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Rationale: Genome-wide association studies (GWAS) have identified
loci influencing lung function, but fewer genes influencing chronic
obstructive pulmonary disease (COPD) are known.
Objectives: Perform meta-analyses of GWAS for airflow obstruction,
akeypathophysiologiccharacteristicofCOPDassessedbyspirometry,
inpopulation-basedcohorts examiningall participants, ever smokers,
never smokers, asthma-free participants, andmore severe cases.
Methods: Fifteen cohorts were studied for discovery (3,368 affected;
29,507 unaffected), and a population-based family study and ameta-
analysis of case-control studieswere used for replication and regional
follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction
was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than
their respective lower limits of normal as determined by published
reference equations.
Measurements and Main Results: The discovery meta-analyses identi-
fiedone regionon chromosome15q25.1meetinggenome-wide sig-
nificance in ever smokers that includesAGPHD1, IREB2, andCHRNA5/
CHRNA3 genes. The region was also modestly associated among
never smokers. Gene expression studies confirmed the presence of
CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial
cells. A single-nucleotide polymorphism in HTR4, a gene previously
related to FEV1/FVC, achieved genome-wide statistical significance
in combinedmeta-analysis. Top single-nucleotidepolymorphisms in
ADAM19,RARB, PPAP2B, andADAMTS19werenominally replicated in
the COPDmeta-analysis.
Conclusions: These results suggest an important role for theCHRNA5/
3 region as a genetic risk factor for airflow obstruction that may be
independentof smokingand implicate theHTR4gene in theetiology
of airflow obstruction.

Keywords: chronic obstructive pulmonary disease; single-nucleotide

polymorphism; genes

Chronic obstructive pulmonary disease (COPD) is the third lead-
ing cause of death worldwide, and cigarette smoking is the most
widely recognized risk factor for this disease. COPD is defined
based on spirometry as airflow obstruction that is not fully revers-
ible after administration of a bronchodilator. Airflow obstruction
is a key pathophysiologic characteristic of COPD that is assessed
by spirometry. BothCOPDand spirometrymeasures of lung func-
tion have been demonstrated to have a genetic component. Family
studies have reported an increased risk for COPD in relatives of a
COPD proband (1) as well as significant heritability of pulmonary
function measured by spirometry in population-based cohorts (2).
The a1-antitrypsin gene (SERPINA1/A1AT) is known to be
associated with COPD and leads to increased risk for early-onset
disease among individuals carrying the susceptibility alleles, but
few other genes have such a conclusive relationship to COPD.

Recent genome-wide association studies (GWAS) have exam-
ined two spirometry measures of lung function, FEV1 and its
ratio to FVC (FEV1/FVC). Two large-scale GWASmeta-analyses
identified a total of 11 loci related to FEV1 or FEV1/FVC (3, 4),
and a larger meta-analysis incorporating these studies along with
new studies identified an additional 16 loci (5). Two genetic loci
identified by the above studies, HHIP and FAM13A, have been
demonstrated to influence risk of COPD at genome-wide levels
of statistical significance (6–9). GWAS of COPD have also iden-
tified associations with SNPs in a region on chromosome 15q25.1
that includes cholinergic nicotinic receptor genes (CHRNA5-
CHRNA3-CHRNB4) and the iron-responsive element binding
protein 2 (IREB2) (7), but some questions remain as to the un-
derlying genetic signal because of substantial linkage disequilib-
rium in the region. This region has also been associated with lung
cancer (10, 11) and nicotine dependence (12–15), leading to the
hypothesis that the association with the various disease endpoints
may be mediated through the nicotinic receptor genes and thus
smoking, smoking intensity, and cessation (16). In a meta-analysis
of lung cancer among never smokers, no association to the
CHRNA genes was observed, supporting the hypothesis that
association was mediated through smoking behavior (17).

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Genome-wide association studies of pulmonary function in
population-based studies have discovered numerous loci, but
association to a standardized definition of airflow obstruction
has not yet been evaluated within population-based studies.

What This Study Adds to the Field

This is the largest study to date to evaluate genetic predic-
tors of airflow obstruction.We confirm the association to the
chromosome 15 CHRNA5/CHRNA3 gene cluster and dem-
onstrate nominal association to the region in never smokers
with airflow obstruction. We also implicate the HTR4 gene
in the pathogenesis of airflow obstruction.
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However, the observation of increased IREB2 protein and
mRNA expression in COPD lung tissue compared with controls
supports its potential involvement as well (18).

The standard definition of COPD is based on the presence of
airflow obstruction that persists after administration of bronchodi-
lator (19). In large population-based cohorts, post-bronchodilator
spirometry is not generally available, so we have studied prebron-
chodilator airflow obstruction as a proxy for COPD. In this study,
we performed GWAS using a standardized definition of airflow
obstruction and control subjects across 15 population-based co-
hort studies and conducted a meta-analysis. We then sought rep-
lication of our top single-nucleotide polymorphisms (SNPs) and
regions in a set of four COPD case-control studies previously
included in a meta-analysis and in a population-based family study
that used the same airflow obstruction phenotype definitions used
in the discovery analyses.

METHODS

Discovery Phase

Most of the cohorts used in the discovery phase of thismeta-analysis were
included in meta-analyses of cross-sectional quantitative pulmonary
function measures in the Cohorts for Heart and Aging Research in Ge-
nomic Epidemiology (CHARGE) consortium (3), the SpiroMeta con-
sortium (4), and/or their joint analysis (5). Cohorts not included in
previous GWAS discovery sets for pulmonary function include Rotter-
dam Study III (RS3), Swiss Study on Air Pollution and Lung and Heart
Disease in Adults (SAPALDIA), Lothian Birth Cohort (LBC1936),
Multi-Ethnic Study of Atherosclerosis (MESA), and COPD Pathology:
Addressing Critical gaps, Early Treatment and diagnosis, and Innovative
Concepts (COPACETIC). All of the included participants are white and
of European descent.

