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1 Introduction

The growing interest in stochastic models for biochemical reaction systems
has lead to increasing activities in the design of efficient numerical methods
for the solution of the underlying chemical master equation (CME) [10,12,
3,18,1,15,4,19]. Almost all current approaches indirectly approximate the
CME by generating a statistically large number of realizations of the as-
sociated continuous–time, discrete state space Markov jump process. The
domain of numerical or analytical techniques for directly solving the CME is
still widely open, which is mainly due to the fact that the dimension scales
exponentially with the number of molecular species involved. The CME can
be understood as a huge system of coupled ordinary differential equations:
There is one differential equation per state of the system, in contrast to the
traditional reaction-rate approach where only one differential equation per
species is required. For example, a rather small system of only three species
with molecule numbers varying between, say, 0 and 100, contains 1003 dif-
ferent states, and 1000000 coupled differential equations have to be solved in
order to determine the probability density of the CME! As a consequence,
solving the CME with standard numerical integrators is usually cumbersome
and often even impossible.

Analytical solutions of the CME are only known for special reaction
systems with particular initial conditions; these include, e.g., closed (mass
conserving) linear reaction systems with multinomial initial distributions [6,
8], open linear reaction systems with Poisson initial distribution [9], or a
two-component, linear open system with deterministic initial conditions [20,
Chap. 8.4]. Recently, Gadgil et al. [8] presented differential equations for the
mean and the variance of a general system of first-order reactions, but did
not derive an analytical solution formula for the probability distribution.
Concerning the limit behavior of the CME, it is known that the equilibrium
distribution of a finite closed system of linear reactions is multinomial, while
the equilibrium distribution of an open system of linear reactions is Poisson
in each component (see, e.g., [8] and references therein), but to the best of
our knowledge, nothing is known about the general time-dependent transient
behavior for arbitrary initial conditions, including the important class of de-
terministic initial conditions.

In this article we consider chemical reaction systems with arbitrarily many
species and states, but assume that only monomolecular reactions occur. Un-
der this condition we derive an explicit formula for the exact solution of the
CME. For the generic case of deterministic initial conditions, the solution
turns out to be the convolution of multinomial and product Poisson distribu-
tions with time-dependent parameters evolving according to the traditional
reaction-rate equations. All previously derived results on monomolecular re-
action systems can be restated in terms of our representation. Although the
vast majority of biochemical systems includes bimolecular or more complex
reactions, many interesting applications belong to the class of monomolecu-
lar reaction systems: conformational dynamics of proteins and RNA, simple
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birth and death processes, bacteriophage dynamics, queing systems, migra-
tion processes, gating of ion chanels, hydrolysis etc. (see, e.g., [8,7] and ref-
erence therein).

Moreover, we believe that studying monomolecular reactions is worth-
while for additional reasons: (1) Recent developments in speeding up the
stochastic simulation algorithm by treating isolated subsystems (the so-called
virtual fast process) analytically require the solution of the CME for these
subsystems [5]. The virtual fast process will often be related to systems of
monomolecular reactions (with rates depending on slow chemical species),
although the overall system involves bimolecular reactions. (2) The perfor-
mance of new numerical methods has to be evaluated, typically by apply-
ing the new method to a problem with known solution. Here, non-trivial,
time-dependent solutions of chemical reactions systems are required. (3) The
monomolecular case can be seen as a starting point for the construction of
new numerical schemes. Many numerical methods are devised in such a way
that they yield the exact solution in special cases, like monomolecular reac-
tion systems for the CME. Representing the solution as a linear combination
of suitably chosen basis functions and exploiting linearity of the equation,
such a representation would, at the cost of a hopefully small error, reduce
the number of degrees of freedom considerably. Work in this direction is cur-
rently in progress.

Outline: Section 2 sets the scene and gives a short summary of the deter-
ministic and the stochastic approach to reaction kinetics. In Section 3 explicit
solution formulas for the monomolecular CME under specific initial condi-
tions are presented. For the convenience of the reader, we recapitulate the
known result that the solution of the CME for closed systems and multinomial
initial conditions stays multinomial [8]. Then, a corresponding proposition for
the Poisson distribution and open systems is presented. In our main theo-
rem, both results are combined and extended in such a way that for arbitrary
initial conditions an explicit solution formula of the monomolecular CME is
obtained. In Section 4 we discuss properties of the solution distribution, like
expectation, variance, convergence to steady states and marginal distribu-
tions. Our results are illustrated in Section 5 in application to some simple
examples previously discussed in the literature. The last section sketches
possible extensions and provides an outlook.

2 Stochastic and deterministic reaction kinetics

We study a reaction system with n ∈ N different species or substances
S1, . . . , Sn subject to the following reaction channels:

Reaction Rjk : Sj

cjk

−→ Sk conversion (j 6= k)

Reaction R0k : ?
c0k−→ Sk production from source or inflow

Reaction Rj0 : Sj

cj0

−→ ? degradation or outflow

(1)

These reactions are referred to as monomolecular reactions. In comparison
to general first-order reactions, we do not include (auto)catalytic reactions
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Sj
c

−→ Sj + Sk, nor splitting reactions Sj
c

−→ Sl + Sk with j 6= l, k. For
possible generalisations, see Section 6.

The rates cjk are assumed to be nonnegative and can (but need not) be
time dependent, i.e., cjk = cjk(t). For simplicity of notation, let ckk ≡ 0 for all

k ∈ N in order to exclude the trivial reaction Sk
ckk−→ Sk. We suppose that all

molecules are contained in a constant volume at constant temperature, and
that the system is ”well-mixed” in the sense that the molecules are uniformly
distributed in space as explained in [11].

