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Abstract

The ideas in this thesis are placed broadly within the context of many-body

quantum dynamics, an area of research that has gained significant interest in

recent years due to developments in cold atom experiments that enable the

realization of isolated many-body quantum systems.

In this thesis, we first focus on the concept of connecting quantum mechanical

systems to statistical mechanics, which often arises in the study of ‘thermalization’

in isolated many-body systems. An inescapable issue in the endeavor to connect

the two is the definition of temperature. The first core definition of tempera-

ture we consider is inspired by the eigenstate thermalization hypothesis, which

posits that the eigenstates of a generic thermalizing system have information

regarding thermalization encoded within them. We consider temperatures based

on comparing the structure of (full or reduced) eigenstate density matrices to

thermal density matrices. The second temperature definition invokes the stan-

dard temperature-entropy relation from statistical mechanics relating temperature

and microcanonical entropy. We explore various ways to define the microcanon-

ical entropy in finite isolated quantum systems and numerically compute the

corresponding temperature.

Following this, we study the diametrical opposite of isolated quantum systems

— open quantum systems. We study a quantum particle on a tight-binding

lattice with a non-Hermitian (purely imaginary) local potential. Non-Hermitian

Hamiltonians are effective models for describing open quantum systems. We

analyze the scattering dynamics and spectrum, identifying an exceptional point

where the entire spectrum pairs up into mutually coalescing eigenstate pairs. At

large potential strengths, the absorption coefficient decreases, and the effect of

viii



the imaginary potential is similar to that of a real potential, which we quantify by

utilizing the properties of a localized eigenstate. We demonstrate the existence of

many exceptional points in a similar PT -symmetric system and non-interacting

many-particle model. This investigation contributes to a many-body understanding

of this non-Hermitian setup.
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Chapter 1

Introduction

In recent years, there has been an ever-growing interest in many-body quantum

systems. This growth was stimulated in the last two decades by newly emerging

cold atom experiments, providing a platform to simulate such systems. The

collective behavior of many quantum particles can be deeply complex, and as a

result, the study of many-body quantum dynamics has bloomed into an extensive

field of fundamental research in theoretical physics.

Within the field of many-body quantum dynamics, an area of considerable

interest in recent years is understanding the emergence of statistical mechan-

ics from the dynamics of isolated many-body systems. A primary question is

how observables in such isolated quantum systems can relax to statistical me-

chanical predictions despite the absence of an external bath, a process dubbed

thermalization. Endeavors made to reconcile statistical mechanics with quantum

mechanical systems invariably require a correspondence between energy, a quantity

well-defined in quantum mechanics, and temperature, which is necessary for a sta-

tistical mechanical description. In finite isolated quantum systems, the assignment

of temperature to energy is generally a non-trivial task. In this thesis, we critically

examine various ways to define temperature in isolated quantum systems. In the

following Section 1.1, we introduce two core definitions of temperature that we

will investigate. The first is based on insight from the eigenstate thermalization

hypothesis (ETH), which posits that each eigenstate contains information relevant

to thermalization if it occurs. We outline ideas of thermalization and the ETH
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in Section 1.2 of this introduction. The second definition utilizes a standard

definition from statistical mechanics that relates (microcanonical) entropy to

temperature. We outline various ways to compute the microcanonical entropy in

isolated quantum systems and calculate the corresponding temperature.

The antithesis of an isolated quantum system is an open quantum system,

which is a system that interacts with an external environment (or bath). The

interaction between the system and the environment has a significant effect on

the dynamics of the system. Particular open quantum systems can be effectively

described by non-Hermitian Hamiltonians despite Hermiticity being regarded as

a postulate of standard quantum mechanics. In this thesis, we investigate the

dynamics and spectrum of a quantum particle in a non-Hermitian quantum system,

a tight-binding lattice subject to a purely imaginary local potential. While much

of our non-Hermitian investigation focuses on the context of a single particle,

we build toward understanding many-body systems by establishing a detailed

description of the single particle and non-interacting many-body systems.

In the following Section 1.1, we define the various temperatures to be investi-

gated in this thesis and discuss their motivation. In Section 1.2, we provide context

for thermalization, particularly the eigenstate thermalization hypothesis, which

underlies a core temperature definition. Moving to Section 1.3, we detail some of

the phenomena unique to non-Hermitian systems and outline our investigation.

Following this, in Section 1.4, we describe the various many-body quantum systems

to be utilized in this thesis, along with the proposed non-Hermitian system. In

addition, we provide a brief description of level spacing statistics, a tool oft-used

to characterize many-body systems as thermalizing. Finally, in Section 1.5, we

provide an overview of the chapters in this thesis.

1.1 Temperature in isolated quantum systems

In this section, we motivate and outline the various ways we shall consider defining

temperature in isolated many-body quantum systems.

Within the field of thermalization in isolated many-body quantum systems,

2



the eigenstate thermalization hypothesis (ETH) [1–10] is considered a cornerstone

in understanding how thermalization can occur.

While it is generally accepted that a pure state of an isolated quantum system

will never thermalize, it has been observed that a subsystem of such a state can, in

fact, thermalize. This subsystem thermalization can occur due to the remainder

of the system, i.e., the complement subsystem, acting as a bath to the primary

subsystem under consideration. The principal constraint on this reasoning is that

the ‘bath’ subsystem should be larger than the primary subsystem [11]. The

concept of thermalization in quantum systems and the ETH are discussed in detail

in Section 1.2.

Ideas regarding thermalization in isolated quantum systems, such as the

eigenstate thermalization hypothesis, and its extensions or variants, are often

tested or verified using numerical “exact diagonalization” calculations [8–48]. As

a result, quantum systems with Hilbert space dimensions between ∼ 103 and

∼ 105 have acquired particular relevance. Therefore, it is necessary to ask how

meaningful the various definitions of thermodynamic quantities like temperature

or entropy are for finite systems, particularly systems of sizes typically treated by

full numerical diagonalization. In Chapter 3 of this thesis, we critically examine

different ways of calculating entropy from the energy eigenvalues of finite systems

and derive a temperature from the entropy as outlined below.

The ETH posits that each eigenstate of a thermalizing isolated quantum system

contains information relevant to thermalization, particularly the temperature

associated with the equilibrium ‘thermal’ state (see Section 1.2). Thus, a natural

question is how to assign temperatures to each eigenstate based on information

encoded in the eigenstates. In Chapter 2 of this thesis, we examine possible ways

of doing so.

Before delving into the temperature definitions in isolated quantum systems

under investigation in this thesis, we first discuss an energy-temperature correspon-

dence regularly used in the study of quantum thermalization. The most common

definition of temperature for finite isolated quantum systems is the ‘canonical

3



temperature’. For a system described by the Hamiltonian H, the canonical

temperature is obtained for any energy E by inverting the canonical equation

E = ⟨H⟩C =
tr
(
e−H/kBTH

)
tr(e−H/kBT )

=

∑
j e

−βEjEj∑
j e

−βEj
, (1.1)

where Ej are the eigenvalues of H. This relationship provides a map between

energy and the canonical temperature TC = (kBβC)−1, where kB is the Boltzmann

constant. We denote this temperature as the ‘canonical temperature’ as ⟨H⟩C is

the expectation value of H in the canonical ensemble.

Curiously, this definition relies only on the energy eigenvalues, disregarding the

physics of the eigenstates. The relationship in Eq. (1.1) originates in statistical

mechanics from the context of a system coupled with a bath, although it is

widely used in the study of thermalization of isolated, i.e., bath-less, quantum

systems [8–13,15,17–20,25,27,29,43,49–53].

In Chapters 2 and 3 this thesis, our focus is on two core ideas of temperature

assignment in isolated quantum systems. The first idea, inspired by the ETH,

is based on the structure of the eigenstates and the information encoded within

them. The second idea is to use another standard definition of temperature

from statistical mechanics relating temperature and entropy. Entropy, unlike

temperature, is defined in a quantum mechanical system, although, as we will see,

choosing the most appropriate definition in finite isolated systems is a non-trivial

task. We explore possible ways to define entropy in an isolated system of a size

accessible to exact diagonalization and derive a temperature for each case. In

every case, we compare the resulting temperature obtained with the canonical

temperature βC obtained directly by inverting Eq. (1.1).

1.1.1 Eigenstate-temperature relations

Consider an eigenstate |En⟩ of a many-body system; if the temperature corre-

sponding to the equilibrium thermal state is encoded within the structure of

this eigenstate, then we could näıvely expect that the eigenstate density matrix,

ρ = |En⟩⟨En|, should be closest to the canonical (‘Gibbs’ or ‘thermal’) density

4



matrix

ρC =
e−βH

Z
(1.2)

at the value of the inverse temperature β. Here, Z = tr
(
e−βH

)
is the partition

function. Thus, one could propose minimizing the distance d(ρ, ρC) between these

two density matrices as a function of β, as a possible way to assign a temperature

to En. We refer to this optimal β as the eigenstate temperature βE. As |En⟩⟨En| is

the limit of the microcanonical density matrix for an ultra-narrow energy window,

this idea is also related to the equivalence of statistical ensembles [54,55].

It is admittedly over-ambitious to expect the complete eigenstate density

matrix, ρ, to resemble a Gibbs thermal state ρC , as the former is a pure state

while the latter is a mixed state. The two density matrices cannot be expected to be

‘close’, as we will illustrate in Chapter 2. In real-time dynamics, the typical inquiry

is whether a local sub-region, rather than the whole system, approaches a thermal

state [21, 51, 53, 56–65]. The intuition is that the rest of the system acts as an

effective bath, even if the textbook properties of a bath (weak coupling, no memory)

are not satisfied. Accordingly, ETH is often formulated in terms of local observables

or a spatial fraction of the system [11,24,28,34,35,51,63,64,66,67], and similar

ideas appear in the approach known as canonical typicality [7,20,57,59,66,68–71],

both of which are discussed in Section 1.2.

Thus, in thermalizing systems, one expects that if the system is partitioned

spatially into A and B, with A smaller than B, then the reduced density matrix

of subsystem A for an eigenstate, ρA = trB ρ, should approximate the reduced

canonical density matrix, ρAC = trB ρC [11,35,66]. Inverting this expectation, we

obtain another way to assign a temperature to eigenstates — using the value of β

that minimizes the distance d(ρA, ρAC). We refer to this optimal β as the subsystem

temperature βS.

In Chapter 2, we shall investigate these temperature definitions, particularly

in isolated chaotic systems, expected to obey the ETH.
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E(Ea) E(Eb) E(Ec)

E E E

E

Figure 1.1: Illustration of two ways of choosing the energy window ∆E used
to define the microcanonical entropy. The top figure shows the obvious choice:
the width ∆E is the same at all energies. The lower schematic illustrates an
energy-dependent width: ∆E(E) ∝

√
T 2
c Cc, where the temperature Tc is the

canonical temperature corresponding to energy E and Cc is the heat capacity at
T = Tc. The window is shown at three energy values: Ea, Eb, and Ec, which
are in the regime of low temperature, infinite temperature, and low negative
temperature, respectively. Each vertical tick marks an eigenvalue.

1.1.2 Entropy-temperature relations

In statistical mechanics, a fundamental definition of temperature arises from the

thermodynamic relation [72–77]

T =

(
∂E

∂S

)
Xi

=

(
∂S

∂E

)−1

Xi

. (1.3)

Here, S is the (thermal) entropy, and the subscript Xi denotes the system param-

eters that should be held constant. For an isolated (i.e., microcanonical) quantum

system, defining the entropy S(E) at a particular energy E involves counting

the number of eigenstates (‘microstates’) within an energy window ∆E around

that energy E. This leads to the question of how to choose the energy width ∆E

or possibly how to avoid counting eigenstates altogether (and perhaps explicitly

choosing ∆E) and approximate the density of states. In the large system size

(thermodynamic) limit, these choices can be shown to be inconsequential.

In Chapter 3 of this thesis, we will explore the consequences of these choices

for finite-sized systems, focusing on those with Hilbert space dimensions ∼ 104

typical for full numerical diagonalization studies. Motivated by the analysis of

Ref. [54], we consider four choices for defining the entropy.

First, we consider counting eigenstates in an arbitrarily chosen but constant

(energy-independent) window, as illustrated in Figure 1.1 (top). This is the most

6



obvious choice but turns out to be far from optimal — the resulting temperature

deviates strongly at finite sizes from the canonical temperature.

Second, noting that the leading correction to the large-size limit can be negated

by choosing ∆E ∝
√
T 2
c Cc [54], we examine the result of counting eigenstates in

such an energy-dependent window width. (Here, Cc is the heat capacity.) An

example of an energy-dependent window is illustrated in Figure 1.1 (bottom). We

show that this choice works remarkably well for the sizes of interest, modulo some

caveats regarding constants of proportionality.

Finally, instead of counting eigenstates in a particular window around E,

we can instead compute the microcanonical entropy using standard numerical

approximation procedures for the density of states via approximations to the

integrated density of states (cumulative spectral function). We first formulate

this entropy definition without reference to a specific energy window ∆E and

show that this choice is sub-optimal at reproducing the canonical temperature.

We analyze the reason for the strong finite-size mismatch in this case. Lastly,

we use the energy-dependent ∆E ∝
√
T 2
c Cc, designed to account for finite-size

deviations, in conjunction with the integrated density of states formulation. This

final method results in excellent agreement between the temperatures even at the

small system sizes under investigation, without any fine-tuning of proportionality

constants.

1.2 Thermalization and the ETH

In Chapters 2 and 3 of this thesis, we explore various definitions of temperature in

isolated many-body quantum systems. The concept of temperature in such systems

is usually defined in the context of thermalization. In particular, one of our core

temperature definitions has its basis in the eigenstate thermalization hypothesis.

Therefore, we provide the context needed for a thorough understanding.

There has been a lot of significant work done investigating the emergence of

equilibrium (or thermal) ensembles from statistical mechanics in isolated quantum

systems [10,69,70]. In this section, we outline the meaning of ‘thermalization’ in

7



isolated quantum systems and the eigenstate thermalization hypothesis. We also

discuss some further ideas investigated in the field of thermalization.

1.2.1 Thermalization in isolated quantum systems

Consider an isolated quantum system in some non-equilibrium initial state |ψ(0)⟩.

This system is described by the Hamiltonian H and evolves in time via the

Schrödinger equation. This implies that at a time t > 0, the time evolved state

is obtained via |ψ(t)⟩ = e−iHt |ψ(0)⟩ (ℏ = 1). Taking H as Hermitian, the time

evolution is unitary; this implies the state |ψ(t)⟩ can never reach a stationary

state unless |ψ(0)⟩ is an eigenstate of H.

Now, suppose we measure some local (or few-body) observable Ô in the state

|ψ(t)⟩, at time t, i.e., ⟨ψ(t)| Ô |ψ(t)⟩. After some long time, the system can relax

to an equilibrium state, whereby the observable Ô measured in the long-time

evolved state is essentially constant. Equilibration is generally considered to have

occurred when the temporal fluctuations of the expectation value have essentially

vanished.

If a system has undergone equilibration, i.e., ⟨ψ(t)| Ô |ψ(t)⟩ is on average

constant for all subsequent times, and the expectation value of the observable in

the equilibrium state coincides with the ‘thermal’ expectation value predicted by

statistical mechanics, then thermalization is said to have occurred. This predicted

value is the expectation value of the observable in the relevant statistical ensemble.

The ensemble is taken to be either the microcanonical or canonical ensemble,

which generally are equivalent in the thermodynamic limit. For example, in a

system with only energy conservation, one would use the canonical ensemble (also

called the Gibbs ensemble) at the canonical temperature associated with the initial

state energy E0 = ⟨ψ(0)|H |ψ(0)⟩ via Eq. (1.1). An illustration of thermalization

for a local operator in a chaotic spin system is shown in Figure 1.2. In this figure,

we plot the canonical and microcanonical expectation values,

⟨O⟩C = tr(ρCO) , ⟨O⟩MC = tr(ρMCO), (1.4)

8



0 50 100 150
t

0.0

0.1

0.2

O
(t)

O C

O MC

Figure 1.2: Illustration of thermalization: Eigenstate expectation values of a local
operator O = Sz4S

z
5 for the staggered field model, Eq. (1.15), with J = 1, ∆ = 0.95

and hx = hz = 0.5 for L = 12 spins. Also shown is the canonical expectation
value ⟨O⟩C and the microcanonical expectation value ⟨O⟩MC .

with ρC the canonical density matrix, Eq. (1.2), and

ρMC =
1

N
∑

Ej∈{En±∆E/2}

|Ej⟩⟨Ej| (1.5)

the microcanonical density matrix. Here, ∆E is the width of an energy window

around En from which the state is constructed, and N is the number of states in

this window. It has been experimentally demonstrated that isolated many-body

quantum systems can indeed thermalize, such as in quantum simulators consisting

of ultra-cold atoms on an optical lattice [51,78], trapped ions [79,80], and a small

number of qubits [81].

Not every system equilibrates such that observables relax to the predicted

thermal (Gibbs) value, i.e., they do not thermalize as described above. In integrable

systems, e.g., those exactly solvable via the Bethe ansatz, observables measured

following a quantum quench are expected to equilibrate to predictions of the

generalized Gibbs ensemble (GGE) [10, 82, 83]. The GGE is given by ρGGE =

Z−1
GGEe

−
∑

n λnIn (ZGGE = tr
(
e−

∑
n λnIn

)
), with In the conserved quantities of the

integrable system, and λn the Lagrange multipliers, fixed by the initial state,

analogous to setting the temperature in the Gibbs ensemble via the initial state

energy. These conserved quantities are precisely what prevent standard relaxation

to a thermal state from occurring. The relaxation to non-Gibbs states is often

9



denoted generalized thermalization [84,85].

Localized systems have emerged as another possible example of systems that fail

to thermalize as described above [86]. Systems exhibiting many-body localization

(MBL) are considered the quintessential non-thermalizing models [87]. MBL is

the extension of disorder-induced localization, introduced by Anderson in free

systems [88], to many-body interacting systems. It is debated whether MBL is

a genuine phase, in that it persists in the thermodynamic limit, or whether it is

simply a finite size regime [89,90]. Nevertheless, in sufficiently disordered finite

1D quantum chains, localization is observed, and thermalization does not occur.

In weakly non-integrable systems, i.e., systems with a small integrability

breaking perturbation, observables can initially equilibrate to a non-thermal value

corresponding to the integrable system equilibrium value. After a long time,

the observable can eventually relax to the actual thermal value. This notion of

equilibration followed by further relaxation to the thermal state has been coined

prethermalization [91,92].

Chaotic systems, i.e., non-integrable and non-localized, are expected to ther-

malize in the infinite size limit up to their integrable point. However, the time for

the system to reach thermalization should diverge as one approaches the integrable

limit. For finite systems, the required strength of any integrability breaking term

to induce chaos is dependent on the size of the system [93].

1.2.2 Eigenstate thermalization hypothesis

We have thus far discussed the meaning of thermalization but not the mechanism

behind it. The eigenstate thermalization hypothesis (ETH) is widely thought to

encapsulate the mechanism by which thermalization occurs in isolated quantum

systems [1–10]. It conjectures that thermalization is permitted in isolated quantum

systems due to information regarding thermalization being encoded into the

system eigenstates themselves. Formally, the ETH is a statement about the

matrix elements of ‘typical’ observables, usually taken as local operators, in the

eigenstate basis of the Hamiltonian for large isolated quantum systems. It states

10
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Figure 1.3: Illustration of the ETH: Eigenstate expectation values of a local
operator O for the staggered field model (Eq. (1.15)) with J = 1, ∆ = 0.95 and
hx = hz = 0.5. Data is shown for L = 9 (O = Sz4S

z
5) and L = 13 (O = Sz6S

z
7) spins.

Also shown is the canonical expectation value ⟨O⟩C calculated at the canonical
temperature.

that diagonal matrix elements, i.e., the eigenstate expectation values (EEVs), of

a typical observable Ô are smooth functions of (eigen-) energy, with fluctuations

that are exponentially small in the system size. The off-diagonal elements are

also exponentially suppressed in the system size. This statement can be written

quantitatively for a Hamiltonian system with eigenstates H |En⟩ = En |En⟩, via

the ansatz put forward by Srednicki [4]:

⟨Em| Ô |En⟩ = Omn = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn. (1.6)

Here, Ē = 1
2
(Em+En) is the average energy, ω = Em−En is the energy difference,

and S(Ē) is the thermal entropy as defined in Section 1.1.2. O(Ē) and fO(Ē, ω)

are smooth functions of energy, and Rmn is a random variable with mean zero

and variance one. O(E) is the expectation value of O in the diagonal ensemble.

The ETH is believed to be valid in generic chaotic systems [10], as has been

numerically verified in many investigations, e.g., [8–48]. To date, there is no

analytical proof of the ETH. Particular systems are known to violate the ETH,

such as integrable systems [13], which undergo ‘generalized thermalization’ to
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a GGE. Localized systems, such as those in an MBL regime, fail to thermalize

and violate the ETH [87]. Finite systems with long-range interactions have only

recently been investigated in the context of the ETH and thermalization. In such

systems, it appears possible for a system to present as chaotic while violating the

ETH [48,94]. This has been related to the in-equivalence between the canonical

and microcanonical ensembles, often accompanied by non-convex microcanonical

entropy in such long-range systems [94].

If the ETH is valid in a system, then in the thermodynamic limit, the EEV of

an operator concerning a finite energy density eigenstate, i.e., a bulk eigenstate far

from the spectral edges, is equal to the expectation value in the thermal ensemble

predicted by statistical mechanics. For example, in a system with only energy

conservation, the canonical ensemble prediction ⟨O⟩C for the operator O in an

eigenstate with energy En is given by

⟨En|O |En⟩ = tr(OρC) =
tr
(
Oe−βH

)
tr(e−βH)

, (1.7)

with β the canonical temperature associated with En via Eq. (1.1). It is often

said that in systems where Eq. (1.7) holds, it does so only for ‘few-body’ or ‘local’

operators. An illustration of the diagonal statement of ETH is provided in Figure

1.3, wherein we plot the EEVs of a chaotic spin system for two different system

lengths. One can observe the fluctuations decreasing with growing system size L.

In the infinite system size limit, the EEVs should be a smooth function of energy,

corresponding to the thermal expectation value (⟨O⟩C in Figure 1.3).

If a system obeys the ETH, in that it follows the ansatz Eq. (1.6), then it

should thermalize, as one can observe from the long-time average of an observable.

To demonstrate, we first denote the time evolution of an observable O as O(t).

Expanding in the eigenstate basis

O(t) = ⟨ψ(t)|O |ψ(t)⟩ =
∑
n

|Cn|2Onn +
∑
m,n

C∗
mCnOmne

i(Em−En)t. (1.8)

Then, assuming a non-degenerate spectrum in a large system, we obtain the

12



long-time average as

O = lim
T→∞

1

T

∫ T

0

dtO(t) =
∑
n

|Cn|2Onn. (1.9)

We point out that it might take an exceptionally long time for the second term on

the right-hand side of Eq. (1.8) to cancel out. Now, assuming the validity of the

ETH, Eq. (1.6), and that |Cn| are narrowly distributed for a generic initial state

|ψ0⟩, i.e., Omn ≈ O(E0)δmn for states with energy near E0 = ⟨ψ(0)|H |ψ(0)⟩, we

can take Onn out of the sum, and obtain

O ≈ O(E0)
∑
n

|Cn|2 = O(E0). (1.10)

Under the same assumptions on Onn, the microcanonical (and hence canonical)

ensemble expectation value at E0 is precisely Eq. (1.10). Thus if a system obeys

the ETH, it should thermalize. It should be noted that this tells us nothing about

the timescale on which thermalization occurs.

It is often considered that if a system thermalizes, it obeys the ETH. This

assumes that all eigenstates of the system follow the ETH ansatz. It has been

conjectured that thermalization is possible, even if there are a small number of

exceptional eigenstates that do not obey the ETH [95], however this can restrict

certain initial states from thermalizing. This is related to the concept of many-

body quantum scars, the name given to a small collection of eigenstates in an

otherwise chaotic quantum system that violate the ETH. They are an increasingly

studied phenomenon in the field of thermalization [96,97].

Consider the system Hamiltonian H, we can arbitrarily separate the Hamilto-

nian into (local) spatial regions A and B such that

H = HA +HB +HAB. (1.11)

Here, HA and HB are the local Hamiltonians describing A and B, and HAB

describes the interaction between the two regions. It has been conjectured that
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the ETH, particularly Eq. (1.7), holds for the majority of operators within a

subsystem A, once VA ≪ V [11], i.e., the ‘size’ of A is much less than the total

system. Eq. (1.7) holding for most operators in a subsystem A, when the total

system size is significantly larger than that of A, is equivalent to the statement

that the reduced density matrix of an eigenstate should become equivalent to the

reduced canonical density matrix in the large size limit,

ρAn = trB(|En⟩⟨En|) = ρAC = trB(ρC). (1.12)

Again, ρC is the canonical density matrix, and β is the canonical temperature

associated with En. Thus, in a sufficiently large system where the ETH is expected

to be valid, one could expect the reduced eigenstate density matrix to equal the

reduced canonical density matrix. This interpretation is the inspiration behind

our eigenstate-based temperatures investigated in Chapter 2.

Canonical typicality - An idea closely related to the ETH is that of ‘canonical

typicality’ [69, 70]. Instead of eigenstates, as in the ETH, consider a random pure

state |ψ⟩ made up of a superposition of eigenstates from within an energy window

[E ± ∆E], i.e., |ψ⟩ =
∑

j cj |Ej⟩, with Ej ∈ [E ± ∆E]. Canonical typicality states

that for sufficiently large systems, provided the interaction between subsystems

A and B can be neglected, i.e., H ≈ HA + HB, the reduced density matrix

corresponding to this state, ρAψ = trB |ψ⟩⟨ψ|, is approximately equal to a reduced

microcanonical density matrix. Due to the equivalence of ensembles in the

thermodynamic limit, this implies that ρAψ is equivalent to a reduced canonical

density matrix. In essence, the subsystem of a ‘typical’ pure state can be accurately

approximated by a reduced canonical state provided the complement subsystem

is sufficiently large (so that it can play the role of the bath).

Unlike the ETH, canonical typicality applies to all (isolated) quantum systems;

however, it is a weaker statement. The ETH describes the emergence of thermal

ensembles for not just random states but even single eigenstates. As previously

discussed, the ETH is generally expected only to hold in chaotic quantum systems.

From canonical typicality, one can interpret this restriction as an implication on
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the eigenstates of chaotic systems — that they are sufficiently uncorrelated such

that they resemble ‘typical’ states. This interpretation has led to investigations of

properties of reduced eigenstate density matrices in chaotic systems [11,35,63],

including the work in this thesis.