Standardized definitions of airflow obstruction based on the lower limit
of normal of FEV1 and FEV1/FVC from the National Health and Nutri-
tion Examination Survey III prediction equations (20) were used across all
cohorts. The presence of airflow obstruction was defined as an FEV1 and
FEV1/FVC both less than the lower limit of normal (21) based on pre-
diction equations that include age, age2, and height2 calculated sepa-
rately by sex. Unaffected participants were defined by FEV1, FVC,
and FEV1/FVC all above the lower limit of normal. Individuals be-
low the lower limit of normal for FEV1 or FEV1/FVC but not both
were excluded from these analyses. Logistic regression models were ad-
justed for current and former smoking dummy variables, pack-years of
smoking, age, sex, standing height, center/cohort as needed, and
principal components for genetic ancestry as needed.

Genome-wide imputation and analyses were performed by the cohort
investigators, and results were shared for meta-analysis. Details of individ-
ual cohorts’ imputation and GWAS methods are provided in the online
supplement text and Table E1 in the online supplement. Genome-wide
and regional meta-analyses were performed using METAL software (22)
with inverse variance weighting to combine effect size estimates after
applying a genomic control correction (23).

Five discovery analyses were performed. GWAS were performed in
(1) all cohorts with both ever and never smokers, (2) ever smokers, (3)
never smokers, (4) asthma-free participants, and (5) the subset of more
severe airflow obstruction with FEV1 less than 65% predicted (exclud-
ing milder cases from analysis). Never smoking GWAS were performed
in eight cohorts. In the 10 cohorts that collected self-reported asthma
data, an analysis was performed excluding all participants reporting a his-
tory of asthma with diagnosis before age 40 years or missing onset age.

Regional Meta-analysis and Replication

Two strategies were implemented for follow-up of top results. In two
regions with association signals spanning multiple genes in discovery
meta-analyses, results across the whole region were requested from
the replication studies, and combined meta-analyses were performed
to refine the association signal. These regions were located on chromo-
some 6 (27,599,278–32,787,304 bp) and chromosome 15 (76,499,754–
76,711,042 bp). In addition, 60 SNPs with P values less than or equal
to 1 3 1025 in any of the five discovery meta-analyses were selected for
replication. Combined meta-analysis was performed with the Family
Heart Study (FamHS), which evaluated the same airflow obstruction
phenotype as used in the discovery phase (331 affected and 2,550 un-
affected). Replication was further evaluated in a meta-analysis of stud-
ies with clinically ascertained COPD (3,499 cases and 1,922 control
subjects) (24). Gene expression in lung tissues was evaluated for two
genes on chromosome 15. Additional details are included in the online
supplement.

RESULTS

Descriptive characteristics of the 15 discovery cohorts are pro-
vided in Tables 1 and 2. The mean FEV1 % predicted for partic-
ipants with airflow obstruction ranged from 48.9 to 68.7% across
cohorts, and for unaffected participants the means were generally
around 100%. The mean FEV1/FVC ratio ranged from 49.5 to
62.5% among affected participants and 74.1 to 81% among un-
affected participants across the cohorts. The mean ages at
measurement of spirometry across the cohorts ranged from 45
to 76 years. The number of participants contributing to each of
the five discovery GWAS meta-analyses are provided in Table 3.

TABLE 1. DESCRIPTIVE CHARACTERISTICS OF COHORTS INCLUDED IN DISCOVERY META-ANALYSIS

ARIC FHS CHS COPACETIC B58C EPIC MESA

No. affected, 914 571 402 312 264 127 104

No. unaffected 6,602 5,866 2,183 996 4,374 1,023 979

Age, yr 54.3 (5.7) 51.6 (14.6) 72.3 (5.3) 60.2 (5.6) 45.2 (0.39) 58.2 (9.0) 66.1 (9.8)

Male, % 47.2 46.4 39.4 100 49.6 46.8 49.6

Height, cm 169 (9) 168 (10) 165 (9) 179 (6) 169 (9) 167 (9) 169 (10)

BMI, kg/m2 27.0 (4.7) 27.2 (5.2) 26.2 (4.3) — 27.4 (4.9) 26.4 (3.9) 28.0 (5.2)

Current smoker, % 21.8 14.2 9.3 55.1 21.3 10.1 7.9

Former smoker, % 35.8 38.1 39.7 44.9 49.1 44.6 50.8

Pack-years smoking* 27.5 (21.4) 21.9 (21.2) 32.2 (26.7) 39.6 (17.0) 14.7 (11.7) 17.6 (16.0) 29.4 (28.5)

FEV1/FVC

Affected 58.1 (8.6) 58.6 (8.3) 52.0 (10.7) 51.0 (9.1) 62.5 (7.0) 57.0 (8.5) 56.6 (9.2)

Unaffected 76.6 (4.4) 77.6 (5.3) 74.1 (5.6) 75.5 (4.8) 80.9 (5.6) 81.0 (6.4) 75.5 (5.8)

FEV1 % predicted

Affected 62.2 (13.4) 63.2 (12.8) 52.1 (15.5) 58.9 (11.1) 68.7 (9.5) 57.1 (13.8) 61.0 (12.7)

Unaffected 99.5 (11.1) 100.4 (11.8) 98.4 (13.5) 105.8 (12.8) 100.7 (10.7) 96.6 (9.9) 98.2 (12.0)

Definition of abbreviations: ARIC ¼ Atherosclerosis Risk in Communities; B58C ¼ British 1958 Birth Cohort; CHS ¼ Cardiovascular Health Study; COPACETIC ¼ COPD

Pathology: Addressing Critical gaps, Early Treatment and diagnosis, and Innovative Concepts; EPIC ¼ European Prospective Investigation into Cancer and Nutrition; FHS ¼
Framingham Heart Study; MESA ¼ Multi-Ethnic Study of Atherosclerosis.

Data are presented as mean (SD) unless otherwise indicated.

* Pack-years calculated among current and former smokers.
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The genomic control (lGC) values ranged from 0.946 to 1.045
for each cohort’s GWAS and from 1.011 to 1.060 in the meta-
analysis (Table E2). Figures E1 to E5 present the Manhattan
and quantile-quantile (QQ) plots for the five discovery meta-
analyses.

