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Abstract

Bayesian additive regression trees (BART) is a Bayesian tree-based algorithm
which can provide high predictive accuracy in both classification and regression
problems. Unlike other machine learning algorithms based on an ensemble of trees,
such as random forests and gradient boosting, BART is not based on recursive par-
titioning. Rather, it is a fully Bayesian model built upon a likelihood function and
diligently specified prior distributions.

In this thesis, we propose methodological extensions to BART to deal with two
main limitations of tree-based methods: the limited ability to fit smooth functions,
which is inherently associated with how methods based on trees are built, as well
as the lack of adequate mechanisms that enable to quantify in an interpretable
fashion the impact of certain inputs of primary interest on the output.

Firstly, we present an extension that aims to deal with linear effects at the termi-
nal nodes level. By considering linear piecewise functions instead of piecewise con-
stants, local linearities are captured more efficiently and fewer trees are required to
achieve equal or better performance than BART. Secondly, motivated by an agri-
cultural application, we develop a semi-parametric BART model in which marginal
genotypes and environment effects are estimated along with their interactions.

Last, motivated by data collected in 2019 under the seventh cycle of the qua-
drennial Trends in International Mathematics and Science Study, we extend semi-
parametric models based on BART, which generally assume that the set of covari-
ates in the linear predictor and the BART model are mutually exclusive, to account
for shared covariates. In particular, we change the tree-generation moves in BART
to deal with bias/confounding between the parametric and non-parametric com-
ponents, even when they have covariates in common.
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CHAPTER 1
Introduction

1.1 Motivation
Tree-based methods are in general recursive partitioning algorithms that split the
data into homogeneous partitions given a response variable and a set of covariates.
These methods are flexible, scale well as the numbers of observations and variables
grow, and have been part of the toolkit of researchers and applied data analysis
practitioners due to, among other things, the wide availability of fast, easy-to-use
packages in free and private software. Ensemble-of-trees algorithms, such as ran-
dom forests (Breiman, 2001) and gradient boosting (Friedman, 2001), are widely
used in non-parametric regression problems as they make minimal assumptions
about the data and are known for their great prediction accuracy in real-world
applications.

Motivated by their contemporaries, Bayesian approaches based on a single tree
emerged in the late 1990s in the pioneering works of Chipman et al. (1998) and
Denison et al. (1998). In both papers, the aim was to propose a Bayesian version
of the classification and regression tree algorithm (CART; Breiman et al., 1984) in
which a stochastic search procedure and prior distributions replace the recursive
partitioning. Conceptually, the Bayesian CARTs are full statistical models since

1



1.1. Motivation

all elements of a Bayesian model are present, such as a probability distribution for
the response, prior distributions, and a posterior distribution. With the advent
of methods combining multiple trees rather than a single tree, namely boosting
(Freund and Schapire, 1997), bagging (Breiman, 1996), and random forests, an
‘ensemble-of-trees Bayesian model’ seemed to be the next step in the early 2000s.

First proposed in a seminal paper by Chipman et al. (2010) more than a decade ago,
Bayesian additive regression trees (BART) is a Bayesian non-parametric model
based on an ensemble of trees. Initially proposed for regression and classification
settings, BART predicts a univariate response variable by using a set of regularised,
shallow trees which generate the fit through an additive structure. As with any
Bayesian model, a probability distribution is assumed for the response and prior
distributions are placed on the necessary quantities. The regularisation is estab-
lished via the prior distributions on both the tree structure and the terminal node
parameters, and it is a key element behind the excellent predictive performance of
the BART model. Through an iterative Bayesian backfitting Markov Chain Monte
Carlo algorithm (Hastie and Tibshirani, 2000; Brooks et al., 2011), the trees are
learned and samples from the posterior distribution are generated.

Since its proposal in 2010, BART has drawn attention from researchers and pro-
fessionals from various fields. Early applications/extensions involve credit risk
modelling (Zhang and Härdle, 2010), causal inference (Hill, 2011; Green and
Kern, 2012; Hill and Su, 2013), survival analysis (Bonato et al., 2011), and spam-
detection (Abu-Nimeh et al., 2008). More recently, BART has been explored
in proteomic discovery (Hernández et al., 2018), hospitals’ evaluation (Liu et al.,
2015), preeclampsia and stillbirth risk (Starling et al., 2019, 2020), time-series anal-
ysis (Prüser, 2019; Clark et al., 2021), to list a few. Methodologically, BART has
also been extended to account for polychotomous response (Kindo et al., 2016b),
multivariate skewed response (Um, 2021), density regression (Orlandi et al., 2021),
count/semi-continuous zero-inflated data (Linero et al., 2020; Murray, 2021), high-
dimensional data (Linero and Yang, 2018; He et al., 2019), and heterocedastic data
(Pratola et al., 2020). There are also works combining BART with varying coef-
ficient models (Deshpande et al., 2020), quantile regression (Kindo et al., 2016a),
and semi-parametric models (Zeldow et al., 2019; Tan and Roy, 2019).

2



1.1. Motivation

Due to the its flexibility and great predictive capabilities, BART has received
considerations from the theoretical point of view. For instance, Linero and Yang
(2018), Ročková and Saha (2019), Ročková and van der Pas (2020), and Jeong and
Ročková (2020) study the speed at which the posterior distribution of ‘Bayesian
forests’ (i.e., Bayesian methods based on ensemble of trees, of which BART is a
prominent member) contracts to the true posterior, which contributes to a better
understanding of why BART does so well in practice. On the other hand, easy-to-
use software implementations, such as the R (R Core Team, 2020) packages dbarts
(Dorie, 2020), bartMachine (Kapelner and Bleich, 2016), and BART (McCulloch
et al., 2020), are efficient, well-implemented tools that make BART a reality for
practitioners.

This thesis presents proposals for overcoming some key limitations of BART and
some of its semi-parametric versions. Though BART is a popular algorithm and
has been widely applied in a variety of real-world data, it is well-known (Hastie
et al., 2009; Linero and Yang, 2018; Tan and Roy, 2019) that it is a black-box
model where i) local smooth effects are not efficiently estimated as well as ii) the
interpretation of effects of covariates of interest on the response is not straightfor-
ward as in a parametric model.

The first point is due to the step-function estimates commonly found in tree-based
methods, which can offer some degree of smoothness, especially when the fit is
based on a large number of trees. However, to approximate a linear effect, many
splits are usually required on the same variable so as to attain a good fit. Also, due
to the learning process in BART where the splitting rules are randomly determined,
to estimate linear effects becomes more challenging particularly when the number
of covariates is large. This drawback is not exclusive to BART and has been dealt
with in random forests by Friedberg et al. (2020) and Künzel et al. (2022), who
replace the piecewise constants with local linear regressions. Regarding Bayesian
tree-based models, Chipman et al. (1998) also adopt local linear regressions at the
terminal node levels but in the context of a single tree.

The second limitation is alleviated by semi-parametric BART models (Zeldow
et al., 2019; Tan and Roy, 2019), where, for interpretational purposes, the response
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is approximated by a parametric (linear predictor) and non-parametric (BART)
components. From the practical point of view, the reasoning is to consider that co-
variates for which one might be interested in measuring the effects on the response
are specified in the linear predictor, whereas covariates that are thought to be of
non-primary interest are dealt with by the non-parametric component. However,
the semi-parametric BART models assume that the two components (linear pre-
dictor and BART) cannot share covariates, which prevents BART from capturing
both interactions among covariates in the linear predictor and between covariates
of the two components.

1.2 Outline of the thesis
The remainder of this thesis is organised as follows. In Chapter 2, we provide some
background on the development of BART, elaborate on the essential definitions,
and clarify related notation used throughout the thesis. In Section 2.1, we provide
a brief introduction to decision trees, which are an essential element for tree-based
methods. We initially present some terminology and how trees are learned under
the CART algorithm. In Sections 2.2 and 2.3, we provide an extensive review
of the Bayesian CART (BCART; Chipman et al., 1998; Denison et al., 1998) and
BART models. In Section 2.4, we summarise how we approach the aforementioned
limitations of BART. Finally, the subsequent chapters are presented in the format
of three journal articles and were adapted in an effort to avoid redundancy, when
possible, and to keep coherence throughout the thesis.

In Chapter 3, we extend the work of Chipman et al. (2002) by considering observation-
specific predictions at the terminal node level within the BART framework to ad-
dress the issue related to the difficulty of approximating smooth effects. Here, the
novel MOTR-BART framework is introduced from the perspective of improving
the predictive performance of BART in settings where interpretability is not of
such great importance. Instead of estimating one piecewise constant as the pre-
dicted value for each terminal node, a local Bayesian linear regression is considered
where the covariates in the linear predictors are chosen based on the tree struc-
ture. Under the new formulation, smooth effects are captured more efficiently,
while the recommended number of trees required to predict the response variable
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is drastically reduced. Through a simulation study based on the Friedman equa-
tion (Friedman, 1991), which contains linear and non-linear effects, we show that
MOTR-BART consistently outperforms BART and other tree-based competitors
regardless of the sample size and number of noise covariates. We also explore the
performance of MOTR-BART on well-known real-world applications, with MOTR-
BART presenting the lowest or the second lowest out-of-sample root mean squared
errors on almost all datasets considered.

Chapters 4 and 5 also make use of linear components but under the semi-parametric
framework so as to lend interpretability to covariates of primary interpretational
interest. This is achieved in Chapter 4 by using a linear predictor along with BART
to estimate the main effects and induce interactions in a genotype by environment
setting. One of the motivations for this new model lies in the structure of the addi-
tive main effects multiplicative interactions model (AMMI; Mandel, 1971), which
is a commonly adopted model in the agricultural literature to analyse crop yield,
where the response variable, usually production of a crop in tonnes per hectare, is
estimated by the sum of linear and bi-linear terms. The latter term is responsi-
ble for capturing interactions between genotypes and environments in the AMMI
models and its components are obtained via a singular value decomposition. Under
our approach, we replace the bi-linear term with BART by significantly modify-
ing it to account for potential interactions. Via simulation studies, we show that
the proposed model AMBARTI presents great predictive performance since it is
able to estimate more complex interaction structures than AMMI and its Bayesian
counterpart. As a case study, we analyse wheat data kindly provided by the Irish
Department of Agriculture from 2010 to 2019. We compare AMBARTI with other
interaction detection models in terms of out-of-sample error and observe it pro-
vided the smallest errors for 7 out of 10 periods analysed. Finally, we introduce
new visualisations that help assess the marginal and interaction effects from the
proposed model, which is helpful as it can assist professionals with no quantitative
background.

In Chapter 5, we extend BART-based semi-parametric models to account for
shared covariates between the parametric and non-parametric components. The
rationale behind semi-parametric BART models is to combine a linear predictor
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and a BART model so that covariates of primary interpretational interest are
specified in the linear predictor, while covariates of non-primary interpretational
interest are dealt with by BART. Broadly speaking, the design matrix is split into
two subsets, where the first is used in the linear predictor and the second by the
BART model. This approach has advantages over, for example, generalised lin-
ear models (GLMs; Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989),
since interactions and non-linearities are estimated without pre-specification, while
the linear predictor offers a level of interpretability similar to parametric models.
However, one well-known limitation of these models is that they assume that co-
variates of primary interest, which are specified via linear predictor, cannot be
part of the subset used by BART. Implicitly, these models assume there is no
interaction among the covariates in the linear predictor nor interactions between
covariates in the linear predictor and BART model. We circumvent this issue by
changing the moves of the BART model specifically for when covariates of primary
interest are selected to be part of the structure of the trees. We also introduce
checks on the topology of the trees to guarantee that there is no confounding be-
tween the linear and BART components. We demonstrate the unbiasedness of the
coefficient estimates in the linear predictor through two simulation experiments
and show enhanced prediction performance on real data from an international ed-
ucation study, where we point out the benefits of sharing covariates across the two
components.

All proposed methods in this thesis were implemented using the R (R Core Team,
2020) software and are accessible on the author’s Github1 via three public reposito-
ries. The repositories MOTR-BART, AMBARTI, and CSP-BART are related to Chapters
3, 4, and 5, respectively. To avail interested practitioners, R scripts are made
available such that the analyses and plots presented throughout are reproducible.
In addition, all datasets are available, either through R packages, which are pre-
sented in the R scripts, or files in the aforementioned repositories, with the wheat
data from the Irish Department of Agriculture in Chapter 4 being anonymised to
prevent the identification of genotypes and environments.

Finally, in Chapter 6, we conclude the thesis indicating topics for future research.
1https://github.com/ebprado
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CHAPTER 2
Bayesian additive regression trees

Before introducing BART, we first introduce decision trees under the CART re-
cursive partitioning algorithm to give the overall picture of a decision tree and
also to present terminologies and notations. We then review the Bayesian CART
in order to contrast how Bayesian and non-Bayesian trees are built as well as a
preparation to introduce BART, since many elements of Bayesian CART are part
of the BART model. Finally, we present an extensive review of BART.

2.1 Decision trees
The idea behind CART or any other recursive partitioning procedure is to divide
a population based on a set of covariates into disjoint subsamples where the obser-
vations within each subsample are homogeneous in relation to a response variable.
Let xi = (xi1, xi2, . . . , xip) denote a p-dimensional vector corresponding to the i-th
row of the design matrix X and let yi ∈ y be the response variable for observation
i, where i = 1, . . . , n.

For the sake of simplicity, we illustrate in Figure 2.1 the growing process of a
CART tree in the context of regression. Initially, all observations belong to a tree
with a single node, as shown in panel (a). Next, in panel (b), the data are split
into two disjoint parts based on a splitting variable (x2) along with a splitting
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value (1), which are shown inside the rectangle. The combination of a splitting
variable and a splitting value is generally called a splitting rule, since together they
completely define a rule to partition the data. The observations go to the left if
they satisfy the splitting rule, otherwise they go to the right. In panel (b), the tree
has an internal/non-terminal node (rectangle) at the top and two terminal/child
nodes (circles) at the bottom. From panel (b) to (c), the observations in the left-
most terminal node are partitioned and new terminal nodes are created. This
binary growing process is recursively applied until a stopping criterion is met as,
for example, the minimum number of observations in a node. Conventionally, all
observations that belong to a terminal node have a constant µ` as predicted value.

(a)

µ1

(b)

x2 < 1

µ1 µ2

TRUE FALSE

(c)

x2 < 1

x1 < 0.5

µ1 µ2

µ3

Figure 2.1: An example of a decision tree built by the CART algorithm. In panel
(a), the data initially are allocated into a stump. In panel (b), the growing process
splits the data into two disjoint subsamples based on the splitting rule x2 < 1. In
panel (c), the left-most subsample in panel (b) is grown considering the splitting
rule x1 < 0.5, which generates new terminal nodes. The parameters µ in the
terminal nodes indicate the prediction applied to that subsample.

In Figure 2.1, we can see that the tree structure in panel (c) is based on two
splitting rules which involve x1 and x2. The choice of the covariates that are part
of the tree structure is a minimisation problem given by

min
k,j

 ∑
i:xi∈P1(xik,cj)

(yi − µ1)2 +
∑

i:xi∈P2(xik,cj)
(yi − µ2)2

 , (2.1)

where xik denotes the k-th covariate for observation i, cj the j-th split point in the
domain of x·k, and µ` is the average of the response variable yi for observations
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that belong to terminal node `. We denote P` the partition formed by the splitting
rules that define the terminal node ` in a tree so that all observations that belong
to P` have the same predicted value. From above, the optimal splitting rule is
obtained after an exhaustive search over all covariates and their split points. Once
the best splitting rule is obtained, the same process is repeated until a stopping
rule is reached.

It is relatively straightforward with minor changes to use the same recursive ra-
tionale for a categorical response variable with K distinct classes. To do so, we
first need to replace the sum of squared errors in (2.1) for some other measure
appropriate for classification and then change slightly the minimisation problem.
Let p̂`k be the proportion of observations in terminal node ` of class k, which can
be calculated as

p̂`k = 1
n`

∑
i:xi∈P`

I(yi = k),

where I(·) is the indicator function and n` denotes the number of observations in
node `. In the classification case, the predicted value for all observations in node
` is µ` = {k : p̂`k = maxk p̂`k}; i.e., the most common class in the node. Regarding
the measures that can be used as loss functions for classification, Breiman et al.
(1984) suggest

Misclassification error = 1− p̂`k,

Gini index = 1−
K∑
k=1

p̂2
`k, (2.2)

Entropy = −
K∑
k=1

p̂`k log(p̂`k).

The Gini and Entropy are usually preferred over misclassification error as they
are differentiable and more sensitive to small changes (Hastie et al., 2009). Here,
rather than minimising the sum of squared errors to recursively grow the tree, the
metrics above are optimised instead. For instance, for a given terminal node, the
lower the Gini index, the more homogeneous the observations in that node are.

Let ψ(P`L) and ψ(P`R) be any metric in (2.2) applied to two child nodes obtained
from a node `, which was partitioned based on a splitting rule defined by k-th
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covariate and j-th split point. The best splitting rule is chosen based on the
optimisation of

∆(k, j) =
{
ψ(P`)−

n`L
n`
ψ(P`L)− n`R

n`
ψ(P`R)

}
, (2.3)

where n`L and n`R denote the size of the left and right child nodes. The maximi-
sation of (2.3) is equivalent to finding the best splitting rule so that the new nodes
defined by P·L and P·R contain observations that are more homogeneous among
themselves when compared to P`. For instance, when a splitting rule generates
two child nodes where all observations in both nodes have a unique class, (2.3)
is maximised as ψ(P`L) = ψ(P`R) = 0, ∆(k, j) = ψ(P`) and no further splitting
is needed. In contrast, ∆(k, j) = 0 (the lowest possible value) if a splitting rule
creates two child nodes where the classes of the response variable in both nodes
are evenly distributed.

After the binary recursive partitioning is employed in CART, either for a regression
or classification tree, a cost-complexity pruning is applied to avoid over-fitting. The
criterion used is based on a tuning parameter, number of terminal nodes in the
tree, and on the contribution of each node to the overall sum of squared errors
(regression) or any of the three measures in (2.2) (classification). The rationale is
to remove nodes that have a small contribution to the overall prediction based on
cross-validation (Hastie et al., 2009).

2.2 Bayesian CART
Unlike CART, decision trees built upon the Bayesian paradigm can be seen as
statistical models rather than algorithmic recursive procedures. This is because a
probability distribution is associated to the response variable and prior distribu-
tions are placed on the node-level parameters and binary tree structure. In this
Section, we focus on the Bayesian CART proposed by Chipman et al. (1998) and
Denison et al. (1998), giving more emphasis to Chipman et al. (1998) since it is
the backbone of the BART model. In the end of this Section, however, we point
out the main differences between the two approaches.

For regression trees, BCART models assume that observations which belong to the
same terminal node are independent and identically distributed (i.i.d) and follow
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a probability distribution as

yi|xi, T ,M∼ N(µ`, σ2), or (2.4)

yi|xi, T ,M∼ N(µ`, σ2
` ), for all i ∈ P`.

In the first model, the terminal nodes have different means but share the same
variance, while in the second both mean and variance are specific to each terminal
node. For convenience, we consider the model in (2.4) when presenting the pri-
ors and posterior conditional distributions. Given the design matrix X and tree
structure T , the node-level predicted valuesM = {µ1, · · · , µb} and σ2 are the pa-
rameters of interest. To ensure that their posterior conditional distributions have
closed-form expressions and marginalisations can be carried out analytically, the
respective conjugate priors (2.5) and (2.6) below are placed on both parameters:

µ`|T , σ2 ∼ N(µ̄, σ2/a), (2.5)

σ2 ∼ IG(ν/2, νλ/2). (2.6)

For regression trees, Chipman et al. (1998) use the observed yi to guide the choice
of the hyperparameters in both priors. For instance, µ̄ and a > 0 are specified
so that the resulting prior distribution assigns substantial probability around the
possible values of the yi. On the other hand, the choices of ν and λ are based
on the empirical variance of the yi and a residual variance from some over-fitted
model. The idea is to choose ν and λ so that the prior distribution for σ2 assigns
considerable probability to the interval between the two variances.

Another important component in BCART is the prior on the tree structure, which
is responsible for controlling how deep/shallow the tree can be. A branching pro-
cess prior is adopted where the probability of observing an internal node at depth
d` is α(1 + d`)−β, where α ∈ (0, 1) and β ≥ 0 are user-defined hyperparameters.
Thus, the prior on the tree topology is given by

p(T |α, β) =
∏
`∈SI

[
α(1 + d`)−β

]
×
∏
`∈ST

[
1− α(1 + d`)−β

]
, (2.7)

where SI and ST represent the sets of internal and terminal nodes, respectively.
Abusing notation slightly, we refer to (2.7) as p(T ) throughout. Under this prior,
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nodes at the same depth are equally likely to be split a priori, which tends to induce
trees with terminal nodes at similar depth (i.e., balanced trees). By changing α
and β, the user controls how harsh should be the penalisation on the creation of
new nodes as the tree gets deeper, which inevitably impacts the expected number
of nodes in the tree. Equipped with the conditional distribution in (2.4) and the
priors in (2.5), (2.6), and (2.7), the joint posterior distribution of the BCART
model can be written as

p(T ,M, σ2|y,X) ∝ p(y|X,M, σ2T )p(M|T , σ2)p(T )p(σ2).

As the above expression does not have a closed-form distribution, it is possible to
sample from it through the following posterior conditional distributions:

p(M|y, T , σ2) ∝ p(y|X, T ,M, σ2)p(M|T , σ2), (2.8)

p(σ2|X,y,M) ∝ p(y|X, T ,M, σ2)p(σ2), (2.9)

p(T |X,y) ∝ p(T )
∫ ∫

p(y|X, T ,M, σ2)p(M|T , σ2)p(σ2)dMdσ2. (2.10)

The expression in (2.8) allows the sampling of the terminal node parameters. As
the µ` are assumed to be i.i.d, it is possible to write p(M|T , σ2) = ∏b

`=1 p(µ`|T , σ2),
where b denotes the number of terminal nodes. Using the fact that the conditional
distribution of yi is normal as well as the prior on its mean, the posterior conditional
distribution for µ` is also a normal distribution. The equation in (2.9) is an inverse
gamma and is used to update the residual variance.

A significant difference between CART and BCART is how the splitting rules that
are used to create the tree structure are chosen. This fact is directly related to why
the posterior conditional distribution for the tree in (2.10) is needed and plays an
important role. Recall that in CART the best splitting rules are selected based on
an exhaustive recursive search over the covariates and their split points. However,
in BCART the splitting rules are based on a uniform specification whereby both
the splitting covariate and the split point are determined by randomly selecting one
covariate and one split point from the sets of covariates and split points available.

As the splitting rules are formed at random, BCART samples from (2.10) via a
Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) step to compare a
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proposed tree with its previous version so that only ‘good’ splitting rules are part of
the tree structure. For the sake of visualisation, we illustrate this recalling Figure
2.1. At the beginning of the BCART model, we could imagine that all observations
are altogether in a stump, as shown in panel a). The only possible move for a stump
is a grow step, where a splitting rule is employed to create two terminal nodes.
In panel b), a tree with a splitting rule defined by x2 < 1 is presented. Recall
that this splitting rule under the uniform specification is randomly formed, which
means that we do not know whether the two disjoint partitions defined by it are
actually any different. To check for their possible difference, we evaluate (2.10)
twice, one for tree T in panel a) and one for tree T ? in panel b) as

α(T , T ?) = min
{

1, p(T
?|X,y)q(T ? → T )

p(T |X,y)q(T → T ?)

}
, (2.11)

where q(TA → TB) represents the transition probability from tree TA to tree TB,
which is a function of the probability of the moves grow (0.25), prune (0.25),
change (0.4), and swap (0.1), and the tree topology. If the move is grow and the
resulting tree structure is valid2, then

q(T → T ?) = P(grow)
b

,

q(T ? → T ) = P(prune)
w?

, (2.12)

where P(grow) = P(prune) = 0.25, b is the number of terminal node in T , and w?

and w are the numbers of internal nodes which are parents of two terminal nodes
in T ? and T , respectively (Kapelner and Bleich, 2016). If the move is prune, then

q(T → T ?) = P(prune)
w

,

q(T ? → T ) = P(grow)
b− 1 . (2.13)

If the moves are change or swap, the transition kernels cancel out as the ratio of
the q(·) is always 1 (Chipman et al., 1998). Notably, the conditional distribution
for the tree works as a mechanism of comparison which rejects modifications in
the tree structure that do not help reduce the residual variance.

2In this context, it refers to a tree with non-empty terminal nodes which have at least a
minimum number of observations.
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Another point that differs is the moves employed by BCART to form the tree struc-
ture. Recall that in CART the tree is firstly grown based on recursive partitioning
and then pruned back to avoid over-fitting. In BCART, however, the tree can
be learned based on a grow, prune, change, or swap step. For instance, the grow
move is employed by randomly choosing a terminal node and splitting it into two
new nodes. In contrast, during pruning a pair of two terminal nodes is selected at
random and then collapsed to its parent. The change move modifies the splitting
rule of any internal node in the tree. Finally, in the swap move the splitting rules
of any pair of parent-child internal nodes are exchanged. For the change and swap,
the internal/pair of nodes that have their splitting rules changed/swapped are se-
lected at random. In all cases, the new learned tree is compared to its previous
version as mentioned above to guarantee that only alterations that help reduce the
residual variance are kept.

Finally, we recall that Chipman et al. (1998) and Denison et al. (1998) proposed
Bayesian versions of the CART algorithm that present some similarities. First,
both assume that the response variable in each terminal node is normally dis-
tributed with unknown mean and variance. They also share the inverse gamma
distribution as prior on the variance of the terminal nodes. However, Denison
et al. (1998) adopt as priors for the terminal node-level parameters a uniform dis-
tribution as well as a zero-truncated Poisson on the number of terminal nodes.
Unlike the branching process prior utilised by Chipman et al. (1998), the trun-
cated Poisson does not account for the tree topology but only for number of nodes
in the tree. Under the approach of Denison et al. (1998), two trees with com-
pletely different topologies have the same probability a priori of being observed as
long as they have the same number of nodes. Another difference is related to the
sampling from the posterior conditional distribution for the tree. While Denison
et al. (1998) use a plug-in strategy and reversible jump Markov Chain Monte Carlo
(MCMC) algorithms (Green, 1995), Chipman et al. (1998) place conjugate priors
on the mean and variance of each terminal node so that they can be analytically
marginalised out of the likelihood function as in (2.10). Since the tree structure
changes whenever it is learned by a grow or prune step, the number of terminal
node parameters also changes. In this case, without the marginalisation of the
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parameters that vary by the terminal nodes, reversible jump MCMC algorithms
are needed to account for the different number of parameters in the tree. By inte-
grating out the node-level parameters, Chipman et al. (1998) simplify the posterior
sampling and avoid additional computational cost.

2.3 BART
BART is a Bayesian statistical model based on an ensemble of trees where the trees
are set up so that they are all (roughly) equally important. Unlike BCART, which
considers one tree to predict the response variable, BART uses a set of decision
trees thus providing a much better prediction. Given a design matrix X and a
response vector y, the BART model can be defined as:

yi =
T∑
t=1

g(xi; Tt,Mt) + εi, εi ∼ N(0, σ2), (2.14)

where g(·; Tt,Mt) is a function that returns the terminal node parameter µt` for
any observation that belongs to the terminal node ` of tree t. The number of trees
used to predict yi is represented by T ; Chipman et al. (2010) recommend T = 200
as a default but they also mention it can be chosen via cross-validation, depending
on the problem at hand. The binary structure of the t-th tree is denoted by Tt and
Mt = {µt1, · · · , µtbt}, where bt represents the number of terminal nodes of Tt. As
a Bayesian model, BART has prior distributions on µt`, Tt, and σ2. These priors
are carefully set up so that each tree works a weak learner, which prevents one
tree from dominating the fit resulting from the additive structure in (2.14).

2.3.1 Prior distributions
The contribution of each tree is constrained by the priors on the tree structure
and terminal node parameters. The prior on the trees forces them to be shallow
and balanced, while the prior on the node-level parameters shrinks them towards
zero thereby forcing each tree to provide a small contribution to the final fit. The
prior on the tree topology is the same as in (2.7), where a non-terminal node is
observed at depth dt` with α(1 + dt`)−β probability, where α ∈ (0, 1) and β ≥ 0;
Chipman et al. (2010) recommend as a default α = 0.95 and β = 2, which favours
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a priori shallow trees of 1, 2, 3, 4, and > 4 terminal nodes, with probability of
0.05, 0.55, 0.27, 0.09, and 0.03, respectively.

If we set α = 0.95 and β = 2 and use the expression in (2.7), the probability of
getting a stump is calculated as 1 − 0.95 × (1 + 0)−2 = 0.05. We recall that if
a non-terminal node is observed at depth d with α(1 + d)−β probability, then a
terminal node at the same depth is found 1 − α(1 + d)−β probability. In Figure
2.2, we present tree structures which vary in terms of the number of nodes and
depth. For example, the prior probability to observe a tree with 2 terminal nodes
is 0.95× (1 + 0)−2 × (1− 0.95(1 + 1)−2)2 = 0.55, since there is 1 internal node at
depth zero and 2 terminal nodes at depth one. For trees with 3 terminal nodes,
the probability is 2×0.95× (1 + 0)−2× (0.95× (1 + 1)−2)× (1−0.95× (1 + 1)−2)×
(1− 0.95× (1 + 2)−2)2 = 0.27, as there are 2 possible topologies, shown in panels
(b) and (c), with two internal nodes (one at depth zero and one at depth one) and
three terminal nodes (one at depth one and two at depth two). For trees up to 4
terminal nodes, it is possible to easily calculate the probabilities listed above, but
as the number of terminal nodes increases, the number of possible tree structures
grows rapidly and analytical calculation becomes impractical3.