1.3 Non-Hermitian phenomena

Stepping away from isolated quantum systems, we move on to open quantum

systems. In this section, we first describe phenomena of interest in non-Hermitian

quantum systems, including a detailed description of so-called exceptional points,

a phenomenon unique to non-Hermitian systems. Following this, we outline our

investigation to be carried out in Chapter 4 concerning a particular lattice system

under the influence of an imaginary potential.

1.3.1 Non-Hermitian physics

In recent years there has been a surge of interest in quantum systems that are

described by non-Hermitian Hamiltonians. Although Hermiticity is regarded as

a postulate of standard quantum mechanics, non-Hermitian Hamiltonians are

useful as effective descriptions of systems where loss or gain plays an important

role, such as open quantum systems [98] and optical systems described by wave

equations formally analogous to a Schrödinger equation [99–101]. By now, several

experimental platforms for the study of non-Hermitian quantum mechanics are

available. These include lasers or optical resonators [102–105], coupled optical

waveguides [106–110], microwave resonators [111–114] and arrays thereof [115],

optical microcavities [99,116,117], optomechanical systems [118], photonic crystals

[119, 120], acoustics [121–124] atom-cavity composites [125], exciton-polariton

systems in semiconductor microcavities [126,127], and various other arrangements

[128–133].

Phenomena of interest in non-Hermitian systems include; localization [134,135]

including that induced by the so-called non-Hermitian skin effect (NHSE) [136]

producible via asymmetric hopping amplitudes such as in the Hatano-Nelson
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model [137], non-Hermitian topological phases [138], and level spacing statistics

in complex spectra [139].

1.3.2 Exceptional points

Non-Hermitian Hamiltonians lead to various phenomena not present in Hermitian

systems. In general, the eigenvalues of non-Hermitian Hamiltonians are complex.

In addition, the left and right eigenstates of a non-Hermitian Hamiltonian are

generally not equal, but together they form a biorthogonal basis. In this thesis, we

shall confine our discussion to the right eigenstates of non-Hermitian Hamiltonians.

The eigenstates are generally not mutually orthogonal, in contrast to those of

a Hermitian matrix. This non-orthogonality becomes extreme at points in the

parameter space referred to as exceptional points [140–144].

At an exceptional point, a collection of (or all) eigenvalues appears to be

degenerate. However, it is not a genuine degeneracy as the corresponding eigen-

vectors coalesce as well, in that they become linearly dependent. This results

in the eigenstates no longer providing a basis spanning the entire Hilbert space.

Therefore, the Hamiltonian matrix is non-diagonalizable and is denoted a defective

matrix [145,146] at these exceptional points. We note that a Hermitian matrix

cannot have an exceptional point, as Hermitian matrices are always diagonalizable.

The spectrum of a non-Hermitian Hamiltonian exhibiting an exceptional point

will have a so-called ‘square-root branch point’ bridging the coalescing eigenvalues.

This is due to the characteristic polynomial of the Hamiltonian containing terms of

the form
√
γ − γc, with γ some tunable (complex) parameter of the Hamiltonian,

and γc the parameter corresponding to the exceptional point. For a second-order

exceptional point, one can consider having two connected Riemann sheets repre-

senting the two coalescing levels in the γ plane. The two sheets are connected at

the value γc (branch point) [144].

The surviving eigenstate, following the coalescence of two (or more) eigen-

states, at an exceptional point is always chiral [147]; this chirality has been

observed experimentally [104,105,113,127,148]. Other phenomena associated with
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exceptional points include loss-induced transparency [106], unidirectional trans-

mission [123, 129, 130], lasers with non-monotonic pump-dependence [102], and

enhanced sensing [149–151]. Exceptional points are also associated with the real-

to-complex spectral transition for parity-time (PT ) symmetric Hamiltonians [144]

(See Section 4.4).

1.3.3 Non-Hermitian scattering

In Chapter 4 of this thesis, we are primarily concerned with the non-Hermitian

physics of a quantum particle on a tight-binding lattice. Previous studies of non-

Hermitian effects for a lattice particle include Anderson localization [137,152–154]

and localization in quasiperiodic potentials [155,156], invisibility (reflectionless

scattering) due to non-Hermitian hopping [157] or an oscillating imaginary scatterer

[158], flat-band physics [159], Bloch oscillations [160], and PT -symmetry obtained

by combining an absorbing potential on one site with an emitting potential on

another [161–167], which we shall also consider in Chapter 4. In addition, non-

Hermitian tight-binding lattices form the basis of the study of non-Hermitian

topological many-body systems, a topic of rapidly growing interest [168–170]. A

few studies have also addressed interacting many-body systems in non-Hermitian

lattice systems [171,172].

We will consider an imaginary potential on a single lattice site, acting as

an absorbing (or dissipative) scattering potential. This can be regarded as a

lattice analog of a purely imaginary delta-function scattering potential in the

continuum. An imaginary scattering potential is linked to measurement [173–175],

and is thus related to quantum first-passage time problems and the quantum Zeno

effect [176–183]. The quantum Zeno effect is essentially the cessation of dynamics

of a quantum state due to the measurement being performed too frequently [176].

In analogy to the quantum Zeno effect, it is then expected that an imaginary

potential will have suppressed absorption when the strength of the potential is

large. This suggests that the absorption might be non-monotonic as a function

of the strength of the dissipative potential. In Chapter 4, we explicitly show the
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Impurity site

Figure 1.4: Illustration of a lattice: The impurity is placed at one of the center
lattice sites, as shown here for L = 12. In this case, it could equivalently be placed
on the seventh instead of the sixth site. For odd L, there is a definite central site.

non-monotonic dependence of the amount of absorption on the potential strength,

in the context of a simple lattice model.

The model we shall investigate is the tight-binding lattice model (Eq. (1.22) in

the following section), which describes particles hopping along an open boundary

1D chain with L sites. We introduce a purely imaginary negative potential on a

single site q with strength γ, rendering the system non-Hermitian. As the potential

is negative and purely imaginary, it can be considered an absorbing potential, i.e.,

dissipative. As we want to study reflection and transmission, it is convenient to

place the potential at the center of the lattice at either site
⌊
L
2

⌋
or
⌊
L
2

⌋
+ 1. An

example of such a setup is illustrated in Figure 1.4.

In Chapter 4, we present a study of the dynamics and eigenspectrum of the

system described (Eq. (1.25) below). By scattering wavepackets numerically off

the dissipative impurity, we show how the reflection, transmission, and absorption

fractions depend on the strength γ of the impurity. These results are compared

with the continuum problem, a variant of the standard textbook problem of

quantum scattering off a Hermitian delta-function potential. In both cases, the

absorption coefficient is found to be a non-monotonic function of γ, having a

maximum at a point that depends on the momentum of the incident particle

or wavepacket. In addition, we present the spectrum of the Hamiltonian, which

shows a peculiar exceptional point at γ = 2 at which all (or nearly all, depending

on L) of the eigenvalues pair up. We can analytically prove the existence of

this exceptional point. The absorption coefficient is non-monotonic and has a

maximum near, but not necessarily at, the exceptional point.

At large γ, the absorption is vanishingly small, exhibiting the quantum Zeno

effect, and the system behaves as if the impurity were a real potential V . In

particular, the system has an (anti-)bound eigenstate, which allows us to draw a
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correspondence between values of γ and V . The localized eigenstate is purely a

lattice phenomenon with no analog in the continuum.

We also consider the spectrum of a PT -symmetric version of our system.

Using the same analytical methodology, we can prove the existence of exceptional

points similar to those found in the purely dissipative model. To build towards

a many-body understanding, we consider many quantum particles in the purely

dissipative system described. From our knowledge of exceptional points in the

single particle model, we can argue the existence of exceptional points in the

non-interacting case.

1.4 Quantum systems under investigation

Throughout this thesis, we investigate various quantum spin-1/2 lattice systems

consisting of L spins, of which N are up. In this section, we outline the specific

systems used in these investigations. We first introduce the many-body quantum

systems used to explore various temperature definitions in Chapters 2 and 3.

Following this, we introduce the tight-binding lattice, and the non-Hermitian

models that are used in Chapter 4. Additionally, we describe level-spacing statistics,

often used to characterize a many-body quantum system as thermalizing.

1.4.1 Many-body systems

Chapters 2 and 3 focus on temperature definitions in thermalizing systems. In

this subsection, we present the various quantum systems used to explore these

temperature definitions, constructed such that they should generally thermalize.

We start by introducing the well-known anisotropic Heisenberg chain, often referred

to as the XXZ chain. While we only utilize the unaltered XXZ chain once in this

thesis, we study multiple chaotic models based on the XXZ chain. In what follows,

we describe the various chaotic systems obtained by introducing magnetic fields

to the XXZ model or by changing the geometry from a simple chain. Following

this, we briefly introduce the quantum Ising chain and include magnetic fields to

produce a chaotic quantum system.
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The XXZ chain

The open-boundary XXZ chain Hamiltonian is given by

HH = J

L−1∑
j=1

(Sxj S
x
j+1 + Syj S

y
j+1) + ∆

L−1∑
j=1

SzjS
z
j+1, (1.13)

with J the site-to-site ‘hopping’ strength, and ∆ the spin-spin interaction strength

(anisotropy). S
(x,y,z)
j = ℏσ(x,y,z)

j /2 are the spin operators on site j in three

directions, with σ
(x,y,z)
j being the Pauli matrices. We shall set ℏ = 1 throughout

this thesis. ∆ = J is the isotropic point, which also separates the ∆ < J gapless

and ∆ > J gapped regimes. The ground state of the system is dependent on

the value of ∆; it can be anti-ferromagnetic (∆ > 1), ferromagnetic (∆ ≤ −1),

or paramagnetic (−1 < ∆ ≤ 1)). The XXZ chain is exactly solvable via the

Bethe ansatz [184] and is thus known to be an integrable model. The XXZ chain

describes the couplings between nearest-neighboring spins. When we refer to

XXZ -like couplings, we mean that the terms are of the form of those in Eq. (1.13),

but need not be nearest-neighbor, i.e., they may be between any two spins on

sites j, k.

Using the spin raising and lowering operators S±
j = Sxj ± iSyj , we can rewrite

the XXZ chain as

HH =
J

2

L−1∑
j=1

(S+
j S

−
j+1 + S−

j S
+
j+1) + ∆

L−1∑
j=1

SzjS
z
j+1. (1.14)

In this notation, it is clear that the XXZ chain describes spin excitations moving

along a lattice by exchanging the neighboring spins of opposite orientation, with

strength J/2. In addition, the spins interact via an Ising interaction with strength

∆. The XXZ chain has a U(1) symmetry, conserving N , or equivalently total

spin Sz =
∑L

j=1 S
z
j . Thus the Hilbert space dimension is D =

(
L
N

)
when N is

conserved. If N is not conserved, e.g., when Sx (or Sy) fields are introduced,

the Hilbert space dimension is instead D = 2L. The XXZ chain harbors various

symmetries depending on the chosen parameters and boundary conditions, but

generally it possesses reflection symmetry (parity), translational symmetry, spin
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rotation symmetry, and a U(1) symmetry characterized by the total spin in the

z-direction.

Below, we outline the various non-integrable models to be used in the temper-

ature investigations in Chapters 2 and 3 of this thesis.

Staggered field model

Starting with the XXZ chain, Eq. (1.13), we introduce transverse (Sx) and

longitudinal (Sz) magnetic fields staggered along the even and odd sites of the

chain, respectively. In addition, we break the staggered pattern at the start of

the chain by inserting x and z fields on the first and second sites respectively

to remove any symmetries. We refer to this model as the staggered field model,

whose Hamiltonian is given by

HS =
L−1∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
+
∑
even

hxS
x
j +

∑
odd

hzS
z
j + hxS

x
1 + hzS

z
2 . (1.15)

We use the values hz = hx = 0.5, unless otherwise stated, to ensure chaotic level

spacing statistics such that the system should generally thermalize. We note that

the total Sz spin is not conserved in this model.

Disordered field model

Again, starting with the XXZ chain, Eq. (1.13), we introduce ‘disordered’ trans-

verse and longitudinal magnetic fields on every site. Here, rather than uniform

hz and hx values across the chain, the on-site strengths hj, h
′
j, are chosen from

a uniform distribution [−W,W ]. This model with only longitudinal fields is the

archetypal model for many-body localization [87]. For non-zero W , below some

critical value in finite systems, the model is known to exhibit chaotic behavior.

We will refer to this model as the disordered field model, whose Hamiltonian is
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given by

HD =
L−1∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
+

L∑
j=1

(hjS
z
j + h′jS

x
j ). (1.16)

We use the value W = 0.25 to ensure chaotic level spacing statistics and to stay

far from any possible localized regime in the finite systems under investigation.

We again note that the total Sz spin is not conserved in this model.

Square lattice

Figure 1.5: 7 × 4 Square Lattice geometry.

Moving away from 1D chains, we introduce a two-dimensional square lattice

with open boundary conditions and XXZ -like couplings between neighboring spins

on the lattice. The lattice geometry is illustrated by Figure 1.5. We refer to this

model simply as the square lattice model, whose Hamiltonian is given by

HSQ =
∑
⟨j,k⟩

Jjk(S
x
j S

x
k + Syj S

y
k) + ∆jkS

z
jS

z
k . (1.17)

Here, ⟨j, k⟩ means that we restrict the summation to nearest-neighbor pairs. We

take Jjk,∆jk to be real to ensure Hermiticity, and for simplicity we set Jjk = Jkj

and ∆jk = ∆kj. To remove any symmetries and ensure chaotic level spacing

statistics, we draw the values Jjk, ∆jk from the uniform distributions [0, 2] and

[0, 1] respectively. Due to the absence of Sx fields, the total Sz spin is conserved.

In Chapter 2, to break total Sz conservation, we introduce transverse magnetic

fields (Sx) to the sites ja in one of the sub-lattices available within the bipartite

lattice, i.e., to either the white or black lattice sites in Figure 1.5. We observed
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that chaotic level spacing statistics were only obtained with the addition of

longitudinal magnetic fields; hence, we include Sz fields on the remaining jb sites

in the alternate sub-lattice. The Hamiltonian for the non-spin conserving square

lattice with Sz and Sx fields staggered on the sub-lattices is given by

HNS =
∑
⟨j,k⟩

[
Jjk
(
Sxj S

x
k + Syj S

y
k

)
+ ∆jkS

z
jS

z
k

]
+
∑
ja

hxS
x
ja +

∑
jb

hzS
z
jb
. (1.18)

For the non-spin conserving model, we choose: Jjk, ∆jk from the uniform dis-

tributions [0, 1] and [0, .9] respectively, and the magnetic field strength to be

hz = hx = 0.1, unless otherwise stated.

Fully connected lattice

Going beyond nearest-neighbor interactions, we consider a fully connected network

of spins akin to a complete graph. In this setup, each spin j is connected to every

other spin k via XXZ -like couplings, so the Hamiltonian is constructed of terms

of an arbitrary range . We will refer to this model as the fully connected lattice,

whose Hamiltonian is given by

HFC =
∑
j

∑
k ̸=j

Jjk(S
x
j S

x
k + Syj S

y
k) + ∆jkS

z
jS

z
k . (1.19)

Again, Jjk = Jkj and ∆jk = ∆kj. To remove any symmetries and ensure chaotic

level spacing statistics, we draw the values Jjk, ∆jk from the uniform distributions

[−0.4, 0.4] and [−0.1, 0.1], respectively. We note again that the total Sz spin is

conserved.

Chaotic Ising model

The open-boundary 1D quantum Ising chain in the absence of magnetic fields is

given by

HI = ∆
L−1∑
j=1

SzjS
z
j+1. (1.20)
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One can interpret this Hamiltonian as the J/∆ → 0 limit of the XXZ chain in

Eq. (1.13). This model is exactly solvable and is symmetric under a flip of every

spin. The model also posses reflection and translation symmetries, in addition

to a U(1) symmetry characterized by its total Sz spin. For ∆ < 0 (∆ > 0), the

model is classified as (anti-)ferromagnetic. To obtain a non-integrable model, we

shall introduce magnetic fields along the entire chain in both the longitudinal

(Sz) and transverse (Sx) directions, with strengths hz and hx, respectively. These

fields also break the spin-flip symmetry. The model with only a transverse field is

commonly investigated; an exact solution is also known in this case. This case

exhibits a quantum phase transition (at zero temperature), with critical point

∆ = hx. The model with magnetic fields in both directions does not have an exact

solution. To remove any possible remaining symmetries of the model, we swap

the x and z field strength between the first two sites. We will refer to this model

as the chaotic Ising model, whose Hamiltonian is given by

HCI =
L−1∑
j=1

SzjS
z
j+1 +

L∑
j=1

(hx(1 − δj,1)S
x
j + hz(1 − δj,2)S

z
j )

+ hzS
x
1 + hxS

z
2 . (1.21)

Here, we have chosen ∆ = 1, as will be assumed for all uses of the Ising model

in this thesis. In addition, we will generally use the values hz = 0.5, hx = 0.75,

unless otherwise stated, to ensure chaotic level spacing statistics. We note that

the total Sz spin is not conserved in this model.

1.4.2 Non-Hermitian models

Here, we first introduce the standard tight-binding model. Following this, we

present the non-Hermitian system that is the primary focus of our investigation

in Chapter 4 — a tight-binding lattice under the influence of a purely imaginary

local potential.
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Tight-binding model

The tight-binding lattice model is used to describe particles hopping along a

lattice. Many models have tight-binding terms within them, such as the XXZ

chain (Eq. (1.14)), or the Hubbard model [185], and the many variants based on

these models. In the second quantization language, the tight-binding Hamiltonian

for spinless fermions with open boundaries is given as

HT = t

L−1∑
j

(c†jcj+1 + cjc
†
j+1). (1.22)

Here, c†j and cj create and annihilate a particle on-site j respectively, and t is the

site-to-site hopping strength. This open boundary chain of free-fermions (free

from interactions) can be diagonalized by transforming the operators c†j, cj. A

similar process can be carried out for the periodic chain.

This model can be mapped to a spin system via a Jordan-Wigner transformation

[186], resulting in the Hamiltonian in spin language (with t = J/2)

HT =
J

2

L−1∑
j

(S+
j S

−
j+1 + S−

j S
+
j+1). (1.23)

This is precisely the non-interacting (∆ → 0) limit of the XXZ chain (Eq. (1.14)),

i.e., the XX chain (or XY model with equal coefficients in the x and y directions).

In this language, the analog of a particle excitation is a spin-up.

Imaginary potential

In Chapter 4, we use the tight-binding lattice as the basis for our non-Hermitian

system. Hermiticity is broken by introducing a purely imaginary potential to the

lattice. In general, the Hamiltonian for such a system with an imaginary potential

of strength γ on-site q is given in spin language via

HMB =
J

2

L−1∑
j

(S+
j S

−
j+1 + S−

j S
+
j+1) ± iγ(Szq +

1

2
). (1.24)
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The sign in front of γ (taking γ > 0) determines if the potential is absorbing

or enhancing. The magnetic field term is shifted by 1/2, stemming from the

Jordan-Wigner transformation of the on-site potential nj = c†jcj = Szj + 1/2.

Our primary focus in Chapter 4 is a single quantum particle (i.e., single spin-up)

in such a system. Thus is it helpful to write the Hamiltonian with an absorbing

potential in terms of site occupations

H = −J
L−1∑
j=1

(
|j⟩ ⟨j + 1| + |j + 1⟩ ⟨j|

)
− iγ |q⟩ ⟨q| , (1.25)

with 1 ≤ q ≤ L. Here we shall focus on the case γ > 0 so that the imaginary

potential is absorbing. The labels for the bras and kets here are site labels: The

particle lives on an L-site chain with open boundary conditions. In Chapter 4, we

provide an in-depth investigation of this non-Hermitian model, exploring features

of its complex spectrum and analyzing the scattering dynamics of a wavepacket.

Interacting model

In Chapter 4, we shall also consider an interacting version of Eq. (1.24). We allow

nearest neighboring particles to interact via njnj+1 = (c†jcj)(c
†
j+1cj+1). Mapping

this to a spin system, we obtain the interacting non-Hermitian Hamiltonian

Hq =
J

2

L−1∑
j

(S+
j S

−
j+1 + S−

j S
+
j+1) − iγ(Szq +

1

2
)

+∆
L−1∑
j

(Szj + 1/2)(Szj+1 + 1/2). (1.26)

Without the impurity, this spin model appears almost identical to the XXZ chain

(Eq. (1.14)); the Jordan-Wigner mapping nj = Szj + 1/2 introduces additional

1/2 terms. In Section 4.5.2, we explore the fate of certain spectral phenomena,

observed in the single particle and non-interacting many-body systems, in this

interacting system.
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1.4.3 Level spacing statistics

In Chapters 2 and 3 we explore temperature definitions in the context of thermal-

ization in many-body quantum systems. Thermalization, as discussed in Section

1.2, is expected in chaotic many-body systems; thus, we need to ensure the models

we have outlined above are chaotic.

Quantum chaos is often characterized by investigating the distribution of energy

level spacings of the Hamiltonian. The energy levels in an integrable system are

uncorrelated and can cross each other. This is in contrast to a chaotic system,

where energy levels experience level repulsion and thus are highly correlated. This

level repulsion, or lack of it, is an indicator of quantum chaos, and as such, exact

measures based on this phenomenon have been developed [187].

Consider a system with an ordered set of energy levels En; one can define the

consecutive level spacings as

sn = En+1 − En. (1.27)

The probability distribution of this quantity, P (s), can be used to classify a system

as chaotic. It has been conjectured that level spacings of integrable systems follow

a Poisson distribution [188], i.e., P (s) ∝ e−s. In contrast, the level spacings of

a chaotic system are expected to follow a so-called Wigner-Dyson distribution,

P (s) ∝ sαe−bαs
2
, with bα a constant. Depending on whether the Hamiltonian of

the system is real symmetric, complex Hermitian, or quaternionic Hermitian, α is

either 1,2, or 4, respectively. This classification of Hamiltonians corresponds to the

three classical ensembles of random matrix theory (RMT). The three ensembles,

the Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE),

and Gaussian Symplectic Ensemble (GSE), are composed of Hermitian matrices

whose entries are independently distributed as real, complex, or quaternionic

random variables, respectively [189,190].

The universality of RMT means that these random matrix ensembles describe

the energy levels of physical systems at the statistical level. However, direct
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comparison with the distributions of the random matrix ensembles is only possible

in a local energy window with the mean level spacing set to unity.

The level spacing distribution P (s) is an effective measure of chaos, but it does

have its downfalls. Many systems have a non-uniform energy density, resulting

in the spectrum needing to be ‘unfolded’. Here, unfolding is a transformation

that ensures the mean level density is indeed unity [15, 38, 187, 191–194]. In

addition, one needs to be careful to account for any symmetries present in the

Hamiltonian of the system. For example, the XXZ chain, Eq. (1.13), conserves

total Sz. This means the Hilbert space of the Hamiltonian can be broken into

sectors with different Sz values. One should thus take statistics in a particular

sector. If we took statistics from across sectors, the statistics could appear to

be those of an integrable system, as there is no level repulsion between levels in

different symmetry sectors [10].

While the unfolding procedure can circumvent issues in analyzing P (s), it

can be a non-trivial task to execute and often require approximations. In order

to avoid these issues, Oganesyan and Huse [195] proposed another quantity, the

consecutive level spacing ratio,

rn =
min(sn+1, sn)

max(sn+1, sn)
. (1.28)

The benefit of rn is that it does not require the use of unfolding, as the ratio of

consecutive level spacings is independent of the local density of states. Thus the

distribution P (r) can be preferential to study over P (s).

Analytical predictions for the three RMT ensembles have been derived for

the distribution P (r) [196]. From these predictions, the simple indicator of the

mean value of the ratio, ⟨r⟩, has become a prevalent indicator of chaos. In

integrable systems with Poisson-like level spacing distributions, ⟨r⟩ = 2 ln 2 ≈

0.38629. In contrast, for chaotic systems with level spacing statistics expected to

follow GOE-like level spacing statistics (i.e., the Hamiltonian is real symmetric),

⟨r⟩ = 4 − 2
√

3 ≈ 0.53590. Throughout this thesis, when we require that a system

be chaotic such that we expect it to thermalize, we will ensure its level spacing
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statistics align with these predictions. In Figure 1.6, we present both the level

spacing distribution P (s) and the mean ratio ⟨r⟩, for each many-body quantum

system detailed in Section 1.4, except for the non-Hermitian model, on account of

its complex spectrum. We note that complex level spacing statistics are also used

in non-Hermitian settings, where similar RMT predictions have been derived [139].

There are other indicators used to characterize quantum chaos (or lack thereof),
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Figure 1.6: Normalized level spacing statistics (s = s/⟨s⟩) for models: (A) XXZ
chain with L = 20 and N = 4, J = 1, ∆ = 0.95, Eq. (1.14). (B) Staggered
field model with L = 12 and hz = hx = 0.5, J = 1, ∆ = 0.95, Eq. (1.15). (C)
Disordered field model with J = 1, ∆ = 0.95, L = 12 and W = 0.25, Eq. (1.16).
(D) Chaotic Ising model with L = 12, hz = 0.5 and hx = 0.5, Eq. (1.21). (E)
Square lattice model with Jjk ∈ [0, 2], ∆jk ∈ [0, 1], 4×5 lattice (L = 20) and N = 4,
Eq. (1.17). (F) Fully connected lattice model with Jjk ∈ [−.4, .4], ∆jk ∈ [−.1, .1],
L = 16 and N = 5, Eq. (1.19).
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such as spectral form factors [197], the fidelity susceptibility [93], and the adiabatic

gauge potential norm [198].

The entanglement entropy of bulk eigenstates, i.e., those that are highly excited,

is also emerging as an indicator of quantum chaos. The eigenstate entanglement

entropy is the Von Neumann entropy of the eigenstate density matrix reduced to

a local subsystem.

In ergodic systems (chaotic), bulk eigenstates are all strongly entangled and

result in an entanglement entropy that scales with the volume of the subsystem

(volume law). In contrast, bulk eigenstates of non-ergodic systems do not all

follow this volume law; a large number of the states generally scale with the size

of the boundary of the subsystem (area law) [199].

1.5 Overview

This thesis is organized as follows:

In Chapter 2, we investigate the eigenstate-based definitions of temperature,

introduced in Section 1.1.1, in the context of chaotic many-body quantum systems.

We start by providing some preliminary information necessary for the investigation.

