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Abstract

Automated feature extraction and object recognition are large research areas in the ®eld of
image processing and computer vision. Recognition is largely based on the matching of
descriptions of shapes. Numerous shape description techniques have been developed, such as

scalar features (dimension, area, number of corners etc.), Fourier descriptors and moment
invariants. These techniques numerically describe shapes independent of translation, scale and
rotation and can be easily applied to topographical data. The applicability of the moment
invariants technique to classify objects on large-scale maps is described. From the test data

used, moments are fairly reliable at distinguishing certain classes of topographic object.
However, their e�ectiveness will increase when fused with the results of other techniques.
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1. Introduction

Automatic structuring (feature coding and object recognition) of topographic
data, such as that derived from air survey or raster scanning large-scale paper maps,
requires the classi®cation of objects such as buildings, roads, rivers, ®elds and rail-
ways. Shape and context are the main attributes used by humans for this task. Our
project combines shape recognition techniques developed for computer vision and
contextual models derived from statistical language theory to recognise objects. This
paper describes a measurement of shape to characterise features that will then be
used as input into contextual models based on structure and statistics.
The technology to capture paper-based cartographic data through scanning is well

founded and the production of raster data relatively easy. The vectorisation of raster
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data, although not perfect, is also widespread in mapping organisations although it
usually requires user intervention to ensure the quality of data. Vectorisation pro-
duces vector graphical data but most applications require the data to be structured so
it models not only the geometry and topology but also logical contents, often stored
as a set of attributes attached to the geometry. These attributes are usually captured
manually by a human operator but this process of classifying and entering attributes
can be a severe bottleneck in the production ¯ow. This can result in both a scarcity of
suitable searchable data and/or sparseness in its accuracy and detail. Automation of
the recognition of objects is the obvious solution, but this is a complex problem.
Feature extraction and object recognition are large research areas in the ®eld of

image processing and computer vision. Recognition is largely based on the matching
of descriptions of shapes. Numerous shape description techniques have been devel-
oped, such as the analysis of scalar features (dimensions, area, number of corners and
so on), Fourier descriptors, moment invariants and boundary chain coding. These
techniques are well understood when applied to images and have been developed to
describe shapes irrespective of position, orientation and scale. They can be easily
applied to vector graphical shapes (Winstanley, 1998). Experiments carried out to
date include the application of scalar and Fourier descriptors as features of shape
description and recognition. It is envisaged that these methods can be combined with
moment invariants and other techniques of object recognition to produce an optimal
result for the problem of shape description of general cartographic shapes on maps.
This paper describes experiments that apply moment invariants to the problem.

2. Moment invariants

2.1. Background

Calculating and comparing the moment invariants of the shape of a feature is a
well-established technique in image processing for recognition and classi®cation.
The invariant values model numerically the characteristics of an object that uniquely
represent its shape (Winstanley, 1997). Invariant shape recognition is performed by
classi®cation in the multidimensional moment invariant feature space. Several tech-
niques have been developed that derive invariant features from moments for object
recognition and representation (Belkasim et al., 1991). These techniques are dis-
tinguished by their moment de®nition, the type of data exploited and the method for
deriving invariant values from the image moments. It was Hu (Hu, 1962), that ®rst
set out the mathematical foundation for two-dimensional moment invariants and
demonstrated their applications to shape recognition. They were ®rst applied to
aircraft shapes and were shown to be quick and reliable (Dudani, Breeding &
McGhee, 1977). The values calculated are invariant with respect to translation, scale
and rotation of the shape.
The moment of an object measures the distribution of its mass relative to the ori-

gin of some co-ordinate system. This origin is conventionally normalised to be the
centre of mass of the object. In the physical world, the moment gives a measure of
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the object's propensity to rotate around an axis through this centre of mass. We can
calculate di�erent orders of moments, the second order moments measuring the
spread of mass in an object. Zero and ®rst order moments specify the total mass and
centre of gravity of the object. Higher-order moments do not have simple inter-
pretations although they do model aspects of the object's physical shape. The theory
of moments can be applied in image processing by substituting the distribution of
pixels depicting the object for mass.
Hu devised moment invariants Ð a set of seven values calculated from an object's

moments to describe its shape. They are computed from central moments through
order three and are independent to object translation, scale and orientation. Trans-
lation invariance is achieved by computing moments that are normalised with
respect to the centre of gravity so that the centre of mass of the distribution is at the
origin (central moments). Size invariant moments are derived from algebraic invar-
iants, but these can be shown to be the result of a simple size normalisation. From
the second and third order values of the normalised central moments, a set of seven
invariant moments can be computed which are independent of rotation.