(a)

x2 < 1

µ1 µ2

(b)

x2 < 1

x1 < 0.5

µ1 µ2

µ3

(c)

x2 < 1

µ1 x1 < 0.5

µ2 µ3

Figure 2.2: Examples of tree structures with different numbers of nodes and depth.
The terminal nodes are identified as circles and the internal/non-terminal nodes
are represented by rectangles. In all panels, the root node has depth zero and for
every level down the tree the depth is incremented by one. The tree topology is
crucial for computing the probabilities in (2.7).

3As noticed by Castillo and Ročková (2019), the number of different structures of binary trees
with v non-terminal nodes is given by 1

v+1
(2v

v

)
, also known as the Catalan number. Recall that the

number of terminal nodes in a binary tree is b = v+1. Thus, for a tree with b = 1, 2, 3, 4, 5, and 6
terminal nodes, the number of trees with distinct shapes is 1, 1, 2, 5, 14, 42, and 132, respectively.
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The prior on the node-level parameters µt` assumes they are i.i.d and normally
distributed with mean µµ and variance σ2

µ. By assuming that µt`|Tt i.i.d∼ N(µµ, σ2
µ),

it implies a priori that ŷi ∼ N(Tµµ, Tσ2
µ), where ŷi = ∑T

t=1 g(xi; Tt,Mt). Given
the prior on ŷi, the rationale for choosing µµ and σ2

µ is that N(Tµµ, Tσ2
µ) should

assign high probability for values of yi between y(1) and y(n), where y(1) is the
minimum and y(n) is the maximum values of the observed yi. Thus, µµ is specified
as (y(1) + y(n))/2T . In contrast, the specification of σ2

µ is carried out so that
y(1) = Tµµ − k

√
Tσµ and y(n) = Tµµ + k

√
Tσµ, where k ∈ [1, 3] controls the

amount of prior probability on the interval (y(1), y(n)). In order to facilitate more
straightforward elicitation of the prior distributions, Chipman et al. (2010) apply
a transformation on the yi so that they are constrained to the interval −0.5 and
0.5. With this re-scaling, µt` i.i.d∼ N(0, σ2

µ), where σµ = 0.5/(k
√
T ).

The prior on the residual variance assumes that σ2 ∼ IG(ν/2, νλ/2), which has
the same form of that adopted by Chipman et al. (1998) in (2.6). Recall that in
BCART p(σ2) is set up to assign high probability to values in an interval where the
residual variance from an over-fitted model is the lower bound and the empirical
variance of the response is the upper bound. Conversely, the choice of ν and λ in
BART is guided by the data in such a way that the prior assigns high probability
to values less than the residual variance σ̂2 from a least-squared based model. The
rationale is to first choose ν between 3 and 10 and then λ so that p(σ2 < σ̂2) = q.
The choice of ν ∈ [3, 10] is to prevent the prior from concentrating probability to
very small values of σ2; Chipman et al. (2010) recommend ν = 3 and q = 0.9 as a
default setting.

2.3.2 Posterior computation
To sample from the posterior distribution of the BART model, the Bayesian back-
fitting (Hastie and Tibshirani, 2000) and the Metropolis-within-Gibbs (Müller,
1991, 1992) algorithms are used. For notational convenience, let T = {T1, · · · , TT}
andM = {M1, · · · ,MT} denote the sets of all trees and all terminal node param-
eters, respectively. Similarly, define T(−j) = {Tt : t 6= j} andM(−j) = {Mt : t 6= j}
the set of all trees and node-level parameters, excluding quantities associated with
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the j-th tree. Thus, the posterior distribution can be written as

p(T ,M, σ2|X,y) ∝ p(y|X, T ,M, σ2)p(M|T )p(σ2)p(T ) (2.15)

∝

 T∏
t=1

bt∏
`=1

∏
i∈Pt`

p(yi|X, Tt,Mt, σ
2)
  T∏

t=1

 bt∏
`=1

p(µt`|Tt)
 p(Tt)

 p(σ2)

∝
[
n∏
i=1

N
(
yi|

T∑
t=1

g(xi; Tt,Mt), σ2
)] T∏

t=1

 bt∏
`=1

N(µt`|0, σ2
µ)
 p(Tt)

 IG(σ2|ν, λ),

where Pt` denotes the set of splitting rules that define terminal node ` of tree t
and p(Tt) is given in (2.7). The expression above does not have a known distri-
butional form, but it is possible to draw samples from (2.15) by decomposing it.
First, it is possible to sequentially sample, one at a time, from p(Tt,Mt|y, T(−j),
M(−j), σ

2), for t = 1, · · · , T . This can be carried out by noticing that sampling
from p(Tt,Mt|y, T(−j), M(−j), σ

2) is equivalent to sample from p(Tt,Mt|Rt, σ
2),

where Rt = y −∑T
j 6=t g(xi; Tj,Mj). The vector of partial residuals Rt works like

the response variable and takes into account the dependence on the other trees.
In addition, it is possible to sample from p(Tt,Mt|Rt, σ

2), which does not present
a closed-form distribution either, by further decomposing it into

p(Mt|Rt, Tt, σ2) ∝ p(Rt|X, Tt,Mt, σ
2)p(Mt|Tt), (2.16)

p(Tt|Rt, σ
2) ∝

∫
p(Tt|Rt,Mt, σ

2)p(Mt|Tt)dMt. (2.17)

To sample from (2.16) is straightforward as the µt` ∈ Mt are i.i.d and follow
a normal distribution, whereas for (2.17) a Metropolis-Hastings step is required.
Then, after samples of all T trees are obtained as well as for their terminal node
parameters, it is possible to update σ2 from p(σ2|T ,M,y).

In Algorithm 1, we present the structure of the BART model for one MCMC
iteration considering that the response variable is continuous. Given the design
matrix X, the response variable y, and the user-specified hyper-parameters, a tree
is learned by a grow, prune, change, or swap step, where each step is proposed
with probability of 0.25, 0.25, 0.4, and 0.1, respectively. A common practice is
to initially set all trees to stumps. Then, the proposed tree T ?t is compared to
its previous version Tt via a Metropolis-Hastings step, and it is accepted with
probability α(Tt, T ?t ). Given the tree structure, the node-level parameters µt` are
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updated. After this process is repeated for all T trees, the residual variance is
updated as well as the predicted values. For more than one iteration, it suffices to
repeat steps 3-11 until convergence is achieved.

Algorithm 1 BART model for regression
1: Input: y, X, and number of trees T .
2: Initialise: {Tt}T1 and set all hyperparameters of the prior distributions.
3: for (t = 1 to T ) do
4: Compute Rt = y−∑T

j 6=t g (X,Mj, Tj).
5: Propose a new tree T ?t by a grow, prune, change, or swap move.
6: Compare the current (Tt) and proposed (T ?t ) trees via Metropolis-

Hastings with
α (Tt, T ?t ) = min

{
1, p(T

?
t |Rt,σ2)q(T ?t →Tt)

p(Tt |Rt,σ2)q(Tt→T ?t )

}
.

7: Sample u ∼ Uniform (0, 1): If α (Tt, T ?t ) < u, set Tt = Tt, otherwise
set Tt = T ?t .

8: Update all node-level parameters µt` via p(µt`|Rt, Tt, σ2), for ` = 1, . . . , bt.
9: end for

10: Update σ2 via p(σ2|T ,M,y).
11: Update ŷ = ∑T

t=1 g (X,Mt, Tt).

BART can also be extended to deal with binary or multi-class (Kindo et al.,
2016b; Murray, 2021) response via the data augmentation approach of Albert
and Chib (1993). For yi ∈ {0, 1}, the strategy consists of introducing a latent
variable zi ∼ N(∑T

t=1 g(xi; Tt,Mt), 1), for i = 1, · · · , n, and defining yi = 1 if
zi > 0, yi = 0 otherwise. Under this formulation, we assume that p(yi = 1|xi) =
Φ
(∑T

t=1 g (X,Mt, Tt)
)
, where Φ(·) denotes the standard normal cumulative dis-

tribution function, and there is no need to estimate the residual variance σ2 as
it is set to 1. Furthermore, the conditional distribution of zi|yi is a truncated-
normal distribution, conditioned on the value of yi. For instance, zi|[yi = 1] ∼
N(0,∞)(

∑T
t=1 g(xi; Tt,Mt), 1) and zi|[yi = 0] ∼ N(−∞,0)(

∑T
t=1 g(xi; Tt,Mt), 1), where

N(a,b)(·) denotes a truncated-normal constrained to the interval (a, b).

With a few changes, it is possible to adapt Algorithm 1 to deal with a binary
response. First, the prior distribution p(µt`|Tt) needs to be changed, and Chipman
et al. (2010) recommend setting it up so that the induced prior on ŷ assigns
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high probability to the interval Φ(−3) and Φ(3). Second, the partial residuals
Rt in line 4 now take into account zi rather than yi, and are defined as Rt =
z −∑T

j 6=t g (X,Mj, Tj). Third, in place of the update of σ2 in line 10, which can
be removed since σ2 = 1, the update of the latent variables zi can be carried
out via p(zi|yi). Finally, the predicted values in line 11 are calculated as ŷ =
Φ
(∑T

t=1 g (X,Mt, Tt)
)
.

2.4 Chapter summaries
In this Section, we go through some of the aforementioned limitations of the BART
model and provide an overview of how we tackle them. First, we start by stating
how we approach the issue of estimating linear effects more efficiently. Second, we
present how we make the AMMI model more flexible by replacing its bi-linear term
with a BART model. Finally, we outline BART-based semi-parametric models and
how we overcome some of their limitations.

2.4.1 Chapter 3: MOTR-BART
We recall that the BART model uses piecewise constants to estimate any asso-
ciation that may exist between a response and a set of covariates. For instance,
to marginally approximate a non-linear effect, BART does not require, as regres-
sion models usually do, polynomial terms and/or basis expansions (e.g., splines).
Rather, BART splits on the covariate itself several times, and this can take place
either in one or multiple trees, or even multiple branches within a given tree. In
the case of a two-way interaction, the same rationale applies in the sense that
BART splits on the two covariates that interact but the splits occur in the same
tree.

To estimate a linear effect, BART also requires many splits on the same covariate.
When the number of covariates p is small, a linear effect is reasonably approx-
imated, especially if the number of trees T is sufficiently large. However, when
p is large, to estimate linear and non-linear effects becomes challenging due to
the uniform specification, where a covariate xj is sampled to form a splitting rule
with probability sj = 1/p for all j. To effectively identify the covariates that help
predict the response when p is large, Linero (2018) proposes to replace the uni-
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form distribution over the vector of splitting probabilities s = (s1, s2, · · · , sp) by
a Dirichlet distribution. The aim is to favour the covariates that are part of the
structure of the trees over those covariates that are irrelevant.

Our novel MOTR-BART model can be viewed as an extension to existing models
from two perspectives: i) an extension to BART with linear regression models
at the terminal nodes, or ii) an extension to the Bayesian treed regression model
(Chipman et al., 2002) to a setting where an ensemble of trees is used rather than
a single tree. In our novel approach, we adopt the Dirichlet prior from Linero
(2018) and consider that

yi =
T∑
t=1

g(xi, Tt,Bt) + εi,

where εi ∼ N(0, σ2) and g(xi, Tt,Bt) = Xt`βt`. We define Xt` as a subset of the
design matrix X containing only the observations that belong to terminal node ` of
tree t. The set of terminal node parameters is represented by Bt = (βt1, · · · ,βtbt),
where bt denotes the number of terminal nodes in tree t. In addition, we consider
that βt` is a q-dimensional row vector and Xt` is a matrix of dimension nt` × q,
with q = pt` + 1, where the additional dimension accounts for an intercept.

In terms of priors, we assume that βt` ∼ MVN (b, σ2V), where MVN(·, ·) denotes
a multivariate normal distribution. We follow Chipman et al. (2010) and also
scale the response to lie between -0.5 and 0.5, which allows to set b = 0. To
facilitate the specification of the variance-covariance matrix V, we standardise the
covariates so that they have mean zero and standard deviation one. With this, we
set V in two ways. First, we consider that V = σ2

b Iq, where Iq is a q-dimensional
identity matrix and σ2

b = T−1 is responsible for balancing the importance of each
tree by shrinking the components within βt` towards zero in the spirit of the prior
adopted by Chipman et al. (2010). Second, we set intercept- and slope-specific
variances through V1,1 = σ2

β0/T and Vj+1,j+1 = σ2
β/T , and place conjugate inverse

gamma priors on both parameters. In this setting, samples from the conditional
posterior distributions for σ2

β0 and σ2
β can be obtained via Gibbs updates. For σ2

and T1 . . . Tt, we make use of those priors adopted by Chipman et al. (2010), which
were introduced in Section 2.3.
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Figure 2.3 visually illustrates the difference between BART and MOTR-BART.
Now, rather than a piecewise constant at the terminal nodes, the predicted values
are based on the local linear predictors. Thus, for any two observations that fall
into the same terminal node, their predicted values will be different as long as the
values of the covariates in Xt` are different. Under MOTR-BART, linear effects
do not require as many splits as in BART, which in turn significantly reduces the
number of trees used in the ensemble. Furthermore, replacing the piecewise con-
stants with linear predictors allows us to capture/explore more complex structures
at the terminal node level, which generally leads to improvements in the predictive
performance.

(a)

x2 < 1

µt1 x1 < 0.5

µt2 µt3

(b)

x2 < 1

Xt1βt1 x1 < 0.5

Xt2βt2 Xt3βt3

Figure 2.3: Example of trees under (a) BART and (b) MOTR-BART. In panel (a),
the observations which belong to the same node have one predicted value, while in
panel (b) the predicted values are calculated based on the local linear predictors.
We remark that both BART and MOTR-BART predict a univariate response by
using a set of trees.

Finally, we tackle the specification of covariates in the linear predictors of each
terminal node in two ways. First, we specify all linear predictors of a tree using
the covariates used in the splitting rules of the corresponding tree. Second, we set
the linear predictors in a given tree based on their ancestor nodes. Both approaches
are clarified in further details in Chapter 3.
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2.4.2 Chapter 4: AMBARTI
The additive main effects multiplicative interactions models (AMMI; Mandel,
1971) are commonly used to analyse crop data. These models consider that a
phenotypic response yij can be predicted based on genetic (gi) and environmental
(ej) factors as

yij = µ+ gi + ej +
Q∑
q=1

λqγiqδjq + εij, εij ∼ N(0, σ2). (2.18)

The first three components in (2.18) are referred to as the linear term, whereas the
component involving the sum over q is called the bi-linear term. In the context
of plant-based genetics, the genetic factor is called genotype and, in general, the
response variable yij represents the amount harvested for i = 1, · · · , I genotypes
which were cultivated in j = 1, · · · , J environments.

The components gi and ej represent the individual effects of each genotype and
environment, respectively, while the bi-linear term accounts for the interaction
between them. Were the model in (2.18) parameterised as yij = µ+gi+ej+(gi×ej),
there would not be enough degrees of freedom to estimate all parameters in the
model, since the AMMI model cannot handle replicates for any combination of
gi and ej. With this, the bi-linear term in (2.18) requires some constraints on
the three sets of parameters (i.e., λq, γiq, and δjq) so that the interaction effects
between gi and ej are adequately estimated.

In terms of estimation, the parameters in the linear term are obtained using ordi-
nary least squares as in a linear regression model. In contrast, the parameters in
the bi-linear term are estimated via a singular value decomposition performed on
a residual I × J matrix, where each entry is given by rij = yi − µ̂− ĝi − êj. Thus,
the λq are the singular values of the residual matrix and γiq and δjq are the left
and right singular vectors.

In our novel AMBARTI approach, we extend the AMMI model to allow for richer
interactions between genotypes and environments by replacing the bi-linear term
with a BART model as

yij = µ+ gi + ej +
T∑
t=1

h(xij,Mt, Tt) + εij, εij ∼ N(0, σ2), (2.19)
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where xij denotes a row of the design matrix X associated with genotype i and
environment j which contains only dummy variables associated with the gi and ej.

The model in (2.19) can also be seen as a semi-parametric BART (SSP-BART)
model, in which the response variable is predicted through the sum of a linear
predictor and a BART model; see subsection 2.4.3 and Chapter 5 for further
details about SSP-BART. Nonetheless, AMBARTI is substantially different from
SSP-BART. First, we add two new moves to the tree-generation process in the
BART model. This change is necessary in AMBARTI by the fact that its BART
component is expected to solely estimate interactions between the gi and ej, since
the linear term is responsible for the main effects. The rationale behind the double
grow and the double prune moves is to make sure that BART will always have
either stumps or trees with at least one gi and one ej. Without the double moves,
the trees from BART could have splits only on the gi or only on the ej, which is
not desirable since the role of the bi-linear in the AMMI model is to exclusively
induce interaction between gi and ej. Regarding the change and swap moves, no
modifications were made/needed, although we introduced validity checks in our
implementation to guarantee that the proposed trees have a valid structure.

Second, we use the response variable only to update the parameter estimates in the
linear term, as opposed to the full residual r̃ = y−∑T

t=1 h(X,Mt, Tt). This spec-
ification is motivated by the two-stage procedure used to estimate the parameters
in AMMI. We recall that in the AMMI model, the linear term is obtained from
least squares and then the bi-linear term is estimated based on a singular value
decomposition performed on the residuals; i.e., since the bi-linear term estimates
have been obtained, the estimation procedure is finished and the estimates for the
λq, γiq, and δjq are not fed back into the model. From this perspective, AMBARTI
is equivalent to the cut feedback model described in Plummer (2015), since the
linear term is uniquely updated taking into account the response, while the BART
component is fed back by the linear term. However, we show the validity of the
posterior sampling under the ‘naive cut algorithm’ according to Plummer (2015).

Finally, we introduce new visualisations that help easily assess which are the best
genotypes and environments taking into account both the main and interaction
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effects. Motivated by the data from a set of experiments carried out in Ireland
from 2010 to 2019, we present the new visualisations as a more complete alternative
to biplots (Gabriel, 1971), which are a visual tool frequently utilised to identify
the best genotypes/environments interactions based only on the bi-linear term of
the AMMI model. The new plots are especially useful for professionals with no
quantitative background as they help determine which genotypes/environments
should be prioritised in order to maximise the production of a crop.

2.4.3 Chapter 5: CSP-BART
The aforementioned semi-parametric BART models (Zeldow et al., 2019; Tan and
Roy, 2019) offer interpretability and predictive performance by combining a linear
predictor and a BART model. Here, the design matrix X is split into two sub-
sets X1 and X2, where the first contains the covariates of primary interpretational
interest and the second consists of a subset of variables that are not of primary
interpretational interest but may also be important to predict the response vari-
able. Under the SSP-BART model, a univariate continuous response variable is
predicted as

yi = xi1β +
T∑
t=1

g(xi2,Mt, Tt) + εi,

where εi ∼ N(0, σ2) and xi1 and xi2 denote the i-th row of X1 and X2, respectively.

The advantage of SSP-BART over BART and traditional modelling techniques,
such as GLMs and/or generalised additive models (GAMs; Hastie and Tibshirani,
1990; Wood, 2017), is two-fold. First, SSP-BART offers more interpretability
than BART since the effects of the covariates of primary interest can be explicitly
quantified via a linear predictor, while its BART component deals with covari-
ates of non-primary interest. Second, SSP-BART provides more flexibility than
GLMs/GAMs as interactions and non-linearities are naturally estimated by the
BART component without pre-specification, which does not take place in GLMs
nor GAMs as they require the specification of all main and interactions effects in
the model.

One of the key limitations of the SSP-BART is the premise that X1 and X2 cannot
share covariates (i.e., {X1 ∩X2} = ∅), which is introduced as an attempt to avoid
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undercoverage and bias. Without this assumption, the two components in the
model (linear predictor and BART) would try to estimate the marginal effects
associated with the covariates common to both X1 and X2, and this would lead
to confounding/identifiability issues. However, by assuming that X1 and X2 are
mutually exclusive, SSP-BART prevents the BART component from estimating
interactions among covariates in X1 and between the covariates in X1 and X2.

In our novel CSP-BART, we allow for sharing covariates across the components
by adding the aforementioned double grow and double prune moves to the BART
model. We recall that the doubles moves in AMBARTI are exclusively to induce
interactions between the gi and ej, since the design matrix xij in (2.19) contains
dummy variables representing the gi and ej only; that is, in the AMBARTI model
the only covariates are the genotypes and environments, which are both present
in the linear predictor and BART component. In contrast, the double grow and
double prune moves in CSP-BART aim to induce interactions either across the
covariates in X1 or between the covariates common to X1 and X2, since in CSP-
BART we allow {X1 ∩ X2} 6= ∅, or even X1 ⊆ X2. We point out that the
interactions among covariates which belong toX2 only (i.e., the remaining possible
interactions) are accounted for by the standard moves of the BART component as
in SSP-BART.

In Figure 2.4, we illustrate how the new moves work in a tree. In panel (b), we see
how a tree looks like after a ‘single’ grow move where the splitting rule is based on
x2. Under the CSP-BART model, if x2 ∈ X2 and x2 /∈ X1, the single grow move
can be applied, as it generates a valid tree. However, if x2 ∈ {X1 ∩X2}, the tree
in panel (b) is not valid, since the main effect of x2 is now estimated in both the
linear predictor and BART.
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(a)

µt1

(b)

x2 < 1

µt1 µt2

(c)

x2 < 1

x1 < 0.5

µt1 µt2

µt3

Figure 2.4: Example of a tree in the BART component of the CSP-BART model
in different instances. Panel (a) shows a stump. Panel (b) illustrates a tree after a
single grow move. In panels (b) and (c), we assume that x2 ∈ {X1 ∩X2} and that
x1 can be either in X2 or {X1 ∩X2}. From panels (a) to (c), a double grow move
is shown. In contrast, from panels (c) to (a) the double prune move is illustrated.
In panel (c), µt3 is set to zero to avoid identifiability issues since x2 ∈ {X1 ∩X2}.

To circumvent the issue of introducing bias/confounding into the model, we take
the tree in panel (b) and grow it again in order to have a valid tree. After employing
a double grow move, panel (c) shows a valid tree containing x2 ∈ {X1 ∩X2} and
x1, which can be either in X2 or {X1 ∩X2}. Conversely, the double prune move
is applied to prevent a tree from having an invalid topology after a single prune
move. For instance, if x2 ∈ {X1 ∩X2} and the tree in panel (c) is single pruned,
the resulting tree in panel (b) would be invalid. To make sure the corresponding
tree is valid, it is necessary to prune the tree in panel (b) again, thus getting back
to the tree in panel (a). The rationale behind the double moves is to force BART
to induce interactions whenever a covariate common to X1 and X2 is in a tree by
itself.

We point out that the addition of the double moves to the tree-generation process
also requires some changes in the prior for the terminal node parameters. For
instance, in Figure 2.4 panel (c), even with the double grow move being employed,
only the left-most nodes result from interactions; that is, the right-most terminal
node is based on x2 only, which would still bring some bias into the effect of x2 if
no change on the prior for µt3 is done. Details of the modifications made to the
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priors are provided in the Chapter 5. Furthermore, although the change and swap
moves remain the same, we introduce additional validity checks on the structure
of the trees to guarantee that only valid structures are kept.
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CHAPTER 3
Bayesian additive regression trees

with model trees

Bayesian additive regression trees (BART) is a tree-based machine learning method
that has been successfully applied to regression and classification problems. BART as-
sumes regularisation priors on a set of trees that work as weak learners and is very
flexible for predicting in the presence of non-linearities and low-order interactions. In
this paper, we introduce an extension of BART, called model trees BART (MOTR-
BART), that considers a linear function at node level instead of a constant. In MOTR-
BART, rather than having a unique value at node level for the prediction, a linear
predictor is estimated considering the covariates that have been used as the split vari-
ables in the corresponding tree. In our approach, local linearities are captured more
efficiently and fewer trees are required to achieve equal or better performance than
BART. Via simulation studies and real data applications, we compare MOTR-BART
to its main competitors. R code for MOTR-BART implementation is available at
https://github.com/ebprado/MOTR-BART .
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3.1. Introduction

3.1 Introduction
Bayesian additive regression trees (BART) is a statistical method proposed by
Chipman et al. (2010) that has become popular in recent years due to its com-
petitive performance on regression and classification problems, when compared to
other supervised machine learning methods, such as random forests (RF; Breiman,
2001) and gradient boosting (GB; Friedman, 2001). BART differs from other tree-
based methods as it controls the structure of each tree via a prior distribution and
generates the predictions via an iterative Bayesian backfitting MCMC algorithm.
In practice, BART can be used for predicting a continuous/binary response vari-
able through R packages, such as dbarts (Dorie, 2020), BART (McCulloch et al.,
2020), and bartMachine (Kapelner and Bleich, 2016).

In essence, BART is a non-parametric Bayesian algorithm that generates a set
of trees by choosing the covariates and the split-points at random. To generate
the predicted values for each terminal node, the normal distribution is adopted
as the conditional probability distribution and prior distributions are placed on
the structure of the trees, predicted values, and residual variance. Through a
Bayesian backfitting MCMC algorithm, the predictions from each tree are obtained
by combining Gibbs sampling (Gelfand and Smith, 1990) and Metropolis-Hastings
(Metropolis et al., 1953; Hastings, 1970) steps. The final prediction is then calcu-
lated as the sum of the predicted values over all trees. In parallel, samples from the
posterior distributions of the quantities of interest are naturally generated along
the MCMC iterations.

In this paper, we introduce the algorithm MOTR-BART, which combines model
trees (Quinlan, 1992) with BART to deal with local linearity at node levels. In
MOTR-BART, rather than estimating a constant as the node parameter as BART
does, for each terminal node a linear predictor is estimated, which includes only the
covariates that have been used as a split in the corresponding tree. With this ap-
proach, we aim to capture linear associations between the response and covariates
and then improve the final prediction. We observe that MOTR-BART requires
fewer trees to achieve equal or better performance than BART. Through simu-
lation experiments that consider different number of observations and covariates,
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MOTR-BART outperforms its main competitors in terms of RMSE on out-of-
sample data, even using fewer trees. In the real data applications, MOTR-BART
is competitive compared to BART and other tree-based methods.

This paper is organised as follows. In Section 3.2, we briefly introduce BART, some
related works, and model trees. Section 3.3 presents the mathematical details of
BART and how it may be implemented in the regression context. In Section 3.4,
we introduce the MOTR-BART, providing the mathematical expressions needed
for regression and classification. Section 3.5 shows comparisons between MOTR-
BART and other algorithms via simulated scenarios and real data applications.
Finally, in Section 3.6, we conclude with a discussion.

3.2 Tree-based methods
3.2.1 Related work
BART considers that a univariate response variable can be approximated by a sum
of predicted values from a set of trees as ŷ = ∑T

t=1 g(X;Mt, Tt), where g(·) is a
function that assigns a predicted value based on X and Tt, X is the design matrix,
Mt is the set of predicted values of the tree t, and Tt represents the structure of the
tree t. In BART, a tree Tt can be modified through four moves (growing, pruning,
changing, or swapping), and the splitting rules used to create the terminal/internal
nodes are randomly chosen. To sample from the full conditional distribution of
Tt, the Metropolis-Hastings algorithm is used. Further, each component µt` ∈Mt

is sampled from its full conditional via a Gibbs sampling step. Then, the final
prediction is calculated by adding up the values of µt` from all the T trees. Further
details are given in Section 3.3.

BART’s versatility has made it an attractive option with applications in credit
risk modelling (Zhang and Härdle, 2010), identification of subgroup effects in clin-
ical trials (Sivaganesan et al., 2017; Schnell et al., 2016), competing risk analysis
(Sparapani et al., 2019), survival analysis of stem cell transplantation (Sparapani
et al., 2016), proteomic biomarker discovery (Hernández et al., 2015), and causal
inference (Hill, 2011; Green and Kern, 2012; Hahn et al., 2020). In this context,
many extensions have been proposed, such as BART for estimating monotone and
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smooth surfaces (Starling et al., 2019, 2020; Linero and Yang, 2018), categorical
and multinomial data (Murray, 2021; Kindo et al., 2016b), high-dimensional data
(Hernández et al., 2018; He et al., 2019; Linero, 2018), zero-inflated and semi-
continuous responses (Linero et al., 2020), heterocedastic data (Pratola et al.,
2020), BART with quantile regression and varying coefficient models (Kindo et al.,
2016a; Deshpande et al., 2020), among others. Recently, some papers have devel-
oped theoretical aspects related to BART (Linero, 2017b; Ročková and van der
Pas, 2020; Ročková and Saha, 2019; Linero and Yang, 2018).

Some of the works mentioned above are somewhat related to MOTR-BART. For
instance, Linero and Yang (2018) introduce the soft BART (SBART) in order to
provide an approach suitable for both estimating a target smooth function and
dealing with sparsity. In SBART, the observations are not allocated determinis-
tically to the terminal nodes, as it is commonly done in the conventional trees.
Instead, the observations are assigned to the terminal nodes based on a probabil-
ity measure, which is a function of a bandwidth parameter and of the distance
between the values of the covariates and the cut-offs defined by the splitting rules.
Through empirical and theoretical results, they show that SBART is capable to
smoothly approximate linear and non-linear functions as well as that its posterior
distribution concentrates, under mild conditions, at the minimax rate. The main
differences between MOTR-BART and SBART are: i) MOTR-BART does not use
the idea of soft trees, where the observations are assigned to the terminal based
on a probability measure, and ii) MOTR-BART uses linear predictors rather than
constants to locally generate the predictions at the node level.

In this sense, Starling et al. (2020) propose the BART with Targeted Smoothing
(tsBART) by introducing smoothness over a covariate of interest. In their ap-
proach, rather than predicting a step function as the standard BART, univariate
smooth functions of a certain covariate of interest are used to generate the node-
level predictions. In tsBART, they place a Gaussian process prior over the smooth
function associated with each terminal node and learn the trees using all available
covariates, apart from the one over which they wish to introduce the smoothness.
Although tsBART and MOTR-BART have some similarities, since both do not
base their predictions on step functions and both aim to provide more flexibility
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at the node-level predictions, they differ as MOTR-BART allows for more than
one covariate to be used in the linear predictors and does not assume a Gaussian
process prior on each linear predictor.