We then present our results for the eigenstate and subsystem temperatures in Sec-

tions 2.2 and 2.3 respectively. In each case, we compare the resultant temperature

to the canonical temperature. Following this, we outline some alternative choices

that could have been made in the formulation of the temperature definitions

(Section 2.4) and examine the subsystem temperature in a system approaching

the integrable limit (Section 2.5).

In Chapter 3, we explore various ways to calculate the microcanonical entropy

in isolated quantum systems. We describe, in detail, the four procedures to

calculate entropy introduced in Section 1.1.2 and derive a temperature in each

case. First, Section 3.2.1 describes counting eigenstates in a constant-width

energy window ∆E. Second, Section 3.2.2 describes counting eigenstates in an

energy-dependent ∆E designed to cancel out the explicit ∆E-dependence of the

resultant temperature, following/extending the suggestion of Ref. [54]. Section
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3.3 outlines using a smoothed cumulative density of states, Ω(E), to calculate the

density of states, g(E). We first choose to avoid explicitly selecting an energy

width ∆E. Finally, we use the energy-dependent ∆E alongside the integrated

density of states formulation. In each case, numerical results are presented for

various many-body quantum systems and we compare the derived temperature to

the canonical temperature.

In Chapter 4, we investigate the scattering dynamics and spectrum of a

quantum particle on a tight-binding lattice subject to a non-Hermitian local

potential. We first present the scattering results and make comparisons to the

continuum case in Section 4.1. Following this we discuss the spectrum and the

appearance of exceptional points in Section 4.2. Then we investigate the system

at large potential strengths, and draw a comparison between real and imaginary

potentials via their bound states. We present an alternative setup that is PT -

symmetric, and discuss its spectrum in Section 4.4. Finally, in Section 4.5 we begin

building a many-body description of the system, by constructing an understanding

of the non-interacting many-body system out of the single particle case.

Finally, in Chapter 5, we summarize the results of each chapter.

The contents of this thesis are largely based on the following publications by

the author of this thesis:

 [200] P. C. Burke, G. Nakerst, and M. Haque, “Assigning temperatures to

eigenstates,” Physical Review E, 107:024102, February 2023.

 [201] P. C. Burke and M. Haque, “Entropy and temperature in finite isolated

quantum systems,” Physical Review E, 107:034125, March 2023.

 [202] P. C. Burke, J. Wiersig, and M. Haque, “Non-Hermitian scattering

on a tight-binding lattice,” Physical Review A, 102:012212, July 2020.

Chapters 2 and 3 are largely based on [200,201] respectively — some changes

to the presentation have been made. Chapter 4 is largely based on [202]. Sections

4.4 and 4.5 are new results that compliment those of the published work.
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Chapter 2

Temperature from eigenstate

information

In this chapter, we investigate temperature definitions based on the idea that

information relating to thermalization is encoded in the eigenstates of chaotic

quantum systems, as posited by the ETH. In particular, we will investigate the

eigenstate and subsystem temperatures defined in the introduction (Section 1.1).

We first provide some preliminary details in Section 2.1, starting with defining an

appropriate distance measure for density matrices, as will be necessary for our

distance-based temperatures. Then we discuss the chaotic many-body systems

we will investigate, outlining how we spatially divide the system into subsystems

when required. Following this, we then present our results for the eigenstate and

subsystem temperatures in Sections 2.2 and 2.3 respectively. In Section 2.4 we

outline alternative choices that could have been made in our investigations. Then,

in Section 2.5 we investigate the deviation of the subsystem temperature from the

canonical temperature, as a system approaches integrability. Finally, in Section

2.6 we summarize the chapter and discuss the relation of our findings to existing

work. The majority of the results in this chapter are published in Ref. [200]. Some

additional figures and discussions have been added.

32



2.1 Preliminaries

In this section, we first define an appropriate distance measure between density

matrices. This distance measure is to be used in our temperature definitions.

Following this, we outline the many-body quantum systems used in our numerical

calculations; in particular, we discuss the geometry of the lattice subsystems.

2.1.1 Distance measures

To quantify the distance between two density matrices, we use the Schatten

p-distance, the p-norm of the difference between the two normalized matrices:

dp(ρ, σ) =

∥∥∥∥ ρ

∥ρ∥p
− σ

∥σ∥p

∥∥∥∥
p

, (2.1)

with the Schatten p-norm given by

∥A∥p = tr(|A|p)1/p = (
∑
n

|sn|p)1/p, (2.2)

for a Hermitian matrix A and 1 ≤ p <∞. Here sn are the singular values of A,

and |A| =
√
A†A. This class of distances includes commonly used measures of

distance between density matrices, such as the trace distance (p = 1) [203,204]

and the Hilbert-Schmidt (or Frobenius) distance (p = 2) [205–219]. The range of

dp is [0, 2].

The main results in this chapter are based on the Schatten p-distances. In

Section 2.4.1 we will examine briefly how our results are affected if the Bures

distance [203,204] is used instead.

2.1.2 Many-body systems

To confirm that the results we present here hold in general for chaotic (thermaliz-

ing) many-body Hamiltonians with local interactions, we will provide numerical

results for three different 1D and one 2D, non-spin-conserving, chaotic models.

These models are the staggered field model (Eq. (1.15)), the chaotic Ising model
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A B

A B

Figure 2.1: Illustration of subsystems for a spin chain and a square lattice. For
the square lattice, we show the choice of taking LA sites column-wise.

(Eq. (1.21)), the disordered field model (Eq. (1.16)), and the square lattice with

the addition of transverse and longitudinal magnetic fields (Eq. (1.18)), all of

which are detailed in Section 1.4 of the introduction. For all systems, we consider

a lattice consisting of L spin-1
2

objects with open boundary conditions.

For 1D systems, the subsystem A is taken to be the leftmost LA sites of the

L-site chain, with B being the remaining LB = L− LA sites. In the 2D square

lattice, the subsystem A is taken to be the first LA consecutive sites, starting

from a corner of the lattice and following either a row or column. B again

consists of the remaining LB sites. When this 2D model is used, illustrations of

the lattice geometry are provided in order to avoid confusion. In Figure 2.1 we

illustrate examples of subsystems in a chain and square lattice. For simplicity, we

choose systems whose underlying Hilbert space H has a tensor product structure

H = HA ⊗HB. This is the case for spin and fermionic systems, where total spin

and particle number respectively are not conserved. Then the full Hamiltonian

can be written as H = HA⊗ 1DB
+ 1DA

⊗HB +HAB, where HA and HB only act

on A and B respectively, and HAB is the interaction between the two. The Hilbert

space dimensions of A, B and the total system are DA, DB and D = DADB

respectively.

2.2 Eigenstate temperature

In this section, we discuss the eigenstate temperature, which we have defined

as the temperature that minimizes the distance between the eigenstate density
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matrix ρ, and the canonical density matrix ρC ,

βE = argmin
β

dp (ρ, ρC) . (2.3)

We first present analytical results that are general to all Hermitian systems. In

addition, we provide numerical results that illustrate these analytical findings.

Following this, we consider a variation of the eigenstate temperature. In particular,

we consider a density matrix consisting of an equally weighted sum of eigenstates

from a finite energy window, i.e., a microcanonical density matrix. Finally, we

provide the full derivation of the analytical results presented.

2.2.1 Main results

In order to determine the value of βE, Eq. (2.3), analytically, we express the

two density matrices in the basis for which they are simultaneously diagonalized,

namely the eigenstate basis, and set to zero the derivative of dp(ρ, ρC) with respect

to β. The full derivation of the minimum can be found in subsection 2.2.3, the

main result of which is that the minimum is precisely when

En =
tr
(
He−pβH

)
tr(e−pβH)

. (2.4)

Thus, comparing this result with the definition of the canonical temperature,

Eq.(1.1), we determine

βE =
βC
p
. (2.5)

Thus, the eigenstate and canonical temperatures coincide for p = 1, while they

differ by a factor of p for p > 1. This result is purely mathematical and holds for

an arbitrary Hermitian matrix H, irrespective of whether H has the interpretation

of a many-body Hamiltonian, e.g., even for a random matrix — see results in

subsection 2.2.4.

Figure 2.2 illustrates the relation βC = pβE in (A), and the behavior of the

distance dp in (B,C), for the staggered field XXZ chain.
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Figure 2.2: Eigenstate temperature results for staggered field model, Eq. (1.15):
hx = hz = 0.5, ∆ = 0.95, L = 10. (A) βE against energy, for 20 eigenstates
which are equally spaced in energy across the spectrum, with curves showing
βC/p. (Highest/lowest state not visible.) (B) d1(ρ, ρC) vs β curve for ground state
(E1), mid-spectrum state (E3), and E2 in between the two. (C) The minimum of
dp(ρ, ρC) plotted against eigenenergy, for the same eigenstates used in (A).

The result βE = βC (for p = 1) does not imply that eigenstate density matrices

ρ = |En⟩⟨En| closely resemble canonical states ρC = Z−1e−βH . We are comparing

a pure state to a highly mixed state, i.e., a projection operator (a rank-1 operator)

ρ to a full-rank operator ρC . So, even the smallest distance between them (at

β = βC) is close to the maximum. The smallest p-distance is generally close to

21/p, an analytical result derived in the following subsection 2.2.3. The minimum

is thus very close to the maximum for most eigenstates, as shown in Figure

2.2(B,C). The highest and lowest eigenstates are exceptions to this behavior;

clearly ρC → |E0⟩⟨E0| for β → ∞, and similarly, ρC → |ED⟩⟨ED| for β → −∞.

2.2.2 Finite window eigenstate temperature

Instead of the eigenstate density matrix, ρ = |En⟩⟨En|, we could use the micro-

canonical density matrix,

ρMC =
1

N
∑

Ej∈{En±∆E/2}

|Ej⟩⟨Ej|, (2.6)
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as introduced in Eq. (1.5). This formalism might be considered more physical, as

we are now comparing two mixed states.

Here, we fix the energy window width and allow each window to contain a

different number of eigenstates. We want to compute the value of β such that

the distance dp(ρMC , ρC) is minimized. We label this minimizing value the finite

window eigenstate temperature β∆E. One can follow the same analytical procedure

as is detailed in subsection 2.2.3 for the eigenstate temperature, and by making

the assumption that the energy EMC = tr(HρMC) = 1/N∑
Ej∈∆E Ej of the
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Figure 2.3: Finite window eigenstate temperature results for spin chains with
L = 10, namely: (A)-(C) Chaotic Ising Model with hz = 0.5, hx = 0.75,
Eq. (1.21),w and ∆E ∼ 0.059. (D)-(F) Staggered field XXZ chain with ∆ = 0.95,
J = 1, hx = hz = 0.5 Eq. (1.15), and ∆E ∼ 0.0757. (A,D) βMC against energy,
for 20 energy windows which are equally spaced in energy across the spectrum,
with curves showing βC/p. (Highest/lowest state not visible.) (B,E) d1(ρMC , ρC)
vs β curve for energy windows: E1 near the ground state, E2 in the middle of
spectrum, and E2 in between the two. (C,F) The minimum of dp(ρMC , ρC) plotted
against energy, for the same energy windows used in (A,D).
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microcanonical state ρMC is roughly EMC ≈ Ej ∈ ∆E, which is valid if the energy

interval is sufficiently small, we obtain the similar relation that βC ≈ pβ∆E.

This result is illustrated numerically in Figure 2.3, in which we present results

for the chaotic Ising model (A-C) and the staggered field XXZ chain (D-F). In

(A,D), we plot β∆E that minimizes the Schatten p-distance for the given p, along

with two canonical βC curves, versus energy. In (C,F), we plot the value of the

minimum distance for the same energy slices as taken in the left figure. Finally, in

(B,E), we plot the d1 distance versus β for three particular energy slices E1, E2,

and E3. The numerical results again illustrate the derived relation of βC = pβ∆E

for the p-distance dp when taken between a microcanonical and canonical density

matrix.

2.2.3 Derivation of analytical results

In this subsection, we present the derivations of our analytical results presented

above. To start, we wish to minimize the Schatten p-distance, Eq. (2.1), between

the canonical and eigenstate density matrices, i.e., dp(ρ, ρC) with respect to β. In

particular, we want to determine the value of βE, Eq. (2.3), and the value of dp at

this minimum. All Schatten p-norms of a matrix ρ can be expressed in terms of

the singular values sn of ρ

∥ρ∥p =

(∑
n

spn

)1/p

. (2.7)

In other words, the Schatten p-norm is the lp norm of the singular values. The

singular values of a Hermitian matrix ρ are the absolute values of the eigenvalues

of ρ. The eigenstate density matrix ρ and the canonical density matrix ρC are

jointly diagonalizable with respect to the eigenstate basis of H. The eigenvalues

of the former are 1 and 0, while the eigenvalues of the latter are given by e−βEj ,

where Ej are the eigenvalues of the Hamiltonian H. The Schatten norms are

invariant under a basis transformation by definition, so the normed Schatten
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p-distance can be written as

dpp(ρ, e
−βH) =

∣∣∣∣ 1

∥ρ∥p
− e−βEn

∥e−βH∥p

∣∣∣∣p +
∑
Ej ̸=En

e−pβEj

∥e−βH∥pp
. (2.8)

Here, we have normed the distance for convenience in the calculation. Now there

are two results we wish to obtain, the value of β for which Eq. (2.8) is minimized,

and the value of that minimum. In the following, we first obtain the surprising

result of βE = βC/p, and then we determine how the value of the minimum scales.

Minimization

To find the minimum of Eq. (2.8), we differentiate the p-normed Schatten p-

distance of ρ and exp(−βH) and obtain

∂

∂β
dpp(ρ, e

−βH) = − p

(
1

∥ρ∥p
− e−βEn

∥e−βH∥p

)p−1

× ∂

∂β

e−βEn

∥e−βH∥p
+
∑
Ej ̸=En

∂

∂β

e−pβEj

∥e−βH∥pp
. (2.9)

Here, we have assumed ||e−βH ||p ≥ ||ρ||pe−βEj to ensure the sign of the first term

is correct, which is true for a single eigenstate. Noting that

∥e−βH∥p =
(∑

n

|sn|p
)1/p

=
(∑

n

e−pβEn

)1/p
=
(
tr
(
e−pβH

))1/p
, (2.10)

we can derive

∂

∂β

e−βEn

∥e−βH∥p
=

∂β
(
e−βEn

)
∥e−βH∥p

+ e−βEn
∂

∂β

(
1

∥e−βH∥p

)
= −En

e−βEn

∥e−βH∥p
− e−βEn

p

(
tr
(
e−pβH

))−1− 1
p · tr

(
− pHe−pβH

)
= −En

e−βEn

∥e−βH∥p
+

e−βEn

(tr(e−pβH))1/p
· tr
(
He−pβH

)
tr(e−pβH)

=
e−βEn

∥e−βH∥p

(
−En +

tr
(
He−pβH

)
tr(e−pβH)

)
. (2.11)
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Similarly,

∂

∂β

e−pβEj

∥e−βH∥pp
=

pe−pβEj

∥e−βH∥pp

(
−Ej +

tr
(
He−pβH

)
tr(e−pβH)

)
. (2.12)

Now, Eq. (2.8) is minimal if and only if Eq. (2.9) is 0, which holds true if, and

only if

0 = −p
(

1

∥ρ∥p
− e−βEn

∥e−βH∥p

)p−1
e−βEn

∥e−βH∥p
·
[
−En +

tr
(
He−pβH

)
tr(e−pβH)

]

− p
e−pβEn

tr(e−pβH)

[
−En +

tr
(
He−pβH

)
tr(e−pβH)

]

− p
tr
(
He−pβH

)
tr(e−pβH)

+ p
tr
(
e−pβH

)
tr(e−pβH)

tr
(
He−pβH

)
tr(e−pβH)

. (2.13)

The last two terms cancel, and we group the remaining terms together and

divide by p to obtain

0 =

[
En −

tr
(
He−pβH

)
tr(e−pβH)

]

×
((

1

∥ρ∥p
− e−βEn

∥e−βH∥p

)p−1
e−βEn

∥e−βH∥p
+

e−pβEn

tr(e−pβH)

)
. (2.14)

This is zero if and only if

En =
tr
(
He−pβH

)
tr(e−pβH)

. (2.15)

By the one-to-one correspondence of energies and canonical inverse temperatures

there exists exactly one β for a given En which obeys Eq. (2.15). This β minimizes

Eq. (2.8) and we call it βE. It is related to the canonical inverse temperature βC ,

which is defined as the unique solution to Eq. (1.1), via βC = p× βE.

Value of the minimum

To allow for the case of using a microcanonical density matrix in place of the

eigenstate density matrix (subsection 2.2.2), we consider the distance Eq. (2.8)

with ρ now of the form of Eq. (2.6) (N = 1 gives eigenstate temperature), i.e.,
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the finite window eigenstate temperature. We assume that ||e−βH ||p ≥ ||ρ||pe−βEj ,

which again is true for N ≪ D, and we separate the final sum into the difference

of two sums.

dpp(ρ, e
−βH) =

∑
Ej∈∆E

(
1

N 1/p
− e−βEj

∥e−βH∥p

)p
+
∑
Ej

e−pβEj

∥e−βH∥pp
−
∑

Ej∈∆E

e−pβEj

∥e−βH∥pp
. (2.16)

Now, we assume ρ to be constructed from states in the middle of the spectrum,

hence we take β close to zero. Provided the bandwidth of the energy is not too

large, i.e., |Emin|, |Emax| ≪ β−1, we can approximate e−βEj ≈ 1 for all Ej, and

∥e−βHp ∥ ≈ D1/p, leading to

dpp(ρ, e
−βH) =

1

N
∑

Ej∈∆E

(
1 − (N /D)1/p

)p
+ 1 −

∑
Ej∈∆E

1

D

=
(
1 − (N /D)1/p

)p
+ 1 − N

D
. (2.17)

If p = 1, and we assume N ≪ D, it is clear from Eq. (2.17) that d1 ≈ 2. For

p ≥ 2 we use the binomial expansion on Eq. (2.17), and let DE = N /D,

(
1 −D

1/p
E

)p
=

∞∑
n=0

(
p

n

)
(−1)nD

n/p
E , (2.18)

resulting in

dpp(ρ, e
−βH) = 2 − pD

1/p
E +O

(
Dℓ
E

)
. (2.19)

Here, ℓ = min(1, 2/p). Then finally to obtain dp, we raise both sides to 1/p, and

use the binomial expansion again,

dp(ρ, e
−βH) = 21/p − 21/p−1D

1/p
E +O

(
Dℓ
E

)
(2.20)

Thus the leading perturbation is D
1/p
E = (N /D)1/p. So when N ≪ D, dp is close

to 21/p for bulk eigenstates.
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Figure 2.4: Eigenstate temperature results for random symmetric matrix with
D = 210. Left: βE against energy, for 20 eigenstates which are equally spaced
in energy across the spectrum, with curves showing βC/p. (Highest/lowest state
not visible.) Mid: d1(ρ, ρC) vs β curve for ground state (E1), mid-spectrum state
(E3), and E2 in between the two. Right: The minimum of dp(ρ, ρC) plotted
against eigenenergy, for the same eigenstates used in (A).

2.2.4 Random matrix results

We have demonstrated analytically that βE = βC/p is a general mathematical

result that will hold for any Hermitian matrix H. We now illustrate this result

by computing the eigenstate temperature βE for a random matrix. In Figure

2.4, we present the results for a symmetric D ×D matrix with elements drawn

randomly from a normal distribution with mean 0 and variance 1. The figure

clearly illustrates almost identical results to the physical models presented in

subsection 2.2.1.

2.3 Subsystem temperature

In this section, we discuss the subsystem temperature, which we have defined as the

temperature that minimizes the distance between the reduced eigenstate density

matrix ρA = trB(ρ) and the reduced canonical density matrix ρAC = trB(ρC),

βS = argmin
β

dp
(
ρA, ρAC

)
. (2.21)
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The partial trace prevents a calculation similar to that used to derive βE = βC/p;

we thus do not have analytical predictions for the relationship between βS and

βC . On physical grounds, one expects βS to match βC for LA ≪ L and large L,

via the eigenstate thermalization hypothesis. We present our numerical findings

for βS in various quantum systems, exploring this expected correspondence.

2.3.1 Main results

The values of βS are found in general to be scattered around βC , as shown in

Figure 2.5(A) for the chaotic Ising model. The width of this scatter generally

decreases with system size (both LA and L), as quantified further below. In stark

contrast to βE, there is no obvious dependence on the distance measure used —

the qualitative behavior is the same for all p except p = ∞, see subsection 2.3.2

for scaling data using p = 2 and 3 and an example of the result of using p = ∞.

We therefore present numerical results for the trace distance, p = 1.

The qualitative results of Figure 2.5 are not specific to 1D chains. This is clear

from the strikingly similar results we obtain for the 2D square lattice model as

shown in Figure 2.6. In Figure 2.6, we illustrate the geometry of the square lattice

for each given system/subsystem parameters, alongside the respective βS and

min(d1) versus E plots. In the geometry illustrations, the red and black points

represent the subsystems A and B respectively. We observe similar results to that

of a chaotic 1D spin chain such as those in Figure 2.5.

When increasing LA with fixed total system size L, the variance of βS and the

distance between βS and βC decrease, up to LA = L/2. These effects are visible

in Figure 2.5 (A) and Figure 2.6 (A), and are also illustrated quantitatively in

Appendix A.1. For LA > L/2, the distribution of βS values changes shape and

shows additional features, perhaps resulting from ρA no longer having full rank.

See Appendix A.1 for examples of results from systems with LA > L/2.

Although |βS − βC | and the variance of βS improve with increasing LA, the

minimum distance between ρA and ρAC does not, as is visible from Figures 2.5(B)

and 2.6(B). The average min(d1) increases markedly with LA. The reduced
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Figure 2.5: Subsystem temperature results for the chaotic Ising model, Eq. (1.21),
with hz = 0.5 and hx = 0.75. (A) β that minimizes d1(ρ

A, ρAC) (βS) versus energy,
plotted along side the canonical βC curve, for the given L and LA. (B)-(D)
min(d1(ρ

A, ρAC)) plotted versus energy, each row illustrating a different scaling of
system/subsystem size.

density matrix has decreasing resemblance to the reduced canonical density

matrix, presumably because of the decreasing size of the complement B, which
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Figure 2.6: Subsystem temperature results for the non-number conserving square
lattice model, Eq. (1.18), with Sx and Sz fields in alternate sub-lattices, with
hx = hz = 0.1. The geometry of each system is illustrated above each plot, in
which red and black sites correspond to the subsystems A and B, respectively.
- (A): β that minimizes d1(ρ

A, ρAC) (βS) versus energy, plotted alongside the
canonical βC curve, for the given L and LA. (B-C): min(d1(ρ

A, ρAC)) plotted
versus energy, each row illustrates a different scaling of system/subsystem size.

plays the role of a bath.

Increasing L while keeping the fraction LA/L fixed, we again find the variance

of βS to decrease. In this limit, min(d1) on average decreases when the fraction

LA/L is < 1/2 (see Figure 2.5(C)), and is remarkably stable as a function of L

when the fraction is LA/L = 1
2
, see Appendix A.1.
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We now consider fixed LA and increasing L (or increasing LB = L−LA). The

reduced density matrices become increasingly similar in this limit, as shown in

Figures 2.5(D) and 2.6(C). In Figure 2.7 we show scaling behaviors in this limit

computed using the central 20% of the spectrum. Figure 2.7 (A)-(C) shows results

for the disordered-field XXZ chain, while Figure 2.7 (D)-(F) shows those for the

chaotic Ising model, both with LA = 2.

The minimum distance between density matrices ρAC and ρA decreases appar-
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Figure 2.7: Subsystem temperature scaling for: (A)-(C) Disordered field model,
Eq. (1.16), with W = 0.25 and LA = 2, over many disorder realizations. (D)-(F)
Chaotic Ising model, Eq.(1.21), with hx = 0.75, hz = 0.5, and LA = 2. For both
models, statistics are taken from the central 20% of the spectrum. (A),(D) Mean
of min(d1(ρ

A, ρAC)) and its standard deviation, vs. DB for p = 1. (B),(E) Width
of βS vs. DB for p = 1, 2. (C),(F) RMS-distance from the linear fit of βS, to βC
curve versus DB, for p = 1, 2.
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ently exponentially with system size, consistent with a maximum exponent of 1/2,

i.e., an upper bound of ∼D−1/2
B (equivalently ∼D−1/2), see Figure 2.7(A)/(D).

While this scaling is difficult to prove for a general Hamiltonian, one can argue

for this dependence based on assuming the eigenstates to be effectively random

Gaussian states near the center of the spectrum. This is known to be a good but

not perfect approximation for chaotic many-body systems with local interactions

[37,44,220–224], and has been used to analyze ETH [2,10,19,24,28,34,37,39,46,225].

With this assumption, the reduced density matrix is a Wishart matrix, while the

infinite-temperature canonical density matrix is an identity matrix. Thus, the

question is how fast does a p-normalized Wishart matrix concentrate around an

identity matrix? One can show that this dependence is at most D
−1/2
B [200].

The width of min(d1) clouds appears to decrease at least as fast as ∼ D
−1/2
B

as well, as shown in Figure 2.7(A)/(D). This is reasonable as d1 is bounded from

below and the average min(d1) decreases as ∼ D
−1/2
B .

The width of the βS values which minimize d1 also appears to have ∼ D
−1/2
B

scaling (at most), see Figure 2.7(B)/(E). We have been unable to formulate an

analytic argument for this scaling. As the width of the βS cloud decreases, these

values concentrate on a line in the L → ∞ limit. Figure 2.7(C)/(F) shows, by

plotting the average distance of the βS cloud to the βC line, that the asymptotic

shape of the βS cloud coincides with the βC line. From the available data, it

is unclear whether this approach is power-law or exponential in L. Again, no

analytical prediction is currently available for this dependence. These results

would imply that the overwhelming majority of eigenstates appear to have a

temperature that coincides with the canonical temperature in the large system

size limit. However, this behavior does not rule out the existence of outliers,

i.e., eigenstates that have a temperature far from the canonical temperature (See

Section 2.6 for a discussion). In Ref. [35], an upper-bound scaling of L−1 is derived

for a closely related quantity, namely, d1(ρ
A, ρAC) evaluated at βC , instead of at its

minimum βS. Figure 2.7(C)/(F) shows that the actual scaling of min(d1) is much

faster. In Appendix A.2 we calculate the average value of d1(ρ
A, ρAC) at βC as a
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function of L.

