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Inflammatory processes in the liver: divergent roles in
homeostasis and pathology
Ola Ahmed1, Mark W. Robinson2 and Cliona O’Farrelly1,3

The hepatic immune system is designed to tolerate diverse harmless foreign moieties to maintain homeostasis in the healthy liver.
Constant priming and regulation ensure that appropriate immune activation occurs when challenged by pathogens and tissue
damage. Failure to accurately discriminate, regulate, or effectively resolve inflammation offsets this balance, jeopardizing overall
tissue health resulting from an either overly tolerant or an overactive inflammatory response. Compelling scientific and clinical
evidence links dysregulated hepatic immune and inflammatory responses upon sterile injury to several pathological conditions in
the liver, particularly nonalcoholic steatohepatitis and ischemia-reperfusion injury. Murine and human studies have described
interactions between diverse immune repertoires and nonhematopoietic cell populations in both physiological and pathological
activities in the liver, although the molecular mechanisms driving these associations are not clearly understood. Here, we review the
dynamic roles of inflammatory mediators in responses to sterile injury in the context of homeostasis and disease, the clinical
implications of dysregulated hepatic immune activity and therapeutic developments to regulate liver-specific immunity.
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AN INTRODUCTION TO THE IMMUNOLOGICAL STRUCTURE OF
THE LIVER
The liver is an immunologically complex organ that functions as a
physiological bridge between gut-derived molecules and the
systemic circulation. Approximately 80% of the hepatic vascular
supply is provided by the portal venous system, which results in a
low-pressure blood system with large amounts of bacterial
products and other foreign molecules that are presented to the
immune system. Consequently, the liver must tolerate these
potentially immunogenic or inflammatory foreign molecules while
maintaining constant immunosurveillance for infectious patho-
gens and liver malignancies. The hepatic microstructure is
composed of an extensive repertoire of immune cells embedded
in a meshwork of liver sinusoids through which hepatic venous
blood passes and mixes with oxygen-rich arterial blood from the
hepatic artery. These sinusoids are lined by specialized liver
sinusoidal endothelial cells (LSECs) that contain numerous
fenestrations, allowing molecules to freely diffuse through to the
underlying hepatocytes, which perform the central metabolic
functions of the liver1 (Fig. 1). This alignment facilitates the rapid
exchange of blood-borne molecules and metabolic processing in
the liver, as well as extensive interactions with local and systemic
immune populations.
Hepatic homeostasis relies on effective regulation of the

intimate interactions between resident and infiltrating immune
cells and nonhematopoietic hepatic cells. Resident immune cells
populate the liver sinusoids and the subendothelial compartment
known as the space of Dissé, which is located between
hepatocytes and LSECs; these immune cells are a diverse

population, including professional antigen-presenting cells (APCs),
myeloid cells, and specialized innate and adaptive lymphoid cell
populations.1 Many hepatic immune populations play vital roles in
homeostasis, tissue repair, maintaining immune tolerance, and
modulating liver inflammation. Here, we review the dynamic roles
of hepatic inflammatory immune responses in homeostasis and
how inflammatory responses to sterile injury lead to pathology,
specifically in the context of nonalcoholic steatohepatitis (NASH)
and ischemia-reperfusion injury (IRI).

HEPATIC IMMUNE CELL REPERTOIRES
Hepatic immune cell populations play diverse roles in regulating
inflammation and immune responses. Kupffer cells (KCs), which
account for 80–90% of the total population of fixed tissue
macrophages and almost one-third of the nonparenchymal cell
population in the liver, are key.2 These liver-specific myeloid cells
play critical roles in the recognition of blood-borne pathogens and
the clearance of invading microbes.3,4 These cells have key roles in
identifying, phagocytosing, and eliminating “foreign” or “danger-
ous” antigens via PPRs, complement receptors, and Fc receptors.
Consistent with their macrophage-like functions, KCs exhibit
increased phagocytic activity; however, in contrast to other
myeloid populations, KCs produce proinflammatory and anti-
inflammatory factors, illustrating their dichotomous role in
tolerogenic defense and inflammation.5

Dendritic cells (DCs) are also important inducers of tolerance in
the liver, although these cells are also capable of antigen
presentation and type 1 interferon production.6–8 DCs are
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categorized into myeloid and plasmacytoid subtypes and are
primarily located around the central veins and portal tracts.9

Under physiological conditions, DCs are phenotypically immature
and tolerogenic and are thought to play an important role in
tolerogenicity posttransplantation;10 however, proinflammatory
DCs develop in response to liver injury, stimulating cytokine
secretion and T cell responses.11 There is evidence of DC
participation in anti-inflammatory activities, particularly in the
context of IRI, indicating their dual immunosuppressive and
proinflammatory roles.12