Discovery Meta-analyses

One region on chromosome 15 had 11 SNPs with genome-wide
significant results (P values, 53 1028) in discovery meta-analysis
of ever smokers (Table 4). An SNP in the AGPHD1 gene be-
tween the IREB2 gene and CHRN gene cluster was the top
association with airflow obstruction among ever smokers
(rs8031948, P value ¼ 2.8 3 1029) with the minor allele

conferring a 22% higher risk of airflow obstruction. Among
14 cohorts with both smoking and never-smoking participants,
the top SNP results for all subjects combined were found in the
same chromosome 15 region but localized to the CHRNA5
gene (rs17486278, P value ¼ 1.93 1027). For comparison, results
among never smokers (504 affected, 10,690 unaffected from eight
cohorts) are included in Table 4, and the smallest P value in the
region (8.4 3 1025) occurs at a synonymous SNP (rs1051730) in
CHRNA3. The odds ratios (OR) shown in Table 4 demonstrate
consistency in the effect size for the tested allele across the anal-
yses of all cohorts with both ever and never smoking participants
(14 cohorts), ever smokers (15 cohorts), and never smokers
(8 cohorts). The results in Table 4 were based on meta-analyses

TABLE 2. DESCRIPTIVE CHARACTERISTICS OF ADDITIONAL COHORTS INCLUDED IN DISCOVERY META-ANALYSIS

AGES Health ABC RS1 SAPALDIA BHS RS3 LBC1936 RS2

No. affected, 109 108 99 98 89 70 61 40

No. unaffected 1,562 1,129 1,003 833 661 1,001 627 668

Age, yr 76.2 (5.6) 73.8 (2.8) 74.4 (5.7) 51.0 (11.1) 54.6 (16.3) 56.6 (5.5) 69.6 (0.9) 67.1 (6.3)

Male, % 40.6 52.1 42.9 48.1 44.0 42.3 49.4 43.8

Height, cm, 167 (9) 167 (9) 167 (9) 169 (9) 168 (9) 171 (9) 166 (9) 168 (9)

BMI, kg/m2 27.1 (4.5) 26.5 (4.1) 27.4 (4.0) 25.7 (4.3) 25.8 (4.0) 27.4 (4.6) 27.4 (4.1) 27.6 (4.0)

Current smoker, % 9.7 6.6 10.7 20.4 16.4 19.0 11.1 13.4

Former smoker, % 42.2 49.0 56.2 32.9 26.8 47.0 40.7 51.7

Pack-years smoking* 24.5 (22.0) 36.0 (32.4) 25.8 (23.0) 21.5 (23.0) 20.1 (19.6) 18.5 (18.0) 34.3 (23.1) 23.8 (22.9)

FEV1/FVC

Affected 49.5 (18.1) 56.3 (6.1) 56.0 (7.2) 59.2 (7.3) 58.2 (9.8) 59.2 (8.4) 54.6 (8.6) 56.7 (6.9)

Unaffected 75.6 (7.2) 76.0 (5.1) 75.6 (5.4) 76.8 (5.0) 78.4 (5.4) 80.2 (5.8) 80.4 (6.7) 78.2 (5.9)

FEV1 % predicted

Affected 48.9 (20.2) 55.3 (11.6) 56.9 (11.0) 67.6 (10.4) 57.3 (16) 60.4 (13.3) 50.8 (10) 58.8 (10.5)

Unaffected 93.2 (18.3) 100.2 (14.0) 102.8 (18.7) 103.5 (11.3) 98.9 (11.7) 104.6 (13.1) 100.4 (12.2) 105.5 (17.3)

Definition of abbreviations: AGES ¼ Age, Gene, Environment Susceptibility; BHS ¼ Bussleton Health Study; Health ABC ¼ Health, Aging and Body Composition;

LBC1936 ¼ Lothian Birth Cohort; RS1 ¼ Rotterdam Study I; RS2 ¼ Rotterdam Study II; RS3 ¼ Rotterdam Study III; SAPALDIA ¼ Swiss Study on Air Pollution and Lung and

Heart Disease in Adults.

Data are presented as mean (SD) unless otherwise indicated.

* Pack-years calculated among current and former smokers.

TABLE 3. SAMPLE SIZES CONTRIBUTED BY EACH COHORT FOR THE FIVE DISCOVERY META-ANALYSES OF AIRFLOW OBSTRUCTION

All Participants Ever Smokers Never Smokers Asthma-Free* FEV1 , 65%†

Affected Unaffected Affected Unaffected Affected Unaffected Affected Unaffected Affected Unaffected

ARIC 914 6,602 821 3,510 93 3,092 814 6,355 452 6,602

FHS 571 5,866 457 2,909 114 2,957 391 5,210 274 5,866

CHS 402 2,183 317 950 85 1,233 363 2,135 292 2,183

RS1 99 1,003 87 650 12‡ 353‡ 97x 967x 68 1,003

RS2 40 668 37 424 3‡ 244‡ NA NA 29 668

RS3 70 1,001 57 650 13‡ 351‡ NA NA 39 1,001

Health ABC 108 1,129 94 593 14‡ 536‡ 70 1077 80 1,129

AGES 109 1,562 81 787 28 775 NA NA 34 1,562

EPIC 127 1,023 79 490 48 533 110 992 88 1,023

BHS 89 661 46 278 43 383 20 421 53 661

SAPALDIA 98 833 59 437 39 396 42 620 38 833

LBC1936 61 627 50 306 11‡ 321‡ 60 622 56 627

B58C 264 4,374 210 3,053 54 1,321 183 4,036 75 4,374

COPACETIC 0 0 312 996 NA NA NA NA 142 996

MESA 104 979 89 533 15‡ 531‡ 85 923 54 979

Total 3,056 28,511 2,796 16,566 504 10,690 2,138 22,391 1,774 29,507

Definition of abbreviations: AGES ¼ Age, Gene, Environment Susceptibility; ARIC ¼ Atherosclerosis Risk in Communities; B58C ¼ British 1958 Birth Cohort; BHS ¼
Bussleton Health Study; CHS ¼ Cardiovascular Health Study; COPACETIC ¼ COPD Pathology: Addressing Critical gaps, Early Treatment and diagnosis, and Innovative

Concepts; EPIC ¼ European Prospective Investigation into Cancer and Nutrition; FHS ¼ Framingham Heart Study; Health ABC ¼ Health, Aging and Body Composition;

LBC1936 ¼ Lothian Birth Cohort; MESA ¼ Multi-Ethnic Study of Atherosclerosis; RS1 ¼ Rotterdam Study I; RS2 ¼ Rotterdam Study II; RS3 ¼ Rotterdam Study III;

SAPALDIA ¼ Swiss Study on Air Pollution and Lung and Heart Disease in Adults.

