonnet, Dominique, and Celso, Cristina Lo. “T-cell

acute leukaemia exhibits dynamic interactions with bone marrow microenviron-

ments.” Nature 538.7626 (2016): 518–522.

Hawkins, Edwin D, Hommel, Mirja, Turner, Marian L, Battye, Francis L, Markham,

John F, and Hodgkin, Philip D. “Measuring lymphocyte proliferation, survival

and differentiation using CFSE time-series data.” Nature Protocols 2.9 (2007b):

2057–2067.

Heinzel, Susanne, Giang, Tran Binh, Kan, Andrey, Marchingo, Julia M, Lye, Bryan K,

Corcoran, Lynn M, and Hodgkin, Philip D. “A Myc-dependent division timer

complements a cell-death timer to regulate T cell and B cell responses.” Nature

Immunology 18.1 (2017): 96–103.

Ho, Joses, Tumkaya, Tayfun, Aryal, Sameer, Choi, Hyungwon, and Claridge-Chang,

Adam. “Moving beyond P values: data analysis with estimation graphics.” Nature

Methods 16.7 (2019): 565–566.

147



BIBLIOGRAPHY

Hodgkin, P. D. “Quantitative rules for lymphocyte regulation: the cellular calculus

and decisions between tolerance and activation.” Tissue Antigens 66.4 (2005):

259–266.

Hodgkin, P D, Lee, J H, and Lyons, A B. “B cell differentiation and isotype switching

is related to division cycle number.” The Journal of Experimental Medicine 184.1

(1996): 277–281.

Hodgkin, Philip D. “Modifying clonal selection theory with a probabilistic cell.”

Immunological Reviews 285.1 (2018): 249–262.

Hodgkin, Philip D., Castle, Brian E., and Kehry, Marilyn R. “B cell differentiation

induced by helper T cell membranes: evidence for sequential isotype switching

and a requirement for lymphokines during proliferation.” European Journal of

Immunology 24.1 (1994): 239–246.

Hodgkin, Philip D., Hawkins, Edwin D., Hasbold, Jhaguaral, Gett, Amanda V.,

K., Deenick Elissa, Todd, Hilary F., and Hommel, Mirja. “Monitoring T Cell

Proliferation.” Analyzing T Cell Responses: How to Analyze Cellular Immune

Responses against Tumor Associated Antigens. eds. Dirk Nagorsen and F.M.

Marincola, chap. 6. Dordrecht: Springer Netherlands, 2005. 123–141.

Hodgkin, Philip D, Heath, William R, and Baxter, Alan G. “The clonal selection

theory: 50 years since the revolution.” Nature Immunology 8.10 (2007): 1019–1026.

Hoffman, Matthew D. and Gelman, Andrew. “The No-U-Turn Sampler: Adaptively

Setting Path Lengths in Hamiltonian Monte Carlo.” The Journal of Machine

Learning Research 15.1 (2014): 1593–1623.

Hogquist, Kristin A., Jameson, Stephen C., Heath, William R., Howard, Jane L.,

Bevan, Michael J., and Carbone, Francis R. “T cell receptor antagonist peptides

induce positive selection.” Cell 76.1 (1994): 17–27.

Horton, Miles B., Cheon, HoChan, Duffy, Ken R., Brown, Daniel, Naik, Shalin H.,

Alvarado, Carolina, Groom, Joanna R., Heinzel, Susanne, and Hodgkin, Philip D.

“Lineage tracing reveals B cell antibody class switching is stochastic, cell-

autonomous, and tuneable.” Immunity .

148



BIBLIOGRAPHY

Horton, Miles B, Prevedello, Giulio, Marchingo, Julia M, Zhou, Jie H S, Duffy,

Ken R, Heinzel, Susanne, and Hodgkin, Philip D. “Multiplexed Division Tracking

Dyes for Proliferation-Based Clonal Lineage Tracing.” Journal of Immunology

201.3 (2018): 1097–1103.

Hyrien, Ollivier, Chen, Rui, and Zand, Martin S. “An age-dependent branching

process model for the analysis of CFSE-labeling experiments.” Biology Direct 5.1

(2010): 41.

Hyrien, Ollivier and Zand, Martin S. “A Mixture Model With Dependent Observa-

tions for the Analysis of CSFE–Labeling Experiments.” Journal of the American

Statistical Association 103.481 (2008): 222–239.

