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Intelligence is an important indicator of physical, mental and social well-being. In old age,
intelligence is also associated with a higher quality of life and better health. Heritability
studies have shown that there are strong genetic influences, yet unknown, on intelligence,
including in old age. Other approaches may be useful to investigate the biological foundations
of intelligence differences. Proteomics is a proven technique in revealing biomarkers for certain
illnesses. In this pilot study, forty individuals were selected as the cognitive extremes from over
750 people in the Lothian Birth Cohort 1936 (age ~72 years) based on their high and low
intelligence scores, as measured by a general cognitive ability factor. Urine samples were used
as a stable, reliable and abundant source of proteins. Using capillary electrophoresis coupled to
mass spectrometry (CE-MS) technology, the proteome of the high and low intelligence groups
was determined. Data were calibrated and matched against the human urinary database, to
enable comparative assessment. At a nominal significance level (Pb0.05), there were several
candidate proteins for association with intelligence, including a zinc finger protein (ZNF653)
that has been associated with cognitive deficits, and complement C3 and collagen fragments
that have been associated with Alzheimer's disease. Results are preliminary, do not survive
multiple testing correction, and require validation. This pilot study shows the potential of this
novel proteomics approach, and its applicability to understanding the biological foundations of
intelligence differences.

© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Higher intelligence is associated with relative success in
education, better performance in the workplace, and better
physical and mental health and a longer life (Batty et al.,
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2007; Deary, Strand, et al., 2007; Gottfredson, 1997). In old
age, maintaining cognitive ability is associated with a higher
quality of life and being able to live independently. This is
especially important, because society has an increasing
proportion and absolute number of older people. It is a high
research priority to discover the determinants of cognitive
ability differences in old age (Deary, Johnson, & Houlihan,
2009). One appropriate place to search for a proportion of
these differences is in the genes. The heritability (additive
genetic contribution) of intelligence is about 50% across all
studies, but it increases substantially from childhood to
adulthood (Deary, Johnson, & Houlihan, 2009). It is still
highly heritable, probably at least 60%, in old age. Despite
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numerous studies, no single genetic locus has been associated
definitively with variance in cognitive ability, with the pos-
sible exception of a contribution of about 1% of the variance
from APOE in old age. Considering the high heritability
of intelligence this may seem surprising. However, cognitive
ability is likely to be under the influence of many genes each
having a very small effect, and the specific genetic variants
may be located outside the coding regions of the genes
making them harder to identify (Deary, Johnson, & Houlihan,
2009).

The dearth of positive results to date from molecular
genetic studies of cognitive abilities means that there are
few clues from genetic studies to the mechanistic biology of
cognitive differences, including in old age (Deary, Penke, &
Johnson, 2010). Searches for other biomarkers of cognitive
differences and age-related cognitive changes have used
blood-derived samples and examined, for example, inflam-
mation biology (e.g. C-reactive protein; Luciano et al., 2009),
telomeres (e.g., Harris et al., 2006), oxidative stress genes
(e.g., Harris et al., 2007), and cortisol (and the hypothalamic-
pituitary-adrenal axis more generally; e.g., MacLullich et al.,
2005). Whereas there are some positive leads from these
types of investigations, the effect sizes are typically small,
the results often unreplicated, and there are indications of
possible reverse causation; i.e., cases where cognitive traits
appears to result in biomarker levels rather than the reverse
(e.g. Luciano et al., 2009). In summary, neither the molecular
genetic approach nor the search for cognitive biomarkers has,
as yet, provided much insight into the mechanistic biology
of cognitive differences though the lifecourse. A review of
possible plasma biomarkers of mild cognitive impairment
and Alzheimer's disease suggested some that might be useful
to test in normal cognitive ageing, but they are likely to suffer
from the same limitations as previous studies (Song et al.,
2009).

The approaches described in the previous paragraph are
hypothesis-driven. However, technical advances in mass
spectrometry have brought about the possibility of a
complementary, hypothesis-free, multi-parametric “omic”
approach to biomarker discovery in intelligence. This
alternative approach is to look directly at the abundance of
the proteins under the control of the multiple genetic
variants that are thought to influence intelligence differ-
ences. Moreover, proteomics reflects epigenetic influences
on gene expression. Therefore, a proteomic approach is a
logical and potentially fruitful way to study differences in
intelligence–as suggested by, for example, Plomin et al.
(2006)–as it has been for many other age-related disorders
and traits (Schiffer et al., 2009). We propose to use urine as an
easily collectable source of proteins. Urine represents an
excellent specimen for proteome analysis, as it can be obtained
in high quantities without the need for special collection
procedures (Thongboonkerd, 2007), shows higher stability
thanblood (Kolch et al., 2005; von ZurMuhlen et al., 2009), and
enables the identification of valid biomarkers for renal as well
as systemic diseases (Decramer et al., 2006; Weissinger et al.,
2007). Mass spectrometry analysis of the human urinary
proteome has identified N1500 proteins in the soluble fraction
(Adachi et al., 2006) and N1100 proteins in urinary exosomes,
177ofwhichwere represented in theOMIMdatabase of disease
related genes (Gonzales et al., 2009). Recently, we identified
and validated urinary proteomic biomarkers for diabetes,
diabetes-associated micro- and macrovascular complications
(Meier et al., 2005; Mischak et al., 2004; Rossing, Mischak,
Dakna, et al., 2008; Rossing, Mischak, Rossing, et al., 2008;
Snell-Bergeon et al., 2009; von zur Muhlen et al., 2009;
Zimmerli et al., 2008), and ageing (Zürbig et al., 2009).