* Asthma-free: no history of an asthma diagnosis before age 40 years; participants reporting asthma with missing data on age at diagnosis were also excluded.
y FEV1 , 65%: cases were restricted to those with FEV1 , 65% and FEV1/FVC less than the lower limit of normal; the definition of control subjects was the same as used

for all participants.
zNot analyzed due to low number of cases.
x Results were not available for discovery meta-analyses.
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that included different cohorts as presented in Table 3, and thus
the ever and never smoker results do not reflect a straightfor-
ward stratified analysis of all participants. The inclusion of the
COPACETIC study in the ever smokers meta-analysis contrib-
uted to the improved association signal in the region. In the
GWAS of a more severe airflow obstruction phenotype defined
by FEV1 less than 65% predicted, a missense SNP in the
CHRNA5 gene (rs16969968, Asp398Asn) had the third ranked
P value (5 3 1027) with an OR of 1.22.

No other genome-wide significant associations were identified
among discovery meta-analyses. In the meta-analysis of never
smokers (504 affected and 10,690 control subjects), several top
SNPs were observed 570 kb away from ADARB2 (the closest
gene), and results from the FEV1 less than 65%meta-analysis also
implicated this locus. Among never smokers, the chromosome 6
major histocompatability locus (MHC) region was among top
results. The discovery meta-analysis results for the 60 SNPs se-
lected for replication are included in Table 5. Genome-wide
results for all five definitions of airflow obstruction are available
in the online supplement.

Meta-analysis of Chromosome 6 and 15 Regions

with Replication Studies

Regional meta-analyses were performed to further evaluate the
regions on chromosomes 6 and 15 with the additional two rep-
lication studies. In discovery analysis of all airflow obstruction,
the chromosome 6 MHC locus at 6p21.33 was among the top
results (smallest P value ¼ 6.8 3 1027, rs3094013). The closest
gene to the top SNP was HLA complex P6 (HCP5), although
the extensive linkage disequilibrium in the region makes inter-
pretation difficult. When discovery results were meta-analyzed
with the replication studies, the previous associations were at-
tenuated. The top SNP from the meta-analysis of discovery and
replication results had an OR of 1.13 for the common allele
(66%) and a P value of 6.03 3 1026 near the HLA-A gene.
Thirty-six SNPs in chromosome 6 with combined meta-analysis
P values less than 1 3 1024 are provided in Table E3.

On chromosome 15, after meta-analysis of airflow obstruc-
tion in ever smokers from discovery populations with replica-
tion studies, the order of the top hits was generally unchanged
and P values improved, reaching 2.6 3 10215. The COPD
case-control studies meta-analysis included only ever smokers,
so the FamHS served as a sole replication study for the never
smoker regional results. Figure 1 depicts the chromosome 15
regional association of the meta-analysis of combined discovery

and replication cohorts for the separate groups of ever smokers
(A) and never smokers (B), created using LocusZoom (25).
Figure 2 is a forest plot presenting the study-specific results
among never smokers that demonstrates similar effect sizes
across the cohorts.

Replication of Top 60 SNPs and Combined Meta-analysis

Table 5 presents the 60 SNPs selected for replication studies
(not including the chromosome 6 and 15 SNPs included in the
regional meta-analyses). A P value of 8 3 1024, representing
Bonferroni correction for 60 tests at the a ¼ 0.05 level, was
selected a priori as the threshold for statistically significant
replication. No SNPs achieved the replication criterion. In
a meta-analysis combining the discovery results with the
FamHS, one SNP achieved genome-wide statistical signifi-
cance (rs7733088 in HTR4) with a 38% frequent minor allele
conferring an OR of 0.81 (P ¼ 4.09 3 1029). Of the top 60
SNPs, four had nominal association (P values , 0.05) in the
COPD meta-analysis and a consistent risk allele; these SNPs
were located in ADAM19, RARB, PPAP2B, and ADAMTS19
(Table 6).

Association of Spirometry-associated SNPs

with Airflow Obstruction

Previous meta-analyses in the CHARGE and SpiroMeta consor-
tia (3–5) identified 75 SNPs associated with either FEV1 or FEV1/
FVC at genome-wide significance (P value < 5 3 1028). We
examined the association P values for airflow obstruction
for these 75 SNPs in the meta-analysis results from all subjects
and from ever smokers. Association for these 75 SNPs represents
58 independent tests using a multiple-testing correction that
incorporates the linkage disequilibrium structure derived from
HapMap European (CEU) samples (26). Accordingly, we con-
sidered a P value of 8.6 3 1024 as the criterion for statistically
significant association with airflow obstruction (Bonferroni cor-
rection for 58 tests at the a ¼ 0.05 level) given the a priori asso-
ciation with spirometry. Among all participants, SNPs in RARB,
GPR126, HTR4, C10orf11, near HHIP, and near HLA-DRA
were statistically significantly associated with airflow obstruc-
tion. Among smokers, HTR4, RARB, GPR126, and THSD4
were associated with airflow obstruction. Results for the 75
SNPs are presented in Tables E4 and E5. When only cohorts that
did not contribute to the published spirometry findings (3–5)
were considered (RS3, SAPALDIA, LBC1936, MESA, and
COPACETIC) as an independent sample, power was reduced,