2.3.2 Using various p-distances

Here, we consider the subsystem temperature for various p-distances. We stated

that the qualitative behavior of βS is the same for all p except p = ∞. To illustrate

this behavior, we present the scaling behaviors in the limit of increasing L, with

LA a fixed small value for three different p values. In Figure 2.8, we show results

for the p = 1, 2, and 3 distances for the staggered field model. While the exact

values of the quantities presented may differ, we observe similar scalings with

increasing L for all three distances.

The only exception that we found was the p = ∞ distance (using the operator

norm), which resulted in a gap in βS around β = 0, i.e., βS was never close to βC

where βC was near zero. We illustrate this result in Figure 2.9, wherein we plot

βS for the p = 1 distance on the left and p = ∞ distance on the right.
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Figure 2.8: Subsystem temperature results using p = 1, 2 and 3 distances, for
the staggered field model, Eq. (1.15), with hx = hz = 0.5 and LA = 2. Statistics
taken from the central 20% of the spectrum. (A) Mean of min(dp(ρ

A, ρAC)) vs.
DB. (B) Standard deviation of min(dp(ρ

A, ρAC)), labeled σ(dp), plotted versus DB.
(C) Width of βS vs. DB. (D) RMS-distance from the linear fit of βS, to βC curve
vs. DB.
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Figure 2.9: Subsystem temperature results: β that minimizes dp(ρ
A, ρAC) versus

energy plotted along side the canonical βC curve. Data shown for p = 1 (left) and
p = ∞ (right) distances, for the staggered field model, Eq. (1.15), with L = 12,
LA = 2, and hx = hz = 0.5.

2.3.3 Zero coupling limit

Here, we discuss the subsystem temperature in the limit of subsystem coupling

HAB → 0. We find that for HAB = 0, the subsystem temperature reduces to the

eigenstate temperature for the subsystem A.

A weak or even zero system-bath coupling is often considered the natural

setting for discussing quantum thermalization [61, 69]. In the present context,

we did not consider it natural to modify HAB, as we do not a priori have a

system-bath separation, and the partition into A and B is arbitrary. However,

it would be interesting to explore the effect of varying HAB. For the exact limit

of HAB = 0, the reduced canonical density matrix ρAC = trB(ρC) is simply e−βHA .

The eigenstates of the full system also decompose into tensor products of the

eigenstates of the two subsystems

|En⟩ = |EA
j ⟩ ⊗ |EB

k ⟩ , (2.22)

with eigenvalues En = EA
j + EB

k . Here, |EA⟩ (|EB⟩) are eigenstates of HA (HB)

with corresponding eigenvalue EA (EB). Following this, we can write the reduced
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eigenstate density matrix as

ρAn = trB(|En⟩⟨En|) = trB(|EA
j ⟩ ⊗ |EB

k ⟩ ⟨EA
j | ⊗ ⟨EB

k |)

= trB(|EA
j ⟩⟨EA

j | ⊗ |EB
k ⟩⟨EB

k |) = |EA
j ⟩⟨EA

j | tr
(
|EB

k ⟩⟨EB
k |
)

= |EA
j ⟩⟨EA

j |. (2.23)

This allows us to write the distance d1(ρ
A, ρAC) for HAB = 0 as

d1(ρ
A
n , ρ

A
C) = |ρAn − ρAC |1 = || trB(|En⟩⟨En|) − trB(e−βH)||1

= || |EA
j ⟩⟨EA

j | − e−βHA ||1. (2.24)

Thus, the subsystem temperature βS for HAB = 0, is actually the eigenstate

temperature βE, of the contributing eigenstate in HA. We now know, via the

result obtained in Section 2.2, that this temperature will in fact be βC of the

eigenstate of the subsystem HA (for p = 1), as opposed to βC of the total system.

We have determined the result for the exact limit of HAB = 0, however one

can still ask how the correspondence between βS and βC changes systematically

in the HAB → 0 limit. In particular it would be interesting to determine how βS

transitions from βAC (for HA) to βC (for H) as a function of HAB. Is the transition

a smooth function of the interaction, or does it exhibit non-monotonic behavior?

2.4 Alternate formulations

In this section, we explore possible alternate formulations of our eigenstate-based

temperatures. First, we discuss using the Bures distance instead of the Schatten

p-distance. We derive an analytical result for the eigenstate temperature utilizing

the Bures distance, analogous to that shown in Section 2.2. Following this, we

discuss the use of exp(−βHA) in place of tr(ρC) in the subsystem temperature.

We provide numerical results for this alternate formulation of βS.
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Figure 2.10: Finite window eigenstate temperature β∆E calculated using Bures
distance dB(ρMC , ρC), for two models: (A) Random, real and symmetric matrix,
(B) Chaotic Ising model, Eq. (1.21), with hx = 0.5, hz = 0.75. In both cases,
L = 9 (D = 29) and 20 energy windows are uniformly chosen from the spectrum
of the given Hamiltonian.

2.4.1 Bures Distance

Instead of the Schatten p-distances, one could justifiably use the Bures distance,

related to the fidelity [203,204]. We have found that the subsystem temperature βS,

when calculated using the Bures distance, has the same overall features observed

using the Schatten distances.

Additionally, the eigenstate temperature defined with the Bures distance is

the same as βC , i.e., the same as βE for p = 1. We derive this analytically below

and also illustrate the result numerically in Figure 2.10.

The fidelity between two density matrices ρ and σ is given as

F (ρ, σ) = (tr
√
ρ1/2σρ1/2)2, (2.25)

or sometimes as the square root fidelity (quantity fidelity)

F ′(ρ, σ) =
√
F (ρ, σ) = tr

√
ρ1/2σρ1/2 (2.26)

51



It is a measure of how similar ρ and σ are, but it is not a metric on density

operators. It is symmetric in the inputs, and is bounded between 0 and 1 [204].

Before delving into maximizing F , we note that the square root of a micro-

canonical density matrix ρ, as defined in Eq. (2.6), is
√
Nρ, as :

(
√
Nρ)2 =

N
N 2

∑
Ej ,Ej′∈∆E

|Ej⟩ ⟨Ej|Ej′⟩ ⟨Ej′| (2.27)

=
1

N
∑

Ej∈∆E

|Ej⟩⟨Ej| = ρ (2.28)

Now, we want to maximize the fidelity between a microcanonical state ρ = ρMC

and a canonical state ρC = exp(−βH)/ tr(exp(−βH)).

F (ρ, ρC) = tr
(√

ρ1/2ρCρ1/2
)2

= (tr
√
ρρC)2

=
(

tr
(√

Nρe−βH/2
))2

/ tr
(
e−βH

)
=

1

N tr(e−βH)

tr

 ∑
Ej∈∆E

e−βEj/2|Ej⟩⟨Ej|

2

=
1

N tr(e−βH)

 ∑
Ej ,Ej′∈∆E

e−
β
2
(Ej+Ej′ )

 (2.29)

Now to find the value of β which maximizes F (ρ, ρC), we simply differentiate

Eq. (2.29) to obtain

∂F

∂β
=

tr
(
He−βH

)
N tr(e−βH)2

∑
Ej ,Ej′∈∆E

e−
β
2
(Ej+Ej′ )

+
1

N tr(e−βH)

∑
Ej ,Ej′∈∆E

−(Ej + Ej′)

2
e−

β
2
(Ej+Ej′ )

=
1

N tr(e−βH)2

∑
Ej ,Ej′∈∆E

e−
β
2
(Ej+Ej′ )×

×
(

tr
(
He−βH

)
− Ej + Ej′

2
tr
(
e−βH

))
(2.30)

We then make the approximation of Ej ≈ Ej′ ≈ E for Ej, Ej′ ∈ ∆E, which is
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accurate for small ∆E, and is exact when ∆E contains a single eigenstate.

∂F

∂β
=

e−βE

tr(e−βH)

(
tr
(
He−βH

)
tr(e−βH)

− E

)
(2.31)

Then setting this equal to zero, we find the only roots of the equation are when

E =
tr
(
He−βH

)
tr(e−βH)

. (2.32)

This is the precisely the canonical energy-temperature relation, Eq. (1.1), meaning

that the temperature which maximizes the fidelity between a microcanonical state

ρ with energy E, and a canonical state, is in fact the canonical temperature βC .

The Bures distance is defined as

dB(ρ, σ)2 = 2(1 −
√
F (ρ, σ)), (2.33)

with F (ρ, σ) defined as Eq. (2.25). The Bures distance is minimized when the

fidelity is maximized (i.e., when F = 1). Thus the Bures distance is minimized

when β = βC also.

We numerically demonstrate this result in Figure 2.10. We present results

for both the chaotic Ising model used previously, and also for a random real

symmetric matrix whose elements are chosen from a normal distribution with

mean 0 and variance 1, both clearly illustrating the model independent result

β∆E = βC for the Bures distance dB(ρMC , ρC).

2.4.2 Local Hamiltonian density matrix

In the case of the subsystem temperature βS, we compared the reduced eigenstate

density matrix ρA to the reduced canonical density matrix ρAC = trB exp(−βH).

An obvious alternative is to compare with exp(−βHA), which we will refer to

as the local Hamiltonian density matrix. If the interaction HAB is nonzero, the

two are not equivalent, as discussed widely in the literature [35, 61, 226–236],

e.g., in the context of extracting an effective “Hamiltonian of mean force” for
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Figure 2.11: Subsystem temperature results with ρA = exp(−βHA), for the
staggered field model, Eq. (1.15), with hx = hz = 0.5, J = 1 and ∆ = 0.95. (A)
β minimizing d1(ρ

A, ρAC) (βS) versus energy, plotted along side the canonical βC
curve, for the given system/subsystem size. (B)-(D) min(d1(ρ

A, ρAC)) plotted
versus energy, each row illustrating a different scaling of system/subsystem size.
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the subsystem [226,227,233–237]. The Hamiltonian of mean force is an effective

Hamiltonian H̃A that allows one to write the reduced canonical density matrix in

the standard Gibbs form e−βH̃A .

Numerically, we have found that using exp(−βHA) to define βS leads to very

similar results to those obtained using ρAC , except for eigenstates towards the

spectral edges. In Figure 2.11 we illustrate the behavior of βS and min(dp(ρ
A, ρAC))

with ρAC = exp(−βHA). We see the general behavior is the same as in Figures 2.5

and 2.6. In Figure 2.12 we also illustrate similar scalings as seen in Figure 2.7.

We can explain the behavior of eigenstates near infinite temperatures (β close

to zero). By expanding trB(e−βH) in β, we obtain sums of the partial trace of

powers of the Hamiltonian H. To zeroth order in β, the only contributing term is

trB(H) ∝ HA, as our Hamiltonians are assumed to be traceless. This result also

implies that the Hamiltonian of mean force to zeroth order is the local Hamiltonian

HA [238]. Thus for bulk eigenstates (those near β = 0), we expect the results

using trB exp(−βH) and e−βHA to be similar, even for HAB ̸= 0.
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Figure 2.12: Subsystem temperature results with ρA = exp(−βHA), for the
staggered field model, Eq. (1.15), with J = 1, ∆ = 0.95, hx = hz = 0.5 and LA = 2.
Statistics from the central 20% of the spectrum. (A) Mean of min(d1(ρ

A, ρAC))
and its standard deviation, vs. DB for p = 1. (B) Width of βS vs. DB for p = 1, 2.
(C) RMS-distance from the linear fit of βS, to βC curve versus DB, for p = 1, 2.
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2.5 Deviation in non-thermalizing systems

Up to this point, we have been solely concerned with chaotic systems expected

to thermalize and thus satisfy the ETH (i.e., ergodic systems). The subsystem

temperature βS, Eq. (2.21), is based on ETH predictions for density matrices

restricted to a local subsystem. In this section, we ask what happens to the

subsystem temperature in a system that is expected to violate the ETH, i.e., one

which does not thermalize (non-ergodic). In addition, we present results for a

random matrix in place of a physical Hamiltonian.

2.5.1 Results in the integrable limit

To investigate this effect of integrability on βS, we shall consider the staggered

field model with varying field strength h = hz = hx. For finite, non-zero h, the

system should generally be thermalizing. Of course, when h = 0, the system is

simply the XXZ chain and is known to be exactly solvable via the Bethe ansatz.

Thus, if we tune h towards zero from some finite non-zero value, the system should

approach a non-thermalizing regime. In the top panel of Figure 2.13, we plot the

RMS-distance between βC and βS for such a system as a function of magnetic

field strength h. As one could expect, when h → 0, the deviation between the

temperatures increases due to the system no longer thermalizing.

To illustrate the systems approach to a non-thermalizing regime, we have

plotted the mean consecutive level spacing ratio ⟨r⟩ versus the field strength h in

the bottom panel of Figure 2.13. The mean consecutive level spacing ratio is a

prevalent measure of chaos, which we have previously defined in the introduction

(Section 1.4). We have marked the predicted mean consecutive level spacing ratio

values for chaotic and integrable systems, ∼ 0.5307 and ∼ 0.386 respectively [196].

As expected, ⟨r⟩ approaches the predicted value for non-ergodic systems as h→ 0,

coinciding with the increasing deviation between βS and βC . An example of the

subsystem temperature results obtained for an entirely integrable system, the

XXZ chain (Eq.(1.13)), is shown in Figure 2.14. We observe the large spread of

βS around βC in (A), and that generally, the reduced eigenstates do not appear
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Figure 2.13: Results of subsystem temperature in the integrable limit for the
staggered field model, Eq. (1.15), with L = 12, J = 1, ∆ = 0.95, and hz = hx = h.
Top: The RMS-distance between βS and βC (Deviation) plotted versus shared
field strength h. The RMS-distance is calculated for eigenstates in the central 20%
of the spectrum. Bottom: mean consecutive level spacing ratio value plotted
versus shared field strength h.

Figure 2.14: Results of subsystem temperature in the XXZ chain, Eq. (1.13), with
L = 14, N = 6, J = 1, ∆ = 0.95 and LA = 4. (A) β minimizing d1(ρ

A, ρAC) (βS)
versus energy, plotted along side the canonical βC curve. (B) min(d1(ρ

A, ρAC))
versus energy.
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thermal, illustrated by the distance between the matrices in (B). In (A), we can

observe that βS is closer to βC in the left half of the spectrum compared to the

right, perhaps indicating the presence of some underlying structure. It would be

intriguing to investigate the behavior of βS and min(d1) in this integrable system,

following a similar approach as shown in Figure 2.7.

There are two aspects that we should consider regarding this calculation in the

integrable system. Firstly, owing to symmetries in the XXZ chain (Section 1.4.1),

it is possible for the spectrum to contain degenerate eigenvalues. This implies that

different eigenstates can possess the same eigenvalue and, consequently, the same

canonical temperature. In such cases, it may be more appropriate to consider

a superposition of these eigenstates and compute the canonical temperature

based on the resulting state. Secondly, within this integrable system, there exist

additional conserved quantities beyond just energy. It is plausible that we would

achieve a similar agreement between βS and βC if we were to compare the reduced

eigenstates of integrable systems with the reduced density matrix of a generalized

Gibbs ensemble [83].

2.5.2 Results for a random matrix

We have illustrated the deviation of βS from βC in the integrable limit, a con-

sequence of the ETH being only expected to hold in chaotic quantum systems.

Here, we further illustrate the deviation of βS by computing the temperature for

a random matrix in place of a physical Hamiltonian. In Figure 2.15, we present

the results for a symmetric D ×D matrix with elements drawn randomly from a

from a normal distribution with mean 0 and variance 1. The temperature shows

no alignment with the canonical temperature for a random matrix. This could

be expected, as when treating a random matrix as a Hamiltonian, there is no

notion of locality. This absence of locality means the division into two subsystems

is artificial and has no physical significance. This implies the partial trace is

meaningless in a random matrix; there is no sense of tracing out a subsystem.
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Figure 2.15: Subsystem temperature results for a random symmetric matrix with
D = 213. (A) β minimizing d1(ρ

A, ρAC) (βS) versus energy, plotted along side the
canonical βC curve. (B) min(d1(ρ

A, ρAC)) plotted versus energy.

2.6 Discussion & Context

Our first eigenstate-based temperature, βE, turned out to be determined solely

by the eigenvalues. It has interesting (arguably unexpected) dependencies on the

distance measure. The relation βE = βC/p is a mathematical result that holds for

any system, including non-chaotic (e.g., integrable or localized) systems and even

systems without any notion of locality.

In contrast, the second eigenstate-based temperature, βS, is independent of

the distance measure and reflects the physics of the eigenstates. This contrast

highlights that the partial trace operation is a crucial ingredient for the emergence

of thermodynamics. We have shown that βS conforms increasingly to βC when

the system size increases while keeping LA (subsystem size) fixed and also while

keeping the ratio LA/L fixed to some value smaller than 1/2. As βS depends

on the chaotic (thermalizing) nature of the system and the physical content of

the eigenstates, it does not match βC for random matrices and generally shows

deviant behavior for non-chaotic systems, as shown in Section 2.5.

By asking how close ρA can be to ρAC , we have characterized the best tempera-

ture (typically different from the canonical temperature at finite sizes) and also

the degree to which the system is thermal, e.g., through the value of the minimum
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distance d1. The issues addressed in the investigation of βS are closely related to

(in some sense the converse of) questions addressed in the ETH/thermalization

literature, e.g., in Refs. [11, 35, 52, 239–244]. Our results on size dependence

confirms the intuition obtained from Refs. [11, 52,240,242] that thermal behavior

is best seen in the limit of LA/L→ 0.

The work described in this chapter raises a number of new questions.

(1) The partial trace and minimization operations in the definition of βS

render analytical treatments difficult. Thus, it remains an open task to prove

analytically that βS should be independent of p, or that it should approach

βC in the large size limit. The latter is consistent with the spirit of ETH,

which is similarly difficult to prove, but is verified in a wide array of numerical

studies [7, 8, 10,12–15,17–19,22–28,31,33,34,36–39,41–45,49,225,245–250].

(2) The correspondence between βS and βC may break down when approaching

non-chaotic regimes, such as near-integrability or many-body localization [29, 195,

251]. There is the possibility of scaling with different power-laws than those

seen here, in analogy to the power-law ETH scaling displayed by integrable

models [24,28,246,252–254]. In Section 2.5, we did observe the deviation of βS

from βC as the system approached integrability, as one might have expected. A

deeper investigation into the effects of integrability and localization is required.

(3) The subsystem temperature coinciding with the canonical temperature

heavily relies on the eigenstate obeying the ETH. Therefore, it is possible that

the subsystem temperature outlined here could be used to detect many-body

quantum scars [96,97]. If the overwhelming majority of eigenstates in a system

have a subsystem temperature βS coinciding with the canonical temperature, then

it should be considered a thermalizing system. Now, consider an eigenstate from

the bulk of the spectrum whose subsystem temperature deviates significantly from

the canonical value. This pronounced temperature deviation may indicate the

presence of a rare non-thermal eigenstate, namely, a quantum many-body scar.

In contrast to the entanglement entropy, often employed to detect scars, we do

not need to determine the behavior of the rest of the eigenstates in the bulk of
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the spectrum to classify an eigenstate as a scar state, as we know the expected

canonical temperature. It is possible the minimum distance between the two

reduced density matrices (used to define βS) would also be abnormally large for

scar states.
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Chapter 3

Temperature from entropy

In this chapter, we investigate the definition of temperature arising from the

standard thermodynamic relation in statistical mechanics (Eq.(1.3));

T =

(
∂E

∂S

)
=

(
∂S

∂E

)−1

, (3.1)

where S(E) is the microcanonical entropy. We explore four procedures to compute

the microcanonical entropy in finite quantum systems of sizes accessible to exact

diagonalization, as discussed in Section 1.1.2, and derive a temperature via

Eq. (3.1).

We start in Section 3.1 by recounting the definitions and saddle-point expres-

sions that lead to the four procedures for calculating the microcanonical entropy

in finite systems. We also provide details (subsection 3.1.3) of the quantum

many-body systems that we use for numerical exploration — we present results for

multiple systems with different geometries to ensure that the resulting conclusions

are not artifacts of a particular lattice or Hamiltonian. In the following sections, we

describe the four procedures for calculating entropy and present the results in each

case. First, Section 3.2 describes counting eigenstates in an energy window of finite

width. We first illustrate the results of using a constant-width energy window ∆E

(subsection 3.2.1). Then, we describe using an energy-dependent window ∆E(E)

designed to cancel out the explicit ∆E-dependence of the resultant temperature

(subsection 3.2.2), following and extending the suggestion of Ref. [54]. In Section
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3.3, we instead formulate the entropy in terms of the integrated density of states.

We start by outlining the use of a smoothed cumulative density of states Ω(E)

to calculate the density of states g(E). First, we can avoid making an explicit

choice of ∆E — a possibility now that we are no longer counting eigenstates.

We explain that this choice leads to finite size deviations between the resulting

β and βC (subsection 3.3.2). Finally, we can choose to make use of the derived

energy-dependent ∆E(E) designed to account for the deviations (subsection 3.3.3).

Section 3.4 provides a concluding discussion and some context. The results in this

chapter are presented in [201], with some changes in the discussion and figures.

3.1 Preliminaries

In this section, we first recall the standard definition of the microcanonical entropy

and highlight the roles of the density of states g(E) and the energy window ∆E

(subsection 3.1.1). We then recall the saddle-point formulation in subsection 3.1.2,

often used to show the equivalence of microcanonical and canonical ensembles in

the large-size limit [54], and extend beyond the leading order to analyze the effect

of ∆E at finite sizes. Subsection 3.1.3 describes the quantum systems used in

subsequent sections to provide numerical examples.

3.1.1 Entropy, density of states, and the energy window

In this chapter, we are concerned with computing temperature in an isolated finite

quantum system via the standard statistical mechanical relation between entropy

and temperature, Eq. (3.1). The microcanonical entropy S(E) of a system at

energy E is given by [54,73–77]

S(E) = kB ln Γ(E). (3.2)

Here, Γ(E) is the statistical weight, which is the number of microstates at energy

E. In quantum systems, microstates are to be interpreted as eigenstates. For a

quantum system with a discrete spectrum, counting the number of eigenstates is
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problematic because, at a particular energy, there is usually zero, one, or perhaps

a handful of eigenstates if there are degeneracies. Thus, S(E) would be = −∞

for all energy values except at a countable number of discrete energy values. This

issue is usually resolved [54,75,76] by taking Γ(E) to be the number of eigenstates

in an energy window ∆E around E, rather than the number of eigenstates exactly

at energy E. Thus we define

Γ(E) =

∫ E+∆E/2

E−∆E/2

g(E ′)dE ′

=

∫ E+∆E/2

E−∆E/2

∑
n

δ(E ′ − En)dE ′ , (3.3)

where the sum is understood to include all the eigenvalues of the Hamiltonian

that lie in the window, i.e., all En satisfying En ∈ (E − ∆E
2
, E + ∆E

2
) 1. It is then

common to approximate this integral [54,94,255–257] via

Γ(E) = ∆Eg(E) = ∆E
∑
n

δ(E − En). (3.4)

Here g(E) is the density of states — the number of many-body eigenstates

per unit energy interval. Due to the nature of the delta function, g(E) has units

of inverse energy. Thus Γ(E) as defined in Eq. (3.4) is dimensionless. Although

defined as a sum over delta functions, the density of states can be thought of as a

smooth function of energy over energy scales much larger than the typical level

spacing. In numerical work, this is often achieved by broadening the delta functions

into Gaussians or Lorentzians of finite width [25, 192,258–264]. Alternatively, we

can define Ω(E) as the number of eigenstates with energy less than E, i.e., the

integrated density of states. Fitting a smooth function to the staircase form of

Ω(E), one can obtain a smooth density of states as the derivative; g(E) = Ω′(E).

The entropy now depends on an energy window ∆E, so we are thus faced

with choosing an appropriate ∆E. The purpose of introducing a finite energy

width was to smooth out the discreteness of the energy spectrum, thus ∆E should

1It is also common to use the window [E,E +∆E). We choose to work with the window
[E −∆E/2, E +∆E/2]. This choice presumably does not have significant effects.
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be large enough to include a large number of eigenstates. On the other hand,

we want ∆E to be sufficiently small so that the density of states (regarded as

a smooth function of energy) does not vary appreciably within the window, i.e.,

∆E should be much smaller than the scale of the bandwidth of the system. Other

than these general principles, we have the freedom to choose ∆E, and in general,

the entropy S will depend on the choice.

As we will explain in the following subsection 3.1.2, the sub-leading contri-

butions to the entropy, which contain ∆E, vanish in the large system size limit.

So, for infinite systems, it will generally not matter what ∆E is, but for finite

quantum systems, the choice can drastically affect the entropy, and resultant

temperature. The purpose of this chapter is to investigate and clarify the effect of

this choice for finite systems whose Hilbert space sizes makes them accessible to

full numerical diagonalization.

3.1.2 Saddle point expressions

To understand the role of ∆E, it is helpful to express the entropy as an integral

over (complex) inverse temperature and perform a saddle-point approximation

[54,72,74], extending the order beyond what is necessary in the thermodynamic

limit, to account for finite sizes. The full saddle point calculation can be found in

Appendix B, and is outlined below.

Replacing the delta function in the statistical weight definition Eq. (3.4), with

its integral representation

δ(x) =

∫ ∞

−∞

dβ

2π
eiβx, (3.5)

and defining the free energy as F (β) = −β−1 ln
(∑

n e
−βEn

)
, we can write the

entropy, Eq. (3.2), as

eS/kB = Γ(E) = i∆E

∫ i∞

−i∞

dβ

2π
eβ(E−F (β)). (3.6)

The integral over β is along the imaginary axis in the complex β plane. To apply

the saddle-point approximation, we first find the critical point of the exponent
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h(β) = β(E − F (β)), by setting h′(β) = 0 and solving for β. The condition is

E − F (β) − β
∂F

∂β
= 0 , (3.7)

which is equivalent to Eq. (1.1) defining the canonical temperature. Thus the

saddle point is at β = βC , the canonical inverse temperature. The leading order

saddle-point approximation is thus

S

kB
= βCE − βCF (βC), (3.8)

with βC being the solution of Eq. (3.7) (or Eq. (1.1)), which lies on the real axis in

the β plane. This matches the standard thermodynamic relation, and is consistent

with the energy derivative of S being the inverse temperature βC .