Classic neutrophils are rarely detected in the healthy liver.
However, neutrophil subsets with immunoregulatory properties,
also referred to as type 2 neutrophils (N2), have been found
among tumor-associated neutrophils (TANs) in hepatocellular
carcinoma.13 These neutrophil subsets share phenotypic and
functional features with mature low-density neutrophils or
granulocyte-like myeloid-derived suppressor cells (MDSCs),14

which are known to suppress T-cell activation and, in the context
of cancer, promote cancer growth.15,16 MDSC expansion has also
been described in nonalcoholic fatty liver disease (NAFLD).17 The
immunosuppressive activity of N2/TANs/G-MDSCs has been
associated with the upregulation of various factors that promote
an immunosuppressive environment, such as arginase or indo-
leamine 2,3-dioxygenase.18

Classic T lymphocytes account for up to 50% of lymphocytes in
the liver, and B cells make up only 5% of the hepatic lymphocyte
population.19 While CD8+ T cells usually outnumber CD4+ T cells
at a two-to-one ratio in the liver, both cell types have activated
phenotypes. A large proportion of liver T lymphocytes have
innate-like features.20 These T cells coexpress CD56 and/or CD161
and include NK T (NKT) cells, mucosal-associated invariant T cells,
and γδ T cells, which are involved in hepatic immunity and tissue
remodeling.21–23

Innate B cells that express high levels of CD5 are also found in
the human liver and are likely to be immunoregulatory, although

it is unknown whether these cells produce the same suppressive
cytokine milieu as the systemic subtype.24 Regulatory T cell-
induced Breg cell formation in a mouse model of hepatic
autoimmunity requires IL-21 but neither IL-10 nor TGF-β.25 Human
studies have consistently demonstrated B-cell expansion in
hepatitis C-infected liver tissue, and these cells potentially
contribute to the suppressive immune environment that is
typically observed in chronic HCV-infected livers.24,26–28

In humans, NK cells account for 30–50% of the hepatic
lymphocyte population,29 while in mice, only 5–10% of hepatic
lymphocytes are NK cells.5,30 These cells have important antiviral
and antitumor activities and can also interact directly or indirectly
with liver APCs, KCs, and DCs to regulate hepatic immune
responses.31

Several studies using murine and other animal models have
defined the role of the liver in hematopoiesis.32–34 Mouse studies
have demonstrated that in the absence of a spleen, extramedul-
lary hematopoiesis can occur in the liver.35 In adult mice, the
lymphopoietic capacity of adult liver cells was similar to that of
bone marrow transplantation, suggesting a key role in liver
transplantation tolerance and T-cell reconstitution in recipients.36

Most human hematopoietic stem cell (HSC) studies are centered
around fetal liver development, although these stem cells are also
present in the adult liver.34 Lymphoid progenitors (LPs) have also
been detected in healthy liver tissue,33 and LPs that express CD56
are more common in the liver than in the bone marrow.37 The
expansion of the HSC pool that expresses markers of myeloid
differentiation has been described in liver metastasis38 and may
contribute to the increased numbers of granulocytic cells or
MDSCs observed in metastatic livers.
Within the liver, nonhematopoietic cell populations also possess

important immune functions.5 LSECs are involved in hepatic
leukocyte recruitment via Toll-like receptor 4 (TLR4) activation and
appear to exhibit both tolerogenic and proinflammatory functions
through CD4+ and CD8+ interactions. Antigen-presenting

Fig. 1 The cellular composition of the liver. Venous blood from the gut mixes with oxygenated arterial blood, drains through the sinusoids
and passes through plates of hepatocytes to the central vein. Hepatocytes secrete bile into the canaliculi, and these secretions ultimately flow
into the bile ducts. The sinusoids are lined by specialized, fenestrated liver sinusoidal endothelial cells that allow blood to pass through the
space of Dissé to the underlying hepatocytes. Within the blood, Kupffer cells adhere to the endothelial wall, while resident lymphoid and
myeloid immune cell populations are found around the portal tract and throughout the parenchyma
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capabilities have also been described in hepatocytes.39 In
response to hepatocyte antigen presentation, an effector CD8+

T-cell response is initiated when the initial antigen load is low, in
contrast to the functionally exhausted population of CD8+ cells
with PD-1 expression that is observed during abundant hepatic
antigen presentation.22,40 Furthermore, hepatic injury and inflam-
mation can result in IL-10 induction by CD4+ T cells as a
consequence of hepatocyte activation to restore immunological
homeostasis and regulate a potentially overwhelming immune
response.41