TABLE 4. GENOME-WIDE SIGNIFICANT RESULTS ON CHROMOSOME 15 FROM DISCOVERY META-ANALYSIS
OF AIRFLOW OBSTRUCTION

All* Never Smokers Ever Smokers

Coded Allele 14 Cohorts 8 Cohorts 15 Cohorts

SNP Position Gene Function Allele Frequency OR P Value OR P Value OR P Value

rs8031948 76603112 AGPHD1 Intronic t 0.35 1.17 4.76 3 1027 1.15 1.53 3 1023 1.22 2.78 3 1029

rs931794 76613235 AGPHD1 Intronic a 0.65 0.86 6.18 3 1027 0.87 1.46 3 1023 0.82 4.69 3 1029

rs10519203 76601101 AGPHD1 Intronic a 0.65 0.86 7.16 3 1027 0.86 1.27 3 1023 0.82 5.67 3 1029

rs9788721 76589924 AGPHD1 Intronic t 0.65 0.86 1.04 3 1026 0.86 1.17 3 1023 0.82 9.76 3 1029

rs2036527 76638670 a 0.34 1.18 3.51 3 1027 1.18 2.85 3 1024 1.22 1.72 3 1028

rs17486278 76654537 CHRNA5 Intronic a 0.66 0.85 1.91 3 1027 0.84 1.06 3 1024 0.83 2.43 3 1028

rs7180002 76661048 CHRNA5 Intronic a 0.66 0.85 2.23 3 1027 0.84 1.20 3 1024 0.83 2.68 3 1028

rs1051730 76681394 CHRNA3 Synonymous a 0.33 1.17 3.29 3 1027 1.20 8.36 3 1025 1.21 3.36 3 1028

rs16969968 76669980 CHRNA5 Missense a 0.34 1.17 3.46 3 1027 1.19 1.25 3 1024 1.20 3.47 3 1028

rs951266 76665596 CHRNA5 Intronic a 0.34 1.17 3.64 3 1027 1.19 1.41 3 1024 1.21 3.47 3 1028

rs1317286 76683184 CHRNA3 Intronic a 0.66 0.85 3.93 3 1027 0.84 1.18 3 1024 0.83 4.74 3 1028

Definition of abbreviation: OR ¼ odds ratio.

* All cohorts with both ever and never smoking participants.
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TABLE 5. ODDS RATIOS AND P VALUES FOR THE 60 SINGLE-NUCLEOTIDE POLYMORPHISMS IDENTIFIED IN THE DISCOVERY
META-ANALYSIS AND SELECTED FOR REPLICATION AND COMBINED META-ANALYSIS WITH THE FAMILY HEART STUDY

Coded Allele Discovery Meta-analysis Family Heart Study*

Combined

Meta-analysis

SNP Allele Freq Chr Position Closest Gene OR P Value Analysis OR P Value OR P Value

rs7733088 A 0.38 5 147836526 HTR4 0.82 6.53 3 1028 Smoker 0.75 0.015 0.81 4.09 3 1029

rs2044029 A 0.4 15 69467013 THSD4 1.16 4.95 3 1027 All 1.20 0.078 1.17 1.06 3 1027

rs181654 A 0.28 10 119369646 EMX2 0.82 1.24 3 1026 No asthma 0.76 0.030 0.81 1.31 3 1027

rs4597955 A 0.59 5 147827466 HTR4 0.84 3.12 3 1026 Smoker 0.76 0.011 0.83 1.57 3 1027

rs12905014 T 0.95 15 90684844 ST8SIA2 0.58 5.24 3 1026 FEV1 65% 0.47 0.020 0.57 3.83 3 1027

rs11744671 T 0.92 5 156853809 ADAM19 0.72 8.25 3 1027 No asthma 0.77 0.264 0.72 4.51 3 1027

rs8033889 T 0.21 15 69467134 THSD4 1.18 2.49 3 1026 All 1.23 0.066 1.19 4.67 3 1027

rs6684428 A 0.16 1 56132401 PPAP2B 1.24 3.60 3 1027 Smoker 1.08 0.574 1.23 4.73 3 1027

rs4767234 A 0.59 12 113122231 TBX5 1.18 1.28 3 1026 Smoker 1.15 0.242 1.17 6.32 3 1027

rs4534959 A 0.97 18 60028136 SERPINB8 0.57 4.19 3 1027 FEV1 65% 0.91 0.844 0.58 6.90 3 1027

rs715921 A 0.31 13 23693489 SPATA13 1.22 5.18 3 1027 No asthma 1.07 0.551 1.20 7.60 3 1027

rs16889038 T 0.92 6 24414366 DCDC2 0.7 4.15 3 1027 FEV1 65% 0.95 0.845 0.72 7.94 3 1027

rs9536318 A 0.83 13 52392695 PCDH8 0.81 5.47 3 1026 No asthma 0.75 0.051 0.80 8.24 3 1027

rs1997352 A 0.26 3 25513321 RARB 0.85 4.29 3 1026 All 0.82 0.076 0.84 8.64 3 1027

rs10759102 A 0.33 9 9900123 PTPRD 0.81 4.66 3 1026 FEV1 65% 0.77 0.083 0.81 1.04 3 1026

rs13144621 T 0.32 4 109437378 LEF1 0.85 5.87 3 1027 All 0.98 0.850 0.86 1.20 3 1026

rs1982234 C 0.63 15 69478345 THSD4 1.16 4.80 3 1026 All 1.16 0.136 1.16 1.55 3 1026

rs7799265 C 0.95 7 28399001 CREB5 0.63 8.84 3 1027 FEV1 65% 0.91 0.742 0.65 1.71 3 1026

rs181652 A 0.54 10 119369077 EMX2 1.18 8.12 3 1026 No asthma 1.19 0.097 1.18 1.94 3 1026

rs11766496 C 0.12 7 71026786 CALN1 1.34 3.90 3 1027 All 0.97 0.855 1.30 2.01 3 1026

rs2263638 A 0.37 10 94158777 IDE 0.78 4.68 3 1026 Never smoker 0.80 0.275 0.78 2.53 3 1026