2.1 Deterministic reaction kinetics

In the traditional approach the concentration Ck(t) of the substance Sk is
the solution of the reaction-rate equation

Ċk(t) = c0k(t) +

n
∑

j=1

cjk(t)Cj(t) −

n
∑

j=0

ckj(t)Ck(t). (2)

Hence, the vector C(t) =
(

C1(t), . . . , Cn(t)
)T

of all concentrations evolves
according to

Ċ(t) = A(t)C(t) + b(t) (3)

where b(t) ∈ Rn is the vector

b(t) =
(

c01(t) , c02(t) , . . . , c0n(t)
)T

. (4)

and A(t) =
(

ajk(t)
)

j,k
∈ Nn×n denotes the matrix with entries ajk(t) defined

by

ajk(t) = ckj(t) for j 6= k ≥ 1, akk(t) = −

n
∑

j=0

ckj(t). (5)

The definition of A implies that the sum of each column is nonpositive,
because

n
∑

j=1

ajk(t) = −ck0(t) ≤ 0. (6)

A matrix with property (6) and nonnegative off-diagonal elements is called a
compartmental matrix [2]. Compartmental matrices have many nice features
(see Proposition 4), for example the fact that the solution C(t) has nonneg-
ative entries if the initial vector C(0) has nonnegative entries. This can be

readily seen from (2), because Ck(t) = 0 implies Ċk(t) ≥ 0. Moreover, mass
balance shows that

∑n

k=1 Ck(t) ≤
∑n

k=1 Ck(0) for each t = 0, and “≤” can
be replaced by “=” if ck0 = 0 for all k.
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2.2 Stochastic reaction kinetics

At any time t the state of the system is described by the number of molecules
of each species. Since no positional information is available the state of the
system is to be understood as a random variable X(t) =

(

X1(t), . . . , Xn(t)
)

where Xk(t) is the number of molecules of the k-th species at time t.
The reactions are entirely defined by the stoichiometric vectors and the

propensities. The stoichiometric vector ν(jk) ∈ Nn corresponds to state change
that occurs whenever the reaction channel Rjk fires. In case of the reaction
system (1) we have

ν(jk) = εk − εj , ν(0k) = εk, ν(j0) = −εj

where εk denotes the k-th column of the identity matrix in Rn×n. The propen-
sity αjk(t, x) is related to the reaction probability in the following way: If the
system is in state X(t) = x ∈ Nn at time t, then αjk(t, x)dt is the probability
that in the next ”infinitesimal” time interval [t, t + dt] the reaction channel
Rjk will fire. According to [11] the propensities are given by

αjk(t, x) =







cjk(t)xj for reaction Rjk

c0k(t) for reaction R0k

cj0(t)xj for reaction Rj0

for all x ∈ Nn. For ease of notation we also define αjk(t, x) = 0 if x 6∈ Nn.
In this article, we determine the probability distribution

P (t, x) = P

(

X1(t) = x1, . . . , Xn(t) = xn

)

of the random variable X(t). For convenience, we define P (t, x) = 0 for all
x 6∈ Nn. The distribution P is the solution of the CME

∂tP (t, x) =

n
∑

j=0

n
∑

k=0

(

αjk(t, x − νjk)P (t, x − νjk) − αjk(t, x)P (t, x)
)

, (7)

which can be rewritten as

∂tP (t, x) =

n
∑

k=1

c0k(t)
(

P (t, x − εk) − P (t, x)
)

+
n
∑

k=1

ck0(t)
(

(xk + 1)P (t, x + εk) − xkP (t, x)
)

(8)

+

n
∑

j=1

n
∑

k=1

cjk(t)
(

(xj + 1)P (t, x + εj − εk) − xjP (t, x)
)

.

The first sum of the CME (8) corresponds to the inflow reactions R0k, the
second one to the degradation Rk0, and the double sum represents the con-
versions Rjk.
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We suppose that the molecule numbers at time t = 0 are specified in
terms of some arbitrary initial probability distribution µ, i.e.

P(X(0) = x) = µ(x)

for every x ∈ N
n. Exploiting linearity of the CME, the problem of solving

the CME for arbitrary initial distribution can be reduced to the problem of
solving the CME for deterministic initial conditions, i.e.,

P (0, x) = δξ(x) =

{

1 if x = ξ
0 otherwise

(9)

with δξ(x) denoting the Kronecker symbol. Hence, our aim is to find a formula
for the exact solution of (8) and (9).

3 Explicit solution formulas for the monomolecular master
equation

In order to introduce our notation, we briefly list some basic definitions. The
convolution P1 ? P2 of two probability distributions P1 and P2 on the state
space Nn is defined by

(P1 ? P2)(x) =
∑

z

P1(z)P2(x − z) =
∑

z

P1(x − z)P2(z),

where the sum is taken over all z ∈ Nn such that (x − z) ∈ Nn.

Let |x| :=
∑n

k=1 |xk| be the 1-norm of the vector x. For any x ∈ Nn and
any p = (p1 , . . . , pn) ∈ [0, 1]n with |p| ≤ 1, the multinomial (or polynomial)
distribution M(x, N, p) is given by

M(x, N, p) =











N !
(1 − |p|)N−|x|

(N − |x|)!

n
∏

k=1

pxk

k

xk!
if |x| ≤ N and x ∈ Nn

0 else.

Finally, let P denote the product Poisson distribution

P(x, λ) =
λx1

1

x1!
· . . . ·

λxn
n

xn!
· e−|λ|, x ∈ N

n

with parameter vector λ = (λ1 , . . . , λn) ∈ R
n containing nonnegative

entries, and for ease of notation put P(x, λ) = 0 if x 6∈ Nn.
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3.1 Closed systems with multinomial initial distribution

In this section we assume that the system is closed1 in the sense that all
inflow reactions R0k : ∗ −→ Xk are excluded by letting c0k = 0 for all k.
Moreover, suppose that instead of the deterministic initial data (9), P (0, x)
is a multinomial distribution. Then, this is one of the few cases where the
CME (8) can be solved analytically, cf. [8].

Proposition 1 Consider the monomolecular reaction system (1) and sup-
pose that c0k = 0 for all k. If the initial distribution is the multinomial
distribution

P (0, x) = M(x, N, p0)

for some p0 ∈ [0, 1]n, then the probability distribution at time t > 0 is still a
multinomial distribution

P (t, x) = M
(

x, N, p(t)
)

.

with a parameter vector p(t) =
(

p1(t), . . . , pn(t)
)T

evolving according to the
differential equation

ṗ(t) = A(t)p(t)
(10)

p(0) = p0

with the matrix A defined in (5).

Remark: The differential equation (10) is the familiar deterministic rate
equation (3) in the inflow-free case b(t) ≡ (0, . . . , 0)T . If all rates cjk are
constant the solution of (10) is simply p(t) = exp (tA) p0. If some of the
rates are time-dependent, the matrix exponential exp (A(t)) does generally
not provide the solution, but the differential equation (10) can be solved
numerically by using, e.g., a Magnus method [16].

Proof: A proof can be found in [8] (for constant rates), but we prove the
result in a different way by verifying that M

(

x, N, p(t)
)

is indeed the solution
of the CME (8). The initial condition is obviously met. Let x ∈ Nn be fixed,
put y = N − |x| and define q(t) = 1 − |p(t)|. We first consider the case that
xk 6= 0 and y 6= 0. Taking the derivative of the probability distribution gives

d

dt
M
(

x, N, p(t)
)

= N !
d

dt

(

qy(t)

y!

n
∏

k=1

pxk

k (t)

xk!