Identification and characterization of immune cell populations by
single-cell RNA sequencing analyses
The spectrum of resident hepatic immune cell populations is
currently expanding through the use of single-cell RNA sequen-
cing approaches.42,43 This technology has allowed for the
intimate analysis of a comprehensive immune cell population
and has identified a number of novel intrahepatic immune subsets
(Table 1). The challenge in applying these approaches to liver
tissue relates to the spatially graded hepatic microenvironment
and zonation patterns, although new technologies are beginning
to include spatial localization data.44,45 The loss of fragile liver cells
during sample processing and the consequent underrepresenta-
tion of non-parenchymal cell populations in subsequent single-
cell RNA sequencing datasets is another limitation of these
technologies.42

A number of liver single-cell RNA sequencing studies have
focused on heterogeneity within the KC population. These studies
have identified two subpopulations in the human liver: a
proinflammatory antigen-presenting KC subset and a tolerogenic
KC subset (Table 1).42,46 There is also a distinct scar-associated
macrophage subpopulation present in patients with liver cirrho-
sis,47,48 highlighting the importance of comparative analysis of
healthy and diseased tissue.
In addition to KCs, unique populations of both DCs and NK cells

have been identified in single-cell RNA sequencing datasets, in
addition to previously identified populations of DCs and liver-
resident NK cells (Table 1),49 and it is likely that further liver-
specific immune cell subpopulations will be identified as this
technology matures. Beyond immune cells, it is evident that zonal
and disease-specific populations of hepatocytes, endothelial cells,
and stellate cells are also present within the liver.44,47,50 The
technological advances that have enabled the analysis of
transcriptional differences across these zonal regions within the
liver are now also being applied to resident immune cell
populations to uncover further immune cell heterogeneity
associated with different regions of the liver.

THE HOMEOSTATIC RESPONSE TO STERILE INJURY IN THE
LIVER
Inflammatory activity in the liver that is stimulated in the absence
of foreign microbial antigens can occur in response to a wide
range of stimuli and is commonly referred to as sterile
inflammation.51 This inflammatory response can lead to the
pathological production of reactive oxygen species (ROS), lipid-
derived metabolites (retinoic acid and endocannabinoids), and
damage-associated molecular patterns (DAMPs), which amplify
inflammatory signals through TLRs, nuclear/neuronal receptors,
and the inflammasome (Fig. 2). While maintaining an overall
tolerogenic environment, the healthy liver is well equipped to
restore homeostasis after disturbances. Large populations of
innate immune cells clear senescent, injured, or apoptotic cells,
as well as microbes and their associated products.24 Activated
neutrophils and cytotoxic cells that are no longer responsive to
inflammatory signals or that have already completed their
immunologic functions and need to be removed from the
circulation migrate to the liver to die via apoptosis. ThisTa
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detoxification mechanism or resolution is largely mediated by KCs,
which are the first cells in the liver to encounter cells and
molecules from the systemic circulation. High quantities of
microbial DAMPs and MAMPs arriving via portal venous blood
bind to PRRs expressed on KCs and some hepatocytes, facilitating
microbial phagocytosis and degradation without initiating the
overwhelming immune response that is usually stimulated by
PRRs.52,53 In a cirrhotic mouse model, endotoxin accumulation
appeared to result from decreased KC uptake and low levels of
TNF alpha release.54 In this context, hepatic detoxification ensures
that inflammatory antigens from the gut do not travel to the rest
of the body, causing excessive immune activity.55 While it is
unsurprising that failed detoxification mechanisms are pathogno-
monic of hepatic failure predicated on the assumption of
immunoregulatory disturbances, few studies have defined the
inflammatory interplay in hepatic detoxification and its clinical
implications.
Some NK cells respond rapidly to injury following direct lipid

recognition or cytokine secretion by other immune cells, leading
to the downstream accumulation of additional macrophages and
neutrophils in the liver.56 In murine models, type 1 NKT cell-
deficient mice do not exhibit neutrophil and macrophage
infiltration in response to injury and display hepatic resistance
to IRI or a high-fat diet, suggesting that one subset of NKT cells
promotes injury.57–59 In contrast, sulfatide-reactive type 2
NKT cells play an opposing role in hepatic IRI by protecting
against injury, and a novel anti-inflammatory mechanism has been
proposed to exploit this process and ultimately result in NKT cell
recruitment in response to liver injury.59

This response to acute sterile inflammation is physiological and
self-limiting and results in the restoration of tissue homeostasis.

However, the ongoing presence of the stimuli driving chronic
sterile inflammation leads to pathology. These stimuli include
alcohol metabolites that can induce hepatocyte cell death and
excessive fat deposition within hepatocytes, resulting in lipotoxi-
city and oxygen depletion during ischemia and reperfusion that
leads to ischemic damage.