In addition, Deshpande et al. (2020) propose an extension named VCBART that
combines varying coefficient models and BART. In their approach, rather than ap-
proximating the response variable itself, each covariate effect in the linear predic-
tor is estimated using BART. They also provide theoretical results about the near
minimax optimal rate associated with the posterior concentration of the VCBART
considering non-i.i.d errors. Although the linear model is a particular case of the
varying coefficients model, MOTR-BART and VCBART are structurally different.
For instance, VCBART considers that a univariate response variable can be ap-
proximated via an overall linear predictor in which the coefficients are estimated
via BART. In contrast, MOTR-BART approximates the response by estimating
a linear predictor for each terminal node in each tree, where normal priors are
placed on the coefficients in order to estimate them.

Regarding non-Bayesian methods, we highlight the algorithms introduced by Fried-
berg et al. (2020) and Künzel et al. (2022), named local linear forests (LLF) and
linear random forests (LRF), respectively. In their work, RF-based algorithms
are proposed, where the predictions for each terminal node are generated from a
local ridge regression. Furthermore, the LLF algorithm also provides a point-wise
confidence interval based on the RF delta method proposed by Athey et al. (2019)
and theoretical results related to asymptotic consistency and rates of convergence
of the forest.

3.2.2 Model trees and treed models
Quinlan (1992) introduced the term model trees when proposing the M5 algorithm,
which is a tree-based method that estimates a linear equation for each terminal
node and then computes the final prediction based on piecewise linear models and
a smoothing process. Initially introduced in the context of regression, extensions
and generalisations for classification were presented by Wang et al. (1997) and
Landwehr et al. (2005).
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Unlike BART, RF, and GB, where multiple trees are generated to predict the
outcome, the algorithm M5 generates only one tree. For the growing process,
the variance reduction is adopted as the splitting criterion. When estimating the
coefficients for the linear equation at a terminal node, the covariates are selected
based on tests and, depending on their significance, the linear equation can be
reduced to a constant, if all covariates do not show any significance. At the end,
the predictions are averaged over the piecewise linear predictors from the terminal
nodes along the path to the root.

In the context of Bayesian methods, Chipman et al. (2002) proposed the Bayesian
treed model by combining the structure of a decision tree with linear models within
each terminal node. This model uses one tree to predict either a binary or continu-
ous response variable and many elements of the Bayesian CART of Chipman et al.
(1998), such as the branching process prior on the tree topology, tree-generation
moves, and the MCMC scheme used to sample from the posterior distribution.
From this perspective, the MOTR-BART model proposed in this work can also be
viewed as an extension to the Bayesian treed model to a setting where multiple
trees are utilised to predict the response variable.

3.3 BART
Introduced by Chipman et al. (2010), BART is a tree-based machine learning
method that considers that a univariate response variable y = (y1, ...., yn)> can be
approximated by a sum-of-trees as

yi =
T∑
t=1

g(xi; Tt,Mt) + εi, εi ∼ N(0, σ2),

where g(xi; Tt,Mt) = µt` is a function that assigns a predicted value µt` based on
xi, xi = (xi1, ..., xid) represents the i-th row of the design matrix X, Tt is the set
of splitting rules that defines the t-th tree, and Mt = (µt1, ..., µtbt) is the set of
predicted values for all nodes in the tree t, with µtbt representing the predicted
value for the terminal node bt. The splitting rules that define the terminal nodes for
the tree t can be defined as partitions Pt`, with ` = 1, ..., bt, and g(xi; Tt,Mt) = µt`

for all observations i ∈ Pt`, based on the values of xi.
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In BART, each regression tree is generated as in Chipman et al. (1998) (see Figure
3.1) where, through an iterative Bayesian backfitting algorithm, a binary tree
can be learned by four movements: grow, prune, change or swap. A new tree
is proposed by one of these four movements and then compared to its previous
version via a Metropolis-Hastings step on the partial residuals. In the growing
process, a terminal node is randomly selected and then separated into two new
nodes. Here, the covariate that is used to create the new terminal nodes is picked
uniformly as is its associated split-point. In other words, the splitting rule is fully
defined assuming the uniform distribution over both the set of covariates and the
set of their split-points. During a prune step, a parent of two terminal nodes is
randomly chosen and then its child nodes are removed. In the change move, an
internal node (of any kind) is picked at random and its splitting rule is changed.
In the swap process, a pair of parent-child internal nodes is randomly selected and
the splitting rules of the two nodes are exchanged.

x2 < 10

x1 < 0

µ̂1 µ̂2

x2 < 5

µ̂3 x3 < 5

µ̂4 x1 < 3

µ̂5 µ̂6

TRUE

TRUE FALSE

FALSE

Figure 3.1: An example of a single tree generated by BART. In practice, BART
generates multiple trees for which the predictions are added together. The co-
variates and split-points that define the terminal nodes are proposed uniformly
and optimised via an MCMC algorithm. The quantities x1, x2, and x3 represent
covariates; µ̂` is the predicted value of node `.
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In order to control the depth of the tree, a regularisation prior is considered as

p(Tt) =
∏
`∈SI

[
α(1 + dt`)−β

]
×
∏
`∈ST

[
1− α(1 + dt`)−β

]
, (3.1)

where SI and ST denote the sets of indices of the internal and terminal nodes,
respectively, dt` is the depth of node ` in tree t, α ∈ (0, 1), and β ≥ 0. Chipman
et al. (2010) recommend α = 0.95 and β = 2. In essence, α(1 + dt`)−β represents
the probability of the node ` being internal at depth dt`.

To estimate the terminal node parameters, µt`, and residual variance, σ2, conjugate
priors are used:

y
µt`|Tt ∼ N(0, σ2

µ),

σ2 ∼ IG(ν/2, νλ/2),

where σµ = 0.5/(c
√
T ), 1 ≤ c ≤ 3, IG(·) denotes the inverse gamma distribution,

and T is the number of trees. The division by T has the effect of reducing the
predictive power of each tree and forcing each to be a weak learner. The joint
posterior distribution of the trees and predicted values is given by

p((T ,M), σ2|y,X) ∝ p(y|X, T ,M, σ2)p(M|T )p(T )p(σ2)

∝

 T∏
t=1

bt∏
`=1

∏
i:xi∈Pt`

p(yi|xi, Tt,Mt, σ
2)
×

×

 T∏
t=1

bt∏
`=1

p(µt`|Tt)p(Tt)
 p(σ2).

Chipman et al. (2010) initially decompose this joint posterior into two full con-
ditionals. The first one generates all µt` for each tree t = 1, ..., T , and is given
by

p(Tt,Mt|T(−t),M(−t), σ
2,X,y), (3.2)

where T(−t) represents the set of all trees without the component t; similarly for
M(−t). To sample from (3.2), Chipman et al. (2010) noticed that the dependence
of the full conditional of (Tt,Mt) on T(−t),M(−t) is given by the partial residuals
through

Rt = y−
T∑
k 6=t

g(X; Tk,Mk).
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Thus, rather than depending on the other trees and their predicted values, the
joint full conditional of (Tt,Mt) may be rewritten as p(Tt,Mt|Rt, σ

2,X), with Rt

acting like the response variable. This simplification allows us to sample from
p(Tt,Mt|Rt, σ

2,X) in two steps:

a) Propose a new tree either growing, pruning, changing, or swapping terminal
nodes via

p(Tt|Rt, σ
2) ∝ p(Tt)

∫
p(Rt|Mt, Tt, σ2)p(Mt|Tt)dMt

∝ p(Tt)p(Rt|Tt, σ2)

∝ p(Tt)
bt∏
`=1

( σ2

σ2
µnt` + σ2

)1/2

× exp

 σ2
µ

[
nt`R̄`

]2
2σ2(σ2

µnt` + σ2)


 ,

where R̄` = ∑
i∈Pt` ri/nt`, ri ∈ Rt, and nt` is the number of observations that

belong to Pt`. This sampling is carried out through a Metropolis-Hastings
step, as the expression does not have a known distributional form.

b) Generate the predicted values µt` for all terminal nodes in the corresponding
tree. As all µt` are independent from each other, it is possible to write
p(Mt|Tt,Rt, σ

2) = ∏bt
`=1 p(µt`|Tt,Rt, σ

2). Hence,

p(µt`|Tt,Rt, σ
2) ∝ p(Rt|Mt, Tt, σ2)p(µt`)

∝ exp
(
− 1

2σ2
?

(µt` − µ?t`)
2
)
,

which represents the kernel of the following distribution:

N
(
σ−2∑

i∈Pt` ri
nt`/σ2 + σ−2

µ

,
1

nt`/σ2 + σ−2
µ

)
. (3.3)

Then, after generating all predicted values for all trees, σ2 can be updated based
on
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p(σ2|T ,M,X,y) ∝ p(y|X, T ,M, σ2)p(σ2)

∝ (σ2)−(n+ν
2 +1) exp

(
−S + νλ

2σ2

)
, (3.4)

where S = ∑n
i=1(yi − ŷi)2 and ŷi = ∑T

t=1 g(xi; Tt,Mt). The expression in (3.4) is
an IG((n+ ν)/2, (S + νλ)/2), and drawing samples from it is straightforward.

In Algorithm 2, we present the full structure of the BART model. Firstly, the
response variable and design matrix are required. The trees, hyper-parameters,
and the number of MCMC iterations M have to be initialised. Later, within each
MCMC iteration, candidate trees (T ?t ) are sequentially generated, which might be
accepted (or rejected) as the current trees with probability α(Tt, T ?t ). After that,
the predicted values µt` are generated for all terminal nodes. Finally, the final
predictions and σ2 are obtained.

Algorithm 2 BART model
1: Input: y, X, number of trees T , and number of MCMC iterations M .
2: Initialise: {Tt}T1 and set all hyperparameters of the prior distributions.
3: for (m = 1 to M) do
4: for (t = 1 to T ) do
5: Update Rt = y−∑T

j 6=t g(X; Tj,Mj).
6: Propose a new tree T ?t by a grow, prune, change or swap move, where

each move has probability of 0.25, 0.25, 0.4, and 0.1, respectively.

7: Compute α (Tt, T ?t ) = min
{

1, p(T
?
t |Rt,σ2)q(T ?t →Tt)

p(Tt |Rt,σ2)q(Tt→T ?t )

}
.

8: Sample u ∼ Uniform (0, 1): if α (Tt, T ?t ) < u, set Tt = Tt, otherwise
set Tt = T ?t .

9: for (` = 1 to bt) do
10: Update µt` from p(µt`|Tt,Rt, σ

2).
11: end for
12: end for
13: Update σ2 via p(σ2|T ,M,X,y).
14: Update ŷ = ∑T

t=1 g(X, Tt,Mt).
15: end for
16: Output: samples of the posterior distribution of T .
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3.4 Model trees BART
In MOTR-BART, we consider that the response variable is a sum-of-trees in the
form of

y =
T∑
t=1

g(X; Tt,Bt) + ε,

where Bt is the set of parameters of all linear predictors of the tree t. In terms of
partial residuals, MOTR-BART can be represented as

ri|xi,βt`, σ2 ∼ N(xiβt`, σ2),

where ri = yi −
∑T
j 6=t g(xi; Tj,Bj), βt` is the parameter vector associated with the

terminal node ` of the tree t. In this sense, all observations i ∈ Pt` will have
predicted values based on βt` and the values of their covariates Xt`; i.e., each
observation i ∈ Pt` may have different predicted value. The priors for βt` and σ2

are:

βt`|Tt,V ∼ MVN(0, σ2V), (3.5)

σ2|Tt ∼ IG(ν/2, νλ/2),

where MVN(·) denotes the multivariate normal distribution, V = τ−1
b × Iq and

q = pt` + 1, with pt` representing the number of covariates in the linear predictor
of the terminal node ` of the tree t. The additional dimension in V is due to a
column filled with ones in the design matrix Xt`. Here, the role of the parameter
τb is to balance the importance of each tree on the final prediction by keeping the
components of βt` close to zero, thus avoiding that one tree contributes more than
other. We scale the predictors in X as our prior on βt` assumes that all entries
have the same variance. In our simulations and real data applications, we have
found that τb = T worked well.

Another possibility is to penalise the intercept and the slopes differently. In this
sense, the specification of intercept- and slope-specific variances may be done by
setting V as a q×q diagonal matrix with V1,1 = (τβ0T )−1 and Vj+1,j+1 = (τβT )−1.
In addition, we may assume conjugate priors, such as τβ0 ∼ G(a0, b0) and τβ ∼
G(a1, b1), to be able to estimate both variances via Gibbs-sampling steps. In this
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case, we would end up with the following full conditionals:

τβ0|− ∼ G
(∑T

t=1 bt
2 + a0,

β>0 β0

2σ2 + b0

)
,

τβ|− ∼ G
(∑T

t=1
∑bt
`=1 pt`

2 + a1,
β>? β?
2σ2 + b1

)
,

where β0 is a column vector with the intercepts from all terminal nodes of all
trees and β? contains the slopes from all linear predictors of all trees. In our soft-
ware, we have implemented an option, through the argument vars_inter_slope
= TRUE/FALSE, that allows the user to either estimate τβ0 and τβ or use τb = T ,
with vars_inter_slope = TRUE as the default. In Section 3.5, we show the results
of MOTR-BART using both approaches.

Hence, the full conditionals are

p(βt`|Xt`,Rt, σ
2, Tt) ∝ p(Rt|Xt`,βt`, σ

2, Tt)p(βt`),

which is identifiable as a multivariate normal distribution:

MVN
(
µt`, σ

2Λt`

)
,

where µt` = Λt`(X>t`rt`), Λt` = (X>t`Xt` + V−1)−1, and Xt` is an nt` × q matrix
with all elements of the design matrix such that i ∈ Pt`. The full conditional of σ2

is similar to the expression in (3.4), but with ŷi = ∑T
t=1 g(xi; Tt,Bt). Finally, the

full conditional for Tt is given by

p(Tt|X,Rt, σ
2) ∝ p(Tt)

∫
p(Rt|X,Bt, σ2, Tt)p(Bt)dBt,

∝ p(Tt)p(Rt|X, σ2, Tt),

where
p(Rt|X, σ2, Tt) = (σ2)−n/2

bt∏
`=1

[
|V|−1/2|Λt`|1/2 ×

× exp
(
− 1

2σ2

[
−µ>t`Λ−1

t` µt` + r>t`rt`
])]

.

The main difference between BART and MOTR-BART can be seen in Figure 3.2.
Now, rather than having a constant as the predicted value for each terminal node,
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x2 < 10

x1 < 0

Xt1β̂t1 Xt2β̂t2

x2 < 5

Xt3β̂t3 x3 < 5

Xt4β̂t4 Xt5β̂t5

Figure 3.2: An example of a tree generated based on MOTR-BART. The quantities
x1, x2, and x3 represent covariates; Xt` is a subset of the design matrix X such
that i ∈ Pt` and β̂t` = (β̂0t`, β̂1t`, ...., β̂pt`t`)> is the parameter vector associated
with the node ` of the tree t.

the prediction will be obtained from a linear predictor at node level. The purpose
of introducing a linear predictor is to try to capture local linearity, reduce the
number of trees, and then possibly improve the prediction at node level.

The key point in MOTR-BART is which covariates should be considered in the
linear predictor of each terminal node. Our idea to circumvent this issue is to
consider in the linear predictor only covariates that have been used as a split in
the corresponding tree. For instance, in Figure 3.2 three covariates are used as
a split (x1, x2, and x3). The plan is to include these three covariates in each of
the five linear predictors. The intuition in doing so is that if a covariate has been
utilised as a split, it means that it improves the prediction either because it has a
linear or a non-linear relation with the response variable. If this relation is linear,
this will be captured by the linear predictor. However, if the relation is non-linear,
the coefficient associated with this covariate will be close to zero and the covariate
will not have an impact on the prediction.

We have also explored using only the ancestors of the terminal nodes in the linear
predictor as well as replacing the uniform distribution over the splitting proba-
bilities, where the covariates are selected with equal probability, by the sparsity-
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inducing Dirichlet prior proposed by Linero (2018). To illustrate the first approach,
we recall Figure 3.2, where there are five terminal nodes and three covariates are
used in the splitting rules. For the two left-most terminal nodes, only the covari-
ates x1 and x2 would be considered in both linear predictors. For the terminal
node 3, only x2. For the right-most terminal nodes, x3 and x2 would be used. In
relation to Linero’s approach, rather than selecting the covariates with probability
1/p, a Dirichlet prior is placed on the vector of splitting probabilities so that the
covariates that are frequently used to create the internal nodes are more likely to
be chosen.

At first glance, one might think that it would be advantageous to use conventional
shrinkage/regularisation techniques, such as ridge regression, lasso (Tibshirani,
1996) or horseshoe (Carvalho et al., 2010). Under the Bayesian perspective, these
methods assume different priors on the regression coefficient vector and then es-
timate its components. In the ridge and horseshoe regressions, a Gaussian with
mean zero is assumed as the prior on the parameter vector. For lasso regression,
a Laplace distribution is considered. For MOTR-BART, we assume a normal dis-
tribution with mean zero on βt`, which is equivalent to performing a local ridge
regression at the node level, but as the trees might change their dimensions depend-
ing on the moves growing and pruning, it is not possible to obtain the posterior
distribution associated with each component of βt` and then perform the variable
selection.

3.4.1 MOTR-BART for classification
The version of MOTR-BART that was presented in Section 3.4 assumes that the
response variable is continuous. In this Section, we provide the extension to the
case when it is binary following the idea of Chipman et al. (2010), which used the
strategy of data augmentation (Albert and Chib, 1993). Firstly, we consider that
yi ∈ {0, 1} and we introduce a latent variable

zi ∼ N
(

T∑
t=1

g(xi, Tt,Bt), 1
)
, with i = 1, ..., n

such that yi = 1 if zi > 0 and yi = 0 if zi ≤ 0. With this formulation, we have
that p(yi = 1|xi) = Φ(∑T

t=1 g(xi, Tt,Bt)), where Φ(·) is the cumulative distribution
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function (cdf) of the standard normal, which works as the link function that limits
the output to the interval (0, 1). Here, there is no need to estimate the variance
component as it is equal to 1. The priors on Tt and Bt are the same as in (3.1) and
(3.5), respectively. Finally, as the latent variable zi is introduced, it is necessary
to compute its full conditional, which is given by

zi|[yi = 0] ∼ N(−∞,0)

(
T∑
t=1

g(xi, Tt,Bt), 1
)
,

zi|[yi = 1] ∼ N(0,∞)

(
T∑
t=1

g(xi, Tt,Bt), 1
)
,

where N(a,b)(·) denotes a truncated normal distribution constrained to the interval
(a, b). Going back to Algorithm 2, some steps need to be modified or included:

1. The update of σ2 is no longer needed, because it is set to one following the
definition of the data augmentation scheme.

2. The predicted values now consider the cdf of the standard normal as a probit
model in the form of ŷ(k) = Φ

(∑T
t=1 g(X, Tt,Bt)

)
.

3. A Gibbs sampling step needs to be added to update the latent variables at
each MCMC iteration. The update is done by drawing samples from p(zi|yi).

4. Rather than calculating the partial residuals taking into account the response
variable, we have that Rt = z−∑T

j 6=t g(X, Tj,Bj), where z is the vector with
all latent variables.

3.5 Results
In this Section, we compare MOTR-BART to BART, RF, GB, lasso regression,
SBART, and LLF via simulation scenarios and real data applications using the root
mean squared errors (RMSE) as the accuracy measure. All results were generated
by using R (R Core Team, 2020) version 3.6.3 and the packages dbarts (Dorie,
2020), ranger (Wright and Ziegler, 2017), gbm (Greenwell et al., 2019), glmnet
(Friedman et al., 2010), SoftBart (Linero, 2017a), and grf (Tibshirani et al.,
2020). We use the default behaviour of these packages, except where otherwise
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specified below. We also tried running the linear random forests (LRF; Künzel
et al., 2022) algorithm. However, error messages were reported when using the
forestry R package. Thus, LRF is not considered further in our comparisons.

Throughout this Section, we present results for two versions of our method. The
first one is MOTR-BART (10 trees), which uses the sparsity-inducing Dirichlet
prior and estimates τβ0 and τβ, while the second is MOTR-BART (10 trees, fixed
var), which assumes the uniform distribution on the splitting probabilities and sets
τb = T . As a default version, we recommend the MOTR-BART (10 trees).

3.5.1 Simulation
To compare the algorithms, we simulate data from the equation proposed by Fried-
man (1991). This dataset is widely used in testing tree-based models and has been
used repeatedly to evaluate the performance of BART and extensions (Friedman,
1991; Chipman et al., 2010; Linero, 2018). We generate the response variable
considering five covariates via:

yi = 10sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5 + εi,

where the covariates xip ∼ Uniform(0, 1), with p = 1, . . . , 5, and εi ∼ N(0, 1). For
this simulation experiment, we created 9 datasets with different numbers of obser-
vations (200, 500, and 1000) and covariates (5, 10, and 50). For those scenarios
with 10 and 50 covariates, the additional x values do not have any impact on the
response variable.

Each simulated dataset was split into 10 different training (80%) and test (20%)
partitions. For MOTR-BART, 10 trees were considered, 1000 iterations as burn-
in, 5000 as post-burn-in, with alpha = α = 0.95 and beta = β = 2. To choose
the number of trees (10) for MOTR-BART, we initially tested a range of pos-
sible values, such as 3, 10, and 50, and then used cross-validation to select the
setting which presented the lowest RMSE. The set up for dbarts was similar to
MOTR-BART, except for the number of trees (10 and 200, with the latter being
the default). For the packages ranger and gbm, the default options were kept,
except for the number of trees (200) and the parameter interaction.depth = 3.
For the glmnet, we followed the manual and used a 10-fold cross-validation with
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type.measure = "mse" to obtain the estimate of the regularisation parameter
lambda.min, which is the value that minimises the cross-validated error under the
loss function chosen in type.measure. As in Chipman et al. (2010), we evaluate
the convergence of MOTR-BART and BART by eye from the plot of σ2 after the
burn-in period.

In Figure 3.3, we present the comparison of the algorithms MOTR-BART, BART,
RF, GB, Lasso, SBART, and LLF in terms of RMSE on test data. Note that we
have BART (10 trees) and BART (200 trees; default). The first version considers
10 trees and was run to see how BART would perform with the equivalent number
of trees of MOTR-BART. We can see that for different combinations of number of
observations (n) and covariates (p), SBART and MOTR-BART (10 trees) consis-
tently presented the best results for all scenarios. When compared to both versions
of the original BART, both versions of MOTR-BART present lower median values
of RMSE and slightly greater variability. However, the variability reduces as n
and p increase. Further, we notice that MOTR-BART (10 trees) benefits from pe-
nalising the intercepts and slopes differently. In addition, it is possible to observe
that the number of noisy covariates impacts on the performance of RF and LLF.
For all values of n, their RMSEs increase with the number of covariates.

To further analyse the improvements given by MOTR-BART over standard BART,
in Appendix 3.A we present Table 3.A.4, which shows the mean of the total num-
ber of terminal nodes utilised for BART to calculate the final prediction taking
into account all the 5000 iterations. The idea of Table 3.A.4 is to show that
MOTR-BART has similar or better performance whilst using fewer parameters
than standard BART. As the default version of BART defaults to 200 trees, which
is far more trees than MOTR-BART uses, we created Table 3.A.4 to highlight that
although MOTR-BART estimates fewer parameters, it still remains competitive
to the default BART. For MOTR-BART, we consider the mean of the number of
parameters estimated in the linear predictors. As BART and SBART predict a
constant for each terminal node, the number of ‘parameters’ estimated is equal
to the number of terminal nodes. On the other hand, MOTR-BART estimates
an intercept, which is equivalent to the constant that BART predicts, plus the
parameters associated with those covariates that have been used as a split in the
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Figure 3.3: Comparison of RMSE for the Friedman datasets on test data for
different combinations of n (200, 500, and 1000) and p (5, 10, and 50).
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corresponding tree. For instance, if a tree has 5 terminal nodes and 2 numeric
variables are used in the splitting rules, MOTR-BART will estimate 15 parame-
ters. For BART, we set the argument keepTrees = TRUE and then we extracted
from the sampler object fit the content of getTrees(). For both MOTR-BART
and BART, we firstly summed the number of parameters for all trees along the
MCMC iterations and then averaged it over the 10 sets.

In Table 3.A.4, we can observe, for example, for the Friedman dataset with
n = 1000 and p = 50 that BART (10 trees) utilised 212,421 parameters on aver-
age to calculate the final prediction, while MOTR-BART (10 trees), BART (200
trees), and SBART used 391,193, 2,371,140, and 255,155, respectively. For all
simulated datasets, MOTR-BART presented lower RMSE than BART (200 trees),
even though it estimates far fewer parameters. From Table 3.A.4, it is possible
to obtain the mean number of terminal nodes per tree by dividing the column
‘Mean’ by the number of MCMC iterations (5000) times the number of trees (10
or 200). In this case, we note that both versions of BART produce small trees
with the mean number of terminal nodes per tree varying between 2 and 5. Due
to the greater number of trees, BART (200 trees) has the lowest mean, regardless
of the number of observations and covariates. In contrast, MOTR-BART has the
mean number of parameters per tree varying from 5 to 8. Comparatively speak-
ing, this is somewhat expected once MOTR-BART estimates a linear predictor.
In this way, the trees from MOTR-BART tend to be shallower than those from
BART (10 trees), but with more parameters estimated overall. It is important to
highlight that the numbers from BART and MOTR-BART cannot be compared
to those from RF, as the former work with the residuals and the latter with the
response variable itself. The numbers for GB are not shown as the quantity of
terminal nodes in each tree is fixed due to interaction.depth = 3.

In our simulations, MOTR-BART utilised just 10 trees and its results were better
than RF, GB, BART (10 and 200 trees) and LLF. In practice, different number of
trees may be compared via cross-validation and hence a choice can be made such
that the cross-validated error is minimised.
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3.5.2 Applications
In this Section, we compare the predictive performance of MOTR-BART to RF,
GB, BART, SBART, and LLF in terms of RMSE on four real datasets. The first
one (Ankara) has 1,609 observations and contains weather information for the city
of Ankara from 1994 to 1998. The goal is to predict the mean temperature based
on 9 covariates. The second is the Boston Housing dataset, where the response
variable is the median value of properties in suburbs of Boston according to the
1970 U.S. census. This dataset has 506 rows and 18 explanatory variables. The
third dataset (Ozone) has 330 observations and 8 covariates and is about ozone
concentration in Los Angeles in 1976. The aim is to predict the amount of ozone in
parts per million (ppm) based on wind speed, air temperature, pressure gradient,
humidity and other covariates. The fourth dataset (Compactiv) refers to a multi-
user computer that had the time of its activity measured under different tasks.
The goal is to predict the portion of time that the computer runs in user mode
for 8,192 observations based on 21 covariates. These datasets are a subset of 9
sets considered by Kapelner and Bleich (2016). As with the Friedman data, we
consider two versions of BART (10 and 200 trees) and MOTR-BART (10 trees
and 10 trees, fixed var), and we split the data into 10 different train (80%) and
test (20%) sets. Furthermore, all results are based on the test data.

Figure 3.4 shows the results of RMSE on test sets. It is possible to note that
MOTR-BART (10 trees) presents the lowest or second lowest median RMSE on
all datasets, except for Ozone. For Ankara, RF and GB have quite similar results
and Lasso presents the highest RMSE. For Boston, Lasso regression shows the
highest RMSE, while MOTR-BART (10 trees) and SBART do not differ much in
terms of median and quartiles. For Ozone, it can be seen that MOTR-BART (10
trees) presents the highest RMSE and that LLF, RF, and MOTR-BART (10 trees,
fixed var) have the lowest median values. For Compactiv, RF and GB show similar
results, while MOTR-BART (10 trees, fixed var) presents the lowest RMSE. To
facilitate the visualisation, the results for Lasso are not shown for the dataset
Compactiv, as it has RMSEs greater than 9. In Appendix 3.B, however, Table
3.B.1 reports the median and the first and third quartiles of the RMSE for all
algorithms and datasets.
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Figure 3.4: Comparison of RMSE for the Ankara, Boston, Ozone, and Compactiv
datasets on test data.
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In Table 3.B.2 (see Appendix 3.B), we show the mean of the total number of
parameters/terminal nodes created for BART to generate the final prediction for
each dataset. For MOTR-BART, the numbers correspond to the mean of the total
of parameters estimated. For instance, for the dataset Ankara, 304,696 terminal
nodes were used on average by BART (10 trees), while BART (200 trees) estimated
2,250,599 and MOTR-BART 546,959. As can be seen, MOTR-BART estimates
more parameters than BART (10 trees) for all datasets, as we expect. However,
when compared to BART (200 trees), MOTR-BART in general uses significantly
fewer parameters to obtain similar or better performance, except for Compactiv.

To finish, we point out one drawback of the MOTR-BART model when compared
to BART. Due to the linear models in the terminal nodes of the trees, MOTR-
BART extrapolates linearly beyond the most extreme values of the training data.
This is in contrast with BART, whose piecewise constants extrapolate with con-
stant terms, which in turn do not rely on any covariates. This disadvantage is
especially pertinent when the distributions of the covariates in the training and
test datasets differ. Thus, if the distribution of the covariates of the training and
test datasets are moderately or significantly different, this could negatively impact
the MOTR-BART predictive performance, especially for squared error measures
like RMSE.

3.6 Discussion
In this paper, we have proposed an extension to BART, called MOTR-BART,
that can be seen as a combination of BART and model trees. In MOTR-BART,
rather than having a constant as predicted value for each terminal node, a linear
predictor is estimated considering only those covariates that have been used as
a split in the corresponding tree. Furthermore, MOTR-BART is able to capture
linear associations between the response and covariates at node level and requires
fewer trees to achieve equivalent or better performance when compared to other
methods.