)

= N !
qy−1(t)

(y − 1)!
q̇(t) ·

n
∏

k=1

pxk

k (t)

xk!
+ N !

qy(t)

y!

n
∑

j=1

p
xj−1
j (t)

(xj − 1)!
ṗj(t) ·

∏

k 6=j

pxk

k (t)

xk!
.

1 The fact that some molecules can ”leave” the system via the reactions Rk0 :
Xk −→ ∗ does not contradict the closedness of the system, because one can say
that the degraded molecules belong to an additional species, say, X∗. If this is done,
the total number of molecules is constant. The only particular thing about X∗ is
that there is no reaction from X∗ back to any other species.
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From (10) we obtain

ṗj =
n
∑

i=1

cijpi −

(

n
∑

i=0

cji

)

pj , q̇ = −
n
∑

i=1

ṗi =
n
∑

i=1

ci0pi

because pi(t) ≥ 0 for all i (cf. Section 2). This yields

d

dt
M
(

x, N, p
)

= N !
qy−1

(y − 1)!

(

n
∑

i=1

ci0pi

)

·

n
∏

k=1

pxk

k

xk!

+ N !
qy

y!

n
∑

j=1

p
xj−1
j

(xj − 1)!

(

n
∑

i=1

cijpi

)

·
∏

k 6=j

pxk

k

xk!

−N !
qy

y!

n
∑

j=1

p
xj−1
j

(xj − 1)!

(

n
∑

i=0

cji

)

pj ·
∏

k 6=j

pxk

k

xk!

= N !
qy−1

(y − 1)!

n
∑

i=1

ci0(xi + 1)
pxi+1

i

(xi + 1)!
·
∏

k 6=i

pxk

k

xk!

+N !
qy

y!

n
∑

j=1

n
∑

i=1

cij

p
xj−1
j

(xj − 1)!
(xi + 1)

pxi+1
i

(xi + 1)!
·
∏

k 6=j,k 6=i

pxk

k

xk!

−

n
∑

j=1

n
∑

i=0

cjixjM(x, N, p).

=

n
∑

i=1

(xi + 1)ci0M(x + εi, N, p) +

n
∑

j=1

n
∑

i=1

(xi + 1)cijM(x + εi − εj)

−

n
∑

j=1

n
∑

i=0

cjixjM(x, N, p).

Rearranging these expressions gives

d

dt
M
(

x, N, p
)

=

n
∑

i=1

ci0

(

(xi + 1)M(x + εi, N, p) − xiM(x, N, p)
)

+

n
∑

j=1

n
∑

i=1

cij

(

(xi + 1)M(x + εi − εj) − xiM(x, N, p)
)

which is the CME (8) in the case c0k = 0 for all k = 1, . . . , n. If y = 0 and/or
xk = 0 for some k, then some of the terms in the above formulas vanish
because pk(t)0/0! ≡ 1 and d

dt
pk(t)0/0! ≡ 0, but the same calculation can be

carried out mutatis mutandis.

Proposition 1 states an explicit formula for the probability distribution under
the condition that there is no inflow into the system and that the initial
distribution is multinomial. Both conditions, however, are very restrictive.
Nevertheless, Proposition 1 will be helpful in the proof of our main result
(Theorem 1).
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3.2 Open systems with product Poisson initial distribution

In a next step towards this aim, we admit inflow reactions and state a result
similar to Proposition 1 for the Poisson distribution, cf. [9].

Proposition 2 Consider a system of n species subject to monomolecular
reactions of type Rjk, R0k, and Rk0. Suppose that the initial distribution is
a product Poisson distribution

P (0, x) = P
(

x, λ0

)

.

with a parameter vector λ0 of nonnegative entries. Then the probability dis-
tribution at time t > 0 is still a product Poisson distribution

P (t, x) = P
(

x, λ(t)
)

.

with parameter vector λ(t) which is the solution of the reaction rate equation

λ̇(t) = A(t)λ(t) + b(t)
(11)

λ(0) = λ0

with A(t) and b(t) defined in (5) and (4).

Proof: This result is derived in [9] using moment generating functions. For
convenience of the reader, we give a direct proof. Let x ∈ Nn and, as in the
proof of Proposition 1, assume first that xk 6= 0 for all k. Since

d

dt

λxk

k

xk!
e−λk = −λ̇k

λxk

k

xk!
e−λk + λ̇k

λxk−1
k

(xk − 1)!
e−λk

the derivative of the Poisson distribution is

d

dt
P(x, λ) = −

n
∑

k=1

λ̇kP(x, λ) +
n
∑

j=1

λ̇jP(x − εj , λ). (12)

From (11) and (6) we have

λ̇j =

n
∑

i=1

ajiλi + bj =

n
∑

i=1

cijλi −

n
∑

i=0

cjiλj + c0j

n
∑

k=1

λ̇k = −

n
∑

k=1

ck0λk + |b|

which turns the first term of (12) into

−

n
∑

k=1

λ̇kP(x, λ) =

(

n
∑

k=1

ck0λk − |b|

)

P(x, λ)

=
n
∑

k=1

ck0(xk + 1)P(x + εk, λ) −
n
∑

k=1

c0kP(x, λ). (13)
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Using the relation λjP(x − εj , λ) = xjP(x, λ) we find that the second term
of (12) equals

n
∑

j=1

λ̇jP(x − εj, λ)

=

n
∑

j=1

n
∑

i=1

cijλiP(x − εj , λ) −

n
∑

j=1

n
∑

i=0

cjiλjP(x − εj , λ) +

n
∑

j=1

c0jP(x − εj, λ)

=

n
∑

j=1

n
∑

i=1

cij(xi + 1)P(x + εi − εj , λ) −

n
∑

j=1

n
∑

i=1

cjixjP(x, λ)

(14)

−
n
∑

j=1

cj0xjP(x, λ) +
n
∑

j=1

c0jP(x − εj , λ).

Substituting (13) and (14) into (12) yields

d

dt
P(x, λ) =

n
∑

j=1

c0j

(

P(x − εj , λ) − P(x, λ)
)

+

n
∑

k=1

ck0

(

(xk + 1)P(x + εk, λ) − xkP(x, λ)
)

+

n
∑

j=1

n
∑

i=1

cij

(

(xi + 1)P(x + εi − εj , λ) − xiP(x, λ)
)

which is exactly the CME (8).
Now suppose that xk = 0 for one or more k. Without loss of generality,

it can be assumed, possibly after a suitable permutation of the indices, that
there is an m ∈ N such that xk = 0 for all m < k ≤ n and xk 6= 0 for all
1 ≤ k ≤ m. Then, the formula (12) for the derivative of P(x, λ) has to be
adapted such that the second sum is only taken from 1 to m. Accordingly,
(14) remains valid if “

∑n

j=1 . . .” is replaced by “
∑m

j=1 . . .” everywhere, and

since we have defined P(x, λ) = 0 for x 6∈ Nn the CME (8) is again recovered.