rs7850092 A 0.21 9 9899119 PTPRD 0.79 4.00 3 1026 FEV1 65% 0.85 0.324 0.79 2.60 3 1026

rs1329705 A 0.2 6 142795031 GPR126 0.79 3.75 3 1026 FEV1 65% 0.85 0.342 0.79 2.63 3 1026

rs11209261 A 0.76 1 68557801 GPR177 0.81 6.76 3 1026 FEV1 65% 0.80 0.191 0.81 2.78 3 1026

rs7607316 A 0.21 2 237186581 CXCR7 1.28 9.19 3 1026 Never smoker 1.35 0.152 1.29 3.21 3 1026

rs9975851 T 0.57 21 26638525 CYYR1 1.18 4.92 3 1026 No asthma 1.11 0.332 1.17 3.66 3 1026

rs12505749 C 0.92 4 57028869 SRP72 0.76 3.06 3 1027 All 1.22 0.258 0.79 4.69 3 1026

rs1207393 C 0.36 22 24983362 SEZ6L 0.83 8.69 3 1026 FEV1 65% 0.85 0.283 0.84 4.78 3 1026

rs12744110 T 0.25 1 56168897 PPAP2B 1.18 4.51 3 1026 Smoker 1.06 0.681 1.17 5.95 3 1026

rs11097912 T 0.33 4 107219911 MGC16169 0.85 6.04 3 1026 Smoker 0.92 0.497 0.85 5.95 3 1026

rs17086172 T 0.94 18 68378001 CBLN2 0.73 7.13 3 1026 No asthma 0.86 0.492 0.74 7.23 3 1026

rs2322734 A 0.96 3 4608492 ITPR1 0.67 7.19 3 1026 FEV1 65% 0.83 0.518 0.69 7.52 3 1026

rs8036030 A 0.39 15 72503662 SEMA7A 0.84 5.71 3 1026 No asthma 0.95 0.653 0.85 8.31 3 1026

rs892961 A 0.41 17 72911695 SEPT9 0.85 8.00 3 1026 No asthma 0.93 0.479 0.85 8.91 3 1026

rs7629245 T 0.15 3 186624551 MAP3K13 1.23 0.00001 Smoker 1.12 0.456 1.22 9.06 3 1026

rs2830165 T 0.59 21 26598463 APP 0.81 5.27 3 1026 Never smoker 0.98 0.892 0.82 9.55 3 1026

rs7686928 T 0.14 4 188970823 ZFP42 1.21 8.77 3 1026 Smoker 1.08 0.630 1.21 9.65 3 1026

rs9632471 C 0.72 5 128761894 ADAMTS19 0.76 5.54 3 1026 FEV1 65% 0.95 0.776 0.77 1.07 3 1025

rs4837614 T 0.15 9 118350186 ASTN2 0.76 4.56 3 1026 FEV1 65% 0.98 0.911 0.78 1.20 3 1025

rs12960805 A 0.41 18 7909707 PTPRM 1.27 6.22 3 1026 Never smoker 1.00 0.995 1.25 1.27 3 1025

rs1799257 A 0.12 19 53664351 PSCD2 1.37 2.08 3 1026 FEV1 65% 0.78 0.337 1.33 1.38 3 1025

rs1868466 A 0.79 16 76301059 KIAA1576 0.85 5.45 3 1026 All 1.00 0.997 0.86 1.39 3 1025

rs10518948 C 0.93 15 69415023 THSD4 0.68 9.91 3 1026 Never smoker 0.97 0.931 0.69 1.51 3 1025

rs6901575 A 0.1 6 28358963 PGBD1 1.24 6.76 3 1026 All 0.97 0.853 1.22 1.55 3 1025

rs3790728 T 0.97 1 215737150 GPATCH2 0.57 3.12 3 1026 FEV1 65% 4.24 0.060 0.60 1.58 3 1025

rs9511117 A 0.09 13 23660045 SPATA13 0.73 6.78 3 1026 Smoker 1.01 0.979 0.75 1.65 3 1025

rs4957070 A 0.63 5 600858 SLC9A3 0.85 9.09 3 1026 Smoker 0.98 0.874 0.86 1.65 3 1025

rs3814818 T 0.9 14 94263130 GSC 0.74 2.51 3 1026 FEV1 65% 1.24 0.357 0.77 1.68 3 1025

rs1895493 C 0.09 16 78122404 MAF 1.41 5.51 3 1026 Never smoker 0.77 0.460 1.37 1.72 3 1025

rs12872078 A 0.91 13 64002324 PCDH9 1.43 4.81 3 1026 FEV1 65% 0.96 0.876 1.37 1.75 3 1025

rs764593 T 0.11 3 3687236 LRRN1 0.76 3.89 3 1026 Smoker 1.11 0.563 0.79 2.64 3 1025

rs1408298 T 0.7 6 17199273 RBM24 0.81 8.19 3 1026 No asthma 1.00 0.972 0.83 2.95 3 1025

rs2164220 T 0.08 7 157447986 PTPRN2 1.42 9.80 3 1026 Never smoker 0.61 0.266 1.38 3.14 3 1025

rs10496694 A 0.09 2 133252637 NAP5 1.31 7.42 3 1026 Smoker 0.86 0.512 1.27 3.30 3 1025

rs11023434 C 0.23 11 15083724 INSC 1.33 7.78 3 1026 Never smoker 0.95 0.766 1.28 3.70 3 1025

rs1567398 T 0.43 8 8764214 MFHAS1 1.2 8.20 3 1026 FEV1 65% 0.91 0.519 1.17 3.98 3 1025

rs1125729 T 0.81 8 93427586 RUNX1T1 0.8 1.63 3 1026 FEV1 65% 1.59 0.014 0.83 4.89 3 1025

rs7163331 A 0.04 15 96260720 ARRDC4 1.55 6.81 3 1026 FEV1 65% 0.56 0.132 1.46 6.34 3 1025

rs12265908 A 0.97 10 2339319 ADARB2 0.59 6.92 3 1026 FEV1 65% 1.81 0.157 0.64 7.54 3 1025

rs7719062 T 0.08 5 1222044 SLC6A19 1.42 9.79 3 1026 Smoker 0.81 0.393 1.34 7.71 3 1025

Definition of abbreviations: Chr ¼ chromosome; Freq ¼ frequency; OR ¼ odds ratio; SNP ¼ single-nucleotide polymorphism.