NONALCOHOLIC STEATOHEPATITIS (NASH)
Changes to the hepatic immune environment characterize the
development of NASH, and murine and animal studies have been
used to define the specific immunological events that occur
throughout the clinical course of NASH (Fig. 3). Innate immune
activation and dysregulated inflammation have both been
implicated in the loss of tissue homeostasis and are a subject of
considerable focus. Lipotoxicity, which results from aberrant lipid
accumulation during prolonged nutrient excess or obesity
exceeding adipose tissue capacity, underlies the generation of
several harmful signaling intermediates.60 When storage is over-
whelmed, lipid deposition occurs in ectopic sites, such as the liver,
interfering with local immune regulation and resulting in a cycle of
persistent metabolic dysregulation or “metainflammation”60,61

Inflammatory immune activation within the liver induces the
infiltration of several immune cell subsets and drives the
progression of hepatic injury.
KCs appear to play a pivotal role in NASH initiation and

pathogenesis.62 Concurrent activation of KCs is seen following the
introduction of a high-fat diet or methionine/choline-deficient
diets in several murine models, indicating the early involvement of
KCs in NASH.63,64 Human studies have also corroborated these
findings, and KC activation and accumulation were observed in

Fig. 2 The acute response to sterile injury in the liver. During liver injury, hepatocyte death causes DAMP release, resulting in Kupffer cell
activation, neutrophil recruitment to the site of injury and the activation of hepatic stellate cells, leading to cytokine secretion. Kupffer cells
and neutrophils release inflammatory mediators and begin to phagocytose necrotic debris. T cells, dendritic cells, and Kupffer cells facilitate
leukocyte infiltration from the systemic circulation by releasing chemoattractants such as CCL2 and IL-17. NK and NKT cells release IFNγ,
stimulating the release of proinflammatory mediators. During resolution, monocytes acquire a reparative phenotype, and macrophage
reprogramming occurs in a subset of macrophages that exhibit a resolution phenotype. Monocytes migrate across the liver sinusoidal
endothelial cell layer, differentiating into macrophages to either replenish the Kupffer cell pool or restore homeostasis by secreting anti-
inflammatory cytokines and promoting angiogenesis. Following injury, a restorative macrophage phenotype emerges, promoting neutrophil
apoptosis. Hepatocyte proliferation occurs to replace the lost parenchyma131
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NASH samples, supporting the direct role of KCs in lipid
processing and metainflammation.65 Thus, KC activation could
be linked to direct lipid uptake or lipid metabolism and the
resultant lipotoxicity that presents as foreign particles.66 In
human studies, KC expansion was a key step in hepatic
inflammatory initiation that, through a complex inflammatory
network, resulted in the downstream activation of other
components of the NASH complex.67 Furthermore, there is
additional evidence to suggest the pathological role of KCs in
hepatic insulin resistance upon activation, further suggesting the
intricate interplay of immunological events and metabolic path-
ways in liver disease.63

The process by which circulating monocytes differentiate into
macrophages upon arrival in the liver environment is poorly
understood; however, monocyte infiltration may impact some of
the inflammatory responses observed in NASH. In response to
hepatic injury, Ly-6Chi monocytes differentiate into Ly-6C+

macrophages, stimulating proinflammatory and profibrogenic
processes.62 In murine models, diet-induced hepatic steatosis
induced Ly-6Chi monocyte recruitment via CC-chemokine receptor
2 (CCR2), which is largely expressed by KCs and HSCs.68 Activated
monocytes were recruited following hepatic injury and guided by
the expression of CC-chemokine ligand 2 (CCL2), and reduced
inflammatory macrophage levels were observed in CCL2-knockout
mice with MCD diet-induced NASH.69 In contrast, an anti-
inflammatory, tissue-protective Ly-6Clow phenotype can emerge
when apoptotic hepatocytes are phagocytosed, and these cells act
to restore tissue homeostasis.70

Moreover, KC polarization into M1 and M2 phenotypes further
reveals the cyclical and overlapping proinflammatory and
immunoregulatory events in NASH, reflecting the tolerogenic
and immunogenic nature of hepatic physiology.71,72 For example,
M1 phenotype activation results in the production of several
proinflammatory cytokines and chemokines, such as TNF-α, IL-1β,
IL-12, CCL2, and CCL5, inducing additional hepatocyte injury and