Remarks: 1. A different proof of Proposition 1 is obtained by regarding
the source as a compartment containing N molecules, applying Proposition 1
and passing to the limit N → ∞. The assertion then follows from the Poisson
limit theorem which states that for N → ∞ a binomial distribution converges
to a Poisson distribution.

2. On the other hand, Proposition 2 can be used to prove Proposition 1 by
application of the following well-known result (see [17]): If X1, . . . , Xn are in-
dependent Poisson variables with parameters λ1, . . . , λn, then the conditional
distribution of X(t) = (X1, . . . , Xn) given

∑n

i=1 Xi = N is multinomial
with parameters N and pi = λi/

∑n

i=1 λi.
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3.3 General systems with arbitrary initial distribution

The above propositions state that “Poisson stays Poisson” and, in closed
systems, that “multinomial stays multinomial”. Though these results pro-
vide solutions of the CME their practical use is limited, because in typical
applications the initial data is neither a multinomial nor Poisson distribu-
tion but a deterministic condition of the form P (0, x) = δξ(x). However, for
some special parameter values the multinomial and Poisson distribution are
indeed of this form, namely

P(x, λ) = δ0(x) ⇐⇒ λ = 0
M(x, N, p) = δ0(x) ⇐⇒ p = 0
M(x, N, p) = δNεj

(x) ⇐⇒ p = εj

where the symbol 0 denotes the zero vector 0 = (0, . . . , 0)T ∈ Rn. The
first two lines correspond to the situation where no molecules exist at all,
i.e. P(X = 0) = 1. The third line is the situation where all N molecules
belong to the same species Sj . Based on this observation we now derive an
explicit formula for the solution P (t, x) that holds if the initial condition is
deterministic.

Theorem 1 For any ξ ∈ Nn the solution of the CME (8) with initial data
P (0, ·) = δξ(·) is

P (t, · ) = P
(

· , λ(t)
)

? M
(

· , ξ1, p
(1)(t)

)

? . . . ? M
(

· , ξn, p(n)(t)
)

. (15)

The vectors p(k)(t) ∈ [0, 1]n and λ(t) ∈ Rn are the solutions of the reaction-
rate equations

ṗ(k)(t) = A(t)p(k)(t), λ̇(t) = A(t)λ(t) + b(t),

p(k)(0) = εk λ(0) = 0
(16)

with A(t) and b(t) defined in (5) and (4), respectively.

Remark. If instead of a deterministic initial condition a probability distri-
bution is given, the solution can be obtained by superposition, as already
mentioned in Section 2.2.

Proof. We split the molecules in n + 1 different groups: For 1 ≤ k ≤ n, the
k-th group contains only those ξk molecules that are of type Sk at time t = 0,
and the zeroth group comprises all molecules that do not yet exist at t = 0
but are created via a reaction of type R0k. The evolution of each group of
molecules is again a random variable that will be denoted by X(k)(t) with k =
0, 1, . . . , n. The crucial observation is that molecules belonging to different
groups evolve independently. Hence, X(t) = X(0)(t)+X(1)(t)+ . . .+X(n)(t)
is the sum of independent random variables, and according to a well-known
theorem [14], the joint probability distribution is given by the convolution

P (t, · ) = P (0)(t, · ) ? P (1)(t, · ) ? . . . ? P (n)(t, · )

where P (k)(t, x) is the probability distribution of X(k)(t). These distributions,
however, are immediately obtained from the previous propositions. For 1 ≤
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k ≤ n the initial distribution is P (k)(0, x) = δξk
(x) = M(x, ξk, εk), and

according to Proposition 1 we have

P (k)(t, x) = M
(

x, ξk, p(k)(t)
)

where p(k) is the solution of the left differential equation in (16). Since the
initial distribution of the zeroth group is P (0)(0, x) = P(x,0) = δ0(x), Propo-
sition 2 states that the probability distribution is

P (0)(t, x) = P
(

x, λ(t)
)

with λ being the solution of the right differential equation in (16). This proves
the assertion.

Our main result represents the exact solution of the CME (8) in terms of
well-known probability distributions with parameters evolving according to
reaction-rate equations. This very structured representation allows to deduce
any property of the solution, as exemplified in the next section.

4 Properties of the solution distribution

4.1 Marginal distributions

When the exact solution of the CME (8) is to be visualized, one is restricted
to low-dimensional projections. Therefore, we derive mariginal distribution
formulas for the solution distribution in this subsection.

For a vector-valued random variable X = (X1, . . . , Xn)T ∈ N
n and any

number j ∈ 1, . . . , n − 1 we define two lower-dimensional random variables

Y =
(

X1, . . . , Xj

)T
∈ N

j , Z =
(

Xj+1, . . . , Xn

)T
∈ N

n−j

such that X = (Y, Z)T . Any other partition of X can be obtained by an
appropriate permutation of the indices. Moreover, let

P (y, z) = P(Y = y , Z = z), FY (y) = P(Y = y), FZ(z) = P(Z = z)

be the corresponding probability distributions. Then FY and FZ are called
marginal distributions of P and are given by

∑

z∈Nn−j

P (y, z) = FY (y),
∑

y∈Nj

P (y, z) = FZ(z),

cf. [14]. We show that the marginal distribution of the solution of (8) has the
same form as the distribution (15) itself, but in a lower dimension.
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Proposition 3 Let P (t, x) be the solution (15) of the CME (8). Moreover,
fix j ∈ 1, . . . , n − 1 and define x = (y, z) with y = (x1, . . . , xj) and z =
(xj+1, . . . , xn) . Then, the marginal distribution

FY (t, y) =
∑

z∈Nn−j

P
(

t, (y, z)
)

=
∑

xj+1

∑

xj+2

· · ·
∑

xn

P (t, x)

of P (t, x) is given by

FY (t, y) =

(

P
(

· , λ̃(t)
)

? M
(

· , ξ1, p̃
(1)(t)

)

? . . .