SNPs are ordered by the combined meta-analysis P value.

* Family Heart Study results are generated from phenotypes consistent with the discovery analysis indicated, with affected/unaffected sample sizes: 331/2,550 all, 248/

1,003 smoker, 83/1,547 never smoker, 266/2,350 no asthma, 155/2,550 FEV1 65%.

Wilk, Shrine, Loehr, et al.: GWAS of Airflow Obstruction 627



and only the ADAM19 SNP in smokers achieved the Bonfer-
roni cutoff for significance (Table E6).

Gene Expression Results

Expression of CHRNA3 and CHRNA5 was evaluated in cDNA
from human whole lung, peripheral blood mononuclear cells,
and primary cultures of bronchial epithelial cells and airway

myocytes, together with control tissues (kidney, brain, and pla-
centa: see online supplement for methods). Both genes were
expressed in all lung-derived tissues examined. Within the lung,
expression of both CHRNA3 and CHRNA5 appeared strongest
in airway myocytes and epithelial cells. The identity of reverse
transcriptase–polymerase chain reaction products was confirmed
by direct sequencing of bands of the relevant size from at least one
tissue type for each gene.

Figure 1. Regional association plot for chromosome

15 presenting results from combined meta-analysis

of discovery and replication studies. X-axis is meg-
abase (Mb) position. Y-axis is negative log of

the P values. Linkage disequilibrium to the named

single-nucleotide polymorphism (SNP) (purple) is

depicted by degree of color according to the leg-
end. Nonsynonymous SNPs are depicted by an

inverted triangle and other coding SNPs by a square.

(A) Ever smokers. (B) Never smokers.
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DISCUSSION

Thesemeta-analyses included 32,875 participants from population-
based studies for discovery of loci associated with airflow ob-
struction. In addition, we attempted to replicate results in 2,881
participants from a population-based family study and a
meta-analysis of 5,421 participants from case-control studies
of clinically ascertained COPD. The present study confirms the
previously identified (7) association between the chromosome
15q25 region and airflow obstruction among smokers. Although
the number of participants with airflow obstruction among never
smokers was low (504 affected), and statistical power is therefore
limited, analyses of airflow obstruction among never smokers
also showed a nominal association to the Asp398Asn missense
SNP in CHRNA5 and to a synonymous SNP in CHRNA3.

Results from gene expression studies demonstrated that both
CHRNA5 and CHRNA3 were expressed in whole lung, airway
smooth muscle, and bronchial epithelial cells. In a publication
reporting CHRNA5 gene expression in normal lung tissue sam-
ples, the Asp398Asn genotype was strongly related to mRNA
levels, with homozygosity of the risk allele (A) associated with
2.5-fold lower mRNA levels compared with homozygosity for

the G allele (27). A similar pattern was observed for rs1051730
in the sputum of COPD cases, in which the minor allele was
associated with lower expression of CHRNA5 (28). The correla-
tion between associated SNP genotypes and CHRNA5 expres-
sion levels in the lung and sputum combined with our finding of
increased risk for airflow obstruction in never smokers suggests
that the variants in this region may have an influence on risk of
airflow obstruction that is not simply mediated by an influence on
nicotine dependence. Supporting a direct influence of variants in
this region on lung phenotypes, a CHRNA3/5 variant was re-
cently found to be associated with bronchial hyperresponsiveness
in children not exposed to cigarette smoke (29). Silencing
CHRNA5 in bronchial epithelial cells was found to reduce ex-
pression of adhesion molecules, thereby increasing cell motility,
which may influence the repair and remodeling processes that
lead to COPD (30). Our results suggest that the A allele of
rs16969968 confers as much as a 20% increased odds of airflow
obstruction, and based on the prior report, this increased risk
may be mediated by lower mRNA levels in lung tissue (27).

In addition to the chromosome 15q region, SNPs inHTR4met
genome-wide statistical significance in ever smokers. The HTR4
(5-hydroxytryptamine [serotonin] receptor 4) gene was originally
identified with association to FEV1/FVC in CHARGE (3) and
SpiroMeta (4), and subsequently showed a statistically significant
association with COPD in a targeted gene analysis of six loci in
the SpiroMeta cohorts (31). Serotoninergic receptors have been
demonstrated to regulate cytokine and chemokine release in hu-
man airway epithelial cells and have been implicated in the path-
ogenesis of asthma (32). The reduced risk of airflow obstruction
was strongest when limited to ever smokers, suggesting that var-
iation in HTR4 may contribute to the inflammatory response to
cigarette smoke.

Several genes represented among the top SNP results were
nominally replicated in the COPD case-control meta-analysis
(ADAM19, RARB, PPAP2B, and ADAMTS19). Of them, both
ADAM19 and RARB have been previously implicated in GWAS
of lung function as measured by spirometry (3–5). ADAM19 (a
disintegrin and metalloprotease domain 19) was originally shown
to be associated with FEV1/FVC in the CHARGE GWAS (3),
and these SNPs were subsequently reported to be associated with
COPD in a case-control study (33). Here, we demonstrate that
ADAM19 is associated with airflow obstruction in population-
based cohort studies. ADAM19 is expressed in bronchial epithe-
lial cells, bronchial smooth muscle, and interstitial inflammatory
cells and may have a role in immune defense and the inflamma-
tory process (34). ADAMTS19 (a disintegrin and metalloprotei-
nase with thrombospondin motifs 19) has several of the same
domains and has been shown to be expressed in fetal lung (35).
PPAP2B is a lipid phosphate phosphohydrolase, which are gen-
erally believed to influence surfactant secretion and have a role in
lung injury and repair (36).
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Figure 2. Forest plot depicting the association results for rs1051730

(CHRNA3) and airflow obstruction among never smokers in each cohort

and the meta-analysis. AGES ¼ Age, Gene, Environment Susceptibility;

ARIC¼ Atherosclerosis Risk in Communities; B58C¼ British 1958 Birth Co-
hort; BHS ¼ Bussleton Health Study; CHS ¼ Cardiovascular Health Study;

EPIC ¼ European Prospective Investigation into Cancer and Nutrition;

FamHS ¼ Family Heart Study; FHS ¼ Framingham Heart Study; SAPALDIA ¼
Swiss Study on Air Pollution and Lung and Heart Disease in Adults.