2.2. Theory

Traditionally, moment invariants are computed based on the information pro-
vided by both the shape boundary and its interior region (Hu, 1962, Prokop &
Reeves, 1992). The moments used to construct the invariants are de®ned for the
continuous domain but for practical implementation they are computed in the dis-
crete form. Given a function f(x,y), these regular moments are de®ned by:

Mpq �
� �

xpyqf x; y� �dxdy �1�

Mpq is the two-dimensional moment of the function f(x,y). The order of the
moment is ( p+q) where p and q are both natural numbers. For implementations in
discrete form this becomes:

Mpq �
X
x

X
y

xpyqf x; y� � �2�

To normalise for translation in the image plane, the image centroids are used to
de®ne the central moments. The co-ordinates of the centre of gravity of the image
are calculated using Eq. (2) and are given by:

x �M10

M00
y �M01

M00
�3�

The central moments can then be de®ned in their discrete representation as:

�pq �
X
x

X
y

xÿ x� �p yÿ y� �q �4�
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The moments are further normalised for the e�ects of change of scale using the fol-
lowing formula:

�pq � �pq=�y00 �5�

where the normalisation factor: g=(p+q/2)+1. From the normalised central
moments, a set of seven invariant values can be calculated and are de®ned by:

�1 � �20 � �02
�2 � �20 ÿ �02� �2�4�211
�3 � �30 ÿ 3�12� �2� �03 � �21� �2

�4 � �30 � �12� �2� �03 � �21� �2

�5 � 3�30 ÿ 3�12� � �30 � �12� � �30 � �12� �2ÿ3 �21 � �03� �2
h i

� 3�21 ÿ �03� �

� 3 �30 � �12� �2ÿ �21 � �03� �2
h i

�6 � �20 ÿ �02� � �30 � �12� �2ÿ �21 � �03� �2
h i

� 4�11 �30 � �12� � �21 � �03� �

�7 � 3�21 ÿ �03� � �30 � �12� � �30 � �12� �2ÿ3 �21 � �03� �2
h i

� 3�12 ÿ �30� � �21 � �03� � � 3 �30 � �12� �2ÿ �21 � �30� �2
h i �6�

These seven invariant moments, �I, 14I47, set out by Hu, were additionally shown
to be independent of rotation. The drawback for vector representations of shape is
that they are computed over the shape boundary and its interior region.

2.3. New moments

When dealing with shape recognition of objects on maps we are dealing with
objects in isolation, where we only know information about the outline of the shape.
For this purpose, the moment invariants used in this paper are computed using the
shape boundary only (Chaur-Chin Chen, 1993). In this case, using the same nota-
tion as above, the moment de®nition in Eq. (1) can be expressed as:

Mpq �
�
C

xpyqds �7�

for p, q=0, 1, 2, 3, where
�
C is the line integral along the curve C and ds=p

((dx)2+(dy)2). The central moments can be similarly de®ned as:

�pq �
�
C

xÿ x� �p yÿ y� �qds �8�
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Given that the centroids are as in the regular method:

X �M10

M00
y �M01

M00
�9�

For a digital image, Eq. (8) becomes

�pq �
X
x;y� �2C

xÿ x� �p yÿ y� �q �10�

Thus the central moments are invariant to translation. These new central moments
can also be normalised such that they are invariant to changes of scale.

�pq�pq=�
y
00 �11�

where the normalisation factor is: g=p+q+1. The seven moment invariant values
can then be calculated as before using the results obtained from the computation of
Eqs. (7±11) above.

3. Moment invariants applied to topographic data

The recognition and description of objects plays a central role in automatic shape
analysis for computer vision and it is one of the most familiar and fundamental
problems in pattern recognition. Common examples are the reading of alphabetic
characters in text (Dehghan & Faez, 1997) and the automatic identi®cation of air-
craft (Dudani, Breeding & McGhee, 1997). Most applications using moment invar-
iants for shape recognition deal with the classi®cation of such de®nite shapes. To
identify topographic objects each of the techniques needs to be extended to deal with
general categories of shape, for example those depicting houses, parcels and roads.
The data used for the experiments described in the following sections was extrac-