(17)

. . . ? M
(

· , ξn, p̃(n)(t)
)

)

(y)

where p̃(i) = (p
(i)
1 , . . . , p

(i)
j )T and λ̃ = (λ1, . . . , λj)

T only contain the first j

entries of the parameter vectors p(i)(t) ∈ [0 , 1]n and λ(t) ∈ Rn defined by
the differential equations (16).

Remark. Note that (17) does not depend explicitly on neither p
(i)
j+1, . . . , p

(i)
n

nor λj+1, . . . , λn, but these values still have to be computed because they are
coupled with the other entries via the differential equation (16).

Proof. It can be shown that the marginal distributions of the multinomial
and the Poisson distribution are

∑

z∈Nn−j

M
(

(y, z), N, p
)

= M(y, N, p̃)

∑

z∈Nn−j

P
(

(y, z), λ
)

= P
(

y, λ̃
)

with p̃ = (p1, . . . , pj)
T and λ̃ = (λ1, . . . , λj)

T (cf. [17]). Now, the statement
follows from the fact that computing the convolution and passing to the
marginal distribution commutes.

4.2 Expectation and variance

The expectation E(X) and covariance matrix Cov(Xj , Xk) = E(Xj−EXj)(Xk−
EXk) of the probability distribution P (t, x) can easily be calculated. It is
known that an n-dimensional random variable Y with multinomial distribu-
tion M(x, N, p) has

E(Y ) = Np, Cov(Yj , Yk) =

{

−Npjpk if j 6= k

Npk(1 − pk) if j = k

(see [17]). If Y is distributed according to the product Poisson distribution
P(x, λ), then

E(Y ) = λ, Cov(Yj , Yk) = 0 if j 6= k, Cov(Yk, Yk) = λk.
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The sum of two independent random variables Y1 and Y2 has expectation
E(Y1+Y2) = E(Y1)+E(Y2) and covariance Cov(Y1, Y2) = 0 (cf. [14]). Together
with the (bi-)linearity of Cov and E, this yields

E
(

X(t)
)

= λ(t) +

n
∑

k=1

ξkp(k)(t)

Cov(Xj , Xk) =



















n
∑

i=1

ξip
(i)
j (1 − p

(i)
j ) + λj if j = k

−
n
∑

i=1

ξip
(i)
j p

(i)
k else

with p(k) and λ(t) from (16). It is well-known that the expectation E(X) of
the monomolecular reaction system (1) evolves according to the deterministic
rate equation (3) used in “classical” reaction kinetics. This can easily be seen
from the above expression: At t = 0 we have

E
(

X(0)
)

= λ(0) +

n
∑

k=1

ξkp(k)(0) =

n
∑

k=1

ξkεk = ξ, (18)

and taking the derivative of E
(

X(t)
)

yields via (16)

d

dt
E
(

X(t)
)

= λ̇(t) +

n
∑

k=1

ξkṗ(k)(t) = A(t)λ(t) + b(t) +

n
∑

k=1

ξkAp(k)(t)

= A(t)E
(

X(t)
)

+ b(t). (19)

4.3 Steady states and convergence

As stated in the introduction, it is well–known that the equilibrium distri-
bution of a finite closed system is multinomial, while it is product Poisson
for open systems. In this section, we deduce much stronger results investi-
gating the convergence of the system from an arbitrary initial distribution
to a steady state.

Assume that the initial distribution is given in terms of some probability
distribution µ, i.e., P (0, x) = µ(x) for every x ∈ Nn. Then, expoiting linearity
of the CME, the distribution at time t > 0 can be written as

P (t, · ) =
∑

ξ∈Nn

µ(ξ)Pξ(t, · ) (20)

where Pξ(t, · ) satisfies the CME (8) with initial condition Pξ(0, · ) = δξ.
In the following we will see that the above representation (20) can be much
simplified for the classes of closed and open systems, exploiting the structure
of the probability distributions Pξ(t, · ) obtained in Theorem 1. To do so,
we impose two additional and natural assumptions on the reaction system:

(A1) All reaction rates cjk are constant.
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(A2) The matrix A is irreducible which means that there is no block partition
of the form

A =

(

A11 0
A21 A22

)

.

Concerning (A1), a steady state might not exist, if the rates are time-dependent,
while (A2) guarantees that the system cannot be decomposed into two or
more completely separated parts (see, e.g., [2]). Next, we quote some useful
results about compartmental matrices.

Proposition 4 (Theorems 12.1, 12.3, 13.1, and 13.2 in [2])

– The real part of any eigenvalue σk of A is nonpositive and there are no
purely imaginary eigenvalues:

Re(σk) ≤ 0 and Re(σk) = 0 ⇐⇒ σk = 0.

– Let σ1 be the eigenvalue with the smallest absolute value, i.e. |σ1| ≤ |σk|
for all k. Then σ1 = Re(σ1) is real and nonpositive, and there is a
corresponding eigenvector containing only nonnegative entries. Moreover,
Re(σk) < σ1 ≤ 0 for all k.

– If ck0 6= 0 for one or more k, then σ1 < 0 and A is invertible. All entries
of A−1 are nonpositive.

The proof is based on the Gerschgorin Circle Theorem and on the Perron-
Frobenius Theorem, see [2], page 55ff.

4.3.1 Closed systems

Suppose that there are no inflow reactions R0k because c0k = 0 for all k. If any
of the degradation rates ck0 is nonzero, all molecules will disappear sooner
or later and the system will tend to the trivial steady state limt→∞ P (t, x) =
δ0(x). Therefore, we only consider the more interesting case that ck0 = c0k =
0 for all k.

Proposition 5 Let ck0 = c0k = 0 for all k. Under the assumptions (A1)
and (A2) the solution of the CME (8) with initial data P (0, ·) = δξ(·) for
ξ ∈ N

n converges to a multinomial distribution:

lim
t→∞

P (t, x) = M
(

x, |ξ|, p̄
)

.

The vector p̄ ∈ [0, 1]n is uniquely determined by the relations Ap̄ = 0 and
|p̄| = 1.

Proof. It follows from (6) that the sum over each column of A is
∑n

j=1 ajk =

0 for each k. Hence, σ1 = 0 is an eigenvalue with left eigenvector (1, . . . , 1).
For b = 0 and constant A the solutions of (16) are simply

p(k)(t) = exp(tA)εk = T exp(tJ)T−1εk, λ(t) ≡ 0
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where A = TJT−1 is the decomposition provided by the Jordan normal form
(cf. Proposition 8 in the appendix). Thanks to the block structure of J we
can treat the matrix exponential of each Jordan block separately. Since the
eigenvalue σ1 is simple according to Proposition 4, the first Jordan block
consists of only one entry, namely σ1 = 0, and hence

exp(tJ1) = exp(σ1t) = 1.