To examine the effect of ∆E, one needs to extend the calculation to a higher

order. One expands h(β) as a Taylor series about βC up to second order, as the first

order term is zero by definition. Introducing the heat capacity C = ∂E
∂T

= −T ∂2F
∂T 2 ,

one obtains [54]

eS/kB ≈ ∆E

2π
eβC(E−F (βC))

∫ ∞

−∞
dye−kBT

2
CCCy

2/2. (3.9)

Here, TC and Cc are the values at the saddle point βC . Evaluating the Gaussian

integral, one obtains

S

kB
= βCE − βCF (βC) + ln ∆E − ln

√
2πkBT 2

CCC . (3.10)

Here βC is determined by the energy, and hence so are TC and CC . The two

leading terms are both extensive in system size. The first correction term ln ∆E

is sub-extensive as long as ∆E is not chosen to grow exponentially or faster with

system size. The second correction term grows logarithmically with system size,

as the heat capacity is extensive. However, as it appears in the argument of a

logarithm, its dependence on L disappears when differentiated with respect to

E. This means that when differentiating Eq. (3.10) to obtain β, the contribution
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from the last term is does not grow with L, not even logarithmically. Thus, at

large enough sizes, the leading-order saddle-point approximation suffices, and the

choice of energy window ∆E plays no role.

However, the two correction terms should be considered when calculating

the entropy at finite sizes. From Eq. (3.10), we see that choosing ∆E to be an

energy-independent constant (the most obvious choice, explored in subsection

3.2.1) would leave an energy-dependent correction term, causing deviations from

the canonical temperature. Thus, we see that the energy dependence of the

correction terms could be canceled by an informed choice of energy dependence

for the width ∆E, as pointed out in Ref. [54] and explored below in subsection

3.2.2.

3.1.3 Systems and numerics

To investigate the effect of different choices for defining the microcanonical entropy

in finite systems, we use several spin-1/2 lattice systems consisting of L spins,

N of which are up. The spins interact via XXZ -like couplings, which have a

U(1) symmetry conserving N . We check all results and show data for 1D, 2D,

and fully-connected geometries, to demonstrate that our results are very general

and not particular to any model. In the case of the 1D chain, we also include

magnetic fields in the z and x directions; the latter break the U(1) symmetry.

The Hilbert space dimension is D =
(
L
N

)
when N is conserved and D = 2L

otherwise. The models, which are detailed in Section 1.4, consist of the staggered

field model (Eq. (1.15)), a square lattice (Eq. (1.17)), and a fully connected lattice

(Eq. (1.19)).

The system parameters are always chosen such that the level spacing statistics

match that expected of chaotic quantum systems. This ensures there are no

complications due to proximity to integrability or localization. For the fully-

connected model, where interactions are of arbitrary range, the parameters are

also chosen so that the density of states has a single peak, avoiding the possibility

of non-monotonic behavior in the derivative of the microcanonical entropy. We
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have checked our results for all three models, with various parameters satisfying

these conditions. Below, we generally select one or two of the models to illustrate

the results, but we emphasize that they are broadly invariant across the models;

an exception being the energy scales.

Units: For numerical work, we use kB = 1. We express energies in units of

spin couplings. Thus, if J (or Jjk) is set to 1, when we plot energies they are

actually E/J ; whereas if the couplings have other values, then the energy is to

be thought of as the energy divided by a hypothetical coupling equal to 1. In

this way, the units of all energies, temperatures, and entropies in the figures are

determined.

3.2 Computing the entropy by counting eigen-

states

In this section, we compute the entropy via Eq. (3.2) by counting the number

of eigenstates in a window of finite width. First, we discuss the obvious choice

— using a constant energy-independent width ∆E (subsection 3.2.1). Second,

following the result of the saddle point approximation, we discuss making a

judicious choice of energy-dependent ∆E(E) to cancel correction terms at finite

sizes (subsection 3.2.2).

3.2.1 Using a constant width window

Eq. (3.10) implies that an energy-independent ∆E acts as an energy-independent

shift of the entropy and hence does not affect the temperature. However, the last

term in Eq. (3.10) is energy-dependent, and thus the temperature will differ from

the canonical temperature — corresponding to the leading (first two) terms. This

deviation should vanish in the large-size limit, but the extent of this deviation for

finite sizes is not a priori clear. We show below, using explicit numerical examples,

that using an energy-independent width leads to poor agreement between the

resulting and canonical temperatures, for the system sizes under investigation
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Figure 3.1: Result of using constant energy width: (A,C) Microcanonical entropy
S(E) calculated with constant (energy-independent) ∆E. Evaluated only at the
eigenenergies E = En. (B,D) Resultant inverse temperature β(E) obtained
as derivative of 6th-order polynomial fitted to S(E) data. 25 eigenstates from
both ends of the spectrum (shown in gray in (A,C)) were excluded from the fit.
(A,B) Staggered field model, Eq. (1.15), with L = 12, hz = hx = 0.5 (J = 1,
∆ = 0.95). (C,D) 4× 4 fully connected lattice, Eq. (1.19), with L = 4× 4, N = 5
(Jj,k ∈ [−.4, .4], ∆jk ∈ [−.1, .1]).

here (sizes accessible to exact diagonalization).

Examples of entropy found by counting the number of eigenvalues within the

window [E − ∆E/2, E + ∆E/2] are shown in Figure 3.1(A, C) for two open-

boundary spin-1
2

lattices with XXZ -like couplings. Here, and in later figures,

we plot one point for each eigenvalue so that there is at least one eigenvalue in

each window — the minimum entropy value is ln 1 = 0, and we thus avoid the

possibility of obtaining entropy ln 0 = −∞.

To calculate the temperature from the entropy, we fit a polynomial to the

S(E) points and then take the derivative of the polynomial; results are shown in

Figure 3.1(B, D).

Increasing ∆E by a factor approximately increases the number of eigenvalues

in each window by that factor, so that the S(E) curve undergoes an approximately
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Figure 3.2: Root-mean-square (RMS) distance between β(E) and the canonical
temperature, versus Hilbert space dimension D = 2L, with ∆E = 0.5. Data for
the staggered field model with L spins, Eq. (1.15), J = 1, ∆ = 0.95, hz = hx = 0.5.

constant upward shift. This leaves the temperature [S ′(E)]−1 approximately

unchanged. Accordingly, for moderate ∆E, the calculated β(E) curves are robust

to changes in ∆E. For the largest ∆E(= 4.5) shown, this argument does not

work as the window is significant compared to the variation scale of the density

of states g(E), so that g(E) cannot be considered constant within each window.

This leads to a markedly different β(E) curve for the large ∆E case. This effect

is not captured by the saddle-point analysis or Eq. (3.10).

Even for moderate ∆E, the deviation from the canonical βC curve is consid-

erable. This shows that using a constant energy window width is not an ideal

approach to defining entropy for finite quantum systems having Hilbert space

dimensions ∼ O(104) — if we intend for the resultant temperature to match the

canonical value. The results of Figure 3.1(B, D) provide a visual presentation of

the extent of the discrepancy for such sizes. In Figure 3.2, we show the root-mean-

square deviation of the inverse temperatures obtained with a constant ∆E from

the canonical βC(E) values as a function of Hilbert space dimension. (We show

data for a spin chain, for which finite size scaling is numerically more convenient

than a square lattice.) The deviation decreases with increasing system size, as

expected, although it is quite slow with respect to the growth of the Hilbert space

dimension.

A remark on the edges of the spectrum is in order. As there are only a few

eigenvalues in each window, the entropy values are noticeably discrete, namely

lnn, where n is a small integer. For a regime with such discrete behavior,
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statistical-mechanical considerations are not meaningful — we expect entropy

to be a continuous function of energy. Therefore, we omit the edge points from

the polynomial fit to S(E). In Figure 3.1, we have omitted 25 eigenstates from

each edge of the spectrum. This is approximately the energy region for which

S(E) ≲ ln 10 for the ∆E = 0.5 case. Later in this chapter, the same criterion will

be used to exclude the spectral edges.

3.2.2 Using an energy-dependent window

We now describe using an energy-dependent window width ∆E ∝
√
T 2
c Cc. First,

we explain the rationale behind our choice of ∆E(E) and then present numerical

results.

Rationale

In Eq. (3.10), the leading-order terms (first two terms) yield the canonical temper-

ature upon differentiation by energy, but there are two correction terms: ln ∆E

and − ln
√

2πkBTcCc. In Ref. [54], it is suggested to choose the two terms to be

equal, so that the corrections vanish and the canonical temperature is recovered.

We note, however, that the correction terms need not cancel exactly — they will

not affect the temperature [S ′(E)]−1 as long as they sum to an energy-dependent

constant. Thus we could choose

∆E(E) ≡ α−1
√

2πkBT 2
c Cc. (3.11)

with α being some constant. The window ∆E is thus energy-dependent because

Tc and Cc are energy-dependent. The proposal of Ref. [54] corresponds to α = 1.

The energy-dependent ∆E can also be motivated by the physical idea that

the energy window should be determined by the fluctuation of energy in the

canonical ensemble, as suggested, e.g., in Refs. [255, 256]. It turns out [74]

that the distribution in energy in the canonical ensemble has width ∝
√
T 2C.

Thus, choosing the energy uncertainty as the energy window leads to the same

prescription as Eq. (3.11).
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So, labeling the number of states in an energy-dependent energy window

∆E(E) as Γ̃(E), the entropy is obtained as

S̃(E) = kB ln
(

Γ̃(E)
)
. (3.12)

Differentiation gives the corresponding inverse temperature β̃. In the following

subsection, we will describe the procedure for obtaining S̃ and β̃ numerically and

discuss the results obtained.

We do not know of a principle guiding the choice of α. We will show that, for

the sizes of primary interest to us, α needs to be larger than 1. The reason is

that for α = 1, the energy window ∆E(E) turns out to be too broad, exceeding

the energy scale at which the density of states varies, leading to poor results

similar to the large constant ∆E case in Figure 3.1. This is clear from Eq. (3.11):

the right-hand side scales like
√
L as Cc is extensive, while the variance of the

density of states typically scales linearly with L. Thus for the system sizes under

consideration here,
√
L cannot be considered negligible compared with L. For

larger system sizes, the acceptable range of α broadens, compatible with our

expectation that the choice of ∆E should be less important for larger sizes.

Numerical calculation and results

In order to obtain ∆E(E) as defined in Eq. (3.11), we first need to calculate

the heat capacity Cc and the canonical temperature. We start by numerically

computing the energy E as a function of β (or of T ) via Eq. (1.1), using the

eigenvalues of the Hamiltonian H, obtained numerically via exact diagonalization.

This leaves us with a (numerical approximation to a) smooth injective function

E(T ). As usual, inverting this numerically produces the canonical temperature

Tc as a function of E. In addition, estimating the derivative of E(T ) provides

us with the heat capacity C = ∂E/∂T , which we evaluate at the canonical value

Tc. Figure 3.3(A) shows an example of Cc as a function of energy, calculated in

this way. The function is non-monotonic, going to zero at both zero and infinite

temperatures.
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Figure 3.3: (A): Specific heat C = ∂E/∂T . (B): ∆E(E) = α−1
√

2πkBT 2
SCS, for

α = 5, numerically computed. Dashed curve: 12-th order polynomial fit to points,
excluding gray points around C → 0, used to avoid the spurious divergence. Data
for 5×4 square lattice, Eq. (1.17), with N = 4.

We can now calculate ∆E(E) via Eq. (3.11) for all energies. Figure 3.3(B)

shows an example of the computed ∆E(E).

Near the center of the spectrum, Tc → ∞ and Cc → 0, leading to a finite

∆E(E) ∝
√
T 2
c Cc. Due to the numerical discreteness of the computed E and T

functions, the computed ∆E(E) acquires a spurious divergence at this point. This

effect can be confined to a smaller energy region; by using a finer grid of T (or E)

values. We avoid the effect by fitting a polynomial, excluding points within the

direct vicinity of the discontinuity. An example is shown in Figure 3.3(B). The

fitted polynomial is then used as ∆E(E).

We are now equipped to compute the entropy using an energy-dependent

energy window, ∆E(E) = α−1
√

2πkBT 2
c Cc. In Figure 3.4(A, C), we show the

numerically computed entropy S̃. The data presented is for a chaotic square

lattice of spins with XXZ -like connections between nearest neighbor spins and for
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Figure 3.4: Using an energy-dependent window, Eq. (3.11). Left panels (A, B)
and right panels (C, D) show data for two different systems. (A,C): Microcanon-
ical entropy calculated with ∆E(E) = α−1

√
2πkBT 2

SCS along with 6th-order

polynomial fit. Fit excludes gray points. (B,D) Resultant temperature β̃(E),
with two different values of α in each case, compared with canonical temperature
βC(E). (A,B) Data for 5×4 square lattice, Eq. (1.17), with N = 4. (C,D) Fully
connected lattice, Eq. (1.19), with L = 16, N = 5.

a fully connected lattice with XXZ -like connections between every pair of sites.

The geometry of each system is illustrated above the relevant plot. We used α = 5

and α = 4 in the two cases. Similar results were found for various chaotic 1D

chains.

As before, we numerically fit a polynomial to our entropy data, excluding

values at the edge of the spectrum, and then take its derivative to obtain a

temperature. The resultant inverse temperatures β̃ are shown in Figures 3.4 (B,
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Figure 3.5: Using an energy-dependent window, Eq. (3.11). RMS distance between
β̃(E) and βC(E) plotted against α for two square lattices, Eq. (1.17), a 5 × 4
lattice with N = 4, and a 7 × 4 lattice with N = 5.

D). For α ∼ 5, the temperature matches the canonical temperature remarkably

well. We also show the result of using α = 1; in both cases, the deviation between

the temperatures is markedly worse than for α ∼ 5.

We found that the procedure produces an excellent match between β̃ and

βC when α is beyond some minimum value, as shown by the vanishing root-

mean-square deviation in Figure 3.5. Beyond this minimal α, the exact choice is

somewhat arbitrary as long as the window is not made ultra-small (by having too

large an α). Figure 3.5 shows that this minimal value (the value of α at which

the deviation can be considered negligible) is smaller for larger systems. This

is consistent with the expectation that the exact choice of the window ∆E is

increasingly irrelevant as the system size increases.

To summarize: this numerical analysis shows that counting eigenstates in

an energy-dependent window is a very successful strategy for defining entropy

in a finite-size system. We observed good agreement between the resultant and

canonical temperatures for all systems we checked, including various 1D chaotic

spin chains and a handful of 2D lattices, including that presented in Figure 3.4.

3.3 Using the integrated density of states

In this section, we formulate the entropy in terms of the cumulative density of

states, or integrated density of states, Ω(E). We describe how to numerically
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obtain a smoothed approximation to the density of states, g(E) = Ω′(E). In

this formulation, we no longer count eigenstates in a window of width ∆E. We

first approximate the entropy purely in terms of the integrated density of states,

circumventing the need to choose a value of ∆E explicitly. We explain that this

will lead to finite size deviations from the canonical temperature. Following this,

we utilize the energy-dependent ∆E(E), derived in Section 3.2.2 to account for

finite-size effects, in conjunction with the smoothed approximation to the density

of states. We observe that this leads to excellent agreement with the canonical

temperature.

3.3.1 Formulation

An alternative to counting eigenstates in an explicit energy window is to use the

expression for the entropy in terms of the (integrated) density of states:

S = kB ln Γ(E) = kB ln
(
g(E)∆E

)
= kB ln g(E) + kB ln ∆E

= kB ln

(
∂Ω(E)

∂E

)
+ kB ln ∆E. (3.13)

Here,

Ω(E) =
D∑
n=1

Θ(E − En), (3.14)

is the number of eigenstates |En⟩ with energy En less than E, i.e., the integrated

density of states or the cumulative density of states, also known as the cumulative

level density [265–276] or the cumulative spectral function [15, 38, 194, 243, 274,

277–283].

From the eigenvalue spectrum of the system Hamiltonian, computed numeri-

cally using exact diagonalization, the integrated density of states Ω(E) can be

obtained as a function of E. It is a series of steps with constant integer values

between eigenvalues and a step to the next integer at every eigenvalue. In order to

obtain the derivative of this non-smooth function, we will fit an analytic function

to the computed Ω(E) data, and then simply take its derivative. Fitting an
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Figure 3.6: Upper: Cumulative density of states Ω(E) (normalized by Hilbert
space dimension), fitted by a polynomial f(E) of degree 10. Inset: zoom. Lower:
Ω′(E)/D from derivative of fitted function, compared with histogram (distribution)
of eigenvalues, P (En). Data for 7 × 4 square lattice, Eq. (1.17), with N = 5.

analytic function to Ω(E) is common practice in the unfolding procedure utilized

for computing level spacing statistics [38, 187,191–194] as discussed in Section 1.4

of the introduction.

We found that using a function of the form

Ω(E) =
D

2

[
1 + tanh(f(E))

]
(3.15)

works remarkably well to fit the numerical Ω(E) data, where f(E) is some

polynomial in E, which is generally of order ∼ 10 to allow for the data to be fit

accurately. We note that Eq. (3.15) is of a similar form to the standard logistic

function, used to approximate the Heaviside step function; it is thus not all that

surprising that it works well.

If f(E) is a monotonically increasing polynomial, then the form of the function

automatically imposes the correct low-energy and high-energy behavior of the

smoothed Ω(E). This functional form was inspired by its use in [281] to unfold a
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many-body spectrum. Once the fitting function f(E) is determined, the density

of states is obtained as the derivative:

g(E) = Ω′(E) =
D

2
sech2(f(E))f ′(E). (3.16)

An example of the numerically calculated Ω(E) and the fitted function are shown

in Figure 3.6 (top) for a square lattice with XXZ -like connections. The resulting

derivative Ω′(E) is compared with the normalized histogram of eigenvalues (bot-

tom). In both panels, we normalize the functions by D so that they are plotted

between 0 and 1, and the derivative can be directly compared with the normalized

eigenvalue distribution P (En).

With the density of states Ω′(E) in hand, we are now equipped to compute

the entropy via Eq. (3.13), and the resultant temperature. In the following two

subsections we present two ways to do so.

3.3.2 Avoiding a choice of window width

The density of states increases exponentially with the system size; hence the first

term in Eq. (3.13) is extensive. On the other hand, ln ∆E is presumably either

constant or, at most, weakly increasing with system size.

Thus, at sufficiently large system sizes the second term can be neglected so

that the first term approximates the entropy:

S ≈ SΩ = kB ln g(E) = kB ln

(
∂Ω(E)

∂E

)
. (3.17)

One can thus use a continuous approximation for Ω(E) to define a continuous

SΩ(E), without choosing an explicit energy window ∆E.

SΩ is the logarithm of g(E) = Ω′(E), and βΩ is thus the derivative of this. For

the analytical approximation to Ω′(E) above, one obtains

βΩ(E) =
f ′′(E)

f ′(E)
− 2f ′(E) · tanh(f(E)). (3.18)
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Figure 3.7: Entropy and temperature using a continuous approximation to the
cumulative density of states. (A,C) SΩ = ln Ω′(E). (B,D) Resultant inverse
temperature βΩ = ∂ESΩ compared with the canonical temperature βC . (A,B)
Staggered field model, Eq. (1.15), with L = 12, J = 1, ∆ = 0.95, hz = hx = 0.5.
(C,D) 5 × 4 square lattice, Eq. (1.17), with N = 4.

Examples of the computed entropy SΩ are shown in Figure 3.7(A, C). The

presented numerical results are for a 1D spin chain and a square lattice, both

with nearest neighbor XXZ -like connections and open boundary conditions. The

geometry of each system is illustrated above the relevant plot. The resultant

inverse temperature βΩ are shown in panels (B, D). While βΩ has the correct

overall form, the deviations from the canonical curves are clearly visible.

The extent of the deviation is shown quantitatively in Figure 3.8 by plotting the

root-mean-square (RMS) distance between the canonical and resultant temperature
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Figure 3.8: RMS distance between βΩ(E) and βC(E), versus D = 2L, for the
staggered field model, Eq. (1.15), J = 1, ∆ = 0.95, hz = hx = 0.5, and variable L.

versus Hilbert space dimension D, for an L-site spin chain (D = 2L). The deviation

decreases very slowly — it would take exceedingly large system sizes for the two

temperatures to be considered ‘close’.

We now discuss two ways of understanding the finite-size deviation of the

temperature obtained using SΩ as defined in Eq. (3.17).

First, using Eq. (3.17) for the entropy means omitting the ln ∆E term from

the definition, Eq. (3.13), which can be written as

S = SΩ + kB ln ∆E. (3.19)

Since we avoided explicitly choosing a value for ∆E, it is not immediately obvious

what the effect of dropping the second term is, but we can analyze different cases:

• If we consider ∆E energy-independent, then SΩ will lead to the same

temperature obtained from the microcanonical entropy S. However, we

know from subsection 3.2.1 that S obtained using an energy-independent

∆E leads to considerable finite-size deviations in the temperature.

• On the other hand, if we consider ∆E to be energy-dependent, e.g., if it were

designed to cancel the sub-leading deviations from the canonical ensemble as

in subsection 3.2.2, then S ′
Ω(E) will differ from S ′(E), and we would again

get finite-size deviations.

Thus, it appears that S ′
Ω(E) can be expected to deviate from βC in either case.

Second, we note that Eq. (3.17) applies the logarithm to a dimensionful
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quantity, which, strictly speaking, is not allowed. For consistency, one needs to

multiply the argument of the logarithm in Eq. (3.17) by a quantity with dimensions

of energy; let us call this quantity ϵ. Then Eq. (3.17) should really have the form

SΩ = ln [g(E)ϵ] = ln [Ω′(E)ϵ] . (3.20)

One can then carry out the same saddle point approximation as previously

performed in subsection 3.1.2 for the original definition of S, leading to

SΩ

kB
≈ βCE − βCF (βC) + ln ϵ− ln

√
2πkBT 2

c Cc. (3.21)

We again observe that unless ϵ is carefully chosen, as we described for ∆E in

subsection 3.2.2, the last term will lead to finite-size deviations. The procedure

in this section avoids specifying ∆E and ignores the need for the quantity ϵ.

Thus, one would expect deviations due to the − ln
√
T 2
c Cc term, essentially of

the same type as that encountered in subsection 3.2.1 when using an explicit

energy-independent value of ∆E.

3.3.3 Using an energy-dependent window

Now, rather than neglect ∆E in Eq. (3.13), we retain the term, i.e., we consider

the entropy in terms of the integrated density of states as:

S(E) = kB ln(g(E)∆E) = kB ln

(
∂Ω(E)

∂E
∆E

)
. (3.22)

We have a smooth approximation to Ω′(E), and as proposed in subsection 3.2.2,

we could choose an energy-dependent ∆E(E) ∝
√
T 2
c Cc to account for the finite

size deviations. Here, the constants of proportionality will only result in a shift in

entropy, as we are not counting eigenstates in an energy window of width ∆E(E)

around E. In that case, we had to choose a constant α, such that the window

width was not comparable to the bandwidth of the spectrum.

Here, rather than count the number of eigenstates, we are using the derivative
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Figure 3.9: Entropy and temperature using a continuous approximation to the
cumulative density of states and an energy dependent ∆E(E) =

√
T 2
c Cc. (A,C)

SΩ(E) = ln(Ω′(E)∆E(E)). (B,D) Resultant inverse temperature βΩ(E) =
∂ESΩ(E) compared with the canonical temperature βC . (A,B) Staggered field
model, Eq. (1.15), with L = 12, J = 1, ∆ = 0.95, hz = hx = 0.5. (C,D) 5 × 4
square lattice, Eq. (1.17), with N = 4.

of our smoothed approximation to the integrated density of states to compute

g(E). The proportionality constants in this formulation are arbitrary — the

entropy can thus be written as:

SΩ(E) = ln
[
Ω′(E)

√
T 2
c Cc

]
. (3.23)

Here, we once again make use of the smoothed approximation Ω′(E) = D
2

sech2(f(E))f ′(E)

(Eq. (3.16)). Determining the canonical temperature Tc and heat capacity Cc nu-
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merically has been previously discussed (subsection 3.2.2). Thus we are equipped

to numerically calculate the entropy, Eq. (3.23), and by fitting a polynomial to

the resulting data, we can take its derivative to obtain the inverse temperature.

Examples of the computed entropy SΩ(E) are shown in Figure 3.9(A,C). The

numerical results shown are for a 1D spin chain and a square lattice, both with

nearest neighbor XXZ -like connections and open boundary conditions. The

resultant inverse temperatures βΩ(E) are shown in panels (B,D). We see that

βΩ(E) aligns very well with the canonical temperature βc. We note that a pleasing

aspect of this formulation is that it requires no fine-tuning of constants, as they

only result in a shift of entropy.

3.4 Concluding discussion & context

The equivalence of the microcanonical and canonical ensembles emerges in the

infinite-size limit. However, as the discussion of statistical mechanics in isolated

systems often relies on finite-size examples obtained through numerical diagonal-

ization, we must understand deviations from ensemble equivalence in systems

of such sizes. In finite systems, the definition of the microcanonical entropy

involves choices that become relevant when dealing with system sizes accessible

to numerical diagonalization. In this chapter, we contribute to this understanding

by investigating and comparing various ways of computing the microcanonical

entropy and comparing the resultant temperatures (via Eq. (1.3)) to the canonical

temperature (Eq. (1.1)).

The microcanonical entropy S(E) is defined as in Eqs. (3.2) and (3.4). In-

spired by the discussion of Ref. [54], we explored four ways of calculating S(E)

numerically. First, in Section 3.2, we computed the entropy by counting eigen-

states in a finite window. We explored the result of using a constant-width

energy window (subsection 3.2.1) and using an energy-dependent window with the

energy-dependence designed to cancel sub-leading terms (subsection 3.2.2). As an

alternative to counting eigenstates, in Section 3.3, we formulated the entropy in

terms of the integrated density of states. Within this formulation, we explored

83



using an approximation that avoids the energy window altogether (subsection

3.3.2). Finally, we used this formulation in combination with the energy-dependent

∆E(E) designed to account for deviations.

We have demonstrated that counting eigenstates in the energy-dependent

window, ∆E(E) = α−1
√

2πkBT 2
c Cc, reproduces the canonical temperature par-

ticularly well for the sizes under consideration. Utilizing an energy-dependent

window was suggested by Ref. [54] with α = 1, designed to exactly cancel the

sub-leading terms in Eq. (3.10). We have shown (Figure 3.4) that, for the sizes

under question, a greater α is required; for α = 1, the windows exceed the energy

scale of variation of the density of states. A consequence of this result is that,

since we have no further criterion for fixing α, the microcanonical entropy is only

defined up to an arbitrary additive constant. The constant is sub-extensive and is

unimportant in the infinite-size limit, and an additive constant does not affect the

temperature. Nevertheless, the arbitrariness is unsatisfactory. In fact, a pleasing

aspect of the suggestion of Ref. [54] was a reasonable criterion for defining entropy

without such an arbitrary constant. For the size ranges under consideration in

this work, the α = 1 prescription is not usable, so we are forced to accept an

arbitrary choice.