TABLE 6. FOUR SINGLE-NUCLEOTIDE POLYMORPHISMS WITH NOMINAL ASSOCIATION TO CHRONIC OBSTRUCTIVE
PULMONARY DISEASE AND CONSISTENT RISK ALLELE OUT OF 60 SINGLE-NUCLEOTIDE POLYMORPHISMS SELECTED
FOR REPLICATION FROM AIRFLOW OBSTRUCTION DISCOVERY GENOME-WIDE ASSOCIATION STUDIES

Coded Allele Airflow Obstruction Meta-analysis

COPD

Meta-analysis

SNP Allele Freq Chr Position Closest Gene Analysis OR P Value OR P Value

rs11744671 T 0.92 5 156853809 ADAM19 No asthma 0.72 4.51 3 1027 0.8 0.027

rs1997352 A 0.26 3 25513321 RARB All 0.84 8.64 3 1027 0.88 0.038

rs12744110 T 0.25 1 56168897 PPAP2B Smoker 1.17 5.95 3 1026 1.13 0.045

rs9632471 C 0.72 5 128761894 ADAMTS19 FEV1 65% 0.77 1.07 3 1025 0.86 0.045

Definition of abbreviations: Chr ¼ chromosome; COPD ¼ chronic obstructive pulmonary disease; Freq ¼ frequency; OR ¼ odds ratio; SNP ¼
single-nucleotide polymorphism.
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RARB (retinoic acid receptor b) was recently demonstrated
to be associated with lung function measures at genome-wide
significance in the combined CHARGE and SpiroMeta meta-
analysis (5). Retinoic acid (RA) has been evaluated as a potential
therapeutic agent for emphysema after results in rats demon-
strated reversibility of experimentally induced emphysema with
administration of RA (37); however, subsequent studies in ani-
mal models had conflicting results (38), and a small feasibility
study of RA for the treatment of emphysema did not show sig-
nificant improvement in lung function (39). The finding that
RARB minor alleles were associated with lower risk of airflow
obstruction may provide insight into which patients may benefit
from RA therapy or suggest modifying the design of RA thera-
peutics to target the b receptor.

The HHIP region was associated with airflow obstruction in
our look-up replication of spirometry-associated SNPs, which
was expected given the prior findings of association with COPD
in earlier GWAS (7, 9) and further replication in targeted stud-
ies of HHIP and COPD (8). This region of chromosome 4q31
including SNPs in HHIP and GYPA has also been shown to be
associated with lung cancer (40). Recently, a COPD risk hap-
lotype upstream of HHIP was identified to be associated with
reductions inHHIP promoter activity (41). Our meta-analysis is
able to confirm that rs6537296 is associated with airflow obstruc-
tion (P ¼ 3.2 3 1024), but the other SNP in the haplotype
(rs1542725) was not studied. Also, previously identified SNPs
in GPR126, THSD4, and near HLA-DRA were associated with
airflow obstruction, and GPR126 demonstrated a nominal asso-
ciation with COPD in a prior report focusing on clinically ascer-
tained cases and control subjects (33). It should be noted that
the look-up replication that supports the relation of these genes
with airflow obstruction is not statistically independent from the
original meta-analyses of spirometry traits because of overlap
between the samples. When only the cohorts not included in
the earlier published meta-analyses (3–5) were analyzed sepa-
rately, in this reduced sample size (567 affected, 2,922 unaf-
fected) only the ADAM19 gene achieved the cutoff criterion
for significant association with airflow obstruction.

The chromosome 6 region identified in discoverymeta-analysis
did not replicate when additional studies were included in the
meta-analysis. The regional meta-analysis results demonstrated
modest association (P values , 1 3 1024) across five megabases
in the HLA region, including 17 SNPs in the histone gene clus-
ter at 27.9 Mb. Our results are not able to clarify which gene or
combination of genes may give rise to the underlying association
signal given the extensive linkage disequilibrium in the MHC.
Recently, a meta-analysis of the COPD case-control cohorts that
served as replication cohorts in our study implicated a locus on
chromosome 19q13 (24) as a COPD susceptibility locus; however,
the rs7937 SNP identified is not replicated in the discovery meta-
analyses described here (P values ranged from 0.12 among never
smokers to 0.87 among ever smokers).

Our study has several limitations. Our cohorts had only pre-
bronchodilator spirometry, and thus we could not examine the
formal definition of COPD. Our main analysis used a definition
of airflow obstruction that includes persons with very mild ven-
tilatory impairment, and the participants who meet this defini-
tion may not all have COPD. Our definition of more severe
airflow obstruction is likely to be more comparable to clinically
ascertained COPD in the replication studies, but the numbers of
affected participants were reduced. In addition, our ability to ad-
dress asthma in the context of airflow obstruction was limited to
a subset of cohorts with self-reported asthma diagnoses. Last, as
our study was limited to white participants of European descent,
the generalizability of these findings to other ethnic groups is
unknown.

In summary, we performed meta-analyses and replication
studies using data from more than 40,000 study participants of
European ancestry to identify genetic loci influencing airflow ob-
struction as a categorical disease phenotype. We identified the
CHRNA3/5 genes and HTR4 at genome-wide significance, and
several genes that were implicated by previous GWAS of single
spirometry measures as quantitative phenotypes (ADAM19,
RARB) were among top results. Here we show, for the first time,
that a CHRNA5missense SNP is associated with airflow obstruc-
tion in never smokers, suggesting a main effect on risk of airflow
obstruction that is independent of the influence mediated
through effects on smoking habits. This was supported by gene
expression findings demonstrating the CHRNA3/5 genes in rele-
vant lung and airway tissues. Thus, CHRNA3/5 variants may me-
diate airflow obstruction in both ever and never smokers.
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