For any other Jordan block it can be shown that

lim
t→∞

exp(tJk) = 0

(where “0” denotes the corresponding zero matrix) because Re(σk) < 0 for
all k > 1 by Proposition 4. Hence, limt→∞ exp(tA) = TLT−1 with

L = lim
t→∞

exp(tJ) =













1 0 · · · 0

0 0
...

...
. . . 0

0 · · · 0 0













.

As a consequence, the parameter vectors p(k)(t) tend to well-defined limits
and the system approaches an unique2 steady state. The fact that exp(tA)
converges implies that its derivative vanishes and thus

0 = lim
t→∞

d

dt
exp(tA) = lim

t→∞
exp(tA)A = TLT−1A.

If v(k) is the k−th row of TLT−1, then v(k)A = (0, . . . , 0) which means that
either v(k) = (0, . . . , 0) or v(k) is a left eigenvector of A to the eigenvalue
σ1 = 0. Since this eigenvalue is simple, the corresponding left eigenspace is
one-dimensional and only consists of vectors of the form r · (1, . . . , 1) with
some r ∈ R. This yields that

TLT−1 =









r1 r1 · · · r1

r2 r2 · · · r2

...
...

...
rn rn · · · rn









has n identical columns and all parameter vectors p(k)(t) converge to the
same limit:

lim
t→∞

p(k)(t) = lim
t→∞

exp(tA)εk = TLT−1εk =







r1

...
rn






=: p̄

2 Since the system always converges to this steady state it can never be in any
other steady state.
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The limit p̄ lies in the kernel of A because Ap̄ = TJLT−1εk = 0. Moreover,
it follows from (6) and ck0 = 0 that |p̄| = 1. We insert p̄ into the solution
distribution given in Theorem 1 and use that

M
(

· , ξ1, p̄
)

? M
(

· , ξ2, p̄
)

= M
(

· , ξ1 + ξ2, p̄
)

(see Lemma 2 in the appendix). This shows that the only steady state dis-
tribution is a multinomial distribution with parameters p̄ and |ξ|.

Combining the above result with the representation (20), we obtain for a
given initial distribution µ and every x ∈ Nn

lim
t→∞

P (t, x) =
∑

ξ∈Nn

µ(ξ) M
(

x, |ξ|, p̄
)

=

∞
∑

N=0

µN M
(

x, N, p̄
)

, (21)

where p̄ ∈ [0, 1]n is uniquely determined by the relations Ap̄ = 0 and |p̄| = 1,
and µN is defined by

µN =
∑

|ξ|=N

µ(ξ)

for N ∈ N. Eq. (21) allows three interesting observations: (i) The steady
steady is not unique and does depend on the initial distribution µ, unless
c0k > 0 for some k. (ii) Fix some N ∈ N. Then the limit distribution is unique
and multinomial for the sub-class of initial distributions µ satisfying µN = 1.
This sub-class particularly includes initial deterministic distributions and
multinomial distributions M

(

·, N, p
)

, cf. Prop. 1. (iii) Closed system may
evolve to Poissonian steady states (cf. Prop. 1). As an example, consider
the initial distribution µ = P

(

·, λ
)

for some λ ∈ [0,∞)n. Then, µ can be
interpreted as the joint propability distribution of n independent Poission
random variables X1, . . . , Xn. As a consequence, it is

µN = P

(

X1 + · · · + Xn = N
)

P

(

X1 = x1 . . . , Xn = xn | X1 + · · · + Xn = N
)

= M
(

x, N, p
)

for x ∈ Nn, see Remark 2 on page 10. Now, by Bayes formula, we obtain

lim
t→∞

P (t, x) =
∞
∑

N=0

µN M
(

x, N, p̄
)

= P
(

x, λ̄
)

with λ̄ = |λ| · p̄i for i = 1, . . . , n.

4.3.2 Open systems

Proposition 6 Let ck0 6= 0 for one or more k and assume that (A1) and
(A2) hold. Then, the solution of the CME (8) with initial data (9) converges
to a Poisson distribution

lim
t→∞

P (t, x) = P
(

x, λ̄
)

where λ̄ is the solution of Aλ̄ = −b and contains only nonnegative numbers.
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Remark. This agrees with a result proven in [8] which states that the sta-
tionary distribution of any species in an open first-order conversion network
is a Poisson distribution.

Proof. By Proposition 4 the matrix A is invertible and all eigenvalues have
negative real part. The solutions of the differential equations (16) are

p(k)(t) = exp(tA)εk, λ(t) =
(

exp(tA) − I
)

A−1b

and since limt→∞ exp(tA) = 0 (use the Jordan normal form as above) we
obtain

lim
t→∞

p(k)(t) = 0, lim
t→∞

λ(t) = −A−1b =: λ̄.

All entries of λ̄ are nonnegative because of Proposition 4. Inserting the limits
into the solution distribution yields limt→0 P (t, x) = P

(

x, λ̄
)

.

Combining the above result with the representation (20), we obtain for
any given initial distribution µ and every x ∈ Nn

lim
t→∞

P (t, x) =
∑

ξ∈Nn

µ(ξ) P
(

x, λ̄
)

= P
(

x, λ̄
)

,

where λ̄ is the solution of Aλ̄ = −b and contains only nonnegative numbers.
Hence, for open systems the convergence and limit behavior is drastically
different from that of closed systems. While in the latter case, the stationary
distribution depends on the initial distribution, it is unique for open systems.

5 Some simple examples

In this subsection we illustrate our result by means of two low-dimensional
examples that have been discussed by other authors.

5.1 First example

Consider one single substance S1 and the two reaction channels

Reaction R01 : ?
c01−→ S1 production from source or inflow

Reaction R10 : S1
c10−→ ? degradation or outflow

with constant reaction rates c01 > 0 and c10 > 0. Suppose that at t = 0 there
are ξ molecules (ξ ∈ N) and let P (t, x) be the probability that at time t there
are x ∈ N molecules of S1. According to Theorem 1 this probability is given
by

P (t, x) =

min{ξ,x}
∑

k=0

(

ξ

k

)

pk(t)(1 − p(t))ξ−k ·
λx−k(t)

(x − k)!
e−λ(t)
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where p(t) = e−c10t and λ(t) = c01(1 − e−tc10)/c10 are the solutions of the
differential equations

ṗ(t) = −c10p(t) λ̇(t) = −c10λ(t) + c01

p(0) = 1 λ(0) = 0

This result is stated in Todorovic [20, Sec. 8.4] or in Gardiner [9, Sec. 7.1].
Since limt→∞ p(t) = 0 and limt→∞ λ(t) = c01/c10, the limit distribution

lim
t→∞

P (t, x) =
λ̄x

x!
e−λ̄

is the Poisson distribution with parameter λ̄ = c01/c10.