However, using the entropy SΩ(E) in Section 3.3.3, combining the use of an

energy-dependent ∆E(E) with an approximation to the density of states con-

structed from the integrated density of states Ω, we observed excellent agreement

between the resulting temperature and the canonical temperature. In this case,

the constants in ∆E(E) (Eq. (3.11)) do not affect the resultant temperature, as

they shift the entropy — a consequence of no longer counting eigenstates. This

method is thus free from any fine-tuning of constants, an aspect that we find quite

pleasing.

The other two procedures, counting eigenstates in an energy-independent ∆E

and avoiding a choice of ∆E altogether (S ≈ SΩ), both lead to very noticeable

finite-size deviations. The deviations in the constant-∆E case are expected

from the sub-leading corrections. For the procedure in Section 3.3 using S ≈

84



kB ln
(
∂Ω(E)
∂E

)
, we have argued that the deviations are essentially the same type as

that in the constant-∆E case.

Numerically, calculations of microcanonical entropy and temperature have

appeared in the recent literature [94, 243,256,257]. Refs. [243, 257] have used the

S ≈ SΩ approximation. The resulting temperature presented in Ref. [243] (Figure

4) appears to have similar deviations from the canonical temperature as we have

presented and analyzed in Section 3.3. The density of states is approximated in

Ref. [243] via a polynomial fit to the cumulative spectral function and in Ref. [257]

via the kernel polynomial method [284, 285]. In Ref. [256], the microcanonical

entropy has been calculated with ∆E “determined by the energy uncertainty” —

this is presumably equivalent to the energy-dependent window we explored in

Section 3.2.2.

Alternatively, in finite quantum systems, the entanglement entropy of a sub-

system is often discussed as representing the thermal entropy [11, 52, 53, 286,287].

The reason is that, in a chaotic (thermalizing) quantum system, it is expected

that the reduced density matrix of subsystems smaller than half the system should

resemble thermal density matrices [11, 35, 51, 53, 57, 66, 200], an expectation inspir-

ing our eigenstate-based temperature in Chapter 2. It is amusing to note that

the entanglement entropy is obtained from eigenstates, whereas the entropies and

temperatures studied in this chapter are derived from eigenenergies. Ref. [11]

describes the finite-size behavior of the deviation of the entanglement entropy from

the canonical entropy for a particular spin chain. The behavior of the temperature

derived using Eq. (3.1) from the entanglement entropy (interpreted as entropy)

would be interesting to examine in future work, building upon our eigenstate-based

temperatures in Chapter 2.

It has also been argued that entropy for finite-size systems should be defined as

S ∼ ln Ω(E) [288–293], instead of the more common S ∼ ln Ω′(E) examined here.

This approach avoids the appearance of negative temperatures even in systems

with finite Hilbert space dimension, as the function Ω(E) is non-decreasing. Thus,

it is clear that the temperature obtained from the entropy ln(Ω(E)) will not match
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the canonical temperature once βC < 0. It may still be interesting to ask how the

deviations from ensemble equivalence behave under this alternative definition.

Regarding the ETH - In this chapter, we have largely focused on the mi-

crocanonical entropy in the context of temperature and ensemble equivalence.

However, the microcanonical entropy also appears in the ETH ansatz put forward

by Srednicki [4] (Eq. (1.6)), presented as the ‘thermodynamic entropy’ and is

defined in a similar fashion to Eqs. (3.2) and (3.4). It would be interesting to

investigate the result of using Eq. (3.23) in its place for finite systems.
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Chapter 4

Non-Hermitian scattering on a

tight-binding lattice

In this chapter, our primary focus is analyzing the scattering dynamics and

spectrum of a quantum particle on a tight-binding lattice subject to a non-

Hermitian (purely imaginary) local potential. We also consider a PT -symmetric

system, constructed by balancing loss and gain in the lattice; we make statements

about its spectrum using similar methods as in the purely dissipative model. In

addition, we begin to build towards an understanding of a many-body system by

presenting results for a system of non-interacting particles.

In the single-particle system, the non-Hermitian Hamiltonian describing a

tight-binding lattice under the influence of an imaginary potential, as defined in

Eq. (1.4), is given by

H = −J
L−1∑
j=1

(
|j⟩⟨j + 1| + |j + 1⟩⟨j|

)
− iγ|q⟩⟨q|, (4.1)

where q ∈ [1, L] is the location of the dissipative impurity. Here γ is a positive

constant so that the imaginary potential is absorbing. The labels for the bras and

kets here are site labels: The particle lives on an L-site chain with open boundary

conditions. The hopping strength will subsequently be set to J = 1, i.e., energies

and times are measured in units of J and 1/J , respectively, and are therefore

presented without units. Additionally, the spacing between sites is set to unity so

87



that lengths and wavenumbers are also dimensionless. In the following sections,

we present the results of our investigation.

Starting with the purely dissipative model, in Section 4.1, we present the

scattering results and comparisons with the continuum case. Section 4.2 discusses

the spectrum and exceptional points. In Section 4.3, we investigate the system at

large values of γ and draw a comparison between real and imaginary potentials via

their bound states. Following this, in Section 4.4, we introduce a PT -symmetric

system and prove the existence of exceptional points analytically. Then in Section

4.5, we present some results for a non-interacting system, building towards a

many-body system. We show that interactions lead to the absence of a particular

exceptional point pattern observed in the non-interacting case. Finally, Section

4.6 presents some discussion and concluding remarks. The material in Sections

4.1-4.3 are published in Ref. [202], with some differences in the details of the

presentation.

4.1 Scattering at an absorbing potential — re-

flection, transmission, absorption

In this section, we examine the scattering of a quantum particle by a single

dissipative impurity. To compare with the corresponding continuum system, we

first work out the results for the continuum system in subsection 4.1.1. We

then present numerical results for the lattice problem in subsection 4.1.2 before

comparing both cases in subsection 4.1.3.

4.1.1 Continuum scattering by an imaginary delta-potential

Complex scattering potentials in the continuum have been considered generally

in the literature [174, 175, 294]. We are specifically interested in the case of an

imaginary potential of delta-function shape, which is the analog of the single-site

potential on a lattice.

In the continuum, the wavefunction ψ(x) satisfies the time-independent Schrödinger
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Equation:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (4.2)

(We will eventually set ℏ = 1 but retain it for now.) We take V (x) to be a negative

imaginary delta potential: V (x) = −iγδ(x).

Solving the scattering problem is a variation of the standard textbook scattering

problem with a real delta-function potential [295]. We take the wavefunction ψ(x)

to be of the form Aeikx +Be−ikx, although the coefficients are not necessarily the

same on both sides of the potential (x = 0); hence we write

ψ(x) =


ψL(x) = ALe

ikx +BLe
−ikx , x < 0

ψR(x) = ARe
ikx +BRe

−ikx , x > 0.

(4.3)

Considering a particle moving from the left side of the potential to the right, we

set the coefficients as:

AL = 1, BL = r,

AR = 0, BR = t, (4.4)

with r and t the coefficients of the wave that are reflected and transmitted,

respectively. We then use the appropriate (dis)continuity conditions at x = 0,

ψ(0) = ψL(0) = ψR(0) ,
ℏ2

2m
(ψ′

R(0) − ψ′
L(0)) = −iγψ(0), (4.5)

to solve for the reflection (r) and transmission (t) amplitudes. Here, the second

condition is obtained by integrating the Schrödinger equation around x = 0 over

an interval [−ϵ, ϵ].
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Figure 4.1: Results of continuum scattering: The reflection, transmission, and
absorption probabilities (R, T , A), plotted against the strength γ of the dissipative
delta-potential. Here k = π/2, ℏ = 1, and m = 0.5.

This yields the coefficients

r =
−1

1 +
kℏ2

mγ

, t =
1

1 +
mγ

kℏ2
. (4.6)

Using Eq. (4.6), we can obtain the reflection, transmission, and now also absorption

probability as functions of the parameter γ:

R = |r|2, T = |t|2, A = 1 −R− T , (4.7)

where we have defined the probability to be absorbed as the probability to not be

reflected or transmitted. These coefficients are plotted in Figure 4.1 as a function

of γ.

We see in Figure 4.1 that R = T for a particular value of γ, and that A is

maximized by some value of γ. Using equations (4.6) and (4.7), we find that these

points are both equal to

γ⋆ =
kℏ2

m
. (4.8)
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These expressions depend on ℏ and the mass m. We set ℏ = 1. To facilitate

comparison with the lattice situation, we choose m = 1/2 so that the quadratic

dispersion (ℏ2k2/2m) on the continuum matches the low-energy part of the cosine

dispersion (−2 cos k) on the lattice without an impurity. Thus

r =
−γ

γ + 2k
, t =

2k

γ + 2k
, γ⋆ = 2k . (4.9)

4.1.2 Lattice

We now turn to the lattice problem. Through numerical time evolution, we

will calculate the reflection and transmission fractions, R and T , and obtain the

absorption fraction using A = 1 −R− T .

We initialize our particle as (a discrete version of) a Gaussian wavepacket

localized around the site j0 and carrying lattice momentum k:

|ψ(0)⟩ =
∑
j

ψj(0) |j⟩ = N−1
∑
j

e
−(j−j0)

2

2σ2 eikj |j⟩ , (4.10)

where N is a normalization constant. A positive k ensures that the wavepacket will

propagate rightwards initially. The position j0 is chosen such that the wavepacket

starts on the left side of the lattice, and does not initially overlap significantly with

either the lattice edges or the impurity. The width σ is chosen to be significantly

larger than 1 but significantly smaller than L/2. The wavepacket is evolved in

time using the non-Hermitian Hamiltonian, Eq. (4.1), via:

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (4.11)

Note that due to the non-Hermiticity of H, the eigenspectrum can be complex,

and thus the evolution is, in general, non-unitary. If we express the wavefunction

at time t in the site basis:

|ψ(t)⟩ =
∑
j

ψj(t) |j⟩ , (4.12)
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Figure 4.2: Wavepacket evolution illustrated by a density plot of site occupancies
|ψj|2. Here L = 500, σ = 40, k = π/2. (A): γ = 0.5 - Shows less of the wavepacket
being reflected than transmitted. (B): γ = 2 - Shows roughly similar amounts
of the wavepacket being reflected/transmitted. (C): γ = 10 - Shows less of the
wavepacket being transmitted than reflected.

then the coefficients ψj(t) provide the occupancies, |ψj(t)|2.

Figure 4.2 illustrates the numerical time evolution of a wavepacket for three

different values of γ, initially localized near the left end of a 500-site lattice. After

the particle is incident on the impurity, we see different portions of the wavepacket

being reflected and transmitted.

Choosing a time after the collision has occurred, such that the reflected and

transmitted packets are well-separated from the impurity, one can define the

coefficients based on the wavefunction coefficients at this time. The reflected

fraction is the weight to the left of the impurity, while the transmitted fraction is
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Figure 4.3: Reflection, transmission and absorption probabilities calcuated using
wavepacket evolution on the lattice. (R, T,A plotted against γ.) Here L = 500, σ
= 40, k = π/2.

that to the right. Denoting the impurity site as q, the coefficients are given as

R =

q∑
j=1

|ψj|2, T =
L∑

j=q+1

|ψj|2, A = 1 −R− T . (4.13)

Figure 4.3 shows the results of calculating the coefficients for a lattice with 500

sites, with the impurity at site 250, for a range of values for γ. The coefficients

are extracted from time evolution with a σ = 40 wavepacket. The measurement of

weights on the left and right parts of the lattice is performed at a time well after

the wavepacket has scattered off the impurity but well before either the reflected

or the transmitted wavepacket reaches one of the boundaries. For Figure 4.3, this

time was t = 160. For other values of k (Figure 4.4), the times are different as the

speed of the wavepacket depends on k. We have checked that the dependence on

σ is negligible provided 1 ≪ σ ≪ L/2. For both Figure 4.2 and Figure 4.3, the

wavepacket momentum is k = π/2, for which the dispersion of the wavepacket is

least severe.
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4.1.3 Comparison between continuum and lattice

Comparing Figures 4.1 and 4.3, we see that our lattice results are very similar to

the continuum results, except for a rescaling of γ. In the continuum case, we have

found that the main feature, namely the maximum of A(γ), or the crossing point

of R(γ) and T (γ), occurs at a value of γ that is proportional to the momentum,

γ⋆ = 2k. Therefore, one would expect that in the lattice case, γ⋆ should also

depend on the momentum of the scattering particle. More specifically, since the

single-particle dispersion changes as k2 → −2 cos k in going from the continuum

to lattice, one expects from the dependence of γ⋆ = 2k in the continuum that the

dependence might be γ⋆ = 2 sin k on the lattice.

To extract γ⋆ for various momenta, we perform the numerical time evolution

of the wavepacket scattering for multiple momentum values and identify the

maximum of the absorption A(γ). The results are shown in Figure 4.4, comparing

the continuum and lattice case. Indeed the momentum dependence of the γ⋆

appears to be ≈ 2 sin k on the lattice, with a maximum of γ⋆ ≈ 2 for k = π/2.

0 π/4 π/2 3π/4
0

0.5

1

1.5

2

k

γ
⋆

Continuum, Eq. (4.8)

Lattice, Numerics

2 sin k

Figure 4.4: Comparing results of the value of γ for which absorption is maximized
in the continuum (γ⋆ = 2k) and on the lattice (obtained from numerical wavepacket
evolution). Lattice results are obtained with L = 250 and σ = 15. For comparison,
the function 2 sin k is plotted (dashed curve).
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4.2 Spectrum and exceptional points

In this section, we analyze the spectrum of the single particle non-Hermitian

Hamiltonian, Eq. (4.1). It turns out that the value γ ≈ 2 also plays a special role

in the spectrum.

Previously we presented data for systems with 500 and 250 sites. In this

section, for clarity, we focus on the spectrum of smaller system sizes. As the

eigenvalues are complex, there is no particularly natural way to order them. Here,

we order the eigenstates based on their real component and then by their imaginary

component, from smallest to largest, i.e., 1 − 2i comes before 1 + 2i. Figure 4.5

presents the eigenvalues for a system with 14 sites as a function of γ. The real

and imaginary components are shown separately. We also plot the 14 eigenvalues

-2.0

0.0

2.0

R
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E
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)

Figure 4.5: Energy spectrum of the Hamiltonian, Eq. (4.1), for L = 14, as function
of the potential strength γ. Real and imaginary parts of the eigenvalues are plotted
separately.
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Figure 4.6: Eigenvalues of the Hamiltonian, Eq. (4.1), for L = 14, for three values
of γ, below, at, and above the exceptional point. For each value of γ, the L
eigenvalues are plotted in the complex plane. For γ = 2, only L/2 points are
visible due to the pairing of the eigenvalues.

in the complex plane, for three different values of γ, in Figure 4.6. For any value

of γ, the real part of the eigenvalues are generally spaced between −2 and +2,

as one expects from a tight-binding one-dimensional lattice. The most visibly

striking feature in the spectrum is that, at γ = 2, all of the eigenvalues coalesce

in pairs. We note that the imaginary components are already paired up for γ < 2,

and these pairs proceed to coalesce at γ = 2, at which point the real components

also pair up.

This is not a higher-order exceptional point [296–298], but rather an exceptional

point where all eigenvalues pair up as second-order exceptional points, not just

two eigenvalues. Of course, observing the eigenvalues is not sufficient to say that

this is an exceptional point — the eigenvectors also need to coalesce. Indeed,

considering the pair of eigenstates whose eigenvalues become equal at γ = 2, we

find numerically that one of the eigenstates becomes equal to −i times the other

eigenstate. To illustrate the eigenstate coalescence, we use the (non) orthogonality

matrix

Ujk = ⟨Ej|Ek⟩ (4.14)

between the eigenstates |Ej⟩. As each eigenstate is simply −i times another at

γ = 2, we would expect the absolute value of the overlap of an eigenstate with at

least one other eigenstate to be 1. In Figure 4.7, we illustrate the observed unit
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Figure 4.7: The absolute value of non-orthogonality matrix elements, Eq. (4.14),
for the eigenstates of the Hamiltonian, Eq. (4.1), for L = 18 sites.

overlap between pairs of eigenstates at γ = 2 (b), in contrast to the γ = 1 (a)

case.

We can show analytically that the eigenvalues always group into degenerate

pairs at γ = 2 for a lattice with an even number of sites and the impurity at one

of the center lattice sites. The complete derivation is detailed in Appendix C.1,

but we outline the derivation below.

We wish to find the eigenvalues of the Hamiltonian, Eq. (4.1), which is an

L× L matrix with elements:

[Hq]jk = −δj,k+1 − δj+1,k − iγδjqδjk, (4.15)

with 1 ≤ q ≤ L a fixed integer. The characteristic polynomial of H, up to a minus

sign, is the determinant of the matrix

[Aq]jk = δj,k+1 + δj+1,k + λδj,k + iγδjqδjk, (4.16)

It is straightforward to show that the determinant, Pn, of an n× n tridiagonal

matrix Aij = biδi,j+1 + cjδi+1,j + aiδij satisfies a recurrence relation

Pn = anPn−1 − cn−1bn−1Pn−2. (4.17)
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Thus we can define a recurrence relation for the tridiagonal matrix H, Eq. (4.15).

A standard method of solving linear recurrence relations is to use the Z-transform.

Since Pn for Eq. (4.15) is only defined for n ≥ 0, we use the unilateral Z-transform

defined as Z{Pn} =
∑∞

n=0 Pnz
−n. Using the Z-transform, shifting the summation

index, and utilizing the recurrence relation, following some algebra we end up

with the characteristic polynomial of the Hamiltonian, Eq. (4.15), with L sites,

and an impurity on site q as

PL,q =Kq−1KL−q+1 + (iγKq−1 −Kq−2)KL−q (4.18)

for 1 ≤ q ≤ L. Here, Kn is a function of n and the parameter λ. For the specific

case of q = L/2 (or L/2 + 1) with L even, we find

PL,L/2 =K2
L/2 −K2

L/2−1 + iγKL/2−1KL/2. (4.19)

Thus, when γ = 2, this can be written as

PL,L/2 =
(
KL

2
+ iKL

2
−1

)2
. (4.20)

This means that every root of the polynomial is a zero of order at least 2, i.e., the

eigenspectrum is doubly degenerate at γ = 2.

The eigenstate degeneracy is quite easily shown once we know there is an

eigenvalue degeneracy. For tridiagonal matrices, such as Eq. (4.15), it is straight-

forward to argue a coalescence of eigenvalues implies a coalescence of eigenstates,

i.e., the eigenstates are linearly dependent. Consider some eigenvalue En and

corresponding eigenvector |En⟩ = (x1, x2, ..., xL)T . Due to the tridiagonal form

of the matrix, all the components xi can be written as a function of En and the

terms on the diagonals, times the first component x1. If we have two eigenvec-

tors with the same eigenvalue En, then the functions in the eigenvectors are the

same. This implies the eigenvectors only differ in the choice of x1, i.e., they are

linearly dependent. Thus, if there is an eigenvalue degeneracy at some point, the

eigenvectors are linearly dependent.
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We have thus shown, analytically, that for even L, and impurity at the center

of the lattice, the eigenvalues and eigenvectors of the matrix Eq. (4.15) coalesce

at γ = 2, demonstrating the existence of an exceptional point.

Unlike exceptional points which separate a PT -symmetric phase from a PT -

symmetry-broken phase (see Section 4.4), the eigenvalues of our system are complex

on both sides of the exceptional point. The imaginary parts typically have a larger

magnitude near the exceptional point and generally decrease as one moves away

from γ = 2, with one striking exception. The exception corresponds to one of

the two eigenvalues whose real part becomes zero. The imaginary part becomes

large and negative as γ increases, and eventually becomes ≈ −γ. This eigenvalue

corresponds to a bound state localized at the dissipative impurity, which we will

analyze in the next section.

The spectral structure discussed here for L = 14 is applicable for L mod 4 = 2.

With other values of L, there are variations, which we detail in Appendix D.1. In

particular, for odd values of L, there is only a single pair of eigenvalues coalescing

(L mod 4 = 3) or none at all (L mod 4 = 1). However, even with an odd number

of sites, the localized eigenstate still exists for large values of γ. In Appendix D.2,

we also discuss the dependence on the location of the impurity site.

4.3 Large γ

In this section, we explore the effect of large γ on the scattering dynamics and

the spectrum. We observed that the absorption decreased towards zero once

γ > γ⋆, in both the continuum (Figure 4.1) and the lattice (Figure 4.3) systems.

This suggests that the effect of the imaginary potential is similar to that of a

real potential, wherein the reflection dominates. In what follows, we draw a

comparison between the effects of real and imaginary on-site potentials.

In Section 4.2, we observed a single eigenvalue with a purely imaginary negative

component. At large γ, the eigenvalue approaches −iγ, for which a plausible

explanation would be that the eigenstate is localized at or around the impurity

site q and hence its energy is primarily determined by the −iγ |q⟩ ⟨q| term in the
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an imaginary (−iγ) potential of magnitude 2.5, and L = 42 sites. The scale is
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Hamiltonian, Eq. (4.1). Indeed the corresponding eigenstate is numerically found

to be exponentially localized around the impurity site, as illustrated in Figure 4.8.

For comparison, we also consider the effect of a real potential, i.e., the Hermitian

Hamiltonian

H = −J
L−1∑
j=1

(
|j⟩⟨j + 1| + |j + 1⟩⟨j|

)
+ V |q⟩⟨q|. (4.21)

Here, V is a real parameter that could be either positive or negative. The spectrum,

which is real, contains one state which separates from the band and at large |V |

approaches V . It is known that this Hamiltonian supports a bound state for

negative V and an anti-bound state for positive V . This eigenstate is exponentially

localized around site q.

In Figure 4.8, we show the exponential localization of the eigenstate both for

the real potential with |V | = 2.5 and for the dissipative impurity with γ = 2.5. At

these values, the eigenstate is more strongly localized (has a smaller localization

length) for the case of the real potential, i.e., for Eq. (4.21). By approximating

the occupancies at site j with an exponential of the form: ∝ e(j−q)/α, where q is
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of γ (|V |) for an imaginary (real) potential. (C) A correspondence between the
parameters of the real and imaginary potentials, using the localization length of
the bound states. L = 42 in all panels.

the impurity position, we can extract the localization length α. In Figure 4.9(A,

B), we show the resulting localization lengths α for both an imaginary and real

potential as a function of their respective magnitudes. By extracting α for the

localized eigenstate for various values of γ in the case of our non-Hermitian system,

Eq. (4.1), and for various values of V in the case of the system Eq. (4.21), we

can assign to each γ > 2 a value of V , for which the same localization length is

obtained. Results of this calculation are shown in Figure 4.9(C) for a system with

L = 42 sites. This quantifies the idea that, at large γ, an absorbing impurity

behaves like a real-valued impurity.

For values of γ < 2 there is no bound state. For γ slightly larger than 2, the

localization length corresponds to the bound state of a very weak real potential

(very small |V |). As γ grows, the corresponding |V | increases and asymptotically

approaches |V | = γ. In other words, the effect of an absorbing impurity of large

strength γ ≫ 2 is similar to that of a real-valued impurity of the same strength.
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One can ask whether there is a similar correspondence in the continuum case

— in that case, the absorption is also low for the non-Hermitian model at large γ,

as clear from Eq. (4.9). It is well known that the negative real delta potential has

a single bound (localized) state. However, neither the positive-real potential nor

the imaginary potential has a bound state.

To see that a bound state is not permitted in the case of a purely imaginary

potential, we start by assuming there is a bound state, which has the form

ψ(x) =


ψL(x) = Ae(k1+ik2)x , x < 0

ψR(x) = Be−(k1+ik2)x , x > 0

(4.22)

for some potential V (x) = λδ(x), with λ a complex number. This form of ψ(x)

results in a bound state if k1 > 0 as

|ψ(x)|2 =


|ψL(x)|2 = A2e(k1+ik2)xe(k1−ik2)x = A2e2k1x, x < 0

|ψR(x)|2 = B2e−(k1+ik2)xe−(k1−ik2)x = B2e−2k1x, x > 0.

(4.23)

In the same spirit as solving for the transport coefficients, we use the (dis)continuity

conditions at x = 0,

ψ(0) = ψL(0) = ψR(0) ,
ℏ2

2m
(ψ′

R(0) − ψ′
L(0)) = λψ(0). (4.24)

These conditions give us that A = B, and thus

λ = −ℏ2

m
(k1 + ik2). (4.25)

Since we already assumed k1 > 0 to have a bound state in the first place, we see

that λ must have a non-zero real component for a bound state to exist. Thus we

have ruled out a bound state in the continuum for a purely imaginary potential.

Hence no quantitative correspondence can be made as measured by the localization

length, as we have done for the lattice.
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Figure 4.10: Occupancy profiles of a sample of eigenstates, for a system with
L = 42 and γ = 2.5. The legend indicates which eigenvalue the eigenstate
corresponds to. Panel (B) illustrates the localized eigenstate.

The existence of a strongly localized eigenstate provides a simple ‘spectral’

interpretation of the suppression of absorption at large γ that we have presented

in Subsection 4.1.2. For large γ, the localized eigenstate has near-zero overlap

with the incident wavepacket; in the initial state, the wavepacket is far from the

impurity site. Thus, the wavepacket is ‘shielded’ from the potential as its dynamics

are confined to the subspace of all the other eigenstates, which have near-zero

weight at the impurity site. Therefore, the wavepacket experiences almost zero

absorption. Curiously, for the suppression of absorption in the continuum case

(Subsection 4.1.1), this spectral interpretation is invalid; there is no localized

eigenstate in that case. However, it is clear from the expressions for r and t,

Eq. (4.6), that in the large γ limit R → 1 and T → 0. This then implies that the

absorption A→ 0 as was observed in the lattice case.

Other than the localized eigenstate, the eigenstates resemble those for a real

potential — the eigenstates at the bottom and top of the band have few nodes,

while those near the center have many nodes. Figure 4.10 illustrates a selection of

the eigenstates of a system with L = 42 sites. They are labeled as ‘Ei’, i.e., the

eigenstate presented is the state corresponding to the ith eigenvalue when ordered
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in the described manner.

Note that the eigenvector coefficients ⟨j|Ei⟩ are themselves complex; we only

show the occupancies |⟨j|Ei⟩|2 and not the real and imaginary parts separately.

(Here |Ei⟩ is the eigenvector in question and j is the site index.)

4.4 PT -symmetric model

In this section, we shall examine a PT -symmetric model that is obtained by

introducing an additional ‘enhancing’ potential to the previously studied non-

Hermitian model. Using the same analytical argument derived for the purely

dissipative potential, we can prove the existence of an exceptional point for this

PT -symmetric model.