Janeway, C.A. “Approaching the Asymptote? Evolution and Revolution in Im-

munology.” Cold Spring Harbor Symposia on Quantitative Biology 54.0 (1989):

1–13.

Jeffreys, Harold. Theory of Probability. Oxford: Oxford University Press, 1961, 3 ed.

Kaech, Susan M. and Wherry, E. John. “Heterogeneity and Cell-Fate Decisions

in Effector and Memory CD8+ T Cell Differentiation during Viral Infection.”

Immunity 27.3 (2007): 393–405.

Kaech, Susan M., Wherry, E. John, and Ahmed, Rafi. “Effector and memory

T-cell differentiation: implications for vaccine development.” Nature Reviews

Immunology 2.4 (2002): 251–262.

Kallies, Axel, Hasbold, Jhagvaral, Tarlinton, David M., Dietrich, Wendy, Corcoran,

Lynn M., Hodgkin, Philip D., and Nutt, Stephen L. “Plasma Cell Ontogeny

Defined by Quantitative Changes in Blimp-1 Expression.” The Journal of Experi-

mental Medicine 200.8 (2004): 967–977.

Kinjyo, Ichiko, Qin, Jim, Tan, Sioh-Yang, Wellard, Cameron J, Mrass, Paulus,

Ritchie, William, Doi, Atsushi, Cavanagh, Lois L, Tomura, Michio, Sakaue-

Sawano, Asako, Kanagawa, Osami, Miyawaki, Atsushi, Hodgkin, Philip D, and

Weninger, Wolfgang. “Real-time tracking of cell cycle progression during CD8+

effector and memory T-cell differentiation.” Nature Communications 6.1 (2015):

6301.

149



BIBLIOGRAPHY

Kornfeld, Stephen J., Haire, Robert N., Strong, Scott J., Tang, Huayang, Sung, Sun-

Sang J., Fu, Shu Man, and Litman, Gary W. “A Novel Mutation (Cys145→Stop)

in Bruton’s Tyrosine Kinase Is Associated with Newly Diagnosed X-Linked Agam-

maglobulinemia in a 51-Year-Old Male.” Molecular Medicine 2.5 (1996): 619–623.

Krishnamurty, Akshay T., Thouvenel, Christopher D., Portugal, Silvia, Keitany,

Gladys J., Kim, Karen S., Holder, Anthony, Crompton, Peter D., Rawlings,

David J., and Pepper, Marion. “Somatically Hypermutated Plasmodium-Specific

IgM+ Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria

Rechallenge.” Immunity 45.2 (2016): 402–414.

Kroese, Frans GM, Abdulahad, Wayel H, Haacke, Erlin, Bos, Nicolaas A, Vissink, Ar-

jan, and Bootsma, Hendrika. “B-cell hyperactivity in primary Sjögren’s syndrome.”
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Thoma, Martin, Newville, Matthew, Kümmerer, Matthias, Bolingbroke, Maxi-

milian, Tartre, Michael, Pak, Mikhail, Smith, Nathaniel J, Nowaczyk, Nikolai,

Shebanov, Nikolay, Pavlyk, Oleksandr, Brodtkorb, Per A, Lee, Perry, McGibbon,

Robert T, Feldbauer, Roman, Lewis, Sam, Tygier, Sam, Sievert, Scott, Vigna,

Sebastiano, Peterson, Stefan, More, Surhud, Pudlik, Tadeusz, Oshima, Takuya,

Pingel, Thomas J, Robitaille, Thomas P, Spura, Thomas, Jones, Thouis R, Cera,

Tim, Leslie, Tim, Zito, Tiziano, Krauss, Tom, Upadhyay, Utkarsh, Halchenko,

Yaroslav O, and Vázquez-Baeza, Yoshiki. “SciPy 1.0: fundamental algorithms for

scientific computing in Python.” Nature Methods 17.3 (2020): 261–272.

Vojdani, Aristo, Pollard, K. Michael, and Campbell, Andrew W. “Environmental

Triggers and Autoimmunity.” Autoimmune Diseases 2014: 798029.

Voulgarelis, Michael and Tzioufas, Athanasios G. “Pathogenetic mechanisms in the
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