5.2 Second example

Now we consider the isomerization process with two species S1 and S2 and
the two conversions

Reaction R12 : S1
c12−→ S2

Reaction R21 : S2
c21−→ S1

with constant reaction rates c12 > 0 and c21 > 0. Suppose that at t = 0 there
are ξ1 molecules of S1 and ξ2 molecules of S2. Let P (t, x) be the probability
that at time t ≥ 0 there are x1 molecules of S1 and x2 molecules of S2. Then,
according to Theorem 1

P (t, · ) = M
(

· , ξ1, p
(1)(t)

)

? M
(

· , ξ2, p
(2)(t)

)

.

with parameter vectors p(1)(t) and p(2)(t) given by

p(1)(t) = exp(tA)ε1, p(2)(t) = exp(tA)ε2, A =

(

−c12 c21

c12 −c21

)

.

The above formulas can be simplified if the diagonalisation A = TDT−1 with

T =

(

1 c21

−1 c12

)

, D =

(

−d 0
0 0

)

, T−1 =
1

d

(

c12 −c21

1 1

)

, d = c12 + c21

is used to compute the matrix exponential exp(tA) = T exp(tD)T−1. This
yields

p(1)(t) =
1

d

(

e−tdc12 + c21

(1 − e−td)c12

)

, p(2)(t) =
1

d

(

(1 − e−td)c21

e−tdc21 + c12

)

.

Since |p(1)(t)| = |p(2)(t)| = 1 we find that

(

1 − |p(k)|
)ξk−|x|

= 0ξk−|x| = δξk
(|x|).
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As a consequence,

M
(

x, ξk, p(k)
)

=
ξk!

x1!x2!(1 − |x|)!

(

p
(k)
1

)x1
(

p
(k)
2

)x2
(

1 − |p(k)|
)ξk−|x|

= δξk
(|x|)

ξk!

x1!(1 − x1)!

(

p
(k)
1

)x1
(

1 − p
(k)
1

)ξk−x1

= δξk
(|x|)B

(

x1, ξk, p
(k)
1

)

for k = 1 or k = 2, where B( · , ξk, p
(k)
1 ) denotes the binomial distribution.

This means that the total number of particles must be constant, which is
reasonable for the above system. The two-dimensional convolution of two
multinomial distribution now reduces to a one-dimensional convolution of
two binomial distributions:

P (t, x) =
∑

z

δξk
(|z|)B

(

z1, ξ1, p
(1)
1

)

δξ2
(|x − z|)B

(

x1 − z1, ξ2, p
(2)
1

)

= δ|ξ|(|x|)
∑

z1

B
(

z1, ξ1, p
(1)
1

)

B
(

x1 − z1, ξ2, p
(2)
1

)

.

Since both p
(1)
1 (t) and p

(2)
1 (t) converge to the same value p̄ = c21/(c21 + c12)

the stationary distribution is

lim
t→∞

P (t, · ) = δ|ξ|(|x|)
(

B ( · , ξ1, p̄) ∗ B ( · , ξ2, p̄)
)

= δ|ξ|(x)B ( · , ξ, p̄)

because the convolution of two binomials with the same parameter is again
a binomial (cf. [14]). In [13] the same stationary distribution was obtained in
a different way.

6 Outlook

In this article we derive an explicit formula for the exact solution of the CME
under the assumption that only monomolecular reactions occur in the under-
lying reaction system. For the generic case of deterministic initial conditions,
the solution turns out to be the convolution of multinomial and product Pois-
son distributions with time-dependent parameters evolving according to the
traditional reaction-rate equations. To our knowlegde this is the first report
of an general solution for arbitrary initial conditions. All previously derived
results on monomolecular reaction systems can be restated in terms of our
representation highlighting the structure of the system, as has been shown
in Sec. 5. Exploiting the structure of the solution, many interesting features
of the time-dependent distribution have been expressed in terms of the time-
depending parameters specifying the multinomial and the product Poisson
distribution.

Our results presented so far are applicable to reaction systems including
conversion, production and degradation reactions, as specified in (1). The



21

question arises whether Theorem 1 can be extended to a larger class of sys-
tems including, e.g.,

Sj
c

−→ Sk + Sl splitting reaction (j 6= k, l)

Sj
c

−→ Sj + Sk catalytic production (j 6= k)

Sj
c

−→ Sj + Sj autocatalytic production.

As a first step in this direction, we discuss the case of one single species evolv-
ing according to an autocatalytic reaction with nonnegative rate c(t). Theo-
rem 1 cannot be applied to this situation because (22) is not a monomolecular
reaction in the sense of Section 2. Nevertheless, we can state an explicit for-
mula for the probability distribution that solves the corresponding CME.

Proposition 7 Suppose that at t = 0 there are ξ ∈ N \ {0} molecules of a
species S taking part in the autocatalytic reaction

S
c

−→ S + S (22)

with rate c(t) ≥ 0. If P (t, m) denotes the probability to find m ∈ N molecules
of S at time t, then

P (t, m) =







(

m − 1

m − ξ

)

pξ(t)
(

1 − p(t)
)m−ξ

for m ≥ ξ

0 for m < ξ
(23)

with parameter p(t) obtained by solving the differential equation ṗ(t) = −c(t)p(t)
with p(0) = 1.

Proof. It has to be shown that (23) solves the CME

∂

∂t
P (t, m) = c(t)(m − 1)P (t, m − 1) − c(t)mP (t, m), (24)

with initial data P (0, m) = δξ(m). Taking the derivative of (23) and omitting
the argument “(t)” gives

∂

∂t
P (t, m) =

(

m − 1

m − ξ

)

(

ξpξ−1
(

1 − p
)m−ξ

− pξ(m − ξ)
(

1 − p
)m−ξ−1

)

ṗ(t)

=

(

ξ

p
−

m − ξ

1 − p

)

ṗP (t, m)

=

(

−cξ + cp
m − ξ

1 − p

)

P (t, m)

= −cmP (t, m) + c
m − ξ

1 − p
P (t, m)

= −cmP (t, m) + c(m − 1)P (t, m − 1).

for all m ≥ ξ, where we have used that 1 − p(t) > 0 and p(t) > 0 for t > 0.
At t = 0 we obtain
(

m − 1

m − ξ

)

pξ(0)
(

1 − p(0)
)m−ξ

=

(

m − 1

m − ξ

)

1ξδξ(m) = δξ(m) = P (0, m).
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This proves that (23) is indeed the solution of (24).