Via simulation studies and real data applications, we showed that MOTR-BART
is highly competitive when compared to BART, random forests, gradient boost-
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ing, lasso, SBART, and local linear forests. In simulation scenarios, MOTR-BART
outperformed the other tree-based methods, except SBART. In the real data appli-
cations, four datasets were considered and MOTR-BART provided great predictive
performance.

Due to the structure of MOTR-BART, to evaluate variable importance or even
to select the covariates that should be included in the linear predictors is not
straightforward. Recall that model trees was introduced in the context of one
tree, where statistical methods of variable selection, such as forward, backward or
stepwise can be performed at node level. Compared to other tree-based methods
that consider only one tree, model trees produces much smaller trees (Landwehr
et al., 2005), which helps to alleviate the computational time required by the
variable selection procedures. In theory, one might think that it would be possible
to use such a procedure for MOTR-BART, but in practice they would be a burden
as they would have to be performed for each terminal node (and for all trees).

In the Bayesian context, Chipman et al. (2010) propose to use the inclusion proba-
bility as a measure to evaluate variable importance in BART. Basically, this metric
is the proportion of times that a covariate is used as a split out of all splitting rules
over all trees and MCMC iterations. However, this measure gives us an overall
idea about the covariates that are important for the splitting rules and does not
say anything about which covariates that should be included in the local linear
predictors.

In this sense, the variable selection/importance remains as a challenge that may be
investigated in future work, since conventional procedures are not suitable. One
might try using spike-and-slab priors (George and McCulloch, 1997; Ishwaran and
Rao, 2005) on the vector βt` in order to further optimise the proposed variable
selection presented in Section 3.4. The rationale would be to zero out coefficients
that are irrelevant at the node level and only keep those that are significant.
Another extension could be replacing the linear functions by splines to provide
even further flexibility and capture local non-linear behaviour, which is a subject of
ongoing work. Finally, model trees can be incorporated to other BART extensions,
such as BART for log-linear models (Murray, 2021), SBART (Linero and Yang,
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2018), and BART for log-normal and gamma hurdle models (Linero et al., 2020).
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Appendix

3.A Simulation results
In this Section, we present results related to the simulation scenarios shown in
Subsection 3.5.1. In total, 9 datasets were created based on Friedman’s equation
considering some combinations of sample size (n) and number of covariates (p).
In Tables 3.A.1, 3.A.2 and 3.A.3, the medians and quartiles of the RMSE are
shown for the algorithms MOTR-BART, BART, GB, RF, Lasso, SBART, and
LLF. The values in these tables were graphically shown in Figure 3.3. In addition,
Tables 3.A.4 and 3.A.5 present the mean number of parameters utilised by BART,
MOTR-BART, and SBART to calculate the final prediction.
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Table 3.A.1: The median of the RMSE on test data of the Friedman datasets when
n = 200. The values in parentheses are the first and third quartiles, respectively.
The two lowest RMSEs are highlighted in boldface font. The acronym ‘fv’ stands
for ‘fixed var’.

Algorithm p RMSE
n = 200

MOTR-BART 5 1.36 (1.19;1.55)
MOTR-BART (fv) 5 1.47 (1.26;1.78)
BART (10 trees) 5 1.80 (1.63;1.99)
BART (200 trees) 5 1.54 (1.38;1.58)
GB 5 1.83 (1.67;1.93)
RF 5 2.41 (2.21;2.63)
Lasso 5 2.69 (2.30;2.96)
SBART 5 1.36 (1.22;1.47)
LLF 5 2.30 (2.08;2.52)
MOTR-BART 10 1.55 (1.39;1.64)
MOTR-BART (fv) 10 1.70 (1.63;1.80)
BART (10 trees) 10 2.25 (2.07;2.49)
BART (200 trees) 10 1.88 (1.86;2.00)
GB 10 2.18 (2.00;2.24)
RF 10 2.94 (2.76;3.10)
Lasso 10 3.38 (3.15;3.53)
SBART 10 1.39 (1.24;1.52)
LLF 10 2.91 (2.73;3.25)
MOTR-BART 50 1.27 (1.21;1.38)
MOTR-BART (fv) 50 1.43 (1.40;1.63)
BART (10 trees) 50 2.10 (1.94;2.21)
BART (200 trees) 50 1.97 (1.90;2.14)
GB 50 2.13 (2.06;2.22)
RF 50 3.51 (3.23;3.83)
Lasso 50 2.96 (2.84;3.02)
SBART 50 1.22 (1.12;1.27)
LLF 50 3.17 (3.09;3.28)
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Table 3.A.2: The median of the RMSE on test data of the Friedman datasets when
n = 500. The values in parentheses are the first and third quartiles, respectively.
The two lowest RMSEs are highlighted in boldface font. The acronym ‘fv’ stands
for ‘fixed var’.

Algorithm p RMSE
n = 500

MOTR-BART 5 1.12 (1.11;1.19)
MOTR-BART (fv) 5 1.18 (1.11;1.27)
BART (10 trees) 5 1.44 (1.42;1.50)
BART (200 trees) 5 1.26 (1.17;1.33)
GB 5 1.42 (1.38;1.52)
RF 5 2.00 (1.92;2.12)
Lasso 5 2.48 (2.35;2.53)
SBART 5 1.09 (1.06;1.15)
LLF 5 1.96 (1.87;1.98)
MOTR-BART 10 1.16 (1.14;1.21)
MOTR-BART (fv) 10 1.26 (1.22;1.27)
BART (10 trees) 10 1.53 (1.44;1.57)
BART (200 trees) 10 1.35 (1.28;1.39)
GB 10 1.63 (1.50;1.70)
RF 10 2.46 (2.43;2.53)
Lasso 10 2.68 (2.61;2.95)
SBART 10 1.16 (1.10;1.19)
LLF 10 2.27 (2.15;2.37)
MOTR-BART 50 1.14 (1.10;1.18)
MOTR-BART (fv) 50 1.24 (1.22;1.30)
BART (10 trees) 50 1.74 (1.66;1.77)
BART (200 trees) 50 1.43 (1.38;1.59)
GB 50 1.78 (1.77;1.85)
RF 50 3.35 (3.27;3.40)
Lasso 50 2.80 (2.72;2.92)
SBART 50 1.11 (1.05;1.13)
LLF 50 2.88 (2.83;2.92)
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Table 3.A.3: The median of the RMSE on test data of the Friedman datasets when
n = 1000. The values in parentheses are the first and third quartiles, respectively.
The two lowest RMSEs are highlighted in boldface font. The acronym ‘fv’ stands
for ‘fixed var’.

Algorithm p RMSE
n = 1000

MOTR-BART 5 1.09 (1.03;1.12)
MOTR-BART (fv) 5 1.11 (1.08;1.17)
BART (10 trees) 5 1.28 (1.20;1.36)
BART (200 trees) 5 1.13 (1.12;1.19)
GB 5 1.27 (1.25;1.36)
RF 5 1.93 (1.76;1.95)
Lasso 5 2.70 (2.62;2.79)
SBART 5 1.04 (1.03;1.08)
LLF 5 1.81 (1.69;1.89)
MOTR-BART 10 1.14 (1.11;1.17)
MOTR-BART (fv) 10 1.17 (1.15;1.23)
BART (10 trees) 10 1.43 (1.42;1.45)
BART (200 trees) 10 1.23 (1.22;1.27)
GB 10 1.44 (1.42;1.47)
RF 10 2.17 (2.10;2.19)
Lasso 10 2.70 (2.61;2.76)
SBART 10 1.09 (1.07;1.12)
LLF 10 2.02 (1.96;2.08)
MOTR-BART 50 1.12 (1.10;1.15)
MOTR-BART (fv) 50 1.18 (1.16;1.21)
BART (10 trees) 50 1.55 (1.50;1.59)
BART (200 trees) 50 1.35 (1.33;1.37)
GB 50 1.57 (1.55;1.61)
RF 50 2.99 (2.85;3.16)
Lasso 50 2.66 (2.59;2.70)
SBART 10 1.09 (1.07;1.10)
LLF 10 2.59 (2.51;2.81)
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Table 3.A.4: Friedman data: Mean and standard deviation of the total number
of terminal nodes created for BART and SBART to generate the final prediction
over 5,000 iterations for n = 200. For MOTR-BARTs, the values correspond to
the mean of the total number of parameters estimated in the linear predictors.
The acronym ‘fv’ stands for ‘fixed var’.

Algorithm p Mean Std
n = 200

MOTR-BART 5 302,447 18,210
MOTR-BART (fv) 5 263,079 11,990
BART (10 trees) 5 163,468 7,393
BART (200 trees) 5 2,468,707 6,734
SBART 5 250,615 6,599
MOTR-BART 10 326,678 20,309
MOTR-BART (fv) 10 258,380 13,530
BART (10 trees) 10 145,458 7,380
BART (200 trees) 10 2,470,333 3,670
SBART 10 256,391 5,577
MOTR-BART 50 327,751 28,627
MOTR-BART (fv) 50 251,469 12,376
BART (10 trees) 50 134,809 4,447
BART (200 trees) 50 2,428,259 5,368
SBART 50 256,184 6,754
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Table 3.A.5: Friedman data: Mean and standard deviation of the total number
of terminal nodes created for BART and SBART to generate the final prediction
over 5,000 iterations for n = 500 and n = 1000. For MOTR-BARTs, the values
correspond to the mean of the total number of parameters estimated in the linear
predictors. The acronym ‘fv’ stands for ‘fixed var’.

Algorithm p Mean Std
n = 500

MOTR-BART 5 364,786 21,978
MOTR-BART (fv) 5 364,258 17,478
BART (10 trees) 5 203,625 7,950
BART (200 trees) 5 2,470,900 8,739
SBART 5 257,769 6,727
MOTR-BART 10 382,528 24,768
MOTR-BART (fv) 10 354,755 25,238
BART (10 trees) 10 206,394 8,694
BART (200 trees) 10 2,448,212 9,171
SBART 10 256,465 2,829
MOTR-BART 50 384,828 18,099
MOTR-BART (fv) 50 330,434 33,566
BART (10 trees) 50 178,779 8,700
BART (200 trees) 50 2,407,661 14,314
SBART 50 254,164 9,334

n = 1000
MOTR-BART 5 389,479 23,247
MOTR-BART (fv) 5 396,280 29,040
BART (10 trees) 5 271,878 8,977
BART (200 trees) 5 2,425,863 8,276
SBART 5 257,656 9,881
MOTR-BART 10 410,517 30,346
MOTR-BART (fv) 10 390,274 22,442
BART (10 trees) 10 256,511 7,812
BART (200 trees) 10 2,415,372 8,575
SBART 10 255,604 6,549
MOTR-BART 50 391,193 16,127
MOTR-BART (fv) 50 380,365 40,069
BART (10 trees) 50 212,421 5,959
BART (200 trees) 50 2,371,140 14,287
SBART 50 255,155 4,400
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3.B Real data results
This Appendix presents two tables with results associated with the datasets Ankara,
Boston, Ozone, and Compactiv. In Table 3.B.1, it is reported the median and quar-
tiles of the RMSE computed on 10 test sets. The values in this table are related
to the Figure 3.4 from Subsection 3.5.2. Further, Table 3.B.2 shows the mean
number of parameters utilised by BART, MOTR-BART, and SBART to calculate
the final prediction for the aforementioned datasets.
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Table 3.B.1: Real datasets: Median RMSE (and first and third quartiles) for the
Ankara, Boston, Ozone, and Compactiv datasets on test data. The two lowest
RMSEs are highlighted in boldface font. The acronym ‘fv’ stands for ‘fixed var’.

Dataset Algorithm RMSE rank

Ankara

MOTR-BART 1.20 (1.18;1.22) 2
MOTR-BART (fv) 1.23 (1.20;1.26) 4
BART (200 trees) 1.37 (1.31;1.39) 5
BART (10 trees) 1.48 (1.45;1.55) 8
GB 1.40 (1.35;1.45) 6
RF 1.44 (1.38;1.46) 7
Lasso 1.59 (1.55;1.63) 9
SBART 1.21 (1.16;1.24) 3
LLF 1.19 (1.17;1.25) 1

Boston

MOTR-BART 2.78 (2.51;3.53) 1
MOTR-BART (fv) 2.98 (2.75;3.36) 5
BART (200 trees) 2.90 (2.70;3.27) 3
BART (10 trees) 3.42 (3.34;3.62) 8
GB 2.97 (2.78;3.22) 4
RF 3.10 (3.02;3.33) 6
Lasso 4.69 (4.47;4.89) 9
SBART 2.85 (2.56;3.50) 2
LLF 3.08 (2.93;3.42) 7

Ozone

MOTR-BART 4.68 (4.26;4.87) 9
MOTR-BART (fv) 4.23 (3.99;4.35) 3
BART (200 trees) 4.25 (3.89;4.53) 4
BART (10 trees) 4.42 (4.13;4.59) 6
GB 4.52 (4.03;4.69) 8
RF 4.10 (3.89;4.43) 2
Lasso 4.41 (4.24;4.90) 7
SBART 4.21 (4.07;4.36) 5
LLF 4.06 (3.95;4.28) 1

Compactiv

MOTR-BART 2.23 (2.21;2.26) 2
MOTR-BART (fv) 2.20 (2.15;2.23) 1
BART (200 trees) 2.26 (2.23;2.28) 3
BART (10 trees) 2.44 (2.41;2.51) 7
GB 2.41 (2.35;2.46) 6
RF 2.44 (2.39;2.54) 8
Lasso 9.97 (9.51;10.09) 9
SBART 2.32 (2.29;2.45) 5
LLF 2.28 (2.27;2.43) 4
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Table 3.B.2: Real datasets: Mean and standard deviation of the total number
of terminal nodes created for BART and SBART to generate the final prediction
over 5,000 iterations. For MOTR-BARTs, the values correspond to the mean of
the total number of parameters estimated in the linear predictors. The acronym
‘fv’ stands for ‘fixed var’.

Dataset Algorithm Mean Std

Ankara

MOTR-BART 546,959 36,977
MOTR-BART (fv) 485,743 40,840
BART (10 trees) 304,696 8,872
BART (200 trees) 2,250,599 11,798
SBART 312,927 11,539

Boston

MOTR-BART 748,468 58,945
MOTR-BART (fv) 414,762 50,705
BART (10 trees) 204,038 10,143
BART (200 trees) 2,389,130 14,244
SBART 318,171 17,078

Ozone

MOTR-BART 272,370 42,809
MOTR-BART (fv) 182,189 8,093
BART (10 trees) 137,239 2,642
BART (200 trees) 2,343,350 5,128
SBART 268,948 5,667

Compactiv

MOTR-BART 2,990,494 298,221
MOTR-BART (fv) 1,529,666 102,940
BART (10 trees) 539,621 15,759
BART (200 trees) 2,649,167 29,989
SBART 711,860 49,087
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CHAPTER 4
Bayesian additive regression trees

for genotype by environment
interaction models

We propose a new class of models for the estimation of genotype by environment inter-
actions in plant-based genetics. Our approach uses semi-parametric Bayesian additive
regression trees to accurately capture marginal genotypic and environment effects along
with their interaction in a cut Bayesian framework. We demonstrate that our approach is
competitive or superior to similar models widely used in the literature via both simulation
and a real world dataset. Furthermore, we introduce new types of visualisation to prop-
erly assess both the marginal and interactive predictions from the model. An R package
that implements our approach is available at https://github.com/ebprado/ambarti.

4.1 Introduction
The interaction between genotypes and environments (GxE) is a key parameter
in plant breeding (Allard and Bradshaw, 1992). Poor understanding of GxE can
lead to sub-optimal selection of new genotypes and inbred lines. Understanding
the GxE interactions is crucial for germplasm management, having strong genetic
and economic impacts on seed production and crop yield (Sarti, 2013). Many
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models have been proposed for studying GxE in the context of multi-environmental
experiments (METs). One special case is the additive main effects multiplicative
interactions model (AMMI; Mandel, 1971).

The classical AMMI models combine features of analysis of variance (ANOVA)
with a bilinear term to represent GxE interactions. Such interactions will be
named here bilinear interactions. In addition, these models allow for estimation
of main effects of genotypes and environments as well as the decomposition of
the interaction through a bilinear term. Many extensions to the AMMI models
have been proposed, including robust AMMI (Rodrigues et al., 2016) and weighted
AMMI (Sarti, 2019).

Bayesian additive regression trees (BART; Chipman et al., 2010) is a non-parametric
Bayesian model that generates a set of trees and uses random splitting rules to
produce predictions for a univariate response. Given its flexibility to deal with
non-linear structures and richer, non-multiplicative interactions terms, the use of
BART and its extensions has increased with applications in many areas including
proteomic studies (Hernández et al., 2018), hospital performance evaluation (Liu
et al., 2015), credit scores (Zhang and Härdle, 2010) among many others.

In this paper, we extend the AMMI model to allow for richer GxE interactions,
and similarly sidestep the model choice complexity term present in all AMMI-type
approaches. We achieve this goal by including a new variant of BART, which
we term ‘double-grow’ BART. The new proposed method, named AMBARTI,
provides a cut Bayesian model (Bayarri et al., 2009; Plummer, 2015), where the
‘double-grow’ BART component is solely responsible for GxE interactions. In
Sections 4.2.4 and 4.2.4.1, we contrast cut and fully Bayesian models using as
example the proposed model and the work of Plummer (2015). .

We compare our newly proposed model with the traditional AMMI approaches and
other competing interaction detection models, and we show that its performance is
superior (judged on out-of-sample error) in both simulated and real-world example
data. The real dataset we use is taken from the value of cultivation and usage
(VCU) experiments of the Irish Department of Agriculture, which were conducted
in the years between 2010 and 2019. Furthermore, the output of AMBARTI leads
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us to suggest several new forms of visualisation that are easier to interpret for
non-specialists.

The remainder of this paper is structured as follows. In Section 4.2, we describe
the framework used to collect evidence from METs, including the classic genetic
equation to describe the relationship between phenotypes, genotypes, and environ-
ments. We also outline the formulation of the AMMI model in its classic form. In
Section 4.2.3, we briefly describe the standard Bayesian additive regression trees
model. In Section 4.2.4, we present the structure of our novel AMBARTI approach.
Sections 4.3 and 4.4 contain the main results from the simulation experiments and
real datasets, respectively. In Section 4.5, we conclude with a discussion and out-
line further opportunities.

4.2 Methods
4.2.1 GxE interactions and MET
The phenotypic expression of a genetic character can be theoretically decomposed
in terms of genetic factors, environmental factors, and the interactions between
them as

p = g + e+ (ge),

where p is the phenotypic response, g is the genetic factor, e is the environmental
factor, and (ge) is the interaction between genotypes and environments. The
last term is necessary due to the different response of genotypes across different
environments. For instance, if we produce a rank that orders the performance of
a set of genotypes into a set of environments, we will usually notice that the order
of the best to worst genotype is different in each environment. The presence of
GxE interactions is known to be capable of having large effects on the phenotypic
response (Falconer and Mackay, 1996; Dias, 2005).

The (ge) terms can be estimated in a MET design where several environments and
genotypes are evaluated for a given phenotype (Isik et al., 2017). In plant breeding,
the need for METs is constant given the fact that the germplasm generates new
genotypes every year and the pressure of diseases and other factors are dynamic.

64



4.2. Methods

Such experiments require a complex set of logistical activities, leading to high costs
of implementation. These trials thus have strong regulatory appeal in the seed and
biotech industries around the world (Sarti, 2013).

Reliable information about GxE can help breeders make decisions on cultivar rec-
ommendations. Thus, models for the study of GxE need to be able to answer
questions such as which genotypes can perform well across a set of environments
and which are specifically recommended for a given environment. The answers to
these questions are crucial both to broad breeding strategies, i.e., to obtain one or
more genotypes that perform well in a set of environments, and to target breeding,
where the best genotype is determined for a given environment (Sarti, 2019).

4.2.2 Traditional AMMI models
A simple statistical linear model can be used to estimate GxE effects from METs.
The model can be written as

yij = µ+ gi + ej + (ge)ij + εij, i = 1, . . . , I, j = 1, . . . , J, (4.1)

where εij ∼ N(0, σ2), yij is the phenotypic response, which represents, for example,
the production of a crop in tonnes per hectare, µ is the grand mean, gi is the effect
of genotype i, ej is the effect of environment j, and (ge)ij represents the interaction
between genotype i and environment j.

In the specification of the Equation (4.1), the term (ge) can be thought of as rep-
resenting a decomposition of the residual from a more basic linear model. Gollob
(1968) and Mandel (1971) proposed a method to decompose the residual term
as a sum of multiplicative factors that includes the (ge) term. This yields the
decomposition:

(ge)ij =
Q∑
q=1

λqγiqδjq, (4.2)

where Q is the number of components to be considered in the analysis, λq is
the strength of the interaction of component q, γiq represents the importance of
genotype i in component q, and δjq represents the importance of environment j in
component q; see Appendix 4.C for the restrictions imposed on γiq, δjq and λq to
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make the model identifiable. Hence, the complete AMMI model is written as

yij = µ+ gi + ej +
Q∑
q=1

λqγiqδjq + εij. (4.3)

The interaction terms in (4.3) are estimated by a singular value decomposition
(SVD) of a matrix M, which contains the residual values of a two-factor ANOVA
model that considers the genotypes and environments as main effects. Here, λq
is the q-th eigenvalue of the matrix M, γik is the i-th element of the left singular
vector, and δjk is j-th element of the right singular vector obtained in the SVD
(Good, 1969). In practice, the classical AMMI model can be run in R (R Core
Team, 2020) using the package agricolae (de Mendiburu, 2019) or via functions
programmed by the user as in Onofri and Ciriciofolo (2007).

The protocol for estimation of the terms in a standard AMMI model is given by
Gauch Jr (2013). This involves the following steps:

1. Obtain the grand mean and main effects of the genotypes and environments
using ANOVA with two factors based on a matrix of means containing the
means of each genotype within each environment;

2. Obtain the residuals from the model above that will comprise the interaction
matrix, where each row is an environment and each column a genotype;

3. Choose an appropriate value for the number of components Q;

4. Form the multiplicative terms that represent the reduced-dimension interac-
tions via an SVD of the matrix of interaction residuals.

The rank of the matrixM is assumed to be r = min(I−1, J−1). Thus, the number
of components Q may vary from 1, . . . , r. The quantity r establishes the minimum
number of non-zero eigenvectors to be obtained in the SVD. Taking Q = r, the
AMMI model would capture all the variance related to the interaction, and it
would result in over-fitting. This problem is ameliorated by using a limited number
of components Q. The choice of Q is related to the amount of total variability
captured by the principal components (PCs) and, in general, is recommended
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to use a number of PCs that captures at least 80% of the total variability (Lal
et al., 2020; Shafii and Price, 1998; Love et al., 2004; Tyagi et al., 2016; Dias and
Krzanowski, 2006). Usually, the value of Q varies from 1 to 3.

AMMI models have been extensively used for evaluation of phenotype performance
of cultivars. Nachit et al. (1992) used AMMI models to assess the performance of
wheat germplasm from the International Maize and Wheat Improvement Center.
Farshadfar and Sutka (2003) explored quantitative trait loci (QTL) related to
adaptation in wheat. Rad et al. (2013) studied GxE for wheat in the context of
drought and normal conditions. Brancourt-Hulmel and Lecomte (2003) evaluated
the impact of environmental conditions in the stability of winter wheat. Badu-
Apraku et al. (2012) used AMMI to study the stability of early maize genotypes in
Africa. Mitroviaã et al. (2012) evaluated the performance of experimental maize
hybrids using AMMI models, and Sarti (2019) studied the performance of the
AMMI model in the context of simulated data. The applications of AMMI models
can also be found in several other species including: a) rice (Mahalingam et al.,
2006), b) barley (Mahalingam et al., 2006; Romagosa et al., 1996; Sato and Takeda,
1993; Anbessa et al., 2009), and c) sugarcane (Silveira et al., 2013).

4.2.3 Tree-based methods and BART
Introduced by Chipman et al. (2010), BART is a Bayesian model that uses a sum
of trees to approximate a univariate response. In BART, each tree works as a weak
learner that yields a small contribution to the final prediction. Based on a design
matrix X, the model is able to capture interactions and non-linear relationships.
The BART model can be written as

yi|xi,M, T , σ2 ∼ N
(

T∑
t=1

h(xi,Mt, Tt), σ2
)
, i = 1, . . . , n, (4.4)

where xi is the i-th row of the design matrix X, Mt denotes the set of terminal
node parameters of tree t, Tt is the set of binary splitting rules that define the tree
t, and h(·) = µt` is a function that assigns the predicted values µt` ∈ Mt based
on the design matrix X and tree structure Tt. We let M = (M1, . . . ,MT ) and
T = (T1, . . . , TT ) denote the sets of all predicted values and trees, respectively.
Chipman et al. (2010) recommend T = 200 as a default for the number of trees
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since it works remarkably well in a wide variety of applications. However, they
also suggest that T can be selected through cross-validation.

Unlike other tree-based methods where a loss function is optimised to grow the
trees, in BART the trees are learned using a Bayesian backfitting Markov Chain
Monte Carlo (MCMC) algorithm (Hastie and Tibshirani, 2000; Gamerman and
Lopes, 2006; Robert and Casella, 2013). The trees are either accepted or rejected
via a Metropolis-Hastings step. In addition, the trees can be learned by four moves:
grow, prune, change or swap. It is important to highlight that in all moves the
splitting rule is defined by randomly selecting one covariate and one split point.
In the grow move, a terminal node is selected and then two children nodes are
created below it. When pruning, a parent of two terminal nodes is selected and its
children nodes are removed. During the change move, a parent node is picked and
its splitting rule (i.e., covariate and split point) is redefined. In the swap move, a
pair of parent-child internal nodes is chosen and the splitting rules associated to
the two nodes are swapped.

As a fully Bayesian model, BART assumes prior distributions on all quantities of
interest. First, the node-level parameters µt` are assumed to be i.i.d N(0, σ2

µ), where
σµ = 0.5/(k

√
T ) and k ∈ [1, 3]. Second, the residual variance σ2 is assumed to be

distributed as IG(ν/2, νλ/2), where IG(·) denotes an Inverse Gamma distribution.
Third, to control how shallow/deep a tree may be, each non-terminal node has
a prior probability of α(1 + d)−β of being observed, where α ∈ (0, 1), β ≥ 0,
and d corresponds to the depth of the node; Chipman et al. (2010) recommends
α = 0.95 and β = 2 as default values. These hyperparameter values tend to select
trees which are not too deep.

We remark that the priors above are a crucial element to identify σ2 as they control
the tree topology and the variability of the prediction at the terminal node level.
Were these priors to be set too vague (e.g., so that deep trees were favoured),
then the value of σ2 would shrink towards zero and we would be left with an
over-fitted model. Thus, these priors force the trees to be shallow and shrink the
terminal node parameters towards zero such that each tree only explains a small
component of the data, which leaves some variation in the residuals and resolves
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the identifiability issue of σ2.

The identification of the interaction effects in BART is powered by the full condi-
tional of the trees, which we denote by p(Tt|Rt, σ

2), whereRt = y−∑T
k 6=t h(X; Tk,Mk)

represents the vector of the partial residuals excluding tree t; see Appendix 4.A for
details. As in BART the trees are learned by using splitting rules that are created
by randomly selecting a covariate and a split point, p(Tt|Rt, σ

2) is used to select
only ‘good’ trees (i.e., trees that help reduce the residual variance).

Finally, the structure of the BART model for a continuous response can be sum-
marised as follows. First, all Tt are initialised as stumps. Then, the trees are
learned, one at a time, through one of the four moves previously described (grow,
prune, change or swap). For each tree, the newly proposed T ?t is compared to its
previous version Tt via a Metropolis-Hastings step taking into account the partial
residuals Rt and the structure/depth of Tt and T ?t . Hence, the predicted values
for each terminal node ` of the tree t are generated. After doing that for all trees,
σ2 is updated. For a binary outcome, the data augmentation strategy of Albert
and Chib (1993) can be used; see Tan and Roy (2019) and Prado et al. (2021) for
more details.

Due to its flexibility and excellent performance on regression and classification
problems, BART has been applied and extended to credit modelling (Zhang and
Härdle, 2010), survival analysis (Sparapani et al., 2016; Linero et al., 2021; Basak
et al., 2021), proteomic biomarker analysis (Hernández et al., 2015), polychoto-
mous response (Kindo et al., 2016b), and large datasets (Hernández et al., 2018;
Linero, 2018). More recently, papers exploring the theoretical aspects of BART
have been developed by Jeong and Ročková (2020); Ročková and van der Pas
(2020); Ročková and Saha (2019); Linero (2018).

4.2.4 AMBARTI
To insert the BART model inside an AMMI approach, we make some fundamental
changes to the way the trees are learned and structured. As a first step, we can
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write the sum of trees inside the Bayesian version of the AMMI model as

yij|xij, µ, gi, ej,Θ ∼ N
(
µ+ gi + ej +

T∑
t=1

h(xij,Mt, Tt), σ2
)
, (4.5)

where yij denotes the response for genotype i and environment j, Θ = (Mt, Tt, σ2),
µ is the grand mean, and gi and ej denote the effects of genotypes and environ-
ments, respectively. The component∑T

t=1 h(xij,Mt, Tt) is similar to that presented
in (4.4) and xij contains dummy variables that represent combinations of gi and
ej. In order to get the posterior distribution of the new parameters, we assume
that µ ∼ N(0, σ2

m), gi ∼ N(0, σ2
g) and ej ∼ N(0, σ2

e), as well as that σ2
g ∼ IG(ag, bg)

and σ2
e ∼ IG(ae, be).

To facilitate the specification of the prior distributions, we transform the response
variable to lie between −0.5 and 0.5 as in Chipman et al. (2010), and we adopt the
prior specification for (most) µt` and σ2 from BART. We set the priors for µ, gi,
and ej to have mean zero, and we specified the prior distributions for their variance
to have mean one and diffuse variance. Although the choices above seem ad-hoc,
they worked remarkably well across different synthetic and real-world datasets.