DAMP release, which further exacerbates KC activation and results
in a vast influx of monocytes.11,62 In contrast, the role of M2
phenotype cells, although largely undefined in NASH, involves
inflammatory resolution and healing processes to counteract the
initial recruitment of various cellular populations.62,72 To date, few
studies have examined M2 phenotypic changes in NASH
compared to non-NASH in humans, although there is evidence
to suggest PPAR-δ involvement in M2 activation, which may offer
a therapeutic strategy in the clinical management of the entire
NAFLD disease spectrum.73 In addition, mice fed a 30-week NASH
diet exhibited substantial KC loss driven by genetic changes in KC
enhancers and subsequent cell death.74 Consequently, increased
expression of TREM2 and CD9 in several KC phenotypes was
observed and could indicate the severity of steatosis and
inflammatory injury in NASH.75,76 Recent single-cell analysis has
further performed and identified the presence of scar-associated
macrophages in murine NASH models and cirrhotic human
livers.47,75 This TREM2+CD9+ macrophage subset induced col-
lagen expression in HSCs, and their frequency correlated with
fibrosis scoring and disease severity in NASH.47,48

Collagen deposition resulting from hepatic stellate cell activa-
tion has been linked to the effects of profibrogenic factors
through KC activation, and in vivo research has indicated that KC
depletion could attenuate fibrosis development in the late stage
of the disease.77 Small animal and patient studies have reported
increased levels of activin-A, a multifactorial cytokine belonging to
the TGFβ superfamily, in liver disease, leading to the downstream
activation of KCs.78,79 In a mouse model, the expression of
proinflammatory molecules after activin-A KC activation further
induced HSC-dependent fibrogenesis, which was observed in the
later stages of NASH cirrhosis.80 KC activation promotes HSC
transdifferentiation into myofibroblastic HSCs, which leads to the
production of extracellular matrix elements, cytokine secretion,
and alpha smooth muscle actin expression, which are necessary
for the progression of fibrosis and hepatic scarring.9

Fig. 3 Pathogenic immune mechanisms in NASH. NASH involves immune cell populations that functionally interact with each other. Increased
fatty acid levels and lipotoxicity directly activate inflammation and result in hepatocyte injury and the release of DAMPs, triggering an
amplified inflammatory response. Kupffer cell activation stimulates the subsequent release of several proinflammatory cytokines that activate
monocytes and neutrophils. These cells exacerbate liver injury by secreting reactive oxygen species and profibrotic signals that promote
fibrosis. Cytotoxic T cell activation contributes to perpetuating inflammation by the production of large amounts of IFNγ and TNFα, and
natural killer cell activation directly stimulates hepatic stellate cells and hepatocytes, causing further inflammation and inducing profibrotic
signals
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In addition to in situ macrophage activation and monocyte
recruitment, hepatic infiltration by additional cellular subtypes,
such as lymphocytes and neutrophils, contributes to the under-
lying inflammatory disturbances that occur in NASH (Fig. 3).61

Following highly orchestrated immune processes in NASH, large
amounts of proinflammatory cytokines and chemokines mediate
the influx of additional populations of CD4+/CD8+ T and B
lymphocytes, which further enhance macrophage activation and
inflammatory activity.61 Increased levels of both CD4+ and CD8+

populations are found in the blood of NASH patients, and the
degree of portal inflammation due to CD8+ cells correlates with
disease severity.81,82 In high fructose murine models, CD8+

deficiency was associated with steatosis resistance compared to
that of controls.83 Recent evidence has suggested a role of B
lymphocytes in regulating T-cell activation in NASH, although
some of the evidence has been conflicting.61 It is unclear whether
B-cell lymphopoiesis is enhanced or compromised in obesity
states; however, B cell-derived IL-10 has been shown to inhibit
proinflammatory cytokines in metabolic syndromes.84

ISCHEMIC LIVER DAMAGE
The dual blood supply of the liver consists of oxygenated blood
delivered via the hepatic artery, which accounts for 20% of hepatic
inflow, with the remaining 80% delivered by the portal venous
system. The healthy liver, therefore, has characteristic zones of
high and low oxygen levels, forming an oxygen gradient that is
necessary for hepatic function, which is described as liver
“zonation” and is required to maintain the structural integrity of
hepatocytes85,86 (Fig. 4). The concentration of oxygen decreases
along the sinusoids as blood passes from Zone 1 (periportal zone)
through to Zones 2 (transitional zone) and 3 (perivenous zone).
This understanding of zonation has important implications for
homeostasis, and various metabolic capacities can be preferen-
tially found in specific zones.87 Although the underlying regulatory
pathways of oxygen zonation within the liver remain to be fully
elucidated, complementary metabolic activities and spatially
separated opposing pathways associated with carbohydrate,
amino acid, and lipid metabolism have been shown to occur
within distinct oxygen zones.88 In ischemic injury, the absence of
oxygen disrupts this finely tuned gradient, resulting in several
functional changes at the cellular level in response to oxidative
injury that counteract and control the damage (Fig. 5). Hypoxia
inducible factors (HIFs) play critical roles in maintaining home-
ostasis. However, despite the liver being exposed to variable and
often low oxygen tensions, hypoxic responses are not induced in