Remark. The distribution (23) is a shifted variant of the negative binomial

distribution B̃ defined by

B̃(m, r, q) =

(

r + m − 1

m

)

pr(1 − p)m.

for all p ∈ [0, 1] and r > 0, see [14]. It is easy to see that P (t, m) = B̃(m −
ξ, ξ, p). Since it is known that

E

(

B̃( · , r, q)
)

=

∞
∑

m=0

mB̃(m, r, q) =
qr

1 − q
,

the expectation of P (t, · ) is

E
(

P (t, · )
)

=

∞
∑

m=0

(m − ξ + ξ)B̃
(

m − ξ, ξ, 1 − p(t)
)

= E

(

B̃
(

· , ξ, 1 − p(t)
)

)

+ ξ

=
(1 − p(t))ξ

p(t)
+ ξ =

ξ

p(t)
= ξect

which is again the solution of the “classical” rate equation ẏ(t) = cy(t) with
initial value y(0) = ξ.

Proposition 7 provides an analytic solution for isolated autocatalytic reac-
tions, but unfortunately we have not yet found a way to treat systems where
autocatalytic reactions occur together with and production, conversion or
degradation reactions. For example, the joint probability distribution of the
system

∗
c1−→ S

S
c2−→ ∗

S
c3−→ S + S

cannot be derived from the results of this paper. We only know that some-
how this distribution must “interpolate” between the Poisson, binomial and
negative binomial distributions, because each of these is obtained in a spe-
cial case. We believe, however, that Proposition 7 and Theorem 1 can be
combined and extended in such a way that analytic solutions of the CME
are obtained even when both monomolecular and autocatalytic reactions are
possible. Work in this direction is in progress.
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A Appendix

Lemma 1 For all p ∈ [0, 1]n and x ∈ N
n with |x| ≤ N ∈ N the multinomial

distribution M(x,N, p) can be represented as a product of binomial distributions

M(x, N, p) =
n
Y

k=1

B (xk, sk, rk) (25)
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with

B(xk, sk, rk) =

 

sk

xk

!

r
xk

k (1 − rk)sk−xk ,

sk = N −
k−1
X

j=1

xj , rk =
pk

1 −
Pk−1

j=1 pj

.

Proof by induction. For n = 1 the binomial and the multinomial distributions
coincide and the assertion is trivial. If (25) holds for n − 1 we have

n
Y

k=1

B (xk, sk, rk) = M(x̃, N, p̃)B (xn, sn, rn)

= N !
(1 − |p̃|)N−|x̃|

(N − |x̃|)!

n−1
Y

k=1

p
xk

k

xk!
·

sn!

xn!(sn − xn)!
r

xn
n (1 − rn)sn−xn (26)

with x̃ = (x1, . . . , xn−1)
T and p̃ = (p1, . . . , pn−1)

T . Since

rn =
pn

1 − |p̃|
, 1 − rn =

1 − |p|

1 − |p̃|
, sn = N − |x̃|

by definition, we obtain

(1 − |p̃|)N−|x̃|
r

xn
n (1 − rn)sn−xn = (1 − |p̃|)N−|x̃|

„

pn

1 − |p̃|

«xn
„

1 − |p|

1 − |p̃|

«sn−xn

= (1 − |p̃|)N−|x̃|−snp
xn
n (1 − |p|)sn−xn

= p
xn
n (1 − |p|)N−|x|

. (27)

Moreover, the relations sn − xn = N − |x| and sn = N − |x̃| yield

1

(N − |x̃|)!
·

sn!

xn!(sn − xn)!
=

1

xn!(N − |x|)!
. (28)

Inserting (27) and (28) into (26) gives

n
Y

k=1

B (xk, sk, rk) = N !

n−1
Y

k=1

p
xk

k

xk!
·
pxn

n (1 − |p|)N−|x|

xn!(N − |x|)!
= M(x,N, p).

Lemma 2 For all p ∈ [0, 1]n and N1, N2 ∈ N
n

M( · , N1, p) ∗ M( · , N2, p) = M( · , N1 + N2, p)

Proof. For n = 1 the multinomial distributions reduce to binomial distributions
and the convolution reads

B( · , N1, p) ∗ B( · , N2, p) = B( · , N1 + N2, p). (29)

This equation is proven in most textbooks on probability theory, e.g. [14]. For n > 1
we can use Lemma 1 with

s
(1)
k = N1 −

k−1
X

j=1

zj , s
(2)
k = N2 −

k−1
X

j=1

(xj − zj), rk =
pn

1 −
Pk−1

j=1 pj

.
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and obtain via (29) that

X

zn

M(z, N1, p)M(x− z, N2, p)

=
X

zn

n
Y

k=1

B
“

zk, s
(1)
k , rk

”

B
“

xk − zk, s
(2)
k , rk

”

=

 

n−1
Y

k=1

B
“

zk, s
(1)
k , rk

”

B
“

xk − zk, s
(2)
k , rk

”

!

X

zn

B
“

zn, s
(1)
n , rn

”

B
“

xn − zn, s
(2)
n , rn

”

=

 

n−1
Y

k=1

B
“

zk, s
(1)
k , rk

”

B
“

xk − zk, s
(2)
k , rk

”

!

· B (xn, sn, rn) .

with sn = s
(1)
n + s

(2)
n = N1 + N2 −

Pk−1
j=1 xj . By recursion this yields

„

M( · , N1, p) ∗ M( · , N2, p)

«

(x) =
X

z1

X

z2

· · ·
X

zn

M(z, N1, p)M(x − z, N2, p)

=

n
Y

i=1

B (xi, si, ri) = M(x, N, p).

Proposition 8 (Jordan normal form) For any arbitrary matrix A ∈ C
n×n there

is a decomposition T−1AT = J with an invertible matrix T ∈ C
n×n and

J =

0

B

B

B

B

@

J1 0 · · · 0

0 J2

...
...

. . . 0

0 · · · 0 Jκ

1

C

C

C

C

A

, Jk =

0

B

B

B

B

B

B

B

@

λk 1 0 · · · 0

0 λk 1
. . .

...
...

. . .
. . . 0

... λk 1
0 · · · · · · 0 λk

1

C

C

C

C

C

C

C

A

∈ C
nk×nk

with n1 +n2 + . . .+nκ = n. Each λk is an eigenvalue of A, but there can be several
Jordan blocks Jk belonging to the same eigenvalue.

Proof: See any textbook on linear algebra.