At first look our model is similar to the semi-parametric BART proposed by Zeldow
et al. (2019). However, our approach differs in that i) we do not partition xij into
two distinct subsets, as the dummy variables (gi and ej) that are used in the
linear predictor are also contained in xij; ii) most importantly, we add to the tree-
generation process in BART a ‘double grow’ and a ‘double prune’ steps so that
we guarantee that the trees will include at least one gi and one ej as splitting
criteria and; iii) unlike Zeldow et al. (2019), we do not use the full residuals
R = y − ∑T

t=1 h(X,Mt, Tt) to update the linear predictor estimates, but rather
the response variable only. This last modification makes AMBARTI a modularised
(Bayarri et al., 2009) or a cut Bayesian (Plummer, 2015) model since only y is
used to update the main effects and not R. Hence, AMBARTI is a ‘cut’ Bayesian
model as opposed to a fully Bayesian approach. Nevertheless, we provide details
below about the motivation and validity of our model.

The rationale of the double grow and double prune moves is to force the trees to
exclusively work on the interactions between gi and ej. In doing so, we remove
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the chance that the ‘single’ moves split on a single gi or ej variable, which would
lead to confounding with the main marginal genomic or environment effects. For
example, in the double grow, rather than randomly selecting one covariate and one
split point when growing a stump, a variable g? is chosen and then another variable
e? is randomly selected and both define the splitting rules of the corresponding
tree. Here, the dummy variables g? and e? are sampled from the sets of all possible
combinations of gi and ej, respectively. Conversely, in the double prune move a
tree is pruned twice to prevent it from having a single gi or ej. Thus, the resulting
tree from this double move will always be a stump. Regarding the change and
swap moves, we point out that they were kept as ‘single’ moves since their double
counterparts would not help induce interactions between gi and ej. However, we
introduced validity checks on the structure of the trees resulting from these moves
to guarantee that only valid splitting rules are proposed/accepted.

We also modified the prior on the node-level parameters so that terminal nodes
which the ancestor nodes do not have an interaction between gi and ej are set to
zero. To illustrate this, we refer to Figure 4.2.1. The left-most terminal nodes
(µ1 and µ2) are defined by splitting rules which contain a set of genotypes (g1,3)
and environments (e4,5,6). However, the terminal node on the right hand side (µ3)
has only g1,3 as its ancestor, which is not desirable since the main effects for the
genotypes are estimated in the linear predictor. To avoid this, we modify the prior
only for terminal node parameters like µt3 so that their posterior values are shrunk
to zero (i.e., we assume that µt3 ∼ N(0, σ2

µ ≈ 0)).

g1,3 ≤ 0

e4,5,6 ≤ 0

µ1 µ2

µ3

TRUE

TRUE FALSE

FALSE

Figure 4.2.1: An example of a tree generated from a double grow move based on
the sets of dummy variables generated for g and e. g1,3 denotes a dummy variable
that combines genotypes 1 and 3, while e4,5,6 binds environments 4, 5, and 6.
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We allow for extra flexibility in the identification of the interaction effects by setting
up the design matrix of the BART component to contain all possible combinations
of genotype and environment effects. For instance, when I = 5 genotypes and
J = 6 environments, 2I−1 − 1 = 15 and 2J−1 − 1 = 31 unique dummy variables
are generated for g and e, respectively; see Wright and König (2019) for splitting
methods on categorical covariates. In this case, there are 46 dummy variables
available so that BART can use to identify possible interaction between genotypes
and environments. To illustrate this, in Figure 4.2.1 a dummy variable is sampled
from the set of 15 dummy variables related to g along with a dummy variable from
the set of 31 dummy variables associated with e.

The current R packages that offer implementations of BART, such as bartMachine
(Kapelner and Bleich, 2016), BART (McCulloch et al., 2020) and dbarts (Dorie,
2020), represent categorical variables with k > 2 levels into k dummy variables.
In contrast, in random forests the standard approach to deal with categorical
variables is to create all the 2k−1− 1 2-partition combinations (Wright and König,
2019) subject to a not too big k.

The idea of performing small modifications to the trees through k dummy variables
as opposed to 2k−1 − 1 is tempting, especially when the numbers of genotypes
and/or environments are large. One important aspect is that in BART the default
prior on the tree structure favours shallow trees over deep trees so that small
modifications through the grow move (considering k dummy variables) would not
be ideal since deep trees are unlikely. Thus, the learning process should take place
in the form of swap and change moves, since both do not change the topology of
the tree but only the splitting rules. However, any modifications proposed through
the change move incur the same issue of having to sample from the subset that
contains 2k−1− 1 combinations since we are interested in finding/grouping similar
genotypes and environments.

In the initial versions of AMBARTI, we considered the set of k dummy variables
over the set of 2k−1 − 1 combinations, and we also modified the prior on the
trees so that it would not overly penalise deep trees. However, the results with k
dummy variables were not encouraging, whilst the change to the set of 2k−1 − 1
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combinations vastly improved the prediction performance.

We recall that before estimating the parameters in the bilinear term of the AMMI
model in (4.3), the effects of gi and ej are estimated via a linear regression. Hence,
the residuals are organised into an I × J matrix, in which the rows and columns
sum to zero, and then an SVD is performed on the residual matrix. Due to
this sum-to-zero constraint, the resulting output from the bilinear term sums to
zero within each gi and ej. In a similar fashion, a ‘fully Bayesian AMBARTI’4

would have to guarantee that the predictions from the BART component sum to
zero within the gi and ej in order to be comparable to AMMI. However, if we
impose the sum-to-zero constraint on the BART predictions within the gi and ej,
this is equivalent to cutting feedback (i.e., remove without marginalisation) the
BART predictions from the full conditionals of gi and ej; see (4.11) and (4.12) in
Appendix 4.A. In Section 4.4, we compare AMBARTI with a set of comparators
that includes a fully Bayesian AMMI model, which performs poorly compared to
AMBARTI and other interactions models.

The motivation behind cutting feedback in Bayesian models is studied in Bayarri
et al. (2009) and Plummer (2015). In the first work, the authors list a set of
situations where the ‘modularisation’ (i.e., cut feedback) of Bayesian models can
be useful. They motivate the use of modularisation through examples in the anal-
ysis of computer models and present possible reasons for performing it. They
point out that Bayesian models that eventually incur identifiability/confounding
issues might require modularisation, especially when there is interest in determin-
ing effects of interest and not only the overall prediction. We highlight that were
AMBARTI fully Bayesian rather than a cut Bayesian model, there would be some
bias/identifiability issues, due to the sum-to-zero condition mentioned above, be-
tween the gi and ej and the BART component. Finally, Plummer (2015) highlights
some issues that can affect the sampling of the parameters from a cut Bayesian
model and also proposes solutions to circumvent some of the issues. In Section
4.2.4.1, we tackle Plummer’s concerns by showing that the posterior samples from

4Recall iii) which states that the full residuals R = y −
∑T

t=1 h(X,Mt, Tt) are not used to
estimate the main effects of gi and ej . Hence, a fully Bayesian AMBARTI would use R to update
the linear predictor estimates as opposed to the response variable only.
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AMBARTI are valid.

An appealing advantage of AMBARTI over AMMI is that it does not require
the specification of the number of components Q in the bilinear sum and does
not require complex orthonormality constraints on the interaction structure; see
Appendix 4.C for the constraints of the AMMI model. In a Bayesian context,
these constraints can lead to complex prior distribution choices for implementation
of AMMI (as in Josse et al., 2014; Crossa et al., 2011). Furthermore, although
AMBARTI adds a computational cost to the BART model, we have found this to
be negligible for standard MET datasets that usually have values of I and J up
to the low tens or hundreds.

An additional advantage of using a (cut) Bayesian approach as in AMBARTI is
that we have access to the posterior distribution of each parameter. As the model
is fitted, we are thus able to ascertain the general levels of uncertainty in each gi or
ej component, which may assist with future experimental designs. Similarly, the
interaction term is also estimated probabilistically, and so may avoid interpretation
errors associated with, e.g., biplots from a traditional AMMI model.

In terms of estimation, the AMBARTI model can be fitted as follows. First,
the parameter estimates gi and ej are sampled taking into account the response
variable y (not the residuals). Then, one at a time, the trees are updated via
partial residuals Rt = y − µ − gi − ej −

∑T
k 6=t h(X,Mk, Tk). Hence, the terminal

node parameters are generated and the sample variance is updated. In the end,
posterior samples associated with µ, gi, ej, σ2

g , σ2
e , and Tt are available, which

allow for the calculation of credible intervals and evaluation of the significance of
the parameter estimates; see Algorithm 3 in Appendix 4.A for more details.

4.2.4.1 Validity of the posterior sampling in AMBARTI

The AMBARTI model estimates the genotype and environment main effects taking
into account only the response and disregarding the BART component. In contrast,
when fitting the BART component, the effects of g and e are taken into account.
We set up AMBARTI in this way as we aimed to compare its results to the
frequentist AMMI model. We recall that in the classical AMMI the estimation of
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g and e is first carried out and then the interactions between them are estimated
without the bilinear term being fed back into the process to update the estimates
of g and e. As briefly mentioned above, AMBARTI can be seen as a modularised
model (Bayarri et al., 2009) or a cut Bayesian model which uses the ‘naive cut
algorithm’ (Plummer, 2015). Nonetheless, we show that our model, under the
naive cut algorithm, generates valid posterior samples following Plummer (2015).

Before introducing the AMBARTI model as a cut Bayesian approach following
the work of Plummer (2015), we state what a cut Bayesian model is. Broadly
speaking, a cut Bayesian model differs from a full Bayesian model in terms of how
it samples the parameters in the model. To illustrate this, let’s consider that we
observe a univariate response yi in the following form:

y = Wφ+ Xθ + ε, εi ∼ N(0, σ2),

where W and X are known quantities and φ and θ are unknown parameter vec-
tors of interest. In a full Bayesian model, the parameters in the model above
can be estimated via three full conditional distributions: i) p(θ|y,W,X, φ, σ2), ii)
p(φ|y,W,X, θ, σ2) and iii) p(σ2|y,W,X, φ, θ). In this setting, a natural way of
sampling, say, θ but not conditioning it on, say, φ would be to integrate φ out of
the update of θ (i.e., p(θ|y,W,X, σ2) =

∫
p(θ|y,W,X, φ, σ2)p(φ)dφ). However,

under a cut Bayesian model, the ‘full’ conditional distribution of θ simply disre-
gards the information from φ, but without marginalising φ. This is approach can
be useful in situations where there is conflicts of information in the model or con-
vergence/missing issues in the MCMC scheme; see Plummer (2003) and Bayarri
et al. (2009) for examples.

A simple way of writing our model, given the tree structures, is:

y = Wφ︸ ︷︷ ︸
g + e

+ T θ︸︷︷︸
BART

+ ε, (4.6)

where εi ∼ N(0, σ2), W is a binary matrix of values allocating y to the correct
genotype/environment, φ are the g and e parameters, T is a matrix that relates
each of the trees to the individual observations, and θ are parameters of the inter-
actions. For simplicity and without loss of generality, we assume that σ2 is known.
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Under this formulation, we have that the quantities of interest φ, T and θ can be
estimated via their full conditional distributions:

p(φ|y,W, T , θ, σ2), (4.7)

p(T |y, θ, φ, σ2),

p(θ|y, T , φ, σ2).

Figure 4.2.2 presents AMBARTI from the perspective of a cut Bayesian model.
The likelihood function depends on θ, T and φ, and all parameters are of interest.
The graph is divided in two parts (G1 and G2). The idea of the naive cut algorithm
is that when constructing the full conditionals for parameters in G1, likelihood
terms involving random variables in G2 are ignored (Plummer, 2015).

W

𝜙

X

𝜃

Y

𝐺! 𝐺"

𝒯

Figure 4.2.2: Graphical representation of the AMBARTI model.

The ‘cut’ conditional distributions for φ and θ are given by:

p(φ|y,W, σ2), (4.8)

p(T |y, φ, σ2),

p(θ|y, T , φ, σ2),

where p(T |y, φ, σ2) =
∫
p(T |y, φ, θ, σ2)p(θ)dθ. The full conditional in (4.7) consid-

ers the full Bayesian model, whilst in (4.8) there is no dependence/influence of T
and θ over φ. Plummer (2015) describes three situations when the feedback from
one component may not be helpful to the other. First, when the relation between
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the response and θ is speculative. Second, when there is conflict between the
sources such that p(φ|y,W, T , θ, σ2) is very different from p(φ|y,W, σ2). Third,
when there are computational issues in terms of convergence and mixing.

Plummer (2015) states that the cut in the feedback of T and θ into the conditional
distribution for φ may lead to lack of convergence to the (cut) posterior distribu-
tion. However, for the cut algorithm to draw approximate samples from the cut
model, one of the two conditions below need to be verified.

1. The transition from φ to φ′, T to T ′ and σ2 to σ2′ cannot cause significant
changes in the conditional distribution for T and θ, i.e., the limit of

p(T ′|y, φ′, σ2′)
p(T ′|y, φ, σ2) → 1 and (4.9)

p(θ′|y, T ′, φ′, σ2′)
p(θ′|y, T , φ, σ2) → 1.

Under the cut Bayesian model framework, this condition makes sense to
parameters that do not have closed-form full conditionals (e.g., the full con-
ditional for the tree in AMBARTI). In an attempt to satisfy this condition,
Plummer (2015) proposes an algorithm based on tempered transitions which
only allows small steps for φ, T and σ2.

2. The probabilities of moving from T to T ′ and θ to θ′, denoted by T → T ′

and θ → θ′, do not depend on T and θ, respectively, i.e., the limit of

p(T → T ′|φ, σ2)
p(T ′|y, φ, σ2) → 1 and

p(θ → θ′|φ, T , σ2)
p(θ′|y, T , φ, σ2) → 1. (4.10)

We remark that all parameters in the AMBARTI model attain the condition in
(4.10), except T . For example, the probability of θ → θ′ depends exclusively
on the posterior conditional distribution p(θ′|y, T , φ, σ2), which in turn does not
depend on the previous θ since it has closed-form. To make our point clearer, recall
expression (4.6) and that in BART, a priori, µt` ∼ N(0, σ2

µ), which is completely
specified with no dependence on its previous values. In addition, the posterior
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conditional distributions of gi, ej, µt`, and σ2 have all closed-form expressions,
which are presented in Appendix 4.A. In relation to the transition probability of
an individual tree Tt → T ′t , we point out that it does rely upon the previous
tree Tt since the transition kernel q(Tt → T ′t ), specifically for the grow and prune
moves, depends on the number of terminal and internal nodes of Tt; see Appendix
A of Kapelner and Bleich (2016) for further details on the transition probabilities
of the moves in BART. However, we empirically show in Appendix 4.B that the
transition Tt → T ′t under the naive and tempered cut algorithms do not differ,
which supports the condition in (4.9) for AMBARTI.

4.3 Simulation Study
In this Section, we compare AMMI, the Bayesian version of AMMI (B-AMMI)
proposed by Josse et al. (2014), and AMBARTI using the root mean squared
errors (RMSE) for predicted values ŷ and for the interaction term on out-of-sample
data. Our simulation experiment was carried out considering two scenarios. In
the first, we simulated data from the AMMI model with Q = {1, 2, 3} and then
fitted AMBARTI, B-AMMI, and AMMI. In the second scenario, we simulated data
from the AMBARTI model and then fitted AMBARTI and three AMMI (and B-
AMMI) models with different number of components to describe the interactions
(i.e., Q = {1, 2, 3}). In both scenarios, we fitted the models to a training set with
I × J observations and evaluated the performance on an out-of-sample test set of
the same size.

For both scenarios, we set I = J = {10, 25}, µ = 100 and generated gi and ej from
N(0, σ2

g) and N(0, σ2
e), respectively, where σg = σe = {1, 5}. The parameters γik

and δjk were generated from N(0, 1) and then the orthornormality constraints were
applied following the results presented in Appendix 4.B. In addition, for Q = 1, we
consider two values for λ (i.e., λ = {8, 12}); for Q = 2, λ = ({12, 8}, {12, 10}) and;
for Q = 3, λ = {12, 10, 8}. In the simulation from AMBARTI, we set T = 200
trees and generated each tree by using the ‘double grow’ move considering 2I−1−1
possible covariates for gi and 2J−1 − 1 for ej.

Finally, the AMMI model used in the simulations is presented in Equation 4.3,
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which represents a completely randomised trial design. The AMBARTI model
used is shown in Equation 4.5.

4.3.1 Simulation results
We start simulating synthetic data from the AMMI system, which is the harshest
test for the AMBARTI model. Figure 4.3.1 shows the RMSE values for ŷ based on
the out-of-sample sets of three models considering 10 Monte Carlo repetitions. The
data sets considered in this Figure were simulated considering I = 10 genotypes
and J = 10 environments, with different values of Q = {1, 2, 3}, and two values
for the genotypic and environmental standard errors σg = {1, 5} and σe = {1, 5},
respectively.

As the data were simulated from the AMMI equation, we would expect that the
AMMI model would perform exceedingly well, and this is what we see in general
considering all the results of Figure 4.3.1. More specifically, we can see in the first
upper panel that AMBARTI has higher RMSEs compared to AMMI for all values
of Q. Further, we see that B-AMMI has similar performance to the frequentist
AMMI only for Q = 1. As the number of components in the bilinear term in-
creases, the results from B-AMMI deteriorate compared to AMMI and AMBARTI.
In addition, it is possible to note that there is no clear effect of σg or σe on the
RMSEs. However, even with the AMMI model presenting the best results, AM-
BARTI demonstrates highly competitive performance, with RMSE values around
17% higher than that of the AMMI model.

Figure 4.3.2 shows the results of the second simulation scenario, where the data
were simulated from the AMBARTI equation. Again, different combinations of
parameters were used in the simulation of the training and out-of-sample sets.
The upper panels show results for I = 10 genotypes and J = 10 environments; the
lower ones for I = 25 and J = 25. Furthermore, three AMMI and three B-AMMI
models were fitted considering Q from 1 to 3. In this case, the AMMI model, even
with high values of Q, performs very poorly with RMSE values 3 times higher on
average than that of AMBARTI for I = 10. For I = 25, the AMMI model with
Q = 3 is competitive with AMBARTI, with the latter being slightly better. In
addition, we can see that AMBARTI presents better results when compared with
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Figure 4.3.1: Out-of-sample RMSE for ŷ based on the results of AMMI, B-AMMI,
and AMBARTI for data simulated from the AMMI model with I = J = 10.
The different panels contain 10 Monte Carlo repetitions and represent different
combinations of the simulated parameters for the creation of the data set. Unsur-
prisingly, AMMI performs very well here, with AMBARTI having RMSE values
around 17% higher.

B-AMMI, regardless of the value of Q. In this comparison, it is worth mentioning
that more complex possibilities of interactions may be obtained when simulating
from AMBARTI compared to AMMI.

The next important comparison to be made between AMBARTI and AMMI is
related to the interaction term (i.e., the bilinear term for AMMI and the BART
component for AMBARTI). Such tests are shown in Figures 4.3.3 and 4.3.4, where
we show the RMSE performance only for the interaction component.

Figure 4.3.3 presents the RMSEs associated solely with the interaction terms from
AMMI, B-AMMI, and AMBARTI when the data are simulated from AMMI (which
has a bilinear structure for the interactions). The results are presented consider-
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Figure 4.3.2: Out-of-sample RMSE for ŷ based on the results of AMMI (with
varying Q), B-AMMI, and AMBARTI for data simulated from the AMBARTI
model with I = J = 10 and I = J = 25. The boxplots contain 10 Monte Carlo
repetitions. The AMMI RMSE values are on average 3 times higher than that of
AMBARTI for I = 10.

ing 10 genotypes and 10 environments with different combinations of genotypic
and environmental variances. The performance of AMMI is optimal compared to
AMBARTI, though the difference between the two is lessened with more complex
AMMI model structures (i.e., Q = 3). In Figure 4.3.4, the values of RMSE are
presented for data sets simulated from AMBARTI. In the margins of the figure,
the parameters used in the simulations can be found. The RMSE values show that
AMMI performs worse than AMBARTI in all scenarios, and in the same cases
AMMI RMSEs are three times higher on average than those of AMBARTI for the
scenario with I = 10 genotypes.

In summary, the information presented in Figures 4.3.2 and 4.3.4 shows that the
AMMI model fails for the complex interactions that can be obtained in the AM-
BARTI simulated data sets. From a quantitative genetics/biological perspective,
there is no reason for the structure of interactions between genotypes and environ-
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Figure 4.3.3: Out-of-sample RMSE of the interaction term of AMMI models for
data simulated from AMMI. The different panels show the different parameter
values used in the simulation. The performance of AMMI here is optimal, with
AMBARTI performing slightly worse than AMMI when Q = 3.

ments to be modelled strictly by a bilinear structure, as more complex structures
can be assumed to be present in nature. Thus, AMBARTI may be a more suitable
model to estimate the interaction structure in real-world applications.

4.4 Case study: Irish VCU InnoVar wheat data
In addition to the simulation study, real data sets were used to evaluate the per-
formance of AMBARTI. We compare our new approach not only to AMMI and
B-AMMI, but also to more sophisticated interaction detection models including
smoothing splines ANOVA models (SS-ANOVA; Gu, 2014) and Bayesian multi-
variate adaptive regression splines (B-MARS; Denison et al., 1998). To run SS-
ANOVA and B-MARS, we used the R packages gss (Francom and Sansó, 2020)
and BASS (Gu, 2014), respectively. A set of value of cultivation and usage (VCU)
experiments conducted in Ireland between the years of 2010 and 2019 were con-
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Figure 4.3.4: Out-of-sample RMSE of the interaction term of AMBARTI and
AMMI models for data simulated from AMBARTI. The different panels show the
different parameter values used for the simulation. It appears that the AMMI
structure, even with Q = 3 cannot capture the interaction behaviour present in
the AMBARTI model for I = 10.

sidered, and such experiments evaluated the performance of genotypes of wheat
Triticum aestivum L. across the country for regulatory purposes (i.e., registra-
tion of new varieties). Here, our phenotypic response variable is the production
of wheat in tonnes per hectare. The design of experiments used was that of a
randomised complete block design with 4 replicates. VCUs alongside distinctness,
uniformity and stability (DUS) are the most important kind of regulatory multi
environmental trials conducted around the world.

The data were kindly provided by the Irish Department of Agriculture, Food, and
Marine. Both genotypes and environments were anonymised. These historical
Irish VCUs form part of the Horizon2020 EU InnoVar project database (www.
h2020innovar.eu). The project aims to build and improve technical solutions
for cultivar recommendation based on genomic and phenomic parameters. The
models were fitted for all years available (summarised in Table 4.4.1), but for
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brevity we show detailed plots only for the year 2015, which has 4 (replicates) ×
9 (enviroments)× 18 (genotypes) = 648 observations.

We compare the models by evaluating the estimated values of the genotype and
environment effects, and the predictions of interaction behaviour evaluated as:

ˆ(ge)ij = yij − ĝi − êj. As the Irish data from the InnoVar project correspond
to a block design with 4 replicates, to fit all models we randomly selected two
replicates and then averaged the response variable across them. This is a common
practice in the analysis of GxE experiments with AMMI and B-AMMI models
(Josse et al., 2014; Crossa et al., 2011) as these models cannot deal with replicates
in an experiment. However, this pre-processing is not needed for AMBARTI. To
validate the models, we use the remaining two replicates to calculate the RMSE
for ŷ.

The estimates of the genotype effects gi and environment effects ej are shown in
Figure 4.4.1 and 4.4.2, respectively. The results for AMBARTI show the samples
obtained from the posterior distributions, while for AMMI, as it is a frequentist
method, we adopted the approach of Goodman and Haberman (1990) where the
results correspond to samples from the estimator distributions of gi and ej. The
rationale of using samples from the estimator distribution is to be able to compare
AMBARTI and AMMI results not only in terms of point estimates but also in
terms of the uncertainty associated to the point estimates. Although we have
tested different number of components Q for AMMI, we remark the parameter
estimates gi and ej do not change regardless of Q (i.e., only the bilinear term
depends on Q; see Equation (4.2)).

In Figure 4.4.1, we can see that the credible intervals associated with the main
effects of genotypes for AMBARTI are narrower than the confidence intervals
from the AMMI model. This is somewhat expected and occurs as BART is able
to capture the interactions between gi and ej along the MCMC process, which in
turn decreases the residual variance σ2. Hence, as the full conditionals of the gi
and ej depend on σ2, their estimates become less uncertain as σ2 gets smaller;
see Equations (4.11) and (4.12) in Appendix 4.A. For the sake of visualisation,
we decided to omit the B-AMMI results as they presented too many values that
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exceeded −10 and 10.
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Figure 4.4.1: For AMBARTI, the boxplots represent the posterior distribution of
genotype effects for the Irish VCU Innovar data set for 2015. As the parameters
estimates from the AMMI model are obtained under the frequentist paradigm,
their boxplots summarise samples from the estimator distribution of the genotype
effects as presented in Goodman and Haberman (1990).

A more complete comparison across all years is shown in Table 4.4.1. In this ta-
ble, we calculated the predicted values ŷ on the out-of-sample data. We can see
that RMSEs obtained with AMBARTI are smaller than the ones returned by the
AMMI model for most years, thus highlighting that the AMBARTI model can
more accurately estimate the marginal effects along with interaction component.
Further, we can note that the B-AMMI presents the worst results among all meth-
ods considered. One could expect the results from AMMI and B-AMMI would be
similar, but the Bayesian version is different in spirit to its frequentist counterpart,
as it does not estimate the main effects and bilinear term in a two-stage approach.
Instead, B-AMMI obtains the parameters through a one-stage procedure and as-
sumes priors that do not take into account the orthormality constraints, which
are fundamental for the identifiability of the frequentist AMMI model. In the
B-AMMI, the orthormality constraints are applied via a post-processing on the
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Figure 4.4.2: For AMBARTI, the boxplots represent the posterior distribution of
environment effects for the Irish VCU Innovar data set for 2015. As the parame-
ters estimates from the AMMI model are obtained under the frequentist paradigm,
their boxplots summarise samples from the estimator distribution of the environ-
ment effects as presented in Goodman and Haberman (1990).

parameter estimates after the model is fitted. However, we observed the B-AMMI
model with and without the post-processing may have very different performance.

Although the results for SS-ANOVA and B-MARS are competitive with AM-
BARTI, they work differently and do not return results in the format needed
to fit the purpose of the analysis. For instance, SS-ANOVA returned interactions
that do not make sense (e.g., interactions between environments or interactions
between genotypes). In contrast, B-MARS is similar to BART in the sense that
it does not require any specification of main/interaction effects via a linear pre-
dictor but with the advantage that it decomposes the impact of individual and
interaction effects on the response.

Another modelling alternative (not shown here) is a 2-way ANOVA model, which
can be used when there are replicates for each combination of genotype and en-
vironment, since there is sufficient degrees of freedom to estimate the main and
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Year AMBARTI AMMI B-AMMI SS-ANOVA B-MARS
2010 0.81 0.83 2.21 0.82 0.87
2011 0.62 0.63 2.66 0.65 0.69
2012 0.45 0.47 2.53 0.60 0.65
2013 0.57 0.57 1.48 0.55 0.56
2014 0.55 0.54 1.93 0.53 0.54
2015 0.46 0.46 1.75 0.52 0.55
2016 0.44 0.45 1.98 0.50 0.50
2017 0.51 0.53 2.24 0.60 0.62
2018 0.74 0.73 1.09 0.70 0.70
2019 0.56 0.58 1.26 0.72 0.70

Table 4.4.1: RMSE for ŷ on out-of-sample data considering all years in the histor-
ical Irish VCU Innovar data. The values of RMSE obtained with AMBARTI are
smaller than the ones obtained via AMMI and Bayesian AMMI models (both with
Q = 3) for all years considered. The values in bold correspond to the smallest
RMSE within each year.

interaction effects. However, this model does not fit the purpose of our analysis
as i) GxE data might not have replicates and ii) this model decomposes the in-
teraction term by combining one genotype and one environment only, since higher
order interactions cannot be considered.

Regarding the computational time, AMBARTI took about 6 minutes on average
to run, considering 50 trees, 1000 iterations as burn-in and 1000 iterations as post
burn-in. This time was registered in a MacBook Pro 2.3 GHz Dual-Core Intel Core
i5 with 8GB memory. AMMI took just seconds. This difference could be reduced
by optimising the AMBARTI implementation using routines in C++ similar to
those for BART implementations in R packages BART (McCulloch et al., 2020) and
dbarts (Dorie, 2020). However, we believe AMBARTI’s superior performance and
posterior estimation of uncertainties outweighs the longer computational time.

4.4.1 New visualisations for AMBARTI main effects and
interactions

One of the key outputs of the standard AMMI model is the biplot (Gabriel, 1971),
which assists in the determination of important GxE interactions and may be used
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for cultivar recommendation. In Figure 4.4.3, a biplot for the Irish VCU Innovar
data set for 2015 based on the results of the AMMI model shows how the genotypes
and environments interact. In the upper-right quadrant, the biplot suggests that e6

interacts positively with g15 and g11, while the lower-left quadrant indicates that e2

and e5 interact negatively with g2 and g12. In practice, knowing which genotypes
and environments interact positively/negatively is a valuable information, since
it helps farmers in the decision making. However, these plots display only the
interaction measure, thus missing i) the key marginal effects that may also come
into play and ii) the uncertainty associated with both the marginal and interaction
effects. For example, a certain genotype and environment may have a strong
positive interaction, but if the genotype is consistently poor in all environments,
this may not be clear in the biplot. Instead, we introduce new types of plots that
give this full consideration.