ted from vector data sets (NTF level 2) representing large-scale (1:1250) plans of
southern England and the Isle of Man (Kelly & Hilder, 1998), an example of which
can be seen in Fig. 1. A pre-processing operation was required to extract closed
polygons from lines with the same feature codes. After extracting the required
polygonal data from the maps, an interpolation method was applied to sample the
shape boundary at a ®nite number (n) of equi-distant points. These points represent
the x and y co-ordinates of the polygonal shape, are then stored, and then processed
by a moment transformation on the outline of the shape. This produces seven
moment invariant values that are normalised with respect to change of size (scale),
change of position (translation) and change of orientation (rotation) and can be
used to discriminate between shapes.
Given two sets of moment invariant values, how do we measure their degree of

similarity? An appropriate classi®cation procedure is necessary if unknown shapes are
to be compared to a library of known shapes. The moment invariant implementation
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produced sets of real values. If two shapes, A and B produce a set of values repre-
sented by a(i) and b(i) then the distance between them can be given as c(i) =
a(i)ÿb(i). If a(i) and b(i) are identical then c(i) will be zero. If they are di�erent then
the magnitudes of the coe�cients in c(i) will give a reasonable measure of di�erence
enabling discrimination between shapes. It proves more convenient to have one
value to represent this rather than a set of values that make up c(i). The easiest way
is to treat c(i) as a vector in a multi-dimensional space, in which case its length,
which represents the distance between the planes, is given by the square root of the
sum of the squares of the elements of c(i).

4. Results

Below, a sample of the results produced by the application of the moment invar-
iants technique is evaluated for shape discrimination between general classes of
cartographic feature. Fig. 2 plots the average values obtained for ®ve categories of
objects from the sample maps. In order to classify shapes with any degree of cer-
tainty, the variation within classes must be less than that between classes.
To evaluate moments as a shape recognition technique, several shapes from the

map (buildings, parcels and roads) were used as test images. As an example, Figs. 3
and 4 show, respectively, building and parcels on a portion of one map. The
moment invariants are computed from the equally spaced (x, y) points (512 sample
points) along the boundary of each test shape using the formulae derived earlier.
The following table is an example of a set of seven invariant moments (IM) obtained
for a house and parcel shape (starting at index IM(0) Table 1).
The moment invariants were calculated for three types of feature, namely build-

ings, parcels and roads in six di�erent sub-categories used in Ordnance Survey large-
scale data-sets:

Fig. 1. Section of a 1:1250 plan, shading representing object classes.
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1. buildings;
2. de®ned natural land-cover;
3. multiple surface land;
4. general unmade-land;
5. made-road; and
6. roadside.

Fig. 5 shows a plot of the mean values for each of the above named categories in
three-dimensional space. The results obtained for each full data set were plotted
using the invariants (IM(0), IM(1), IM(2)) to observe how well they formed separate
groups. Fig. 6 shows the degree to which three of these data sets (unmade-land,
surface land and buildings) cluster in (IM(0), IM(1), IM(2)) space.
Fig. 7 (left) shows the degree to which the data sets, building and de®ned land

cover cluster and also in Fig. 7 (right), a cluster plot of the data sets, de®ned
land cover and unmade-land. In Fig. 8 it can be seen how the features buildings and
roads separate when plotted.
To analyse the results obtained, the repeatability function and mean value meas-

urements were computed for each set or the sample shapes. The results can be seen

Fig. 2. Average moment invariants (IM) of ®ve sample shapes.

Fig. 3. Sample data representing house shapes.
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in Table 2. Only the ®rst moment invariants measure, MI(0) is used here for clarity;
it is the most signi®cant invariant (Wang, Dayong, & Xie, 1996).
The values show that there is a signi®cant separation between most of classes.

Although overlap does exist (also seen through visual inspection of the plots), good
classi®cation occurs. In Table 2, the repeatability function for each class is repre-
sented by three times the standard deviation and can be seen in the shaded diagonal
column of the table. All other values in the table represent the mean measurement
between classes. On examining Table 2 more closely, it can be seen that the repeat-
ability for the buildings is smaller than the distance between the mean values for all
categories except for the surface-land data set, though these values are close. This is
also true for the repeatability measure for the surface-land class; the distance
between the mean values is larger except for buildings. Comparing the ®gures
obtained for the other data sets it can be seen that repeatability is large than, but still
close to, the mean distance in most cases.
In previous work, similar experiments were conducted using scalar and Fourier

Descriptors (Keyes & Winstanley, 1999). Table 3 shows the values obtained for a
sample of buildings and land parcels using the Fourier Descriptors. Here the
repeatability of the measurements of the class is sizeably larger then the distance

Fig. 4. Sample parcel shapes.