normal conditions.55,86 During prolonged periods of severe
ischemia, as seen during transplantation and hepatic resections,
HIF activation supports oxygen-independent ATP generation to
mediate cellular processes and upregulates cell preservation
mechanisms through antioxidant and antiapoptotic systems that
facilitate cell survival. Unsurprisingly, hypoxia results in a
proinflammatory response by increasing the expression of IFN‐γ,
MHC II, and costimulatory molecules in hypoxic macrophages to
induce T cell-driven cytokine production.89,90 In addition, both
human and murine models have been used to study adaptive
immune responses and T-cell recruitment in inflammatory
hypoxia, and selective FoxP3 induction and upregulation plays a
key role in homeostasis by eliciting potent anti-inflammatory
responses to limit overwhelming hepatic injury via Treg signal-
ing.91,92 These data suggest the complementary role of HIFs in
hepatic immunomodulation and tolerance, but the details of these
mechanisms require further clarification.
KCs that are activated during ischemia produce ROS, TNFα, and

IL-1β, resulting in subsequent leukocyte recruitment, hepatocyte
death, and endothelial damage.62,93 In addition, ROS and cytokine
secretion activate CD4+ T cells and NKT cells, which produce IFN‐γ,
potentiating KC activation.94 Widespread cytokine activation also
upregulates the expression of T cell-associated cell surface
adhesion molecules on SECs and ROS production by hepatocytes,
triggering a multicellular immune process that contributes to an
overwhelming inflammatory response.95,96 The end result is a
complex communication network of immune cells that propagate
IRI. Hepatic immunity during ischemia is mainly associated with
immune restoration and regeneration without generating detri-
mental immune responses in normal contexts. As mentioned
previously, liver zonation and the maintenance of an oxygen
gradient are required to support the structural integrity of healthy
hepatocytes.85 Thus, the pathological consequences of ischemia
are particularly apparent during ischemia/reperfusion, which is a
widely accepted example of sterile inflammation, and the rapid
restoration of oxygen to ischemic tissue triggers apoptosis and
oncotic necrosis (Fig. 5).97,98 Ischemia can be categorized as warm
or cold, depending on the temperature at which the ischemia
occurs. While warm ischemia is known to cause major disruptions
in molecular signaling and cellular pathways, cold ischemia has
been considered protective due to reduced ATP demands for
regular molecular processes. Thus, cold ischemia is being utilized
in liver surgery, especially transplantation, to minimize the injuries
encountered during warm ischemia. In both contexts, the
physiological repercussions are proportional to the extent of
ischemia and the duration of oxygen blockade. Therefore,

Fig. 4 Oxygenation within the liver. The oxygen gradient decreases in blood as it travels through the hepatic sinusoids (Zone 1) toward the
pericentral region (Zone 3), significantly altering the local microenvironment and influencing immune cell localization and activity. Kupffer
cells are larger and more numerous in periportal zones than in perivenous zones132
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ischemic injury and IRI, although oftentimes used synonymously,
are distinct entities. During ischemia, hepatocytes are immediately
disrupted, and metabolic processes shift from oxidative phos-
phorylation to glycolysis.98 The subsequent ATP depletion and
calcium accumulation lead to necrosis in the absence of ROS,
which distinguishes this process from the pathological processes
of IRI.98,99 In routine hepatic surgery, the ischemic time is limited,
and severe ischemic injury can be avoided. The main inflamma-
tory response occurs during reperfusion and tissue reoxygenation,
whereby hepatocyte leakage results in DAMP release and
subsequent KC activation, which is the main driving factor of
ROS production.98,100 In addition, activation of the complement
system and its components, of which several are potent
neutrophil activators, contribute to the widespread inflammatory
cascade during reperfusion.101,102

The liver parenchymal condition strongly determines the extent
of ischemic injury, and several animal models have been used to
establish reduced hepatic regeneration and extensive IRI injury in
the background of chronic liver disease. It has been demonstrated
in murine models that steatotic and cirrhotic livers exhibit
devastating inflammation and hepatic injury following IRI with a
reduced abilities to recover normal cellular function and
healing.93,103,104 Molecular aberrations in older livers are likely to
weaken immunotolerogenic responses to ischemic injury. Older
livers exhibit reduced tolerance to IRI and a consistent inability to
regenerate, partly explaining why younger donors are considered
optimal in the context of transplants.105,106 In a mouse model,
mature adult mice displayed significantly reduced neutrophil
accumulation, suppression of the inflammatory transcription

factor NF-κB and almost complete absence of macrophage
inflammatory protein-2, which is necessary for neutrophil recruit-
ment.107 Tissue remodeling roles of neutrophils have also been
described in IRI. In a model of sterile liver injury, neutrophils were
shown to dismantle injured vessels and create channels for new
vascular growth,108 while in a chronic liver injury model,
neutrophils promoted fibrolysis and suppressed the development
of fibrotic lesions.109