Our first new plot is based on a heat map adapted to display both the GxE
interactions (along with the marginal effects) and the predicted yields from the
AMBARTI model. In Figure 4.4.4, we display the GxE interactions in the centre
of the plot and the marginal effects for both environment and genotype as separate
bars in the margins. The ordering applied to Figure 4.4.4 is in terms of the marginal
effects for both environment and genotype, and displays low values in red to high
values in blue. As both the GxE interactions and marginal effects are on the same
scale and are centred around zero, we display them using only one legend and
use a divergent colour palette. A diverging colour palette uses two diverging hues
to represent the extremes and highlights the midpoint with a light colour. This
allows for quick identification of the GxE interactions and to observe which of the
environments or genotypes are the most or least optimal.

In Figure 4.4.5, we show the ordered heat map of the predicted yields (as op-
posed to their component parts shown in Figure 4.4.4) for each combination of
environment and genotype for the AMBARTI model. In this case, we use the
same ordering as that in Figure 4.4.4 with high values being generally displayed
in the top left, moving to low values at the bottom right, with the units for the
plot being the same as that of the phenotype (i.e., yield/production of grains in
tonnes per hectare). For this plot, we use the same diverging colour palette as
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Figure 4.4.3: Biplot for the Irish VCU InnoVar data based on the results of the
AMMI model. The x-axis (Comp. 1) and y-axis (Comp. 2) display the first
and second principal components, respectively, obtained from an I × J matrix of
residual values of a two-factor ANOVA model that considers the genotypes and
environments as main effects.

in Figure 4.4.4 as the scale is centred around the mean, and when combined with
the ordering, this gives a clear identification as to which environment and geno-
type produce high or low yields. Additionally, the AMBARTI methodology makes
it possible to use tree methods to identify which combinations of genotypes and
environments are similar considering a given phenotypic characteristic, e.g., yield.
For example, the combination of genotype 1 and environment 1 and genotype 17
and environment 1 are similar in terms of predicted yield, as shown by the colours
in Figure 4.4.5. Similarly, genotype 2 has similar yields for environments 4 and 5.
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Figure 4.4.4: GxE interactions and main effects for the AMBARTI model sorted
by the main effects for the Irish VCU InnoVar data in 2015. We can clearly see
that environments 1, 4, 6, and 5 provide superior yields for many of the genotypes
studied. Furthermore, environment 1, for example, seems to interact particularly
strongly in a negative way with genotype 2. The grand mean µ is not included in
this plot for ease of identification of marginal and interacting effects.

Thus, we can consider these environments similar and group them in a set named
mega-environment 4-5 considering genotype 2. Such a concept is crucial for culti-
var recommendations. To visualise the uncertainty associated with Figures 4.4.4
and 4.4.5, we provide plots which show the median, 5%, and 95% quantiles for the
predicted response and GxE interactions and main effects in Appendix 4.D.

In Figure 4.4.6, we show a bipartite plot of the information displayed in Figure
4.4.4, but showing only the extremes of the high and low values. In this case,
we display just the top 2% and the lowest 2% of the interactions. We employ
the same diverging colour palette as Figure 4.4.4 except in this case the colour of
the nodes represents the marginal effects and the size of each node represents the
absolute value of the marginal effects. Similarly, the colour of the connecting edges
represents the interaction values and the width of each edge represents the absolute
interaction value. That is, larger magnitudes of the marginal effects will result in
larger nodes (and vice-versa), and larger magnitudes of the interactions will result
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Figure 4.4.5: Predicted yields from the AMBARTI model for the Irish VCU Inno-
Var data in 2015. Values are sorted by the main effects. We can see, for example,
a high value for the predicted yield for environment 1 with genotype 5 and a low
value between environment 2 and genotype 11.

in thicker edges (and vice-versa). The aim of this plot is to allow the reader
to easily and quickly identify which of the environments are the most and least
optimal for each genotype and to also identify where there are clear interactions.
Quantile versions of Figure 4.4.6 could also be plotted to assess uncertainty.

The visualisation perspective proposed here helps construct easily interpretable
agronomic recommendations. Figure 4.4.5 can help users with no background in
statistics identify that the best genotypes considering yield are the ones in the top
left corner: g17, g16, g5, g2. These genotypes will have a tendency to have a better
acceptance by farmers, considering solely the yield in tonnes per hectare assuming
higher yields are economically preferred. Figure 4.4.4 shows us that environments
e1, e4, e6, e5 are related to higher marginal effects and should be considered prefer-
ential to crop the list of wheat genotypes evaluated.

Figures 4.4.4 and 4.4.6 are also useful to establish combinations of genotypes and
environments that should be avoided when the interaction is negative, indicating
that a given genotype does not perform well in a given environment. This nega-
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Figure 4.4.6: Bipartite network plot showing the top (in blue) and bottom (in red)
2% GxE interactions and main effects from the AMBARTI model for the Irish
VCU InnoVar data in 2015. We can see that environment 3 has strong positive
and negative interactions with genotypes 12 and 13, respectively.

tive interaction increases the risk of low yield and consequent economic impacts.
Combinations to be avoided exist even for environments and genotypes with high
marginal effects. For instance, the combination of g2, e1 should be avoided even
though g2 and e1 have high marginal effects; see Figures 4.4.4 and 4.4.5. This is
an important information for regulators who may be responsible for a variety’s
commercialisation approval or agents that promote credit or insurance for farmers
given to risks that the negative interaction implies. Farmers who produce a geno-
type not indicated for their environment can end having a worse score or risk. On
the other hand, Figure 4.4.5 is also useful to spot the combinations of genotypes
and environments that should be encouraged once the signal of the interactions is
positive.

In adaptability breeding, the breeder seeks to find the best genotype for a specific
environment or a small set of environments. In broad target strategies, the aim
is to find genotypes that perform well across several environments. For example,
in Figure 4.4.4, g5 has high marginal effect and performs well (and interacts pos-
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itively) with environments e1, e4, e6, e9. Similarly g16, the second best genotype
considering marginal effects, performs well in environments e4, e5, e9, e7. Geno-
types which present better performance across several environments are classified
as high stability genotypes. They tend to be preferred by breeders because they
allow optimisation of processes in the chain of seed production.

4.5 Discussion
We have introduced a new model named additive main effects Bayesian addi-
tive regression trees interaction (AMBARTI). AMBARTI is a cut Bayesian semi-
parametric machine learning approach that estimates main effects of genotypes
and environments and interactions with an adapted regression tree-like structure.
This approach to interactions allows the treatment of more complex structures
than the ones considered by traditional models.

Given the fact that GxE interactions are the result of a tangled myriad of genet-
ics, proteomics, biochemical, environmental, and additional factors, the flexibility
of AMBARTI in dealing with more complex interactions can be seen as an im-
portant improvement in the understanding of the complexities associated to GxE
phenomenon. In practice, the choice between a low-rank model (AMMI) and a
model that is able to deal with a sparse interaction structure (AMBARTI) is a
modelling choice. However, in the real data examples upon we have tested the
models, AMBARTI performed slightly or much better than AMMI, which sug-
gests that a bilinear term is perhaps an oversimplification to study the relations
that arise from GxE interactions. We believe that AMBARTI is a useful candidate
to expand the understanding of experimental data in quantitative genetics.

The main novelty in AMBARTI comes from its semi-parametric structure which
enables the uncertainty to be shared between the main effects and the interaction
trees. More specifically, we design the trees so that they are forced to split on both
a combination of genotypes and a combination of environments. We have shown
in simulation experiments that this yields similar estimates to traditional models
for the marginal effects and superior estimates for the interaction terms, which are
no longer restricted to be linear in a restricted dimensional space. This removes
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4.5. Discussion

the need for, e.g., the arbitrary selection of the Q parameter in a standard AMMI
formulation.

A second novelty is that we have introduced new displays that simultaneously
allow for interpretation of the marginal and joint effects. We have created both a
heatmap and a bipartite network-style plot of the results, which are not limited
for use with an AMBARTI model and could be applied to any suitable model (for
example, AMMI, B-AMMI, etc.) and are a useful tool for deciphering complex
model structures. From these plots, we hope to enable those using the output of
AMBARTI models to make more informative decisions about which genotype and
environments are most compatible.

We believe that there are many possible extensions of the AMBARTI approach.
Other more advanced methods, such as PARAFAC (Basford et al., 1991; Harshman
and Lundy, 1994), are available for higher dimensional interactions, such as with
time. These are different versions of tensor regression (Guhaniyogi et al., 2017)
and, in theory, there is no reason why the AMBARTI approach cannot be used for
higher dimensional tensor-type interactions, though this is not currently possible
in our code. Similar enhancements for multivariate outputs and time-series like-
structure seem promising, and we hope to explore these in future work. Finally,
modelling approaches which do not rely upon the BART model could also be
explored. For instance, the spike-and-slab priors (George and McCulloch, 1997;
Ishwaran and Rao, 2005) commonly used for Bayesian variable selection could
be adapted to identify important GxE interactions. Based on some preliminary
analyses, the results were promising and this a subject of ongoing work.
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Appendix

4.A AMBARTI implementation
In this Section, we detail the AMBARTI model. Firstly, the conditional probability
distribution associated with yij is

yij|xij, µ, gi, ej,Θ ∼ N
(
µ+ gi + ej +

T∑
t=1

h(xij,Mt, Tt), σ2
)
,

where yij denotes the response for genotype i and environment j, Θ = (Mt, Tt, σ2),
µ is the grand mean, xij is the row of the design matrix X associated to observa-
tions with genotype i and environment j, and h(·) = µt` is a function that assigns
the predicted values µt` ∈Mt to observations that belong to Pt`, with Pt` denoting
the set of rules that define the node ` of the tree t. In order to obtain the posterior
distributions needed for the model, we assume the following prior distributions:

µ ∼ N(m = 0, σ2
m),

µt`|Tt ∼ N(0, σ2
µ),

gi|Tt ∼ N(µg = 0, σ2
g),

ej|Tt ∼ N(µe = 0, σ2
e),

σ2
g ∼ IG(ag, bg),

σ2
e ∼ IG(ae, be),

σ2 ∼ IG(ν/2, νλ/2).

The prior distribution on the tree structure depends on the depth and number of
terminal and internal nodes, and is given by

p(Tt) =
∏
`∈SI

[
α(1 + dt`)−β

]
×
∏
`∈ST

[
1− α(1 + dt`)−β

]
,
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4.A. AMBARTI implementation

where SI and ST denote the sets of indices of the internal and terminal nodes,
respectively, and dt` represents the depth of the node ` of the tree t. Furthermore,
let Rt = y −

(
µ+ g + e +∑T

k 6=t h(X; Tk,Mk)
)
denote the vector of the partial

residuals, where g and e are vectors containing the main effects gi and ej for all i
and j. Below, we present the cut full conditional of µ.

p(µ|−) ∝ p(y|gi, ej,xij, σ2)p(µ)

∝ exp
(
− 1

2σ2
m?

(µ− µ?)2
)
,

which is a

N
(∑

i

∑
j(yij − gi − ej)/σ2 +m/σ2

m

n/σ2 + 1/σ2
m

,
1

n/σ2 + 1/σ2
m

)
.

Hence, the cut full conditional of gi is given by

p(gi|−) ∝ p(y|gi, ej,xij, σ2)p(gi)

∝ exp
(
− 1

2σ2
g?

(gi − g?i )
2
)
,

which is a

N
(∑

j [yij − µ− ej] /σ2

ngi/σ
2 + 1/σ2

g

,
1

ngi/σ
2 + 1/σ2

g

)
, (4.11)

where ngi is the number of observations that belong to gi; similarly to nej . Anal-
ogously, the cut full conditional of ej can be written as

p(ej|−) ∝ p(y|gi, ej,xij, σ2)p(ej)

∝ exp
(
− 1

2σ2
e?

(
ej − e?j

)2
)
,

which is a

N
(∑

i [yij − µ− gi] /σ2

nej/σ
2 + 1/σ2

e

,
1

nej/σ
2 + 1/σ2

e

)
. (4.12)

The full conditional of σ2
g is given by

p(σ2
g |−) ∝ p(g|σ2

g)p(σ2
g),
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which is an

IG
(
I

2 + ag,

∑I
i=1 g

2
i

2 + bg

)
.

The full conditional of σ2
e is written as

p(σ2
e |−) ∝ p(e|σ2

e)p(σ2
e),

which is an

IG
(
J

2 + ae,

∑J
j=1 e

2
j

2 + be

)
.

In addition, we present the full conditional of the trees. This distribution is used
to compare the previous tree to the current one, as in BART the splitting rules
are created by randomly selecting a covariate and a split point. Below, we present
the full conditional of Tt as

p(Tt|Rt, σ
2) ∝ p(Tt)

∫
p(Rt|Mt, Tt, σ2)p(Mt|Tt)dMt (4.13)

∝ p(Tt)p(Rt|Tt, σ2)

∝ p(Tt)
bt∏
`=1

( σ2

σ2
µnt` + σ2

)1/2

exp

 σ2
µ

[
nt`R̄`

]2
2σ2(σ2

µnt` + σ2)


 ,

where R̄` = ∑
(i,j)∈Pt`(r

(t)
ij − µ − gi − ej)/nt`, r(t)

ij ∈ Rt and nt` is the number of
observations that belong to Pt`. To sample from this expression, the Metropolis-
Hastings algorithm is used because a closed-form distribution is not obtained in
this case.

As all µt` are i.i.d, it is possible to write p(Mt|Tt,Rt, σ
2) = ∏bt

`=1 p(µt`|Tt,Rt, σ
2).

Similarly to the original BART, the full conditional of µt` in the AMBARTI model
also depends only on the information provided by all trees, except by Tt, via partial
residual as Rt. Hence, the full conditional of µt` can be written as

p(µt`|−) ∝ p(Rt|Mt, Tt, σ2)p(µt`)

∝ exp
(
− 1

2σ2
?

(µt` − µ?t`)
2
)
,
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which is a

N
σ−2∑

(i,j)∈Pt` r
(t)
ij

nt`/σ2 + σ−2
µ

,
1

nt`/σ2 + σ−2
µ

 .
Finally, after generating all predicted values for all trees, σ2 can be updated based
on

p(σ2|−) ∝ p(y|g, e,X,Mt, Tt, σ2)p(σ2)

∝ (σ2)−(n+ν
2 +1) exp

(
−S + νλ

2σ2

)
, (4.14)

where S = ∑I
i=1

∑J
j=1(yij − ŷij)2 and ŷij = µ + gi + ej + ∑T

t=1 h(xij; Tt,Mt). The
expression in (4.14) is an IG((n + ν)/2, (S + νλ)/2). In algorithm 3, the full
structure of the AMBARTI model is presented.

Algorithm 3 AMBARTI model
1: Input: y, X, number of trees T , and number of MCMC iterations M .
2: Initialise: {Tt}T1 and set all hyperparameters of the prior distributions.
3: for (m = 1 to M) do
4: Update the parameters µ, gi and ej.
5: Update the variances σ2

g and σ2
e .

6: for (t = 1 to T ) do
7: Compute Rt = y− g− e−∑T

j 6=t g(X,Mj, Tj).
8: Propose a new tree T ?t by a grow, double grow, prune, double prune,

change, or swap move.
9: Accept the proposed tree with probability

α (Tt, T ?t ) = min
{

1, p(T
?
t |Rt,σ2)q(T ?t →Tt)

p(Tt |Rt,σ2)q(Tt→T ?t )

}
.

10: Sample u ∼ Uniform (0, 1): if α (Tt, T ?t ) < u, set Tt = Tt, otherwise
set Tt = T ?t .

11: Update all node-level parameters µt` for ` = 1, . . . , bt.
12: end for
13: Update σ2.
14: Update the predicted response ŷ.
15: end for
16: Output: samples of the posterior distribution of T .
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4.B Naive and tempered cut algorithms
We performed a simulation experiment to compare the results from the naive and
tempered cut algorithms. We did this because the results in the paper are all
based on the former method. The rationale of the tempered transitions, which
are obtained from the tempered cut algorithm, is instead of moving from, say,
σ2 → σ2′, we move along a linear path in a sequence σ2(c) = cσ2 + (1 − c)σ2′,
where c = (c1, . . . , cm) with ck = k/m. Then, at each step, conditioned on σ2(c), a
sample for T is obtained but only the last one is kept, which becomes T ′ (Plummer,
2015). In this way, the condition in (4.9) is satisfied and approximate samples
from the cut posterior distribution of interest are obtained. Since p (Tt|Rt, σ

2) in
AMBARTI does not have a known distributional form and due to the use of a cut
model to avoid the feedback between the main effects and the BART component,
Plummer (2015) recommend performing tempered transitions for gi, ej and σ2.

We have carried out this comparison to show whether the posterior samples from
p (Tt|Rt, σ

2) differ under each method. Recall that in AMBARTI the following
parameters have closed-form full conditionals: gi (effect of genotype), ej (effect
of environment), µt` (BART predictions), σ2 (residual variance). Thus, to sample
from p (Tt|Rt, σ

2) via the tempered cut algorithm, the transitions from gi → g′i,
ej → e′j and σ2 → σ2′ need to be smooth and cannot lead to large jumps. We
point out that there is no need to adjust the transitions from µt` → µ′t` since these
are marginalised out in p (Tt|Rt, σ

2) as shown in (4.13).

Unlike the other full conditionals in the AMBARTI model, the full conditional for
the trees is used as a mechanism to filter ‘good’ splitting rules only, as opposed to
returning a value from the corresponding posterior distribution. Thus, to examine
the convergence of the trees is not a straightforward task because i) the splitting
rules are randomly selected and, as a consequence, ii) there is not a conventional
MCMC chain of posterior samples to be examined. To illustrate this point, suppose
that we ran AMBARTI more than once and then examined the structure of, say,
T2. The structure/splitting rules of T2 certainly will not be the same across the
runs, especially if the number of covariates is large. This is not necessarily an
issue and happens frequently due to the uniform specification on the splitting
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4.B. Naive and tempered cut algorithms

rules where independent uniform priors are placed on the available covariates and
split values. Conversely, the convergence of the posterior samples of gi, ej and σ2

can be assessed by visualising the posterior density of these parameters along the
line of Figure 4 of Plummer (2015).

Figure 4.2.1 shows some elements of the tree structure that could be used in an
attempt to evaluate the convergence of the trees. Once again we point out that
the predicted values µt` are integrated out from p (Tt|Rt, σ

2). The remaining quan-
tities, which are derived from the tree structure rather than parameters directly
monitored during the MCMC run, are the depth of the tree, the number of ter-
minal nodes (circles), the number of internal nodes (rectangles) and the splitting
rules, which are represented into the internal nodes.

The maximum depth of a binary tree is directly related to the number of nodes in
the tree. In addition, the number of internal nodes in the same type of tree is equal
to number of terminal nodes minus 1. Thus, in an attempt to evaluate the conver-
gence of the trees, it seems reasonable to look at the distribution of the number
of terminal nodes, based on the aforementioned relations. More specifically, we
are interested in empirically evaluating whether the distribution of the number of
terminal nodes changes as the number of steps in the tempered transition increases
for the tempered cut algorithm.

With this in mind, we simulated synthetic data from the AMMI model as it is
the least favourable scenario for the AMBARTI model due to the orthonormality
constraints on the bilinear term. The data were simulated considering I = 10
genotypes, J = 10 environments, Q = 3, λ = (12, 10, 8), and standard errors
σ2 = σ2

g = σ2
e = 1. Furthermore, we have analysed the distribution of the number

of terminal nodes for our case study Innovar data set for 2015. For both synthetic
and real data, we used an increasing number of steps (m = 1, 2, 4, 10, 20, and 40).
We have considered steps greater than 40, but the results were not any different
compared to 40.

Figure 4.B.1 shows the results of the mean number of terminal nodes for the
different number of stepsm in the tempered cut algorithm. In panel (a), the results
are for the simulated data, while in panel (b) they correspond to the Innovar data.
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4.B. Naive and tempered cut algorithms

As we can see, the distribution of the number of terminal nodes in both panels
do not differ between m = 1 (naive cut algorithm) and the other number of steps
(tempered cut algorithm). For instance, in panel (a), we can see that the boxplots
for m = 1, 20 and 40 are similar in terms of the first, second and third quartiles,
which highlights that the tempered transitions have no effect on the topology of
the trees in AMBARTI for these data. In panel (b), the difference between the
results of m = 1 and the others number of steps is negligible. Finally, we have also
noticed that the tempered transitions (with steps greater than 1) have not changed
either the estimates of the additive effects, the estimates of the interactions, the
overall fitted values, or even the posterior prediction intervals.
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Figure 4.B.1: Mean number of terminal nodes in the AMBARTI model with tem-
pered transitions. The numbers of steps used in the tempered cut algorithm are
displayed on the x-axis. The y-axis shows the mean number of terminal nodes
observed after the burn-in period. Each boxplot contains 200 values correspond-
ing to the mean number of terminal nodes in each tree used in the ensemble of
the BART component. In panel (a), the results are shown for the synthetic data
simulated from the AMMI equation. In panel (b), the results are for the Innovar
data for 2015.

Given the similarity of the distributions of the number of terminal nodes under
the naive and tempered cut algorithms for the data considered above, we kept the
results from the naive cut algorithm in the simulation and case study sections.
In practice, the results shown in this Appendix provide elements that indicate
that the condition in (4.9), after an appropriate burn-in period, seems reasonably
attained even under the naive cut algorithm for the AMBARTI model.
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4.C. Orthonormality constraints of the AMMI model

We believe the explanation for the similar results is two-fold. First, the transition
Tt → T ′t for 50% of the moves (i.e., change and swap) in the BART component
have no dependence on the previous tree Tt, since the ratio of the transition kernel
for these moves is 1. Second, the prior on the trees forces them to be shallow and
this is reflected in the low mean number of terminal nodes per tree. Unlike the
cervical cancer example of Plummer (2015) where the Metropolis algorithm is set
up to give acceptance probabilities in a certain range for the (cut) parameter of
interest, in AMBARTI it is not possible to control the acceptance probability rate
of the Metropolis step because the splitting rules are randomly proposed.

Although the tempered/naive cut algorithms produced similar results, we point
out that the number of steps in the tempered transitions needs to be assessed for
the application at hand. In our software, we have added an argument called nsteps
which allows the user to manually specify the number of steps in the tempered
transitions, with the default option being nsteps=1.

4.C Orthonormality constraints of the AMMI
model

We recall that the AMMI model is overparameterised, so constraints need to be
imposed so that the parameters can be estimated (Josse et al., 2014). In this
Section, we show how to apply the orthonormality constraints on γiq and δjq when
simulating from the AMMI model.

Let γ be an I × Q matrix, δ a J × Q matrix, and consider that γiq and δjq are
elements in row i and column q of the corresponding matrices. The following
constraints are considered: i) ∑I

i=1 γiq = ∑J
j=1 δjq = 0, for q = 1, . . . , Q; ii) γ>

γ = δ> δ = Iq, where Iq represents an identity matrix of dimension q; iii) λ1 ≥
λ2 ≥ · · ·λq−1 ≥ λq ≥ 0 and; iv) γ1q ≥ 0, for all q = 1, . . . , Q.

To illustrate our strategy to meet the constraints presented above, we take the γiq
as an example, but this also works for δjq. First, we create S an I × Q matrix,
where siq ∼ N(0, σ2

x = 1). Here, siq could be sampled from other distributions,
such as Gamma or Beta. In addition, we define S̄ as an I × Q matrix with each
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element being the mean of the corresponding q column of S. Hence, we know that

B = S − S̄

⇒ 1>I B = 0

; B>B = I,

where 1I is a column vector of dimension I containing ones, B is, by construction,
a full rank matrix and B>B is symmetric. However, we find a matrix A such that
C = BA⇒ C>C = I. That is, we know that

D = C>C = I

⇒ (BA)>BA = I

⇒ A>B>BA = I

⇒ B>B = A−>A−1

⇒ B>B = (AA>)−1

⇒ (B>B)−1 = AA>

⇒ (B>B)−1 = A2 (by symmetry)

⇒ (B>B)−1/2 = A.

In the end, we have that γ = B(B>B)−1/2.

4.D Visualising the uncertainties of the
parameter estimates in the AMBARTI
model
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(a) 5% quantile

(b) median

Figure 4.D.1: Median and 5% quantiles for predicted yields from the AMBARTI
model for the Irish VCU InnoVar data in 2015. The two parts of the graph allow
us to address the uncertainties associated with the predicted response in yields
described in Figure 4.4.5.
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Figure 4.D.2: 95% quantile for predicted yields from the AMBARTI model for the
Irish VCU InnoVar data in 2015. The graph allow us to address the uncertainties
associated with the predicted response in yields described in Figure 4.4.5.
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(a) 5% quantile

(b) median

Figure 4.D.3: Median and 5% quantile for predicted yields from the AMBARTI
model for the Irish VCU InnoVar data in 2015. The three parts of the graph allow
us to address the uncertainties associated with the GxE interactions and the main
effects obtained by AMBARTI in Figure 4.4.4.
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Figure 4.D.4: 95% quantile for predicted yields from the AMBARTI model for the
Irish VCU InnoVar data in 2015.
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CHAPTER 5
Accounting for shared covariates

in semi-parametric Bayesian
additive regression trees

We propose some extensions to semi-parametric models based on Bayesian additive re-
gression trees (BART). In the semi-parametric BART paradigm, the response variable
is approximated by a linear predictor and a BART model, where the linear component
is responsible for estimating the main effects and BART accounts for non-specified in-
teractions and non-linearities. Previous semi-parametric models based on BART have
assumed that the set of covariates in the linear predictor and the BART model are mu-
tually exclusive in an attempt to avoid poor coverage properties and reduce bias in the
estimates of the parameters in the linear predictor. The main novelty in our approach lies
in the way we change the tree-generation moves in BART to deal with this bias and re-
solve non-identifiability issues between the parametric and non-parametric components,
even when they have covariates in common. This allows us to model complex interactions
involving the covariates of primary interest, both among themselves and with those in the
BART component. Our novel method is developed with a view to analysing data from an
international education assessment, where certain predictors of students’ achievements
in mathematics are of particular interpretational interest. Through additional simula-
tion studies and another application to a well-known benchmark dataset, we also show
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competitive performance when compared to regression models, alternative formulations
of semi-parametric BART, and other tree-based methods. The implementation of the
proposed method is available at https://github.com/ebprado/CSP-BART .

5.1 Introduction
Generalised linear models (GLMs; Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1989) are frequently used in many different applications to predict a uni-
variate response due to the ease of interpretation of the parameter estimates as
well as the wide availability of statistical software that facilitates simple analyses.
A key assumption in GLMs is that the specified covariates in the linear predictor,
including potential interactions and higher-order terms, have a linear relationship
with the expected value of the response variable through a defined link function.

Extensions such as generalised additive models (GAMs; Hastie and Tibshirani,
1990; Wood, 2017) require the specification of the main and interaction effects via
a sum of (potentially non-linear) predictors. In GAMs, the non-linear relationships
are usually captured via basis expansions of the covariates and constrained by
a smoothing parameter. However, in problems where the numbers of covariates
and/or observations are large, it may not be simple to specify the covariates and the
interactions that impact most on the response. Semi-parametric models (Harezlak
et al., 2018) have been proposed for situations where a mixture of linear and non-
linear trends, as well as interactions, are required for accurately fitting the data
at hand.

Semi-parametric Bayesian additive regression tree (BART) models (Chipman et al.,
2010; Zeldow et al., 2019; Tan and Roy, 2019; Hahn et al., 2020; Deshpande et al.,
2020) are black-box type algorithms which aim to tackle some of the key limita-
tions often encountered when using GLMs to analyse datasets with a large number
of covariates. Most commonly, they are used when there is interest in quantifying
the relationships between covariates and the response. It is well-known that tree-
based algorithms, such as BART and random forests (Breiman, 2001), are flexible
and can produce more accurate predictions, as they remove the often restrictive as-
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sumption of linearity between the covariates and the response. However, prediction
is not the most important aspect in many situations (e.g., Hill, 2011; Zeldow et al.,
2019; Hahn et al., 2020). Instead, knowing how covariates impact the response is
crucial; but this quantification is not easily interpretable with the standard BART
model or random forests. Thus, the main appeal of semi-parametric BART models
is that they allow us to look inside the black-box and provide interpretations for
how some key inputs of primary interest are converted into outputs.

Besides the estimation of main effects, another common use of regression mod-
els is to measure the effects that combinations of covariates may have on the
response. However, most standard GLM settings require pre-specification of in-
teraction terms, which is a complicated task with high-dimensional data. As
semi-parametric BART models account for non-specified interactions automati-
cally, they would appear to be an ideal solution to this problem.

Motivated by data collected in 2019 under the seventh cycle of the quadrennial
Trends in International Mathematics and Science Study (TIMSS; Mullis et al.,
2020; Fishbein et al., 2021), we extend the semi-parametric BART model intro-
duced by Zeldow et al. (2019), which we henceforth refer to as separated semi-
parametric BART (SSP-BART) for clarity. TIMSS is an international assessment
which evaluates students’ performance in mathematics and science at different
grade levels across several countries. A large number of features pertaining to
students, teachers, and schools are recorded. We aim to quantify the impact of
a small number covariates of primary interpretational interest (i.e., parents’ ed-
ucation level, minutes spent on homework, and school discipline problems) on
students’ performance in mathematics, in the presence of other covariates of non-
primary interest.

In the previously proposed SSP-BART, the design matrix is split into two disjoint
subsets X1 and X2, which contain covariates of primary and non-primary interest,
respectively. The specification of these matrices should be guided by the applica-
tion at hand. The covariates in X1 are of interest in terms of being interpretable,
but their impact on the response is also relevant. The covariates of non-primary
interest in X2 may still be strongly related to the response, but are not considered
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important in terms of interpretation. The primary covariates in X1 are specified
in a linear predictor and the others are exclusively used by BART; i.e., covariates
in X2 are the only ones allowed to form interactions. SSP-BART applied to the
TIMSS data would thus prohibit interactions between (or involving) the aforemen-
tioned primary covariates. This omission of important interactions represents a
major limitation of SSP-BART, given that handling interactions automatically is
supposedly part of its appeal.