PT -symmetry.- A PT -symmetric system is not symmetric under a parity (spa-

tial) or time reversal (temporal) transformation independently. If the Hamiltonian

of the system is invariant under a combined parity-time (PT ) transformation,

then the system is said to be PT -symmetric. This is equivalent to saying the

Hamiltonian commutes with the PT operator. Non-Hermitian Hamiltonians that

preserve PT -symmetry can exhibit purely real spectra in the so-called unbroken

PT -symmetric regime. In this regime, the eigenstates of the Hamiltonian are

also eigenstates of the PT operator simultaneously. In contrast, the broken

PT -symmetric regime features a complex spectrum, and not all of the eigenstates

of the Hamiltonian are simultaneous eigenstates of the PT operator. Due to this

possibility of real eigenvalues in the unbroken phase, PT -symmetry has been

suggested as a generalization of the standard postulate that a quantum mechanical

Hamiltonian should be Hermitian [299]. Hermiticity ensures real eigenvalues and

unitary time evolution under the Schrödinger equation. Similarly, in the unbroken

PT -symmetric phase, the eigenvalues of the non-Hermitian Hamiltonian are real,

guaranteeing unitary evolution. The subject of PT -symmetric Hamiltonians

gained significant interest due to early studies such as [300,301] and has continued

to attract attention in recent years [161–167,302]. For a comprehensive overview,

references such as [299] or [303] can be consulted.
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Loss Gain

Figure 4.11: The loss/gain sites are placed equidistant from the center of the
lattice, as shown here for L = 12. We consider setups with the loss site placed
before the gain site.

PT -symmetric non-Hermitian Hamiltonians are considered to be effective

models of dissipative systems with balanced loss and gain. Thus, a PT -symmetric

version of our non-Hermitian tight-binding setup, originally consisting of a single

absorbing potential, is achieved by balancing the loss via an ‘enhancing’ potential.

We use the term ‘enhance’ as the potential does not continually emit into the

system; it only amplifies passing wavepackets. To ensure PT -symmetry, the two

potentials are placed equidistant from the center of the lattice and have potentials

of opposite signs but equal magnitude. Figure 4.11 illustrates an example of the

setup. The Hamiltonian describing such a system is given by

H = −J
L−1∑
j=1

(|j⟩⟨j + 1| + |j + 1⟩⟨j|)

− iγ (|q⟩⟨q| − |L− q + 1⟩⟨L− q + 1|) . (4.26)

Generally, 1 ≤ q ≤ L, but here we focus on systems with 1 ≤ q ≤ L/2, i.e., the

absorbing potential is in the left half of the lattice.

This model harbors many exceptional points for various configurations of q

and values of γ [167]. We focus on the exceptional points appearing for γ = 1

with both q = L/2 and q = 1. In the former case, with the two potentials placed

side-by-side in the center of the lattice, all eigenvalues coalesce into degenerate

pairs, similarly to what we observed for our single absorber. In the latter case,

with the potentials placed at opposite ends of the open chain, only a single pair

of eigenvalues coalesce. These exceptional points have previously been observed

numerically [167].

We illustrate examples of the eigenvalue coalescence in Figure 4.12 for a lattice

with L = 10 for the cases of q = 1 and q = L/2. The figure illustrates the entirely

real spectrum in the unbroken PT -symmetric regime for γ < 1 for both cases.
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Figure 4.12: Energy spectrum of the PT -symmetric Hamiltonian, Eq. (4.26), for
J = 1, L = 10, with q = 1 (left) and q = L/2 (right), as a function of the potential
strength γ. Real and imaginary parts of the eigenvalues are plotted separately.

In addition, we can see that the eigenvalues which coalesced at γ = 1 become

complex conjugate pairs after the exceptional point.

By using the same methodology employed in the case of a single dissipative

potential in Section 4.2 to demonstrate the existence of many exceptional points,

we are able to prove, analytically, the existence of the observed exceptional points

in this PT -symmetric model. The analytical proof proves there are exceptional

points at γ = 1 for both cases of the potentials: at the center and opposite ends

of the chain. The complete proof is detailed in Appendix C.2. Here, we outline

the main results:

(i) For q = 1 (impurities at opposite ends of the chain) when γ = ±1, we
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can show that the characteristic polynomial of the Hamiltonian, Eq. (4.26), is

proportional to that of an open boundary L − 1 site tight-binding chain. For

(L− 1) + 1 = L even, this is known to have a single pair of degenerate eigenvalues.

Thus, when L is even, Eq. (4.26) has a single pair of degenerate eigenvalues. A

similar result was derived using a Bethe ansatz in Ref. [162].

(ii) For q = L/2 (impurities at the center) when γ = ±1, we can show

that the characteristic polynomial of the Hamiltonian in Eq. (4.26) is doubly

degenerate, i.e., any root of the polynomial is a zero of at least order 2. In

addition, the characteristic polynomial at this point, interestingly, is the square of

the characteristic polynomial of a chain of length L/2.

In both cases, once we have an eigenvalue degeneracy, it is straightforward

to prove there is an eigenstate coalescence, precisely the same as in Section 4.2.

Thus, we have proved the existence of these exceptional points.

The result (ii), for q = L/2, implies the spectrum at γ = ±1 can be interpreted

as two decoupled chains of length L/2. This can be seen from the characteristic

polynomial but can also be illustrated by performing a basis transformation that

converts the Hamiltonian H into block form.

To perform the transformation, we start with the basis {|m⟩ : m ∈ [1, L]},

which our Hamiltonian H is written in. Then, we can define new basis states

|n,±⟩ =
1√
2

(|n⟩ ± i |L− n+ 1⟩) , (4.27)

where n ∈ [1, L/2]. We can write then write the original basis states in terms of

the new basis states via

|n⟩ =


1√
2

(|n,+⟩ + |n,−⟩) , 1 ≤ n ≤ L/2

− i√
2

(|L− n+ 1,+⟩ − |L− n+ 1,−⟩) , L/2 < n ≤ L

, (4.28)
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to obtain the Hamiltonian as

H̃ = − J

L/2−1∑
n=1

(|n,+⟩⟨n+ 1,+| + |n,−⟩⟨n+ 1,−| + h.c.)

+ i(J − γ)|L/2,+⟩⟨L/2,−| − i(J + γ)|L/2,−⟩⟨L/2,+|. (4.29)

From this we can clearly see the coupling between the two sectors |. ,+⟩ and

|. ,−⟩ is controlled by γ. Alternatively, we can define the transformation matrix

S†, such that its columns are the new basis vectors |n,±⟩. Our Hamiltonian in

this new basis is then retrieved by computing H̃ = SHS†. With the basis properly

ordered (|1,+⟩, ... |L/2,+⟩, |L/2,−⟩, ... |1,−⟩), we can write the Hamiltonian in

the following block form:

H̃ =

Hhop Q−

Q+ Hhop

 . (4.30)

Here, Hhop are simply tight-binding Hamiltonians for chains of length L/2 while

Q± represent the couplings of the form ∓i(1 ± γ). Therefore, we can see that

when γ = ±1, Q∓ = 0, resulting in a triangular block matrix. In this case, the

spectrum is just the spectrum of two decoupled half-chain hopping Hamiltonians

— as the remaining coupling term does not affect the determinant and hence, the

characteristic polynomial. An interpretation of this is that the system acts as

two half chains that are coupled in both directions. Thus, at γ = ±1, one of the

couplings is broken, resulting in unidirectional transport.

4.5 Many-body system

In earlier chapters of this thesis, our focus was exclusively on many-body quantum

systems. In this chapter, up to this point, we have been solely concerned with

single-particle non-Hermitian systems. In this section, we start to bridge this

investigation into the realm of many-body systems. We begin to build towards a

complete understanding of the many-body system by first considering the case
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of many non-interacting quantum particles. Using results derived for the single-

particle case, we can make statements about the spectrum of the non-interacting

many-body system. We show that these statements break down in the interacting

many-body system, as could be expected.

4.5.1 Non-interacting system

As we are now considering a system of many particles, we use the spin representa-

tion of our Hamiltonian introduced in Eq. (1.24). We focus on the case of a single

dissipative potential, resulting in the Hamiltonian

HMB =
J

2

L−1∑
j

(S+
j S

−
j+1 + S−

j S
+
j+1) − iγ(Szq +

1

2
), (4.31)

for a system of L spins (lattice sites), and N spin-up excitations (particles). The

model is similar to an XX chain with a purely imaginary magnetic field.

Using numerical exact diagonalization to obtain the complex spectrum of the

Hamiltonian, Eq. (4.31), we observe a similar proliferation of exceptional points

at γ = 2, following the same constraint as the single particle case of L even. In

Figure 4.13, we illustrate an example of the spectrum for a small many-body

system. The real and imaginary components of the eigenvalues are plotted in

separate panels as functions of γ. The coalescence at γ = 2 can be observed in

both the real and imaginary components.

As this is a system of non-interacting (free) fermions, we can construct the

many-body eigenvalues and eigenstates using those from the single-particle case.

In Section 4.2, we discovered the eigenvalues and eigenstates in the single-particle

case are all doubly degenerate for L even, so we can expect the many-body values

and states to be degenerate.

For L even and N odd, every many-body eigenvalue coalesces with at least

one other value at γ = 2, akin to the behavior in the single-particle case. However,

for N even, there are always unique many-body eigenvalues that do not coalesce,

constructed out of unique combinations of N single-particle states. For example,
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Figure 4.13: Energy spectrum of the Many-Body Hamiltonian Eq. 4.31, for L = 6,
N = 3, and q = L/2, as a function of the potential strength γ. Real and imaginary
parts of the eigenvalues are plotted separately.

consider the case of L = 4 and N = 2. Labeling the single particle states ϕn, the

two many-body values consisting of ϕ1 + ϕ2 and ϕ3 + ϕ4 are unique, as there are

no other combinations of the single particle values that make the same many-body

value. Similar arguments hold for the eigenstates.

Thus, we conclude that exceptional points occur in the non-interacting many-

body system for a single dissipative potential in the center of a lattice with an

even number of sites. For an odd number of particles (spins up), every eigenvalue

becomes doubly degenerate, while there are eigenvalues that do not become

degenerate for an even number of particles (spins up).
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4.5.2 Effect of interactions

Now we consider the case of many interacting particles. As introduced in the

introduction (Section 1.4.1), we allow nearest neighboring particles to interact

via njnj+1 = (c†jcj)(c
†
j+1cj+1). Mapping this to a spin system, we obtain the

interacting non-Hermitian Hamiltonian (Eq. (1.26))

Hq =
J

2

L−1∑
j

(S+
j S

−
j+1 + S−

j S
+
j+1) − iγ(Szq +

1

2
)

+∆
L−1∑
j

(Szj + 1/2)(Szj+1 + 1/2). (4.32)

This is not a system of many free fermions; thus, we can no longer construct

the many-body eigenvalues and eigenstates using those from the single-particle

case. Numerically, we observed that if the particles are allowed to interact, the

proliferation of exceptional points at a single point in parameter space ceases to

occur. While one or more eigenvalues can still coalesce, there is no longer a single

point where every eigenvalue pairs up with at least one other.

In Figure 4.14, we illustrate the spectrum of both an interacting and non-

interacting system for comparison. In the non-interacting case (Left) at γ = 2, the

real and imaginary components merge in groups of at least two eigenvalues. In the

interacting case, we see that gaps open in the imaginary part of the spectrum for

many of the previously pairing eigenvalues. Additionally, in the real part of the

spectrum, the components merge away from the point γ = 2. Different pairs of

eigenvalues merge at different values of γ, signifying the absence of our previously

observed unique exceptional point.

4.6 Discussion and context

In this chapter, we have studied the scattering dynamics and the spectrum of

a tight-binding single-particle lattice system with a non-Hermitian absorbing

impurity at one site, focusing on the case where the impurity is near the center of

the lattice. Here, we discuss some similar setups that have been investigated and
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Figure 4.14: The energy spectrum of the interacting many-body Hamiltonian
Eq. 4.32, plotted as a function of the potential strength γ. System consisting of
L = 6, N = 3, and q = L/2, with J = 2, and ∆ = 0 (Left) and ∆ = 0.002 (Right).
Real and imaginary parts of the eigenvalues are plotted separately.

possible experimental realizations. Following this, we summarize our findings in

this chapter.

Setups loosely similar to the one studied here have been explored in a few

other recent works. In Ref. [158], scattering off a localized lattice impurity is

studied, where the strength and phase of the impurity are oscillating. Scattering

was studied using Gaussian wavepackets, as in the present work. For certain

parameters, the oscillatory non-Hermitian impurity was reported to allow perfect

transmission (‘Floquet invisibility’). In Ref. [304], the lattice impurity was placed

at the lattice edge and the role of the non-orthogonality of the eigenstates on

the non-unitary time evolution was explored. In addition, some related issues

have been discussed in the context of PT -symmetric lattice systems, formed by

having imaginary potentials on multiple sites [161–167] akin to the PT -symmetric
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model introduced in Section 4.4. As already discussed, the spectrum of lattices

with two impurities has been studied in Refs. [162, 167], wherein the authors

demonstrate the existence of exceptional points using different methodologies to

those employed in this thesis. Ref. [161] reported an eigenstate which is localized

on the two impurity sites — this may be considered a PT -symmetric version of

the localized eigenstate we have studied. Refs. [162,163] have made comparisons

between the non-Hermitian system and corresponding Hermitian system, as we

have done. After the appearance of our single absorber investigation as a preprint,

our single-particle non-Hermitian Hamiltonian has appeared in Ref. [183] as an

effective Hamiltonian. Additionally, a similar investigation into the dynamics of

non-interacting quantum particles under the influence of localized losses has since

been made using the Linblad formalism [305].

Experimentally, lattice systems with localized losses have been studied in

several contexts. In the setup of Ref. [306, 307], a Bose-Einstein condensate is

realized in a one dimensional optical lattice, with engineered losses on a single

site acting as a local dissipative potential. Connecting single-particle results such

as ours to many-boson physics in such a setup remains an interesting challenge

for future work.

A realization more similar to the single particle tight-binding system considered

in this work is that with photonic lattice systems, such as those in Refs. [308,309].

In this setup, photonic lattices are realized using femtosecond laser writing to

inscribe waveguide arrays with appropriate index profiles in fused silica. The

physics of photons in such an architecture can be well-described by a tight-binding

model, with an additional spatial direction taking the role of time. This setup, or

its variants, has been used to demonstrate a number of paradigmatic tight-binding

phenomena, including Bloch oscillations [310] and Anderson localization [311,312].

Both one-dimensional and two-dimensional lattices have been realized, and lossy

sites and other types of non-Hermiticity have been explored [109,309,313]. It is

possible to create localized excitations (wavepackets) and observe their propagation

[312,314]. Thus, studies of scattering off lossy sites should be possible in such a
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setup.

Another possible experimental setting for observing scattering off non-Hermitian

potentials in a tight-binding lattice might be microwave realizations using coupled

dielectric resonators, such as that discussed in [115]. This setup is well approxi-

mated by a nearest-neighbor tight-binding Hamiltonian. The resonance frequency

of an isolated resonator, and the coupling strength between two resonators (due

to the evanescent electromagnetic field), correspond to the on-site energy and the

hopping term, respectively. A controllable on-site loss is created by placing an

absorbing material on a particular resonator.

In this chapter, by explicit time evolution starting from initial states consisting

of momentum-carrying wavepackets, we found the reflection, transmission, and

absorption coefficients (R, T , A) as a function of the impurity strength γ and

of the incident momentum k. The absorption was shown to first grow and then

decrease as the strength γ was increased. It can be argued that this non-monotonic

behavior is related to the quantum Zeno effect. The experimentally observed

non-monotonic behavior of Ref. [131] can be interpreted in the same light. We

have demonstrated and analyzed the effect in a simple lattice setting. We have also

compared the lattice results with the scattering of a single particle in a continuum

from an absorptive delta-potential, finding good agreement between the two.

We have presented the spectrum of the non-Hermitian system. The system

we focus on — an even number of sites, with an impurity at one of the center

sites — has an unusual exceptional point structure. At the same value of γ,

all the eigenstates of the system coalesce in pairs. This is not a higher-order

exceptional point [296–298], but rather it is a collection of many second-order

coalescences at the same point in parameter space. We also demonstrated the same

unusual collection of many second-order exceptional points in a PT -symmetric

non-Hermitian system.

At large γ, the spectrum contains a single localized eigenstate. This is another

way in which a strongly dissipative impurity acts like a real-valued impurity

potential. The eigenvalue corresponding to the localized eigenstate has a purely
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imaginary value. This feature is specific to the lattice, as we have demonstrated

that there are no bound states in the corresponding continuum problem. Therefore,

it would be intriguing to examine the disappearance of the bound state as the

lattice system approaches the continuum limit. Such an investigation could

provide insights into the potential significance of the bound state in the observed

non-monotonic behavior exhibited in the scattering dynamics.

We established various foundational results in understanding a particular many-

body non-Hermitian system. We demonstrated the occurrence of many exceptional

points at a single parameter point in the non-interacting many-body system by

utilizing our new knowledge of the single-particle case. The same phenomenon did

not appear to occur in the interacting system. Our work opens up several avenues

of research. In this thesis, we have explored scattering dynamics. A detailed study

of other types of dynamics remains to be done, not only for tight-binding lattices,

but also for continuum particles subjected to localized absorbers. Extending such

dynamical considerations to nonlinear cases [178,307,315] also deserves further

exploration. The spectral part of the present study provides motivation for a more

thorough investigation of the spectrum of relatively simple non-Hermitian models.

The structure we have found — many pairs of eigenvalues coalescing at a single

point — persists in the non-interacting many-body system as can be proven from

the single particle case, but is lost in the presence of interactions. This behavior

suggests that non-Hermitian spectra may hold more surprises not yet known in

the literature.
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Chapter 5

Summary

In this thesis, we carried out investigations that can generally be placed in the

context of many-body quantum physics. We investigated various ways to define

a correspondence between energy and temperature in finite isolated quantum

systems. The first central idea was inspired by implications of the eigenstate

thermalization hypothesis, namely that reduced eigenstate density matrices should

resemble thermal states. To provide sufficient context, we introduced the idea

of thermalization in isolated quantum systems, in particular, the eigenstate

thermalization hypothesis. Following this, we considered a standard definition

of temperature in statistical mechanics, relating temperature to entropy, and

applied it to isolated quantum systems. Finally, we considered the antithesis of

an isolated quantum system, namely an open quantum system. We explored the

emerging phenomena from a non-Hermitian lattice system, effectively describing

a dissipative open quantum system.

In Chapter 2, we proposed methods of defining temperature based on mini-

mizing the distance between (full or reduced) eigenstate density matrices and the

canonical ensemble. These definitions were inspired by the idea that an eigenstate

has information regarding thermalization encoded in its structure, an implication

of the ETH. We found that for full eigenstate matrices, the corresponding temper-

ature βE was proportional to the canonical temperature (Eq. (1.1)), a standard

in the study of thermalization. The constant of proportionality originates in the

Schatten p-distance utilized. This was a general result, independent of integra-
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bility, chaos, or even thermalization; the relation holds even for non-physical

Hamiltonians. This temperature definition reduced to depending solely on the

eigenvalues of the system.

For reduced eigenstate matrices, independent of distance measure, the cor-

responding temperature conformed increasingly well to βC when increasing the

system size; while holding the subsystem size fixed to some small value less than

half the total size. The subsystem temperature heavily relies on the ETH, and as

such, it depends on the chaotic (thermalizing) nature of the system and hence

the structure of the eigenstates. As could thus be expected, the subsystem tem-

perature does not work well for non-chaotic physical Hamiltonians, or random

matrices, in which there is no sense of locality.

In Chapter 3, we considered temperature defined via the standard thermody-

namic relation (Eq. (1.3)) between microcanonical entropy and temperature. This

investigation is related to the equivalence of microcanonical and canonical ensem-

bles, wherein exact equality is expected in the thermodynamic limit. However, in

recent years the emergence of statistical mechanics has been heavily investigated

in finite systems of sizes accessible to exact diagonalization. As such, it is essential

to understand deviations from ensemble equivalence in systems of such size. We

investigated various ways of numerically computing the microcanonical entropy in

such systems and compared the resultant temperatures obtained via Eq. (1.3) to

the canonical temperature Eq. (1.1).

We investigated four ways of numerically determining the microcanonical en-

tropy S(E), defined as Eq. (3.2). Two of the procedures, counting eigenstates in a

constant valued (energy-independent) energy window ∆E and neglecting a choice

of ∆E entirely via an approximation to the integrated density of states, both

result in noticeable finite-size deviations between the resultant temperatures and

the canonical temperature. In both cases, we determined that the deviations are

expected due to sub-leading corrections in the entropy. However, we demonstrated

that counting eigenstates in an energy-dependent window ∆E = α−1
√

2πkBT 2
c Cc

results in a temperature that is in excellent agreement with the canonical temper-
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ature. Here, α is an arbitrary constant for which we do not have precise criteria

for fixing its value. We did note that smaller systems appear to require a larger α

for a good agreement between the temperatures. Meanwhile, for larger systems,

the required α seems to decrease with system size.

These issues surrounding proportionality constants can be avoided by using

this energy-dependent window in conjunction with the formulation of entropy

in terms of the integrated density of states instead of counting eigenstates in

the window. As explained, the constants in ∆E(E) (Eq. (3.11)) result in a

constant shift in entropy, which has no bearing on the temperature. The resultant

temperature obtained using this formulation is in excellent agreement with the

canonical temperature, even for the small system sizes under consideration in this

thesis. Thus, we have determined a prescription that results in a microcanonical

entropy that reproduces the canonical temperature in finite isolated quantum

systems — without the necessity of any arbitrary constants.

In Chapter 4, we investigated the intriguing phenomena arising from a simple

dissipative non-Hermitian lattice model. By studying the explicit time evolution

of a single excitation from an initial state consisting of momentum-carrying

wavepackets, we found the reflection, transmission, and absorption coefficients

(R, T,A) as a function of the dissipation strength γ and momentum k. The

absorption exhibited non-monotonic dependence on γ, initially growing to a

maximum rate before decaying to zero at large γ. This behavior can be interpreted

as a realization of the quantum Zeno effect in a simple lattice setting. We were

able to match these lattice results with the scattering of a single particle in a

continuum in the presence of an imaginary delta potential. Furthermore, at large

γ the system behaves similarly to a system with a real potential V , including the

emergence of a localized eigenstate, which allowed us to directly compare values

of γ and V .

We presented a detailed study of the spectrum of the single-particle system.

In particular system configurations, we identified many exceptional points occur-

ring at a single point in parameter space. We analytically proved this peculiar
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proliferation of exceptional points. Using the same analytical methodology, we

demonstrated a similar proliferation of exceptional points in a PT -symmetric

non-Hermitian system, constructed by balancing dissipative and enhancing poten-

tials symmetrically in the lattice. Using these new results for the single-particle

system, we proved that there is a similar proliferation of many exceptional points

in the non-interacting many-particle system. This proliferation appears to cease

in the presence of interactions.
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Appendix A

Eigenstate temperature

correspondence - Additional data

In this appendix, we provide additional numerical results for the eigenstate based

temperatures investigated in Chapter 2:

• In Appendix A.1 we present further numerical data for the subsystem

temperature, in particular, the result of varying the subsystem size in the

staggered field model.

• In Appendix A.2, we compute the distance between ρA and ρAC at the

canonical temperature βC .

A.1 Subsystem temperature - Various subsys-

tem sizes

Here, we present the result of using different subsystem sizes when computing the

subsystem temperature βS, in various models.

In Figure A.1 we show the explicit scaling of various quantities with subsystem

size. We see in (A) that the average minimum of d1 increases as LA increases, i.e.,

the two matrices become less alike. In (B) the standard deviation of the minima

increases but then decreases again as LA approaches L/2. In (C) we see the width

of βS decreased as LA increased, and similarly in (D) the distance between βC
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Figure A.1: Subsystem temperature scaling with subsystem size results. Staggered
field model with hx = hz = 0.5, J = 1, ∆ = 0.95 and L = 14. (A) Mean value
of min(d1(ρ

A, ρAC)), (B) Standard deviation of min(d1(ρ
A, ρAC)), (C) Width of βS

data (D) RMS-distance between βC and linear fit to βS, versus LA. All quantities
are calculated in the central 20% of the spectrum.

and βS decreased as LA increased.

In Figure A.2 we show the resultant minimum distance min(d1(ρ
A, ρAC)) when

using different subsystem sizes for various system sizes. This again illustrates the

decrease in average minimum distance as L increases, but also shows that the

average minimum distance increases with increasing LA.

In Section 2.3, we restricted our results to subsystems with LA < L/2. In

Figure A.3 we present an example of the result of using a subsystem with LA > L/2.

The minimum distance min(dp(ρ
A, ρAC)) continues the trend previously described of

increasing as LA increases, and the variance of the values also decreases. However,

the βS values appeared to cease to align with the βC curve, although the variance

did continue to decrease. An example of the resultant βC for a subsystem greater

than half the total system can be seen in Figure A.3. One can also see that the

distance between the matrices is close to the maximum value.
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Figure A.2: Subsystem temperature results for the staggered field model with
hx = hz = 0.5, J = 1 and ∆ = 0.95, Eq. (1.15). min(d1(ρ

A, ρAC)) plotted versus
energy, each row illustrating a different scaling of system/subsystem size.
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Figure A.3: Subsystem temperature results for chaotic Ising model with L = 10
and LA = 7, hx = 0.75 and hz = 0.5. Left: βS vs. E with canonical βC curve
shown. Right: min(d1(ρ

A, ρAC)) versus energy.

A.2 Distance at canonical temperature

In the main text, we minimized the distance between the reduced density matrix

ρA = trB |En⟩⟨En|, and the reduced canonical matrix ρAC = trB exp(−βH), as a

function of β, to obtain the subsystem temperature βS. One could instead ask

how close the two matrices are at the canonical temperature βC . In Figure A.4,
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Figure A.4: Distance d1 at canonical temperature βC , averaged over the central
20% of the spectrum, versus inverse system size L. We also show the mean
standard deviation of the minima. With LA = 2 for (A) the staggered field model,
Eq. (1.15), with hz = hx = 0.5, and (B) the chaotic Ising model, Eq. (1.21), with
hz = 0.5 and hx = 0.75.
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we plot the resulting trace distance (p = 1) between the two matrices for two

chaotic spin chains. Alongside the data, we plot a line proportional to the inverse

system size 1/L — clearly illustrating that the distance between the matrices at

βC decreases faster than 1/L, for these particular systems at least.
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Appendix B

Saddle point calculation

In this appendix, we provide the full saddle point calculation that is used to derive

the energy-dependent window width ∆E(E) utilized in Chapter 3. The same

calculation is performed in Ref. [54] although with less details than presented here,

and similar ones can be found Section 7.2 of Ref. [74], Section 6.8 of Ref. [72], and

Chapter 3 of Ref. [75].