A significant proportion of harvested donor livers are rejected
because of fat deposition and damage that is likely caused by fat-
induced sterile inflammation. Fat-related damage may signifi-
cantly enhance IRI during transplantation and the subsequent loss
of the graft.110 A major aim in liver transplantation research is to
provide protection to minimize ischemic reperfusion injury,
particularly in marginal livers, allowing them to withstand
surgery.111

NEW THERAPEUTIC TARGETS AND STRATEGIES FOR IMMUNE-
MEDIATED LIVER PATHOLOGY
NASH
Accumulating evidence implicates the hepatic microenvironment
and immune repertoire with chronic liver injury, particularly when
the balance between inflammation and tolerance is disrupted,
resulting in important clinical consequences. The increasing
prevalence of metabolic syndrome and consequences such as
NASH pose several challenges that demand novel therapies to
target the inflammatory microenvironment.5 The altered immune
environment in NASH has been a topic of considerable focus in

Fig. 5 Pathological immune mechanisms in ischemia-reperfusion injury (IRI). The mechanisms of hepatic IRI are complex and result in a series
of cellular responses influencing inflammatory, metabolic, and antioxidant pathways.133 Tissue hypoxia, oxidative stress, and the resulting
anaerobic cell metabolism lead to structural cellular injury and a large amount of chemokine and cytokine release to enhance downstream
immune cell accumulation. ATP adenosine triphosphate, IL interleukin, ROS reactive oxygen species, IRI ischemia-reperfusion injury, IFN-γ
interferon-gamma, ICAM intercellular adhesion molecule, VCAM vascular cell adhesion molecule, TNF tumor necrosis factor, HGF hepatocyte
growth factor, VEGF vascular endothelial growth factor
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recent times, and several therapeutic strategies have been
proposed to decrease local hepatic responses without compro-
mising overall immunity. Inflammatory genes are overexpressed in
NASH, and an array of proinflammatory factors are secreted by
KCs, NKT cells, HSCs, DCs, monocytes, and lymphocytes, perpetu-
ating a cycle of injury and DAMP release, which intensifies the
innate immune response.112 To dampen T-cell responses during
NASH, the induction of oral tolerance by the administration of
anti‐CD3 mAbs is currently being explored in murine models.61 In
a leptin-deficient model of fatty liver, oral anti‐CD3 mAbs alleviate
hepatic fat accumulation, improve liver enzymes, and normalize
serum glucose levels.113 Thus, a randomized, controlled clinical
trial was conducted to determine the efficacy of oral anti‐CD3
mAbs on human NASH subjects over a 30-day period (Table 2).114

Treated patients demonstrated significant reductions in triglycer-
ide levels and liver enzymes and elevations in TGF-β, indicating
anti-inflammatory augmentation. Overall, this work highlights the
important role T-cell responses play in NASH and suggest a
therapeutic strategy for immune modulation. Further research is
warranted to determine the utility of anti-CD3 mAbs in all stages
of disease and potential interactions with the overlapping
pathways seen in metabolic syndrome.
In addition, the role of endotoxin in the inflammatory

pathophysiology of NASH has long been hypothesized, and in
human studies, increased plasma IgG levels were found in patients
with biopsy-associated disease and correlated with disease
severity.115 Following this discovery, hyperimmune colostrum
preparations against bacterial LPS alleviated several metabolic
abnormalities associated with NASH, primarily lessening chronic
inflammation and improving insulin resistance.116 This strategy is
currently being tested in pediatric patients with NAFLD for which
no approved therapeutic intervention exists (NCT03042767) and
follows the promising results observed in adult experiments in
which IMM-124E, a hyperimmune bovine colostrum enriched with
IgG against Escherichia coli, resulted in improvements in clinical
parameters for alcoholic hepatitis (NCT01968382).
In murine and human models, monocytes have emerged as key

mediators of hepatic injury through chemokine regulation and
appear to be attractive targets for therapeutic interventions.
Pharmacological blockade of CCR2 blocked macrophage infiltra-
tion, steatohepatitis, and fibrosis in mice with chronic liver
injury.117,118 These results await successful translation into clinical
use in affected patients, and the Centaur Trial (NCT02217475) is
currently studying the effects of antagonizing CCR2 and CCR5 in a
phase 2b clinical trial of NASH patients and fibrosis.