Our work differs from SSP-BART in that i) we do not assume that X1 and X2

are disjoint; i.e., we allow {X1 ∩ X2} 6= ∅, or even X1 ⊂ X2. This is important
because primary and non-primary covariates may also interact in complex ways
and further impact the response. Unlike SSP-BART, the BART component of our
model accounts for this, which yields better trees and notably improved predictive
performance on the TIMSS data. Moreover, ii) we change the way the trees in
BART are grown by introducing ‘double grow’ and ‘double prune’ moves, along
with stricter checks on tree-structure validity, to resolve non-identifiability issues
between the parametric (linear) and non-parametric (BART) components. Finally,
iii) while Zeldow et al. (2019) assume that all parameters in the linear predictor
have the same (diffuse) variance a priori, we instead place a hyperprior on the full
hyper-covariance matrix of the main effects, so that we are better able to model
the correlations among them.

Thus, within the semi-parametric BART paradigm, we make a distinction between
SSP-BART and our combined semi-parametric BART, which we call CSP-BART.
In CSP-BART, we have made fundamental structural changes to the way that the
trees are grown due to the fact that X1 and X2 can have covariates in common.
Specifically, we prohibit the BART component from estimating marginal effects
for variables in X1 in order to ensure that the parameter estimates in the linear
component are identifiable. We also allow the specification of both fixed and
random effects in the linear predictor, as in a linear mixed model, in which the
parameter estimates can vary by a grouping factor. In contrast, interactions and
non-linearities are handled by the BART component.

Beyond our proposed extensions to SSP-BART, another related work in this area is
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the varying coefficient BART (VCBART; Deshpande et al., 2020), which combines
the idea of varying-coefficient models (Hastie and Tibshirani, 1993) with BART
and extends the work of Hahn et al. (2020) to a framework with multiple covariates.
In VCBART, the response is modelled via a linear predictor where the effect of
each covariate is approximated by a BART model based on a set of modifiers (i.e.,
covariates that are not of primary interest). The only similarity between VCBART
and CSP-BART is the use of a linear predictor along with BART. However, our
work is structurally different as we do not estimate the parameters in the linear
predictor via BART. Instead, they are obtained in the same fashion as a Bayesian
linear mixed model approach, so as to yield interpretable and unbiased coefficient
estimates.

We show using standard performance metrics that VCBART, SSP-BART, and
GAMs compare unfavourably to CSP-BART in two simulation studies, our anal-
ysis of the TIMSS data, and another application setting. In the simulation exper-
iments, we compare CSP-BART with its main competitors and show its ability
to recover the true effects in either the presence or absence of interactions. The
additional application to the well-known Pima Indians Diabetes dataset (Blake,
1998) is presented to demonstrate the practical use of CSP-BART in classification
rather than regression settings. Here, the goal is to determine whether or not
a patient has diabetes based on eight covariates, with special interest in study-
ing the effects of age and glucose through a linear predictor along with possible
non-specified complex interactions involving age, glucose, and/or the other six
covariates accounted for by BART.

The remainder of this paper is organised as follows. In Section 5.2, we summarise
the BART model and introduce relevant notation. In Section 5.3, we revise the
separated semi-parametric BART model and describe in detail our proposed exten-
sions to CSP-BART. In Section 5.4, we compare the performance of CSP-BART
with other relevant algorithms on synthetic data. We analyse the TIMSS dataset
and explore the additional real-world application in Section 5.5. To conclude, we
present a discussion in Section 5.6.
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5.2 BART
BART (Chipman et al., 2010) is a Bayesian statistical model based on an ensemble
of trees that was first proposed in the context of regression and classification
problems. Through an iterative Bayesian backfitting MCMC algorithm, BART
sequentially generates a set of trees that, when summed together, return predicted
values. A branching process prior is placed on the tree structure to control the
depth of the trees. In addition, the covariates and split-points used to define the
tree structure (i.e., splitting rules) are randomly selected without the optimisation
of a loss function, such as in random forests (Breiman, 2001) and gradient boosting
(Friedman, 2001). Compared to regression models, BART is more flexible in the
sense that it does not assume linearity between the covariates and the response
and does not require the specification of a linear predictor. In particular, BART
automatically determines non-linear main effects and multi-way interaction effects.

BART has been used and extended to different applications, and its theoretical
properties have also gained attention more recently. For instance, BART has been
applied to credit risk modelling (Zhang and Härdle, 2010), survival/competing
analysis (Sparapani et al., 2016, 2019; Linero et al., 2021), biomarker discovery
(Hernández et al., 2015), plant-based genetics (Sarti et al., 2023), and causal in-
ference (Hill, 2011; Green and Kern, 2012; Hahn et al., 2020). Furthermore, it
has also been extended to high-dimensional data (Linero, 2018; Hernández et al.,
2018), polychotomous responses (Kindo et al., 2016b; Murray, 2021), zero-inflated
and semi-continuous data (Murray, 2021; Linero et al., 2020), heteroscedastic data
(Pratola et al., 2020), and to estimate linear, smooth, and monotone functions
(Starling et al., 2020; Prado et al., 2021; Chipman et al., 2021). Regarding theo-
retical developments, we highlight the works of Ročková and van der Pas (2020),
Ročková and Saha (2019), and Linero and Yang (2018), who provide results related
to the convergence of the posterior distribution generated by the BART model.
Finally, we note that BART has also been previously employed in education as-
sessment settings (Suk et al., 2021), similar to the TIMSS application we analyse
herein.

In the standard BART model, a univariate response {yi}ni=1 is approximated by a
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sum of trees, with

yi | xi,M, T , σ2 ∼ N
(

T∑
t=1

g (xi,Mt, Tt) , σ2
)
,

where N(·) denotes the Normal distribution, σ2 is the error variance, g(·) = µt` is a
function which assigns predicted values µt` to all observations falling into terminal
node ` of tree t, xi denotes the i-th row of the design matrix X, Tt represents the
topology of tree t, and Mt = (µt1, . . . , µtbt) is a vector comprising the predicted
values from the bt terminal nodes of tree t. For notational convenience, we let
T = (T1, . . . , TT ) and M = (M1, . . . ,MT ) denote the sets of all trees and all
predicted values, respectively. Regarding the number of trees T , Chipman et al.
(2010) recommend T = 200 as a default, though they suggest that T can also be
selected by cross-validation, depending on the application.

Unlike other tree-based algorithms where a loss function is minimised to define the
splitting rules in the growing process, in BART the splitting rules are uniformly
defined (i.e., the covariates and their split-points are selected at random based
on a uniform distribution). In addition, the BART model learns the structure of
the trees by greedy modifications consisting of four moves: grow, prune, change,
and swap (see Figure 5.2.1). For instance, in the grow move, a terminal node is
randomly selected and two new terminal nodes are created below it. During a
prune move, a parent of two terminal nodes is picked at random and its children
are removed. In the change move, an internal node is randomly selected and its
splitting rule is changed. Finally, in the swap move, the splitting rules associated
with a pair of parent-child internal nodes are exchanged, with the pair being
selected at random.

As a Bayesian model, BART places priors on the parameters of interest, assuming
that σ2 ∼ IG(ν/2, νλ/2) and µt` ∼ N(0, σ2

µ), where IG(·) represents the inverse
gamma distribution and σµ = 0.5/(k

√
T ), with k ∈ [1, 3] such that each terminal

node in each tree contributes only a small amount to the overall fit. In addition, a
branching process prior is considered to control the depth of the trees. With this
prior, each internal node `′ is observed at depth dt`′ with probability η(1 + dt`′)−ζ ,
where η ∈ (0, 1) and ζ ≥ 0. Chipman et al. (2010) recommend η = 2 and ζ = 0.95,
which tends to favour shallow trees.
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(a) T (1)
1

x2 < 1

x1 < 0.5

µ11 µ12

µ13

TRUE

TRUE FALSE

FALSE

(b) T (2)
1

x2 < 1

x1 < 0.5

µ11 µ12

x3 < 2

µ13 µ14

(c) T (3)
1

x2 < 1

x1 < 0.5

µ11 µ12

x4 < 0.75

µ13 µ14

(d) T (4)
1

x1 < 0.5

x2 < 1

µ11 µ12

x4 < 0.75

µ13 µ14

Figure 5.2.1: An example of a tree generated from BART in 4 different instances.
In principle, BART does not generate only one tree but rather a set of trees which,
summed together, are responsible for the final prediction. As indicated in panel
(a), observations are pushed to the left child node when the splitting criterion is
satisfied. The tree is represented as T (r)

1 , where r = 1, 2, 3, 4 denotes the number
of the iteration in which the tree is updated. The splitting rules (covariates and
their split-points) are presented in the internal nodes (rectangles). The predicted
values µt` are shown inside the terminal nodes (circles). T (1)

1 illustrates the tree
at iteration one with two internal nodes and three terminal nodes. From T (1)

1 to
T (2)

1 , the grow move is illustrated, as µ13 in T (1)
1 is split into µ13 and µ14 in T (2)

1
by using x3 < 2. In addition, the prune move can be seen when T (2)

1 reverts to
T (1)

1 . The change move is shown when comparing T (2)
1 and T (3)

1 , as the splitting
rule that defines µ13 and µ14 is changed from x3 < 2 to x4 < 0.75. Finally, the
swap move is illustrated in the comparison of T (3)

1 and T (4)
1 .

Fitting and inference for BART models is accomplished via MCMC (Brooks et al.,
2011). It is common to begin with all trees set as stumps and to initially only
grow trees with high posterior probability. Thereafter, each tree is updated in
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turn by proposing a potential grow, prune, change, or swap move, whereby the
type of move is chosen at random. Each modified tree is compared to its previous
version considering the partial residuals Rt = y − ∑T

j 6=t g (X,Mj, Tj) and the
structure of both trees via a marginal likelihood calculation. This comparison is
carried out via a Metropolis-Hastings step, and it is needed to select only splitting
rules that improve the final prediction, since they are chosen based on a uniform
distribution. Hence, all node-level parameters (µt`) are generated. After doing
this for all T trees, the error variance (σ2) is updated from its full conditional
distribution. This entire scheme is then iteratively repeated. The BART algorithm
is practically implemented in the R packages bartMachine (Kapelner and Bleich,
2016), dbarts (Dorie, 2020), and BART (McCulloch et al., 2020).

5.3 Semi-parametric BART
The BART model above does not provide an easy way to quantify the effects
of covariates on the response as in regression models, which is often the main
goal in many applications. The semi-parametric BART framework aims to over-
come this by adding a parametric linear component to the additive ensemble of
non-parametric trees. We note that linear predictors and BART have also been
previously combined by Prado et al. (2021), albeit in a different way. There, linear
predictors are used at the terminal node level of each tree, with a focus more on
prediction accuracy than interpretability. In this Section, we first revise briefly the
SSP-BART of Zeldow et al. (2019) in Section 5.3.1 and then outline in detail our
proposed extensions in the form of CSP-BART in Sections 5.3.2 and 5.3.3.

5.3.1 Separated semi-parametric BART
In the separated semi-parametric BART proposed by Zeldow et al. (2019), the
design matrix X is split into two subsets, X1 and X2, with p1 and p2 columns,
respectively. The matrix X1 contains covariates that should be included in a linear
component to quantify the main effects and the X2 matrix contains covariates that
might contribute to predicting the response but are not of primary interest. The
linear predictor inside the BART framework is written as follows:

yi | x1i,x2i,β,M, T , σ2 ∼ N
(

x1iβ +
T∑
t=1

g (x2i,Mt, Tt) , σ2
)
. (5.1)
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Furthermore, X1 and X2 are assumed to be mutually exclusive, such that X1 ∩
X2 = ∅, with p2 large enough to ensure a BART model is feasible and relatively
few columns in X1; i.e., p1 � p2, typically. As above, the ensemble of trees used
by BART is learned by the four standard grow, prune, change, and swap moves.

The priors β ∼ MVN(0p1 , σ
2
b Ip1) and σ2 ∼ IG(ν/2, νλ/2) are assumed for the

linear regression coefficients and error variance, respectively, where MVN(·) rep-
resents the multivariate normal distribution, 0p1 and Ip1 respectively denote a
p1-dimensional vector of zeros and identity matrix, and ν, λ, and σ2

b are user-
specified hyperparameters. Typically, σ2

b is set large enough so that the prior on
β is diffuse. Notably, the isotropic covariance structure σ2

b Ip1 assumed by Zeldow
et al. (2019) implies that i) all covariates in X1 have the same magnitude, which
can easily be accomplished by appropriate transformations, and ii) covariates in
X1 are uncorrelated, which may be unrealistic for many real-world applications.

5.3.2 Combined semi-parametric BART
In CSP-BART, we similarly allow for modelling covariates of primary and non-
primary interest. Unlike SSP-BART, however, we consider that X1 and X2 may
have covariates in common. This change is crucial as it allows primary covariates
to interact both among themselves and with those in X2. Moreover, we change the
tree-generation process in BART by introducing ‘double grow’ and ‘double prune’
moves to account for identifiability issues that may arise between the estimates
from the linear and BART components. In CSP-BART, a univariate response
yi is modelled in accordance with equation (5.1), along with the following prior
distributions:

β ∼ MVN (b,Ωβ) ,

Ωβ ∼ IW (V, v) ,

σ2 ∼ IG (ν/2, νλ/2) ,

where IW(·) represents the inverse Wishart distribution. We specify V = Ip1 and
v = p1, while ν = 3 and λ are chosen following Chipman et al. (2010). While
the previous prior on β used in SSP-BART assumes that coefficients in the linear
predictor are uncorrelated and equivariant, this assumption is sensible only when
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the covariates in X1 are standardised appropriately. Conversely, our hierarchical
prior on β allows us to explicitly model correlation among the predictors in X1 (see
Section 5.3.3). As an aside, the covariates in X2 need not be standardised under
either CSP-BART or SSP-BART, as the splitting rules in BART are invariant
under monotone transformations. Following Chipman et al. (2010); Linero (2018),
we recommend transforming only the response to lie between −0.5 and 0.5 to
facilitate specification of the prior on µt` and improve numerical stability.

To allow for X1 and X2 sharing covariates, we propose to change the moves of
the BART model in order to resolve non-identifiability issues between the linear
component and BART. Thus, if X1 ∩X2 6= ∅, we propose a ‘double grow’ move
only when x ∈ {X1 ∩ X2} is chosen to define a splitting rule for a stump. For
example, if T1 is a stump and x1 ∈ {X1 ∩X2} is chosen to define a splitting rule,
then another covariate, e.g., x2, which can belong either to X1, X2, or X1∩X2, will
also be chosen and the proposed tree will have at least x1 and x2 in its structure.
If T1 is a stump and x1 /∈ {X1∩X2} is chosen to define a splitting rule, a standard
‘single’ grow move is employed. The rationale behind double-growing is thus to
induce interactions between covariates in X1 and others in either X1 or X2, and let
only the linear component capture the main effects associated with the covariates
in X1. With a single grow move, both components would try to estimate the
effects of covariates in X1 whenever X1 and X2 have at least one covariate in
common, which would lead to non-identifiability issues. However, the double grow
move allows the linear component to estimate the main effects and forces BART
to work specifically on interactions and non-linearities.

The ‘double prune’ move is proposed to prevent trees from containing only one
covariate which belongs to X1 ∩ X2. To illustrate this move, we recall Figure
5.2.1. In panel (a), the tree has 3 terminal nodes (circles) and 2 internal nodes
(rectangles). If the parent of terminal nodes µ11 and µ12 is ‘single’ pruned, the
new tree will have only x2 in its structure. If x2 /∈ {X1 ∩ X2}, which implies
that x2 ∈ X2, there will be no identifiability issues between the components in
CSP-BART. However, if x2 ∈ {X1 ∩ X2}, the effect of x2 will be estimated by
both the linear predictor and BART. To avoid this issue, we prune the tree again.
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Despite these double moves, non-identifiability issues may still arise in three cases:
i) when categorical variables with more than two levels in X1 are used to define
splitting rules in the BART component, ii) when an intercept is specified in X1,
and iii) when any terminal node is associated with splitting rules, at any depth,
which all involve only one covariate belonging to X1 ∩X2. The first issue is easily
remedied by automatically rejecting proposed trees containing branches defined
only by repeated splits on the same categorical variable in X1. Given that this
further prevents the BART component from estimating marginal effects associated
with categorical variables of primary interest, it is especially pertinent for the
TIMSS application where the covariates in X1 are all categorical. To remedy the
second issue, we stress that X1 should not be equipped with a leading column of
ones corresponding to an intercept. Doing so would conflate the linear component’s
constant with the constant node-level µt` parameters in the BART component.
Accordingly, our removal of the intercept circumvents the need to impose the
constraint E

(∑T
t=1 g (x2i,Mt, Tt)

)
= 0.

To illustrate the third issue, we recall Figure 5.2.1 and assume that x2 ∈ {X1∩X2}.
In panel (a), T (1)

1 represents a tree with two predictors (x2 and x1) in its structure,
where x1 can belong to either X1, X2, or X1 ∩X2. For simplicity, imagine that
T (1)

1 was generated by a double grow move applied to a stump, where x2 and x1

were randomly selected to create the splitting rules. The two left-most terminal
nodes have µ11 and µ12 as predicted values, with splitting rules defined by x1 and
x2. However, the right-most terminal node, with predicted value µ13, has only
x2 as its ancestor, which causes non-identifiability issues between the linear and
BART components, since x2 ∈ {X1 ∩X2}. We avoid such issues by modifying the
prior on the relevant predicted value to µt` ∼ N(0, σ2

µ ≈ 0), which in turn shrinks
the posterior predicted value towards zero. The prior on the other terminal nodes
(µ11 and µ12 in the present example) would remain unchanged.

Regarding the change and swap moves, we stress that they are kept intact as
‘single’ moves in CSP-BART. Equivalent ‘double change’ and ‘double swap’ moves
are not required to deal with non-identifiability issues that may arise between the
linear and BART components. However, more stringent checks are placed on the
validity of trees proposed by these moves. In particular, change and swap moves
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are iteratively proposed until a valid tree structure is found; i.e., one which ensures
the parameters in the linear component are identifiable, with a minimum number
of observations in each terminal node. If a valid tree is not found in some small
number of iterations, a stump is proposed instead. In the end, proposed trees
are always accepted or rejected according to a Metropolis-Hastings step, as in the
standard BART model.

Overall, our proposals outlined above can be interpreted as an adjustment to the
prior over the set of possible tree structures; effectively, a prior probability of
zero is placed on invalid trees. The combined effect of our proposals is to ensure
that main effects of primary interest are strictly isolated in the identifiable linear
component, while interactions and non-linearities are strictly confined to the BART
component.

Equations (5.2)–(5.4) below present the respective full conditional distributions
for β, Ωβ, and σ2. These expressions are needed due to the inclusion of the linear
predictor in the CSP-BART model; see Appendix 5.A for full details. An outline
algorithm for the process is given by:

i) Update the linear predictor, with r = y−∑T
t=1 g (X2,Mt, Tt), via

β |X1, r, σ2,b,Ωβ ∼ MVN
(
µβ = Σβ

(
σ−2X>1 r + Ω−1

β b
)
, (5.2)

Σβ =
(
σ−2X>1 X1 + Ω−1

β

)−1
)
,

Ωβ | β,b,V, v ∼ IW
(
(β − b) (β − b)> + V, v + 1

)
. (5.3)

ii) Then, sequentially update all T trees, one at a time, via

Rt = y−X1β −
T∑
j 6=t

g (X2,Mj, Tj) .

iii) Finally, update

σ2 ∼ IG
(
n+ ν

2 ,
S + νλ

2

)
, (5.4)

where S = (y− ŷ)> (y− ŷ) and ŷ = X1β +∑T
t=1 g (X2,Mt, Tt).
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In Step i), the linear predictor’s parameter estimates and covariance matrix are
updated, taking into account the difference between the response and the predic-
tions from all trees. In Step ii), each tree t is modified considering the updated
parameter estimates β. Finally, the error variance is updated in Step iii).

The main benefits of our approach are i) ease of implementation, relative to GLMs
and GAMs, as we can model interactions and non-linearities without requiring
pre-specification, ii) improved predictive performance relative to other tree-based
methods, and iii) reduced bias relative to other semi-parametric BART models.
Regarding computational cost, CSP-BART adds negligible time overhead to the
standard BART model, especially if the number of columns in X1 is moderate.
The computational cost of CSP-BART is also comparable to that of SSP-BART,
as our novel double moves are not computationally intensive.

5.3.3 Incorporating random effects in CSP-BART
Although we have introduced CSP-BART considering only fixed effects, it is
straightforward to extend it to a setting with additional random effects, whereby
primary covariates are conditioned on categorical predictors. This yields

yi | x1i, zi,x2i,β,γ,M, T , σ2 ∼ N
(

x1iβ + ziγ +
T∑
t=1

g (x2i,Mt, Tt) , σ2
)
,

where γ is the q-dimensional random effects vector with associated design matrix
Z. Conceptually, all effects are random under the Bayesian paradigm, but we use
the terms ‘fixed’ and ‘random’ to distinguish between β and γ nonetheless.

To fit such a model, we define β? = (β,γ)> and x?1i = (x1i, zi). With β ∼
MVN(b,Ωβ) as above, and a MVN(0q,Ωγ) prior assumed for γ, a block-diagonal
covariance matrix Ωβ? is obtained in the induced prior for β?, which implies that
β and γ are correlated among themselves but not with each other. We relax this
assumption by letting b? = (b,0q)> and assuming β? ∼ MVN(b?,Ωβ?), where
now Ωβ? ∼ IW(V?, v?). Subject to β = β?, X1 = X?

1, and Ωβ = Ωβ? , both
prior settings allow direct application of the model-fitting algorithm outlined in
Section 5.3.2. Notably, only the Ωβ? matrix under the latter approach accounts
for potential correlations between the fixed and random effects, while the isotropic
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prior employed by Zeldow et al. (2019) under the SSP-BART framework would not.
As ever, SSP-BART would also be unable capture interactions involving random
effects in X1 and other covariates of non-primary interest in X2.

In our implementation5, we adapt the mixed-model formula from the lme4 (Bates
et al., 2015) package, so that the linear fixed and random effects can be easily
specified through a formula (e.g., y ∼ 0 + x1 + (x2 | x3), where y denotes a
univariate response, 0 ensures that no intercept is included, x1 and x2 represent
continuous covariates, and x3 is a factor with multiple levels; see Table 2 in Bates
et al. (2015) for more examples). When specifying the linear predictor, the user
needs only to supply the main fixed and random effects, as any interactions among
covariates of primary interest are also determined automatically by BART. Finally,
we note that polynomial effects, if any are of primary interpretational interest,
should also be specified in the linear predictor only, as splitting rules based on x1

or x3
1, for example, would yield equivalent trees, and it would be necessary to avoid

trees whose only splits involve both x1 and monotonic transformations thereof.

5.4 Simulation experiments
In this Section, we compare our novel CSP-BART with GAMs, SSP-BART, and
VCBART in terms of bias (i.e., the difference between the posterior mean param-
eter estimates and the true parameter values) using two sets of synthetic data.
The results were obtained using R (R Core Team, 2020) version 4.11 and the R
packages mgcv (Wood, 2017), semibart (Zeldow et al., 2019), and VCBART (Desh-
pande et al., 2020). For CSP-BART and SSP-BART, we use T = 50 trees, 2,000
MCMC iterations as burn-in, and 2,000 as post-burn-in. We use the default argu-
ments of the mgcv and VCBART packages, with the exception of intercept=FALSE
being specified for VCBART for the sake of comparability with CSP-BART and SSP-
BART. We note that the GAM is the only non-Bayesian method among the set
of comparators. As GAMs require explicit specification of terms to be included
in the linear predictor, we supply the true structure used to simulate the data in
both experiments. This gives GAMs an unfair advantage over the other methods,
but does provide a baseline that the BART-based methods can aim for.

5Available at https://github.com/ebprado/CSP-BART.
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5.4.1 Friedman dataset
In this first scenario, we consider the Friedman equation (Friedman, 1991):

yi = 10 sin (πxi1xi2) + 20 (xi3 − 0.5)2 + 10xi4 + 5xi5 + εi, i = 1, . . . , n,

where x.j ∼ Uniform(0, 1) ∀ j = 1, . . . , p and εi ∼ N(0, σ2). This equation is used
for benchmarking tree-based methods using synthetic data, and has been used in
many other papers, e.g., Chipman et al. (2010); Linero (2018); Deshpande et al.
(2020). In this experiment, we set n = 1000, p = (10, 50), and σ2 = (1, 10),
totalling four scenarios. To evaluate model performance, we use the bias of the
parameter estimates as the accuracy measure, across 50 replicates of the data-
generation process. As the Friedman equation uses only 5 covariates to generate
the response, the additional x.j are noise, and have no impact on yi. In this
simulation, we aim to estimate the p1 = 2 linear effects associated with x4 and x5

(denoted by β4 = 10 and β5 = 5, respectively) using the linear predictor, i.e., we
set up X1 so that it contains only x4 and x5. In contrast, we let BART take care
of the non-linear and interaction effects by setting X2 to contain all p covariates
(including x4 and x5).

Figure 5.4.1 shows the results of bias exhibited by GAMs, SSP-BART, VCBART,
and the novel CSP-BART for each combination of p and σ2. As GAMs require all
terms that are estimated by the model to be specified, we supply the true structure
of the Friedman equation so that it can be used as a reference in the comparison.
The CSP-BART and SSP-BART estimates are notably similar. We can see that
the bias of the parameter estimates is low and both recover the true effects in all
four scenarios. This is expected and can be attributed to the fact that x4 and x5

do not interact with other covariates. Consequently, the trees in CSP-BART tend
not to contain x4 and x5 as both effects are captured solely by the linear predictor.
We note also that VCBART presents larger bias for both β4 and β5 in all but one
scenario. As VCBART estimates β4 and β5 using BART models that employ a set
of effect modifiers (i.e., all covariates of non-primary interest), the results shown in
Figure 5.4.1 are unsurprising since, in this example, β4 and β5 depend exclusively
on x4 and x5, respectively.
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Figure 5.4.1: Boxplots of simulation results obtained across 50 replicate datasets
generated according to the Friedman equation, considering n = 1000, p = (10, 50),
and σ2 = (1, 10). The y-axis exhibits the bias related to the parameter estimates
β̂4 and β̂5 for GAM, SSP-BART, VCBART, and the novel CSP-BART. Recall that
the GAM has been given the true model structure so its superior performance is
expected.

5.4.2 Estimating main effects in the presence of
interactions

In the scenario above, we have shown that the novel CSP-BART correctly esti-
mates the main effects when they do not have any interactions with other effects.
However, in practice, the covariates of primary interest may interact, either among
themselves or with other effects, which should be taken into account. In this sense,
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the simulation setting which follows is likely to better reflect the nature of the
TIMSS data (see Section 5.5.1) and other real-world applications.

In this scenario, we compare the methods using the regression function

yi = 10xi1 − 5xi2 + (T1 | xi) + εi, i = 1, . . . , n, (5.5)

where x.j ∼ Uniform(0, 1) ∀ j = 1, . . . , p and εi ∼ N(0, σ2), as before, and T1 | xi
represents the tree structure shown in Figure 5.4.2. As per Section 5.4.1, we
consider n = 1000, p = (10, 50), and σ2 = (1, 10), where the additional covariates
have no impact on the response. We are now interested in estimating the effects
associated with x1 and x2 (denoted by β1 = 10 and β2 = −5, respectively). This
is achievable under CSP-BART by specifying X1 to contain only x1 and x2 and
X2 to contain all p covariates, including x1 and x2.

x1 < 0.5

x2 < 0.5

4 −7

x3 < 0.5

3 −8

Figure 5.4.2: An illustration of the tree structure used to generate the response via
(5.5). In if-else format this can be written as T1 | xi = f(xi1, xi2, xi3) = 41(xi1 <
0.5) × 1(xi2 < 0.5) − 71(xi1 < 0.5) × 1(xi2 ≥ 0.5) + 31(xi1 ≥ 0.5) × 1(xi3 <
0.5)−81(xi1 ≥ 0.5)×1(xi3 ≥ 0.5), where 1(·) denotes the indicator function. Note
that the tree splits on both primary (x1 and x2) and non-primary (x3) covariates.

Figure 5.4.3 shows the bias in the estimates of β1 and β2. While CSP-BART
estimates both parameters with low bias, regardless of p and/or σ2, SSP-BART
gives large bias for β1 and even more pronounced bias for β2 in all scenarios. These
biases occur as x1 and x2 are not available to the BART component of SSP-BART.
We conjecture that β2 exhibits greater bias than β1 because x2 appears at a lower
depth than x1 in Figure 5.4.2; i.e., in closer proximity to terminal nodes. This
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5.4. Simulation experiments

notion is supported by further experiments, conducted but not shown here, in
which alternative tree structures with varying depth levels for x2 were used.
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Figure 5.4.3: Boxplots of the simulation results obtained across 50 replicate
datasets generated according to equation (5.5), considering n = 1000, p = (10, 50),
and σ2 = (1, 10). The y-axis exhibits the bias related to the parameter estimates
β̂1 and β̂2 for GAM, SSP-BART, VCBART, and the novel CSP-BART. Recall that
the GAM has been given the true model structure so its superior performance is
expected.

Furthermore, it can be seen that VCBART and CSP-BART provide similar bias
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for both parameters, and match well with the baseline GAM model to which the
true structure is supplied, as it is unable to capture non-specified interactions.
However, it is worth recalling that VCBART uses a BART model to estimate each
parameter in the linear predictor. For these data, VCBART uses 50 × 2 = 100
trees in total to estimate β1 and β2, as the VCBART package uses 50 trees for each
parameter, by default. In this sense, the greater the number of parameters to be
estimated in the linear predictor, the more computationally intensive VCBART
becomes, since the total number of trees used to estimate all covariate effects is
a function of the number of covariates in the linear predictor and the number of
trees used to approximate each effect.