We wish to calculate the microcanonical entropy

S(E) = kB ln(Γ(E)), (B.1)

as defined in Eq. (3.2) of Chapter 3. Here,

Γ(E) = ∆Eg(E) = ∆E
∑
n

δ(E − En) (B.2)

is the statistical weight, which counts the number of eigenstates with energy E in

a window of width ∆E around E, and

g(E) =
∑
n

δ(E − En), (B.3)

is the density of states. Rearranging Eq. B.1 as

eS/kB = Γ(E) = ∆E
∑
n

δ(E − En), (B.4)
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we then replace the delta function with its integral representation

δ(x) =

∫ ∞

−∞

dp

2π
eipx (B.5)

and introduce the Helmholtz free energy F (β) = −β−1 ln
(∑

n e
−βEn

)
, to obtain

eS/kB = i∆E

∫ i∞

−i∞

dβ

2π
eβ(E−F (β)). (B.6)

The integral over β is along the imaginary axis in the complex β-plane. The

integral in Eq. (B.6) needs to be evaluated, which can be done via a saddle point

approximation. To apply the saddle point approximation, we first need to find

the critical point of the exponent h(β) = β(E − F (β)), by setting h′(β) = 0 and

solving for β.

∂h(β)

∂β
= E − F (β) + β(

∂E

∂β
− ∂F (β)

∂β
) = E − F (β) − β

∂F (β)

∂β
,

∂F (β)

∂β
= β−2 ln(Z) − β−1∂Z

∂β
,

=⇒ h′(β) = E − ∂Z

∂β
= E −

∑
nEne

−βEn∑
n e

−βEn
. (B.7)

This means the condition for the critical point is

E =

∑
nEne

−βEn∑
n e

−βEn
, (B.8)

which is precisely Eq. (1.1) defining the canonical temperature. Thus the saddle

point is at β = βC , the canonical inverse temperature.

Now to perform the saddle point approximation to second order, so as to

examine the effect of ∆E in finite sized systems, we must expand h(β) as a Taylor

series about βC , up to second order, as the first is zero by definition. First, we

obtain the derivatives

∂2h(β)

∂β2
=
∂h′(β)

∂β
=

∂

∂β
(E − F (β) − β

∂F (β)

∂β
),

∂2h(β)

∂β2
= −2

∂F (β)

∂β
− β

∂2F (β)

∂β2
. (B.9)
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Then, replacing β derivatives with T derivatives, we observe

∂2h(β)

∂β2
= −2(− 1

β2kB

∂F (β)

∂T
) − β(

2

β3kB

∂F (β)

∂β
+

1

β4k2B

∂2F (β)

∂T 2
),

∂2h(β)

∂β2
= − 1

β3k2B

∂2F (β)

∂T 2
= −kBT 2(T

∂2F (β)

∂T 2
) (B.10)

Introducing the heat capacity C = ∂E
∂T

= −T ∂2F
∂T 2 , we finally have

h′′(β) =
∂2f(β)

∂β2
= −kBT 2C. (B.11)

We are now equipped to perform the saddle point approximation. Expanding in

(B.6), we can write

eS/kB ≈ i∆E

∫ i∞

−i∞

dβ

2π
eh(βC)+h′′(βC)(β−βC)2/2, (B.12)

then pulling out the constant h(βC) term, and substituting for h′′(βC), we obtain

eS/kB ≈ i∆E · eβC(E−F (βC))

∫ i∞

−i∞

dβ

2π
ekBT

2
CCC(β−βC)2/2. (B.13)

Substituting ix = β − βC , we end up with the Gaussian integral

eS/kB ≈ ∆E

2π
· eβS(E−F (βC))

∫ ∞

−∞
dx e−(kBT

2
CCC/2)x

2

, (B.14)

which evaluated equals

eS/kB ≈ ∆E√
2πkBT 2

CCC
eβC(E−F (βC)). (B.15)

Then simply taking the logarithm to calculate the entropy, we obtain

S

kB
= βCE − βCF (βC)) + ln

(
∆E√

2πkBT 2
CCC

)
. (B.16)
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Appendix C

Analytical derivation of

exceptional points

In this appendix, we provide the full analytical derivations of the exceptional

points that were observed numerically in Chapter 4.

• In Appendix C.1 we provide the full analytical derivation of the exceptional

points in the single dissipative potential system.

• In Appendix C.2 we provide the full analytical derivation of the exceptional

points in the PT -symmetric system.

C.1 Analytical expressions for the spectrum of

a purely dissipative system

In the main text, we have shown numerically that the eigenvalues of the purely

dissipative system (Eq. (1.25)) coalesce in pairs at γ = 2, for even L, when the

impurity site q is one of the central sites, i.e., when q = L/2 or q = (L/2)+1. In this

Appendix, we analyze the eigenvalues analytically. We express the characteristic

polynomial (whose roots are the eigenvalues) in a form that allows us to predict:

first, that all the eigenvalues pair up when q is one of the central sites, and second,

that there are multiple exceptional points because each eigenstate pair is linearly

dependent. The characteristic polynomial is treated in Section C.1.1, and the case
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of q = L/2 (or q = L/2 + 1) is considered in Section C.1.2.

C.1.1 General location, q

We want to find the eigenvalues of the L× L matrix

[Hq]jk = −δj,k+1 − δj+1,k − iγδjqδjk . (C.1)

Here, 1 ≤ q ≤ L. The characteristic polynomial of this matrix up to a minus sign

is the determinant of the tridiagonal matrix



λ 1 0 . . . . . . . . . . . . . . .

1 λ 1 . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .

...
...

... 1 λ+ iγ 1 . . . . . .

...
...

...
...

. . . . . . . . . . . .

...
...

...
...

... 1 λ 1

...
...

...
...

...
... 1 λ



. (C.2)

The determinants of tridiagonal matrices satisfy a recurrence relation. If Pn is

the determinant of the n× n matrix with elements

Aij = biδi,j+1 + cjδi+1,j + aiδij, (C.3)

then ,

Pn = anPn−1 − cn−1bn−1Pn−2 . (C.4)

This recurrence relation can be verified by determinant expansion and appears in

numerous sources, e.g., is mentioned in Section 8.5 of Ref. [145]. The characteristic
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polynomial of H (C.1), i.e., the determinant of the matrix (C.2), therefore satisfies

Pn = λPn−1 − Pn−2, if n ̸= q

Pq = (λ+ iγ)Pq−1 − Pq−2, if q > 1

P0 = 1

P1 = λ+ iγδq1. (C.5)

A standard method of solving such linear recurrence relations is to use the Z-

transform. Ignoring the second line in Eq. (C.5), i.e., ignoring the impurity, we

can get an expression for Pn in terms of P0, P1 and λ. Since Pn is only defined

for n ≥ 0, we use the unilateral Z-transform defined as

Z{Pn} =
∞∑
n=0

Pnz
−n. (C.6)

Now, letting F (z) = Z{Pn} and expanding the sum, we can write

F (z) = P0 + P1z
−1 +

∞∑
n=2

Pnz
−n, (C.7)

z2F (z) − z2P0 − zP1 =
∞∑
n=2

Pnz
2−n. (C.8)

Then, shifting the summation index and utilizing the recurrence relation we obtain

z2F (z) − z2P0 − zP1 = λ(zF (z) − zP0) − F (z). (C.9)

We then start by solving for F (z),

F (z) =
P0z

2

z2 − λz + 1
+

(P1 − λP0)z

z2 − λz + 1
, (C.10)

which we can then decompose into partial fractions as,

F (z) = P0

(
A(λ)z

z − x+
+
B(λ)z

z − x−

)
+ (P1 − λP0)

(
C(λ)z

z − x+
+
D(λ)z

z − x−

)
, (C.11)

with x±(λ) = 1
2

[
λ±

√
λ2 − 4

]
. We can then obtain the functions by comparing
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equations (C.10) and (C.11). We can now take the inverse Z-transform, which is

easily done here as the function is of the form z/(z − α). Performing the inverse

transform, followed by some rearranging, this yields

Pn =
P0√
λ2 − 4

[
(x+)n+1 − (x−)n+1

]
+

P1 − λP0√
λ2 − 4

[(x+)n − (x−)n] . (C.12)

Now, defining:

Kn(λ) :=


1√

λ2 − 4
[(x+)n+1 − (x−)n+1] for n ≥ 0

0 for n < 0

(C.13)

we can rewrite Eq. (C.12) as

Pn = P0Kn + (P1 − λP0)Kn−1. (C.14)

Since we have derived this ignoring the impurity, Eqs. (C.12) and (C.14) are valid

either for q = 1, in which case P1 = λ+ iγ, or for values of n less than q.

For q = 1, we have P0 = 1 and P1 = λ + iγ so that Pn = Kn + iγKn−1, and

therefore:

PL = KL + iγKL−1 for q = 1. (C.15)

We now turn to q > 1. For n < q, Eqs. (C.12) and (C.14) are valid directly

with P0 = 1 and P1 = λ, i.e., with P1 − λP0 = 0, so that

Pn = Kn for q > 1 and n < q. (C.16)

We have expressions for Pn up to n = q − 1, but we want PL and L ≥ q. To

go beyond q, we define a new sequence of functions Qn(λ), satisfying the same

recurrence relation as Pn (C.5), except with new initial conditions: Q0 = Pq−1
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and Q1 = Pq = (λ+ iγ)Pq−1 − Pq−2. Thus we need to solve

Qn = λQq−1 −Qq−2, Q0 = Kq−1,

Q1 = (λ+ iγ)Kq−1 −Kq−2. (C.17)

Now we have already solved the same recurrence relation for Pn, using the Z

transform. The solution is Qn = Q0Kn + (Q1 − λQ0)Kn−1. Therefore

Qn = Kq−1Kn + (iγKq−1 −Kq−2)Kn−1 . (C.18)

Noting that Qn(λ) = Pn+q−1(λ), the determinant of the full matrix can be found

as PL(λ) = QL−q+1(λ). Thus

PL(λ) = Kq−1KL−q+1 + (iγKq−1 −Kq−2)KL−q . (C.19)

We now introduce a slight change of notation: We refer to this polynomial as

PL,q. In other words, the characteristic polynomial of the Hamiltonian matrix of

a lattice of size L and having the impurity at position q will be called PL,q. Note

that Eq. (C.19) reduces to Eq. (C.15) for q = 1; thus

PL,q = Kq−1KL−q+1 + (iγKq−1 −Kq−2)KL−q (C.20)

for all positions of the impurity, 1 ≤ q ≤ L.

By binomial-expanding (x±)n+1, one can show that

PL,q(−λ∗) = (−1)LPL,q(λ)∗ . (C.21)

This shows that the zeros of PL,q (eigenvalues of H) are symmetric by reflection

through the imaginary axis in the complex plane, since if λ = a+ ib is a zero then

−λ∗ = −a+ ib is also a zero. This symmetry is obvious from the spectra shown

in Figure 4.6.
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C.1.2 Impurity at center

We now turn to the case we have focused on in this paper: when L is even and

q = L/2 or q = L/2 + 1. In this case,

PL,L
2

= KL
2
−1KL

2
+1 + (iγKL

2
−1 −KL

2
−2)KL

2

= KL
2
−1(λKL

2
−KL

2
−1) + (iγKL

2
−1 −KL

2
−2)KL

2

= −(KL
2
−1)

2 +KL
2

(
λKL

2
−1 −KL

2
−2

)
+ iγKL

2
−1KL

2

= (KL
2
)2 − (KL

2
−1)

2 + iγKL
2
−1KL

2
.

Now precisely when γ = 2, this can be written as

PL,L/2 =
(
KL

2
+ iKL

2
−1

)2
. (C.22)

This means that every root of the polynomial is a zero of order at least 2, i.e., the

eigenspectrum is doubly degenerate at γ = 2. We have thus analytically derived

the most prominent feature of the spectrum presented in the main text.

C.1.3 Eigenstate degeneracy

We now argue that, for a tridiagonal system such as ours, a coalescence of eigen-

values implies a coalescence of eigenstates, i.e., that the eigenstates corresponding

to equal eigenvalues are always linearly dependent. Consider some eigenvalue

λ and corresponding eigenvector X = (x1, x2, . . . , xL)T of −H, Eq. (C.1), for

convenience. Using the eigenvalue equation −H ·X = λX, we can then determine
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the coefficients xi via:

x2 = λx1 (C.23)

x3 = (λ2 − 1)x1

...

xq = λxq−1 − xq−2

xq+1 = xq(λ− iγ) − xq−1

xq+2 = λxq+1 − xq

...

It is clear to see that every component of the vector can be written as a function

of λ, and γ, times the first component x1. So an eigenvector X only has one free

component x1.

If we had two eigenvectors, X and Y , which corresponded to the same eigen-

value λ, i.e., we had a degeneracy, then it is now a trivial exercise to show that

the two eigenvectors are not linearly independent. Consider the equation:

a ·X + b · Y = 0. (C.24)

Starting with the coefficients

a · x1 + b · y1 = 0 =⇒ a = −b · y1/x1 (C.25)

a · x2 + b · y2 = 0 =⇒ −b · f(λ) · (y1/x1) · x1 + b · f(λ) · y1 = 0 (C.26)

=⇒ −b · f(λ) + b · f(λ) = 0 (C.27)

This implies there is a nontrivial solution to Eq. (C.24), and the eigenvectors are

linearly dependent. Thus, if any two eigenvectors have the same eigenvalue λ, the

functions in the eigenvectors are the same — hence, the eigenvectors only differ in

the choice of x1, i.e., they are linearly dependent. Thus, if there is an eigenvalue

degeneracy at some point, the eigenvectors are linearly dependent, and hence, we

have an exceptional point.
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C.2 Analytical expressions for PT -symmetric

spectrum

We utilize the same analytical method presented in C.1 to analyze the eigen-

spectrum of the PT -symmetric Hamiltonian, Eq. (4.26). First, we consider the

case with the impurities at the center of the lattice, followed by the case of the

impurities at opposite ends of the lattice. In both cases, due to the tridiagonal

nature of the matrices, once we have proved a degeneracy, the existence of an

exceptional point follows trivially as in Section C.1.2.

C.2.1 Impurities at center of the lattice

It was observed numerically that all of the eigenvalues coalesce in pairs at γ = 1,

for even L, when the absorbing site q is one of the central sites, i.e., when q = L/2,

and the enhancing site is L/2 + 1. We can, again, express the characteristic

polynomial (whose roots are the eigenvalues) in a form that allows us to predict

that at least one pair of eigenvalues coalesce when q is a central site.

We want to find the eigenvalues of the L× L matrix

[Hq]jk = −δj,k+1 − δj+1,k − iγδj,k(δj,q − δj,q+1) . (C.28)

Here, 1 ≤ q ≤ L, and the matrix is only PT -symmetric when q = L/2. Because of

this we will restrict ourselves to the case where L/2. The characteristic polynomial

of this matrix up to a minus sign is the determinant of the tridiagonal matrix

[A]jk = δj,k+1 + δj+1,k + δj,k(λ+ iγ(δj,q − δj,q+1)) (C.29)

Now, the determinants of tridiagonal matrices satisfy a recurrence relation. If Pn

is the determinant of the n× n matrix with elements

Aij = biδi,j+1 + cjδi+1,j + aiδij, (C.30)
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then

Pn = anPn−1 − cn−1bn−1Pn−2 . (C.31)

The characteristic polynomial of H (C.1), i.e., the determinant of the matrix

(C.29), therefore satisfies

Pn = λPn−1 − Pn−2, if n ̸= q, q + 1

Pq = (λ+ iγ)Pq−1 − Pq−2,

Pq+1 = (λ− iγ)Pq − Pq−1

P0 = 1, P1 = λ. (C.32)

What follows is the very same as in Appendix C.1. Using the Z transform, ignoring

the impurities, we can get an expression for Pn in terms of P0, P1 and λ, namely

Eq. (C.14) in Appendix C.1. Again, this was derived ignoring the impurities, so

it is valid for values of n less than q. They are valid directly with P0 = 1 and

P1 = λ, i.e., with P1 − λP0 = 0, so that

Pn = Kn for n < q. (C.33)

We have expressions for Pn up to n = q − 1, but we want PL and L ≥ q. To

go beyond q, we define a new sequence of functions Qn(λ), satisfying the same

recurrence relation as Pn (C.32), except with new initial conditions: Q0 = Pq =

(λ+ iγ)Pq−1 − Pq−2 and Q1 = Pq+1 = (λ− iγ)Pq − Pq−1. Thus we need to solve

Qn = λQn−1 −Qn−2,

Q0 = (λ+ iγ)Kq−1 −Kq−2,

Q1 = (λ− iγ)Pq −Kq−1. (C.34)

Now we have already solved the same recurrence relation for Pn, using the Z
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transform. The solution is Qn = Q0Kn + (Q1 − λQ0)Kn−1. Therefore

Qn = PqKn + ((λ− iγ)Pq −Kq−1 − λPq)Kn−1

= PqKn − (iγPq +Kq−1)Kn−1. (C.35)

Comparing (C.34) with (C.32), we can see that Qn(λ) = Pn+q(λ). Then

the determinant of the full L × L matrix can be found as PL(λ) = QL−q(λ).

Remembering that q = L/2, so L− q = L/2 = q, we therefore obtain

PL = Qq = PqKq − (iγPq +Kq−1)Kq−1

= Pq (Kq − iγKq−1) −K2
q−1

= ((λ+ iγ)Kq−1 −Kq−2) (Kq − iγKq−1) −K2
q−1 . (C.36)

Then, using that Kq−2 = λKq−1 −Kq,

PL = ((λ+ iγ)Kq−1 − λKq−1 +Kq) (Kq − iγKq−1) −K2
q−1

= (Kq + iγKq−1) (Kq − iγKq−1) −K2
q−1

= K2
q + (γ2 − 1)Kq−1. (C.37)

Now we can clearly see that when γ = ±1, PL = K2
q . So for q = L/2, and

γ = 1, we can see that any root of the polynomial is a zero of at least order 2.

Therefore we have shown the spectrum is doubly degenerate at this point. We also

note that the characteristic polynomial of this system with L sites is the square

of the polynomial of a chain of length L/2.

C.2.2 Impurities at ends of the lattice

Here, we instead consider the case with the potentials at opposite ends of the

lattice. Thus, we now want to find the eigenvalues of the L× L matrix

[H1]jk = −δj,k+1 − δj+1,k − iγδj,k(δj,1 − δj,L) . (C.38)
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Here, 1 ≤ q ≤ L/2. The characteristic polynomial of this matrix up to a minus

sign is the determinant of the tridiagonal matrix

[A]jk = δj,k+1 + δj+1,k + δj,k(λ+ iγ(δj,1 − δj,L)). (C.39)

The characteristic polynomial of H (C.38), i.e., the determinant of the matrix

(C.39), therefore satisfies

PL = (λ+ iγ)PL−1 − PL−2, (C.40)

where PL−1 and PL−2 satisfy the recurrence relation

Pn = λPn−1 − Pn−2,

P0 = 1, P1 = λ− iγ. (C.41)

We have already solved a recurrence relation of this kind; referring to the solution

(C.14) and now replacing P0 and P1 as in (C.40), we obtain

Pn = Kn − iγKn−1. (C.42)

Therefore,

PL = (λ+ iγ) (KL−1 − iγKL−2) −KL−2 + iγKL−3, (C.43)

and using KL−3 = λKL−2 −KL−1, we obtain

PL = (λ+ iγ) (KL−1 − iγKL−2) −KL−2 + iγ(λKL−2 −KL−1)

PL =λKL−1 + (γ2 − 1)KL−2. (C.44)

Thus, at γ = ±1, we are left with

PL =λKL−1. (C.45)
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We see that PL has a root when λ = 0 and when KL−1 = 0. KL−1 is the

characteristic polynomial of an L−1 site hopping model, which for open boundary

conditions has a zero when (L− 1) + 1 = L is even. Thus, when L is even, PL

has a degeneracy of order two.
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Appendix D

Non-Hermitian scattering -

Additional data

In this appendix we provide additional data for the purely dissipative non-

Hermitian investigation in Chapter 4:

• In Appendix D.1 we illustrate the affect of the number of lattice sites on

the proliferation of exceptional points.

• In Appendix D.2 we explore the effect of moving the impurity’s location on

the exceptional points.

D.1 Size dependence of the spectrum

In Figure 4.5, we saw a coalescence of every pair of eigenvalues at γ = 2. This was

for a system with L = 14 sites and the impurity at site q = 7. We now outline the

L-dependence of the spectrum. The pattern is different for odd L. For even L,

there is a difference between L values satisfying L = 4n+ 2 and those satisfying

L = 4n, where n is a non-negative integer.

The case of L = 14, presented in the main text, belongs to the L = 4n + 2

sequence (6, 10, 14, 18, . . . ). In Figure D.1, we show the case of L = 30, showing

the same pattern: all eigenvalues pair up in multiple exceptional points exactly

at γ = 2. There are an odd number of pairs, and the real components of the
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Figure D.1: Energy spectrum of a system with L = 30. As this value is in the
L = 4n + 2 sequence, the features are the same as those described in the main
text for L = 14.

eigenvalues centered around zero become zero after the coalescence, i.e., for γ > 2.

One of these two eigenvalues corresponds to the localized eigenstate and has an

imaginary part growing with γ.

The situation is very similar for even values of L satisfying L = 4n, with one

additional structure. As proved in Appendix C.1 for even L, at exactly γ = 2, all

eigenvalues pair up; this is true for both L = 4n + 2 and L = 4n. In addition,

for L = 4n, at a value slightly above γ = 2, the two eigenvalues with real values

nearest to zero coalesce in an additional exceptional point, as seen in Figure D.2
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Figure D.2: Energy spectrum of a system with L = 8. For values of L in the
sequence L = 4n, there is an extra exceptional point slightly above γ = 2. The
localized eigenstate appears beyond this new exceptional point.

for L = 8. It is at this point, γ = γ1 > 2, that the localized state appears, and the

imaginary part of the corresponding eigenvalue separates off and starts to increase

unboundedly in the negative direction. With increasing L in the sequence L = 4n,

the location of the new exceptional point, γ1, approaches 2.

We now turn to odd L, with the impurity placed on the central site, q =

(L + 1)/2. For L = 4n + 3, there is only a single exceptional point that occurs

at a value γ > 2. An example is shown in Figure D.3, for L = 7. As the system

size tends to infinity, the location of the point tends to γ → 2. There is always a

single eigenvalue with a zero real component — the two other eigenvalues with

real parts closest to zero both merge with this eigenvalue at the exceptional point.

Finally, for L = 4n+ 1, there appear to be no exceptional points; nevertheless,

at large γ, the eigenvalues pair up gradually. An example is shown in Figure
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Figure D.3: Energy spectrum for L = 7. The impurity is on the central site, q = 4.

D.4 for L = 9. A single eigenvalue remains unpaired with zero real component.

Although this does not merge with any other eigenvalue, around γ ≈ 2, the

imaginary component of this eigenvalue starts increasing unboundedly with γ,

indicating that the corresponding eigenstate becomes localized.

In summary, although there are differences in detail between the four cases,

there is always a bound state at large γ, and around γ = 2, there is always some

reorganization of the spectrum. With increasing L, the location of these features

converges toward γ = 2.
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Figure D.4: Energy spectrum for L = 9. The impurity is on the central site, q = 5.

D.2 Effect of impurity location

In Appendix D.1, we illustrated the dependence on the lattice size L, focusing

on the case where the impurity is located at the center of the lattice, q = L/2 or

q = (L+ 1)/2. In this Appendix, we briefly discuss the dependence of the location

q of the impurity, focusing on the case L = 4n+ 2.

When the impurity is not on one of the central sites, the eigenvalues do not all

coalesce as pairs at γ = 2. As the impurity is moved from the edge site towards

the center (q = 1, q = 2,...), there is a single exceptional point at a value of γ

smaller than 2 for odd q and greater than 2 for even q. This behavior is illustrated

in Figure D.5. We note that the behavior of the spectrum for an impurity at

L − q + 1 is the same as that for q, hence why we only present the q ∈ [1, 5]

data for the L = 10 system in Figure D.5. At this exceptional point, the two

144



Figure D.5: Energy spectrum for L = 10 for various impurity locations.

eigenvalues with real parts closest to zero coalesce. As in the case of a centrally

located impurity, when γ is raised further beyond this value, the real parts of

these two eigenvalues are locked at zero, and the imaginary part of one of this

pair starts to increase in magnitude. This indicates an eigenstate localized at the

impurity. (E.g., for q = 1, this state is localized at the edge of the lattice.)
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G. Strasser, K. Unterrainer, and S. Rotter. Reversing the pump dependence

of a laser at an exceptional point. Nature Comm., 5:4034, 2014.

156
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[112] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld,

and A. Richter. Experimental observation of the topological structure of

exceptional points. Phys. Rev. Lett., 86:787–790, Jan 2001.

157



[113] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss,

and A. Richter. Observation of a chiral state in a microwave cavity. Phys.

Rev. Lett., 90:034101, Jan 2003.

[114] J. Doppler, A.A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch,
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[278] André Gusso, M. G. E. da Luz, and Luis G. C. Rego. Quantum chaos in

nanoelectromechanical systems. Phys. Rev. B, 73:035436, Jan 2006.

[279] Matthew D. Frye, Masato Morita, Christophe L. Vaillant, Dermot G. Green,

and Jeremy M. Hutson. Approach to chaos in ultracold atomic and molecular

physics: Statistics of near-threshold bound states for Li+CaH and Li+CaF.

Phys. Rev. A, 93:052713, May 2016.

[280] C. P. Dettmann, O. Georgiou, and G. Knight. Spectral statistics of random

geometric graphs. EPL (Europhysics Letters), 118(1):18003, apr 2017.

[281] Soumyadeep Chaudhuri, Victor I. Giraldo-Rivera, Anosh Joseph, R. Lo-

ganayagam, and Junggi Yoon. Abelian tensor models on the lattice. Phys.

Rev. D, 97:086007, Apr 2018.

174



[282] Jonas Wilhelm, Lukas Holicki, Dominik Smith, Björn Wellegehausen, and

Lorenz von Smekal. Continuum goldstone spectrum of two-color qcd at

finite density with staggered quarks. Phys. Rev. D, 100:114507, Dec 2019.
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