Liver surgery and ischemic injury
In hepatic surgery, the proinflammatory cytokines produced
following IRI, especially in the context of transplantation, are
potential therapeutic targets. The complexity and interactions of
inflammatory factors have made it difficult to design a therapeutic
strategy that could interact with the overlapping signaling
pathways involved. The challenge in liver surgery is to identify
agents that could abrogate ischemic insults and IRI within a
realistic timeline while also minimizing collateral deleterious
effects to the liver and other organs. One of the most significant
improvements in transplantation surgery has been in the area of
allograft machine perfusion and preservation. In this context,
ex vivo machine perfusion strategies to minimize ischemic and
inflammatory injury in transplanted livers have gained attention
and are slowly being integrated into clinical practice.119,120 Two
main perfusion approaches exist for the liver: (a) normothermic
perfusion, which uses blood or oxygenated perfusates at
physiologic temperatures, and (b) hypothermic perfusion using
cooled oxygenated fluids.121,122 In both approaches, livers are
perfused ex vivo immediately following procurement rather than
undergoing static cold storage, and at both temperatures,
acceptable viability measures and patient survival outcomes haveTa
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been achieved.123,124 Normothermic interventions aim to sca-
venge ROS, DAMPs, and proinflammatory cytokines using
perfusate scavengers.121,125 During hypothermic perfusion, meta-
bolic processes are slowed to reduce endothelial cell injury and KC
activation.126 An adjunct to pre-existing machine technology
could be cytokine filtration techniques, which have shown some
success in experimental lung perfusion models.127 This technique
allows for cytokine removal and the clearance of accumulated
inflammatory mediators that are associated with worse outcomes
in transplantation, and this approach has seen favorable outcomes
in allograft function. A similar tool is currently under investigation
using novel hypothermic oxygenated perfusion techniques in liver
transplantation (NCT04203004) and could potentially expand the
donor pool by optimizing high-risk allograft function.

Immunometabolism
More recently, an intriguing link has been made between itaconate
and antioxidant expression, suggesting that the former may
promote significant anti-inflammatory phenotypes via an Nrf2
mechanism and offering an exciting therapeutic target for sterile
inflammation128 (Fig. 6). Itaconate has recently been shown to
control pulmonary fibrosis in a murine model by decreasing
fibroblast activity, and this antifibrotic effect may be a viable
therapeutic strategy in hepatic fibrosis in which the inflammatory
cascade results in concurrent fibroblast activation and wound
healing.129 An important emerging observation is that the same
stimulus does not necessarily illicit the same damage in every liver.
Some livers seem to be better protected from damage than others.
The wide spectrum of immune activity is key to the diverse
pathologies seen in response to a given stimulus, and of particular
importance is the wide range of pathological injuries that can be

induced in different individuals, indicating the importance of genetic
influences. In a recent study, one-third of obese individuals
undergoing bariatric surgery did not exhibit liver fibrosis, and a
high proportion of these individuals also had normal insulin
resistance.130 This finding was in contrast to the group who were
metabolically unhealthy and who also had liver fibrosis. It is likely
that metabolic activity in hepatocytes, particularly the production of
Nrf2, which mediates HIF-1α activation, the induction of protective
mechanisms against oxidation, and the activation of the mTOR
pathway, is key to protecting against sterile inflammation during IRI.
In this context, changing the nutritional regimen of donors prior to
organ collection may have a profound effect on the response of the
liver to IRI after transplantation.

Concluding remarks
Hepatic inflammatory mechanisms maintain liver homeostasis and
protect the body from injury and harmful pathogens while
maintaining the liver parenchyma and other organs. Immunologi-
cal tolerance is balanced by a proinflammatory and anti-
inflammatory micromilieu generated by diverse immune cell
populations that play both physiological and pathological roles.
While there has been considerable progress in the field of hepatic
immunology, several molecular mechanisms and the oftentimes
contradictory interplay of immune factors require additional
clarification. Although there are many branches of current research
aiming to define the hepatic microenvironment, the myriad of local
and systemic cellular interactions add to the complexity of immune
biology and can obscure the responses to conventional and
targeted immune therapies. The clinical implications of an altered
hepatic immune environment that often results from global
immune aberrations, rather than single isolated deviations from
physiological cellular homeostasis, have been a clinical obstacle to
date, but promising preliminary results from human studies in the
experimental setting are currently awaiting translation to routine
care. The challenge in this field is in identifying therapeutic
strategies that can target the array of myeloid, lymphoid, and
nonimmune cells without compromising the healthy parenchyma.
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