5.5 Results on real data
We now turn to the analysis of the Trends in International Mathematics and
Science Study (TIMSS) dataset in Section 5.5.1, which initially motivated the de-
velopment of CSP-BART and offers a large and challenging test of the model. We
then demonstrate the use of CSP-BART in a classification rather than regression
setting via an additional, smaller application to a well-known benchmark dataset
in Section 5.5.2. SSP-BART and other previously proposed tree-based methods
are used as comparators throughout.

5.5.1 TIMSS 2019
TIMSS is an international series of assessments which takes place every four years.
The TIMSS 2019 dataset records students’ achievements in mathematics and sci-
ence at the fourth and eighth grade levels in 64 countries (Mullis et al., 2020;
Fishbein et al., 2021), along with information sourced from surveys of students,
teachers, and school principals. Here, we are specifically interested in quantifying
the impact of some covariates on students’ mathematics scores (variable ‘BSM-
MAT01’). In our analysis, we only consider data from Ireland (where mathematics
is a compulsory subject) pertaining to students at the eighth grade level, compris-
ing 4,118 observations. As the TIMSS data were originally split by the sources of
information, some data manipulation was required. During the data wrangling,
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5.5. Results on real data

covariates with a high level of missing values were discarded entirely, in order to
avoid the use of imputation methods and keep as many observations as possible.

We selected three covariates of primary interpretational interest as candidates for
inclusion in the linear predictor via the X1 matrix for this application. Notably,
all three are categorical variables: ‘school discipline problems’ (3 levels), ‘parents’
education level’ (6 levels), and ‘minutes spent on homework’ (6 levels). Our in-
terest in these covariates follows work in the applied literature which shows that
student’s achievement is influenced by these factors. For instance, a previous in-
vestigation into the relation between students’ performance in mathematics and
various student-level and school-level factors using data from various countries
gathered under the third cycle of TIMSS identified significant effects due to family
background and time spent on academic activities (Martin et al., 2000).

These three factors as well as a number of others, such as the gender of the student,
an index of the wealth of the school and its surrounding area, and a measure of the
resources available for learning at home, have also been shown to be strongly re-
lated with the outcome in similar international education studies (Mohammadpour
et al., 2015; Grilli et al., 2016). In order to identify additional predictors among
those available in the present application for inclusion in the BART component,
we apply a BART model to the complete cases of the aforementioned screened
dataset. Reassuringly, we note that the p1 = 3 covariates above are among the 20
most-used covariates under such a model. The remaining p2 = 17 covariates, which
may help to improve prediction but are not of primary interpretational interest,
are specified in the X2 matrix. Full details of the chosen covariates are provided
in Table B.1 in Appendix 5.B. In what follows, n = 3224 complete cases remain
when only these 20 covariates are considered and the selected primary covariates
are also shared with X2 when fitting the CSP-BART model but excluded from X2

under SSP-BART.

Initially, we compare CSP-BART with the Bayesian causal forest model (BCF;
Hahn et al., 2020). To do so, we only consider the covariate ‘school discipline
problems’ in the linear predictor of CSP-BART and as the treatment variable for
BCF, with SSP-BART included as an additional comparator. CSP-BART and
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5.5. Results on real data

SSP-BART thus differ in that this covariate is also specified in X2 under CSP-
BART, but is exclusive to X1 under SSP-BART. Though this is a categorical
variable with 3 levels (‘hardly any problems’, ‘minor problems’, and ‘moderate to
severe problems’), we binarise it by collapsing the first two levels. These modelling
decisions are to the advantage of BCF, as it can only deal with a single binary
covariate as the treatment effect. The goal is to quantify the impact of discipline
problems on students’ mathematics scores along with the other 19 covariates (i.e.,
the other two primary covariates are specified only in X2 for this preliminary anal-
ysis). In Table 5.5.1, we summarise the posterior distributions of the parameter
estimates for BCF, CSP-BART, and SSP-BART. The marginal effect of school
discipline problems is negative in each case, which means that students who study
in schools with moderate to severe discipline issues tend to have lower mathe-
matics scores than those in schools with hardly any or minor discipline problems.
However, this covariate also defines at least one split in 2.8% of the sampled trees
in the BART component of CSP-BART; i.e., it also interacts with non-primary
covariates in X2. Notably, BCF yields a much wider credible interval (CI) than
both CSP-BART and SSP-BART, though all CIs exclude zero.

Table 5.5.1: Descriptive measures of the posterior distribution of the ‘school disci-
pline problems’ covariate’s effect on students’ mathematics scores. The estimates
relate to the level ‘moderate to severe problems’, as the reference level merges
those with ‘hardly any’ or ‘minor’ problems.

Method Mean 2.5-th percentile 97.5-th percentile

BCF −36.07 −62.05 −12.24
CSP-BART −37.43 −54.45 −24.78
SSP-BART −38.05 −48.09 −27.73

As we now consider all three aforementioned categorical covariates of primary
interest, we note that BCF is inadequate for this application as it admits only one
binary covariate. As VCBART extends BCF to allow for more covariates (of any
type) in the linear predictor, we replace BCF with VCBART in the comparison
with CSP-BART and SSP-BART. We use 80% of the data for training and use
the remaining 20% as a test set to evaluate out-of-sample prediction performance.
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5.5. Results on real data

Firstly, we note that the root mean squared errors on the test set are comparable
for CSP-BART (58.1) and SSP-BART (58.4)6, but VCBART (62.3) is slightly
worse. Secondly, we present the parameter estimates based on the training set
under each model for the three chosen primary covariates, along with associated
95% CIs, in Table 5.5.2.

Students whose parents studied at ‘university or higher’ or obtained ‘post-secondary’
qualifications tend to have higher mathematics scores than those whose parents
were educated up to secondary level at most. The effects become more pronounced
at lower education levels. A similar pattern of higher scores is observed for stu-
dents who devote increasingly more time to homework, with the notable exception
of CSP-BART; this is the only method to suggest that students who spend ‘more
than 90 minutes’ on homework score less than those who spend less time (but still
more than those who do ‘no homework’). However, we point out that this finding
is based on the posterior mean only (−9.07) since there is considerable uncertainty
associated with it (i.e., the 95% CI includes 0). VCBART’s estimates are quite
extreme for these two levels, possibly due to the small numbers of observations
therein. Lastly, all models suggest that students in schools with ‘moderate to
severe’ discipline problems tend to have lower scores than those in schools with
‘hardly any’ or ‘minor’ problems.

Though their posterior mean estimates differ only in magnitude and not in sign
(with only one aforementioned exception), another important aspect shown in
Table 5.5.2 is the difference between the CIs from CSP-BART and SSP-BART.
Notably, all CIs are much wider for SSP-BART. In particular, they all contain zero,
while the effect associated with parents having ‘university or higher’ education is
bounded away from zero by CSP-BART. As the models assume different priors for
the linear regression parameters, we conducted additional experiments (not shown
here, for brevity) by fitting hybrid models which swap the priors from CSP-BART
and SSP-BART. In doing so, we verified that the assumption of a diffuse isotropic
prior under SSP-BART is driving the disparities in these intervals. Thus, CSP-

6Notably, we use code from our own implementation of CSP-BART in order to fit both
CSP-BART and SSP-BART, as it is not possible to predict on out-of-sample data using the R
implementation of SSP-BART provided by the authors of Zeldow et al. (2019). This is achieved
by adopting the prior β ∼ MVN(0p1 , σ

2
b Ip1) and appropriately specifying X1 and X2.
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5.5. Results on real data

BART allowing the covariates of primary interpretational interest to be correlated
and/or have different variances a priori appears to have a strong impact on the
posterior uncertainty of the estimates.
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5.5. Results on real data

To show the benefits of CSP-BART sharing covariates across components, it is
of interest to detect interaction effects between covariates in X1 and others of
both primary and non-primary interest. According to Chipman et al. (2013),
an interaction exists between two variables if they are in the same tree. Here,
18.8% of trees across all MCMC samples have interactions of this sort between
at least one covariate in X1 and another in either X1 or X2, while 0.5% are
stumps and 54.7% split on one covariate only. More specifically, we detect non-
spurious interactions, using a stricter definition whereby covariates must be in
the same branch (Kapelner and Bleich, 2016), between ‘parents’ education level’
and ‘minutes spent on homework’ (both in X1) and between ‘school discipline
problems’ (in X1) and ‘absenteeism’ (5 levels, in X2). A major limitation of SSP-
BART is that it would fail to detect key interactions such as these. Due to the
assumption of mutual-exclusivity between X1 and X2, SSP-BART can only capture
interactions between two or more non-primary covariates in X2. Our CSP-BART
also detects frequent interactions of this sort in the remaining 26.0% of trees;
e.g., between ‘absenteeism’ and ‘how often the student feels hungry’ (4 levels). To
detect important interactions in VCBART, one would need to examine all trees for
all covariates in the linear predictor. This would amount to 150 trees per iteration,
as the effect associated with each of the 3 primary covariates is approximated by
50 trees (by default).

5.5.2 Pima Indians Diabetes
We now analyse the well-known Pima Indians Diabetes dataset from the UCI
Machine Learning Repository (Blake, 1998), which is available in R through the
mlbench package (Leisch et al., 2009), to demonstrate the use of CSP-BART in a
classification setting. Unlike the TIMSS application, here the response is binary
rather than continuous and all covariates are continuous rather than categorical.
The goal is to predict whether or not a patient has diabetes based on age, blood
pressure, body mass index, glucose concentration, and 4 other covariates. We
analyse a corrected version of the data which treats physically impossible values
of zero for a number of covariates as missing values, which we in turn omit. We
are primarily interested in measuring the effects of age and glucose through the
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5.5. Results on real data

linear predictor. As the response variable is binary, we use a probit link function
following the data augmentation scheme of Albert and Chib (1993).

We only compare CSP-BART and SSP-BART, as the VCBART package cannot deal
with binary responses. Henceforth, all parameter estimates are based on a training
set comprising a randomly chosen 80% of the data and misclassification rates based
on the remaining 20% are used to quantify prediction accuracy. For CSP-BART,
we specify age and glucose in X1 and supply all 8 available covariates, including
age and glucose, to the BART component. For SSP-BART, we specify age and
glucose in X1 and the 6 remaining covariates in X2, as SSP-BART does not allow
for covariates to be shared across the linear and BART components. In both cases,
the intercept is omitted from the X1 matrix, as described in Section 5.3.2.

We present the parameter estimates for age and glucose, with corresponding 95%
CIs, in Table 5.5.3. Under both models, the estimates for both covariates indicate
that, as they increase, the probability of observing positive diabetes diagnoses also
increases, and vice versa. All CIs also have positive lower and upper limits. It is
especially notable, however, that the CI for the age effect is bounded further away
from zero under the CSP-BART model; i.e., we detect a more significant marginal
age effect.

To highlight the efficacy of the hierarchical prior on β, the double grow/prune
moves, and our other proposals for addressing non-identifiability, we also fit a
hybrid model, equipped with the isotropic prior from SSP-BART, with age and
glucose in both components, but without the double moves and stringent checks on
tree-structure validity used in CSP-BART. Such a model achieves a misclassifica-
tion rate of 19.23% on the test set; slightly better than SSP-BART itself (20.51%),
though still inferior to the proper CSP-BART (17.94%).

Under the hybrid model, we observe that the additional inclusion of age and glucose
in the X2 matrix used by the BART component generates trees that occasionally
use only age or only glucose. In this case, the linear predictor and BART compo-
nent both try to estimate the effects of these covariates, which is not sensible as
it generates non-identifiability issues between the two components and bias in the
estimates of the parameters in the linear predictor. Overall, the benefits arising
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from i) sharing covariates among the components, ii) the employment of double
grow and double prune moves, along with other checks on tree-structure validity,
and iii) the adoption of the hierarchical prior on β are evident from the superior
out-of-sample classification accuracy of CSP-BART.

Table 5.5.3: Posterior mean estimates of the age (years) and glucose (mg/dL)
effects on the diagnosis of diabetes, with corresponding 95% CIs, according to
CSP-BART and SSP-BART models fit to the training set (80%).

CSP-BART SSP-BART

Covariate Estimate 95% CI Estimate 95% CI

Age 0.0634 (0.0285; 0.1006) 0.0287 (0.0016; 0.0572)
Glucose 0.0359 (0.0271; 0.0445) 0.0296 (0.0221; 0.0377)

5.6 Discussion
In this work, we have extended BART to a semi-parametric framework which cir-
cumvents many of the restrictions and identifiability issues found in other versions
of semi-parametric BART. In semi-parametric BART models, the main effects are
estimated via a linear predictor, while interactions and non-linearities are dealt
with by a BART component. The main novelties of our CSP-BART are i) the
sharing of covariates between the linear and BART components, in tandem with
ii) additional double grow and double prune moves. These innovations combine to
induce additional interactions between covariates of primary interest, both among
themselves and with those available to the BART component, which ensures that
marginal effects of primary interest are strictly isolated in the identifiable linear
component while interactions and non-linearities are strictly confined to the BART
component. Our modifications can be interpreted as adjustments to the prior over
the set of possible tree structures; effectively, a prior probability of zero is placed
on invalid trees. We have implemented CSP-BART as an R package, which is
currently available at https://github.com/ebprado/CSP-BART.

Through simulation studies and two applications to a well-known benchmark
dataset and novel data from an international education assessment, the ability
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of CSP-BART to estimate marginal effects with low bias, while not requiring pre-
specification of interaction effects, has been demonstrated in both regression and
classification settings. Regarding the motivating TIMSS application, we note that
CSP-BART offers particularly interesting insight into the effect of the ‘minutes
spent on homework’ covariate on students’ mathematics scores. While competing
methods suggest that scores improve indefinitely as the time devoted to homework
increases, CSP-BART suggests that the effect is reversed for those who spend more
than 90 minutes on homework, which implies that students who do so might actu-
ally be weak students who struggle with their homework exercises or mathematics
classes in general.

We also showed that CSP-BART captures many important interactions between
covariates of primary interest and others of both primary and non-primary interest
in the TIMSS application, by virtue of CSP-BART allowing the covariates of
primary interest to be shared with both the linear and BART components. Such
interactions cannot be captured by the SSP-BART or VCBART models, and would
need to be explicitly specified if instead fitting a linear model, such as a GLM
or a GAM. However, we note that mixed-effects models are widely used in the
analysis of similar education assessment datasets (Mohammadpour et al., 2015;
Grilli et al., 2016). As the present analysis in Section 5.5.1 only considers fixed
effects in the linear component, our proposals for incorporating random effects
outlined in Section 5.3.3 are thus of interest for future practical work.

In terms of future methodological extensions, other BART-based models, such as
SBART (Linero, 2018), log-linear BART (Murray, 2021), and BART for gamma
and log-normal hurdle data (Linero et al., 2020), could be embedded in semi-
parametric frameworks following a similar approach. A semi-parametric version of
SBART, in particular, could prove especially fruitful for the TIMSS application.
Theoretical results underlying CSP-BART could also be developed in order to
explore its posterior convergence properties.

Overall, we anticipate CSP-BART enjoying great utility in a wide range of appli-
cation settings, beyond the TIMSS data considered herein. The model accommo-
dates multiple covariates, yields improved out-of-sample prediction/classification
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performance, and ensures accurate inference of important linear effects while ac-
counting for additional non-specified interactions (beyond those already accounted
for by other semi-parametric BART models). Furthermore, the model-fitting al-
gorithm enables straightforward incorporation of random effects and has built-in
strategies to address non-identifiability issues. Notably, its run-time is comparable
or superior to its competitors BCF, SSP-BART, and VCBART, which all have one
or more of these limitations and perform poorly on the TIMSS data.
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Appendix

5.A Semi-parametric BART implementation
In this Section, we provide details for the implementation of the CSP-BARTmodel,
which can be written as

yi | x1i,x2i,β,M, T , σ2 ∼ N
(

x1iβ +
T∑
t=1

g (x2i,Mt, Tt) , σ2
)
.

We recall that CSP-BART and SSP-BART (Zeldow et al., 2019) differ in many
aspects, with the latter assuming that i) X1 and X2 are disjoint matrices, such
that only ‘single’ grow/prune moves are considered, and ii) β ∼ MVN(0p1 , σ

2
βIp1),

where 0p1 and Ip1 respectively denote a vector of zeros and an identity matrix of
appropriate dimension and σ2

b is a fixed, large scalar, such that the prior on β is
uninformative. In contrast, CSP-BART i) allows X1 and X2 to share covariates,
which is rendered valid by the novel double grow/prune moves employed, and ii)
assumes β ∼ MVN(b,Ωβ), with the associated hyperprior Ωβ ∼ IW(V, v). This
hierarchical prior allows for more complex covariance structures for the linear
predictor’s parameters to be explicitly modelled. In terms of commonalities, both
methods consider that σ2 ∼ IG(ν/2, νλ/2) and define the partial residuals as
Rt = y−X1β −

∑T
j 6=t g(X2,Mj, Tj).

In Algorithm 4, the structure of CSP-BART is presented. Firstly, the response and
the design matrices X1 and X2 are specified, along with the number of trees (e.g.,
T = 200), number of MCMC iterations M , and all hyperparameters associated
with the priors for β, Ωβ, µt`, Tt, and σ2. Initially, all trees are set as stumps. Sec-
ondly, the parameter vector β and covariance matrix Ωβ are updated. Thereafter,
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candidate trees (T ?t ) are sequentially proposed, one at a time — via one of the
four standard moves employed by SSP-BART, or one of the novel ‘double grow’
and ‘double prune’ moves — and compared with their previous versions (Tt) via
a Metropolis-Hastings step. Later, the node-level parameters µt` are generated.
Finally, the variance σ2 is updated. For sufficiently large M , samples from the
posterior distribution of the trees are obtained upon convergence.

Algorithm 4 describes CSP-BART considering only fixed effects. However, we
recall that the model can be extended to also incorporate random effects, such
that

yi | x1i, zi,x2i,β,γ,M, T , σ2 ∼ N
(

x1iβ + ziγ +
T∑
t=1

g (x2i,Mt, Tt) , σ2
)
,

where γ is the random effects vector of dimension q and zi denotes the i-th row
of the associated design matrix Z. For completeness, we reiterate that the same
algorithm can be directly used to fit such a model, following the scheme outlined
in Section 5.3.3.
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Algorithm 4 CSP-BART model
1: Input: y, X1, X2, number of trees T , and number of MCMC iterations M .
2: Initialise: {Tt}T1 and set all hyperparameters of the prior distributions.
3: for (m = 1 to M) do
4: Update the parameter vector β via (5.2).
5: Update the covariance matrix Ωβ via (5.3).
6: for (t = 1 to T ) do
7: Compute Rt = y−X1β −

∑T
j 6=t g(X2,Mj, Tj).

8: Propose a new tree T ?t by a grow, double grow, prune, double prune,
change, or swap move; iterate until a valid tree structure is obtained.

9: Compare the current (Tt) and proposed (T ?t ) trees via Metropolis-
Hastings, with

α (Tt, T ?t ) = min
{

1, p(T
?
t |Rt,σ2)q(T ?t →Tt)

p(Tt |Rt,σ2)q(Tt→T ?t )

}
.

10: Sample u ∼ Uniform (0, 1): if α (Tt, T ?t ) < u, set Tt = Tt, otherwise
set Tt = T ?t .

11: Update all node-level parameters µt` via

µt` | Tt,Rt, σ
2 ∼ N

(
σ−2∑

i∈Pt` ri
nt`/σ2 + σ−2

µ

,
1

nt`/σ2 + σ−2
µ

)

for ` = 1, . . . , bt.
12: end for
13: Update σ2 via (5.4).
14: Update the predicted response ŷ.
15: end for
16: Output: samples of the posterior distribution of T .

5.B TIMSS dataset
In Section 5.5.1, we analysed data on Irish students at eighth grade level. To illus-
trate the novel CSP-BART, only one plausible value of the students’ mathematics
scores was used, and sampling weights were not accounted for. Nonetheless, it
would be necessary to consider all five mathematics scores along with sampling
weights for a more complete analysis; see Rutkowski et al. (2010) and Foy (2017) for
details. In Table B.1, we present the 20 covariates that were pre-selected to demon-
strate CSP-BART. These covariates were selected by identifying the 20 most-used
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variables in a standard BART model fit to the TIMSS dataset. In the comparisons
with BCF, SSP-BART, and VCBART, all 20 covariates were included in the X2

matrix under CSP-BART, which is the matrix used by the BART component. In
the first comparison with BCF, X1 contained only the binarised version of the
covariate ‘BCDGDAS’, which was in turn excluded from X2 under SSP-BART.
When comparing CSP-BART with VCBART, X1 contained the covariates ‘BS-
DGEDUP’, ‘BSBM42BA’, and ‘BCDGDAS’, which were in turn excluded from
X2 under SSP-BART.
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CHAPTER 6
Conclusions

In this thesis, we have introduced a set of extensions for overcoming some key
limitations of Bayesian additive regression trees (BART) and some of its semi-
parametric versions thereof. BART is a non-parametric Bayesian tree-based model
that automatically deals with linear, non-linear, and low-order interaction effects
without requiring pre-specification. Specifically, such a model utilises a constant
as the node parameter, which brings difficulty in approximating smooth effects.
Unlike BART where the focus is more on the predictive accuracy, semi-parametric
BART models combine a linear component along with a BART model in order
to provide a greater level of interpretability for covariates of primary interpre-
tational interest. Previously proposed models assumed that the parametric and
non-parametric components cannot share covariates, which prevents important in-
teractions from being estimated. In this final Chapter, we briefly revisit the models
proposed in Chapters 3–5 by discussing some of their limitations and also pointing
out some similarities.

In Chapter 3, we extended BART by considering observation-specific predictions
at the terminal node level within the BART framework to address the issue re-
lated to the difficulty of approximating smooth effects. Instead of estimating one
constant as the node parameter for each terminal node, a local Bayesian linear
regression is considered where the covariates in the linear predictors are chosen
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based on the tree structure. Under the new formulation, smooth effects are cap-
tured more efficiently, while the recommended number of trees required to predict
the response variable is drastically reduced. Through a simulation study based on
the Friedman data (Friedman, 1991), which contains linear and non-linear effects,
we show that MOTR-BART consistently outperforms BART and other tree-based
competitors, except SBART, regardless of the sample size and number of noise
covariates. We also explore the performance of MOTR-BART on well-known real-
world applications, with MOTR-BART presenting the lowest or the second lowest
out-of-sample root mean squared errors on almost all datasets considered.

One of the key points of MOTR-BART is related to the specification of the local
linear predictors. We specified them based on the structure of each tree, either
considering all covariates used to form the splitting rules or only those that are
ancestors of the terminal nodes. In the current framework and implementation,
covariates with coefficients close to zero are kept in the linear predictors since there
is no procedure to actually select the variables; i.e., the linear predictors are spec-
ified given the topology of the trees but no variable selection is performed. In this
sense, a future work would be to consider some variable selection procedures, such
as spike-and-slab priors (George and McCulloch, 1993; Ishwaran and Rao, 2005),
in order to keep only the covariates that are important and zero out coefficients
associated with variables with little or no importance.

In Chapter 4, we proposed a new class of models for the estimation of genotype
by environment (GxE) interactions in plant-based genetics. In particular, we ex-
tended the AMMI model by replacing its bilinear component, which is responsible
for estimating the interactions between genotypes and environments, with BART.
Furthermore, we modified the tree-generation process by introducing the double
grow and double prune moves in the BART model so that it exclusively induces
interactions between genotypes and environments while their marginal effects are
estimated in a linear predictor. Through simulation experiments and a novel
dataset from value of cultivation and usage experiments from the Irish Depart-
ment of Agriculture, we showed that the performance of AMBARTI is competi-
tive or superior when compared to AMMI, Bayesian AMMI, and other interaction
detection methods based on out-of-sample root mean square error.
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Along with the new model, we presented new visualisations that ease the inter-
pretation of the marginal and interaction effects, which are suitable not only for
AMBARTI, but for AMMI and Bayesian AMMI. The motivation for the new plots
was the commonly used biplots. These plots are largely utilised in the determi-
nation of GxE interactions based on the results of the AMMI model, but they
disregard the marginal effects since they display the interaction effects only. To
this end, we created a heatmap and a bipartite network-style plot that take into
account both the marginal and interaction effects, thus providing the data analyst
with an additional and yet important source of information that can lead to better
cultivar recommendation.

One of the challenges of AMBARTI is due to the high number of possible combi-
nations between genotypes and between environments. In terms of computational
implementation, all combinations must be available so that the BART component
can select one combination of genotypes out of 2I−1 and one combination of 2J−1

to form the splitting rules, where I and J denote the number of genotypes and
environments, respectively. In the simulation experiments in Chapter 4, we ex-
plored scenarios where I = J = 10 and I = J = 25, with the latter scenario
posing a special difficulty as the number of possible combinations is very large and
combinations containing high number of genotypes and/or environments tended
to be rejected. Although it is not possible to reduce the number 2I−1, an interest-
ing research avenue would be to explore ways to propose combinations favouring
low-order combinations in an attempt to improve the AMBARTI results when the
number of genotypes/environments is large.

In Chapter 5, we proposed some extensions to semi-parametric models based on
BART. The rationale of these models is to combine a linear predictor, where co-
variates of primary interpretational interest are specified, and a BART model,
which deals with interactions and non-linearities among covariates of non-primary
interpretational interest, an in attempt to elucidate the marginal effect that the
covariates of primary interest have on the response. However, these models assume
that the covariates in the linear predictor cannot be part of the covariates used by
the BART component in order to avoid some undesirable properties for the esti-
mates in the linear predictor, such as poor coverage, bias, and non-identifiability
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of the marginal effects.

To circumvent this assumption, we changed the tree-generation moves in BART to
include the aforementioned double grow and double prune moves along with some
stringent checks on the tree structure validity. In doing so, the BART component
of our combined semi-parametric BART (CSP-BART) no longer assumes that the
subsets used by the parametric (linear predictor) and non-parametric (BART)
components are mutually exclusive, which in turn allows CSP-BART to capture
interactions among the covariates of primary interest and between the covariates
of primary and non-primary interest. In the analysis of the Trends in International
Mathematics and Science Study (TIMSS) data, the benefits of sharing covariates
across the components are highlighted by CSP-BART’s predictive performance
over its competitors. Furthermore, through two simulation experiments, we showed
that the CSP-BART is able to estimate marginal effects of interest with low bias,
while non-specified interactions and non-linearities are automatically accounted
for.

The CSP-BART proposed in Chapter 5 can be used in regression and binary classi-
fication settings. However, it could be further generalised to deal with polychoto-
mous response data by using the data augmentation strategies in Kindo et al.
(2016b) and Albert and Chib (1993), or even extended to deal with multivari-
ate skewed data (Um, 2021). Inspired by the recent theoretical developments on
Bayesian forests (Ročková and Saha, 2019; Linero and Yang, 2018; Jeong and
Ročková, 2020), another future work would be to study the optimal posterior con-
centration of CSP-BART. In addition, other BART extensions, such as SBART
(Linero and Yang, 2018), log-linear BART (Murray, 2021), and BART for hur-
dle data, could be extended to a semi-parametric framework similar to the one
presented in this work.

The main difference between the AMBARTI model proposed in Chapter 4 and
the CSP-BART introduced in Chapter 5 is the cut in the feedback between the
parametric and non-parametric components. In AMBARTI, the marginal effects
of genotypes and environments are estimated taking into account the response
variable only. In addition, the only marginal effects are those associated with

146



Chapter 6. Conclusions

genotypes and environments represented via dummy variables, while the subset
used by the BART component contains dummy variables also associated with
genotypes and environments only. In CSP-BART, however, the marginal effects
of the covariates of primary interpretational interest are quantified considering the
full residual obtained from the difference between the response variable and the
BART prediction. Also, the covariates can be of any type, whether they be of
primary or non-primary interest.

The main reason to cut the feedback between the model’s components in AM-
BARTI was to keep the structure of the original AMMI model, which estimates
the marginal and interaction effects separately without feeding back one into the
other. For instance, the Bayesian version of the AMMI model (B-AMMI) proposed
by Josse et al. (2014) estimates the interaction and marginal effects of genotypes
and environments by feeding back one component into the other and then applying
some orthonormalities constraints after the model is fitted. However, the simula-
tion experiments and real-world data analysis carried out in Sections 4.3 and 4.4
indicated that B-AMMI struggles to estimate the marginal and interaction effects
throughout.

In addition to the work presented in this thesis, we explored other venues in terms
of extensions to the BART model that were not successfully satisfactory. For
instance, we explored the normal inverse Gaussian (NIG; Barndorff-Nielsen, 1978,
1997) as the underlying distribution associated with the response variable. The
NIG distribution is defined on the real line and can be skewed and heavy-tailed,
which motivated applications in risk management (Eriksson et al., 2009), stock
market (Karlis, 2002), model-based clustering (O’Hagan et al., 2016), to list a few.
The distribution was initially proposed in the context of Brownian motion and
is obtained by assuming that the variance of the normal distribution follows an
inverse Gaussian distribution in the form of yi ∼ N(µ + βzi), where β ∈ R and
zi ∼ Inverse Gaussian(δ, γ), with δ, γ > 0.

This work would be in line with the works of Linero et al. (2020) and Murray
(2021) who explored other continuous and count distributions for the response
variable for BART. However, the NIG extension was not possible as our imple-
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mented version of the approach failed to converge satisfactorily to the posterior
distribution. In particular, we noticed that the β parameter — which controls
the skewness — struggled to converge due to some large values sampled from the
posterior distribution of the zi’s.

Finally, we remark that the implementation of the proposed methods presented in
this work are freely available at https://github.com/ebprado in the repositories
named MOTR-BART, AMBARTI, and CSP-BART, for Chapters 3, 4 and 5, respectively.
Thus, all analyses in this thesis are reproducible and methodologies are available to
interested practitioners. We emphasise that our implementations are fully in R and
have not been optimised, as per some highly-optimised R packages like dbarts and
BART which are both implemented in C++. Hence, improvements such as caching
some summary statistics to avoid repeated computations and some minor design
changes could significantly speed up our implementations and encourage wider use
of our BART extensions proposed in this thesis.
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