Table 1

Moment invariants calculated for a typical building, road and parcel

Buildings Roads Parcels

IM(0) 0.00021913563 0.0191903068 0.19419031

IM(1) 1.4175713e-08 0.0028776518 0.0093515524

IM(2) 3.3163274e-12 0.0000022101 0.00055687797

IM(3) 7.332081e-14 0.0000002565 1.0685037e-05

IM(4) 2.4223892e-14 0.0000001930 5.696268e-05

IM(5) ÿ7.51903311e-18 ÿ3.7718e-08 ÿ6.2343667e-07
IM(6) 2.12921403e-26 ÿ1.5393e-14 3.212549e-11
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between the mean values for the two classes indicating that Fourier descriptors are
not very good for use in shape description where the data sets are of shapes in gen-
eral classes. Similarly, in Table 4, the repeatability function is calculated for the data
sets using the scalar descriptors. These results show that the distance between the
means for the buildings is considerably larger than the repeatability of that class but
smaller for the parcel class. This technique also shows considerable improvement
over the Fourier descriptors but follows closely to the results obtained for moment
invariants.

5. Conclusion

As a shape descriptor technique, moment invariants have been shown to be very
good discriminators when dealing with speci®c shapes such as aircraft or alphanu-
meric characters (Hu, 1962). The aim of this paper was to investigate their usefulness
for the identi®cation of general topographic shape classes, e.g. houses, roads and
parcels. When tested for these more generalised shapes, moment invariants seem to
work. There is good distinction between classes although some overlap occurs. This
indicates that moment invariants alone are not su�cient.

Fig. 5. Average moment invariants (IM) of six shape categories.

Fig. 6. Clustering of values for di�erent feature classes of the invariants IM(0), IM(1) and IM(2).
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Fig. 7. Clustering of invariant values for di�erent feature classes, (left) buildings and de®ned land cover,

(right) de®ned land cover and unmade-land using IM(0), IM(1) and IM(2).

Fig. 8. Clustering of the polygon shapes, buildings and made roads, in three-dimensional space of the

features IM(0), IM(1) and IM(2).
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For optimal results, it is envisaged that moment invariants will be combined with
other techniques currently being investigated. These include Fourier descriptors,
scalar descriptors and boundary chain coding. All these techniques are looking at
object shapes in isolation. Context is therefore an obvious next step to consider. The
context of an object can be modelled by:

1. direct association between shapes;
2. statistical graphical language models built from a large corpus; and
3. analogical reasoning about context.

Table 2

Comparison of repeatability within feature classes (italic ®gures) and distance between classes

Buildings De®ned land Surface land Unmade-land Made Road Roadside

No. polygons 7976 6332 2889 2701 487 431

Buildings 5.2005e-005 8.8572e-004 1.5488e-005 0.0034 0.0014 4.8116e-004

De®ned land 8.8572e-004 0.0138 8.7023e-004 0.0025 5.5596e-004 4.0456e-004

Surface land 1.5488e-005 8.7023e-004 3.9330e-004 0.0033 0.0014 4.6567e-004

Unmade land 0.0034 0.0025 0.0033 0.0231 0.0019 0.0029

Made Road 0.0014 5.5596e-004 0.0014 0.0019 0.0188 9.6051e-004

Roadside 4.8116e-004 4.0456e-004 4.6567e-004 0.0029 9.6051e-004 0.0048

Table 3

Comparison of repeatability within feature classes and distance between classes for Fourier descriptors

Buildings Land Parcels

Repeatability (3s) FD(2)=0.2562 FD(2)=0.2814

FD (3)=0.1644

FD(4)=0.1200

FD(3)=0.2457

FD(4)=0.2100

Distance between means for buildings and parcels FD(2)=0.0067

FD(3)=0.0123

FD(4)=0.0137

Table 4

Comparison of repeatability within feature classes and distance between classes for scalar descriptors

Buildings Land parcels

Repeatability (3s) Area=906.8734 Area=159780.0

Perim=121.2972 Perim=1915.6

Points=11.7001 Points=95.7411

Distance between means for buildings and parcels Area=38231.0

Perim=587.4117

Points=37.8071
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Future work will be to combine some or all the methods mentioned using data
fusion techniques to produce a more reliable topographic object recognition system.
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