Proteome analysis, therefore, holds the promise of deliv-
ering some insights into the pathophysiological changes
associated with several bodily disorders and complex quan-
titative traits, including cognitive abilities. Encouraged by
these findings and the success of pilot studies in other
research areas (Airoldi et al., 2009; Roesch-Ely et al., 2010),
we investigated whether intelligence in old age, and the
changes in extracellular matrix associated with it, can be
assessed in part by urinary biomarkers.

2. Methods

2.1. Participants, urine collection, and the selection of cognitive
extremes

We undertook a pilot study in 40 adults from the Lothian
Birth Cohort 1936 (LBC1936) (Deary, Gow, et al., 2007) aimed
at assessing the ability of mass spectrometry to identity
urinary protein biomarkers for cognitive ability in the general
older population. All individuals in the LBC1936 were born in
1936 and attended school in Scotland in 1947. At an average
age of 11 years they took a valid IQ-type test–a version of the
Moray House Test no. 12 (MHT)–in the nationwide Scottish
Mental Survey 1947 (SMS1947;N=70,805) (Deary,Whalley,
& Starr, 2009). The LBC1936 were first examined by our team
between 2004 and 2007 at a mean age of 70 years (Deary,
Gow, et al., 2007). They re-sat the same mental test that they
took at age 11, and underwent other cognitive and medical
tests, as described elsewhere in detail (Deary, Gow, et al.,
2007; Deary, Strand, et al., 2007). At age ~72 years, the
surviving, available, and interested LBC1936 participants
were recruited a second time, as still relatively healthy
participants of the SMS1947 who were mostly living in the
Edinburgh area (Lothian) of Scotland. All participants in the
study lived independently in the community and travelled to
the Wellcome Trust Clinical Research Facility (WTCRF) at the
Western General Hospital, Edinburgh, UK, for testing. The
local ethics committees approved the study, and all subjects
gave informed consent. The study adhered to the Helsinki
Declaration.

Urine samples were available for 762 (397 males) par-
ticipants. The participants were asked to provide a first-pass
midstream urine specimen from first thing in the morning.
The urine samples were separated into three 1ml aliquots and
stored at −40 °C. Participants were excluded based on the
following criteria; any history of myeloma, diabetes, renal
disease, kidney disease, bladder disease, prostate disease;
evidence of a current infection defined by C-reactive protein
N10 mg/L; hemoglobin b130 g/l; history of hypertension;
body mass index b20 or N30 kg/m2; and estimated glomer-
ular filtration rate (eGFR) b60 ml/min. Samples were includ-
ed if the urinary albumin/creatinine ratio was b2.5 mg/mmol
(men) or b3.5 mg/mmol (women).

Because this was a pilot study, in order to maximise group
differences in the cognitive phenotype, we chose 40 samples,



48 L.M. Lopez et al. / Intelligence 39 (2011) 46–53
representing one or other extreme trait level on a general
cognitive ability factor. Twenty samples in the high and low
cognitive trait groups were selected, with ten males and
females in each. A general cognitive ability factor (g factor)
was derived from the whole sample (n with relevant data=
778) from a principal components analysis of six Wechlser
Adult Intelligence Scale-IIIUK (WAIS-IIIUK; Wechsler, 1998)
subtests: Backward Digit Span, Letter–Number Sequencing,
Matrix Reasoning, Block Design, Digit Symbol, and Symbol
Search. These were performed during the second recruitment
wave when the subjects were aged ~72 years old [Mean g
factor score=0, Standard deviation (SD)=1]. Regression
scores were calculated for the first unrotated principal com-
ponent with SPSS 14.0 for Windows.

The sample size used in the analyses was 40 individuals
(20 females and 20 males). The mean age in the higher cogni-
tive group was 72.25 years (standard deviation=0.67 years)
and was 72.36 years (standard deviation=0.55 years) in
the lower cognitive ability group. There were no biochemical
abnormalities detected. In all samples, the eGFR was N60 ml/
min and themean albumin/creatinine ratiowasb2.5 mg/mmol
in men and b3.5 mg/mmol in women, demonstrating no de-
tectable kidney problems (eGFR measuring the excretory
functionof the kidneys and albumin/creatinine ratiomeasuring
albumin protein “leaking” into the urine). The mean general
cognitive ability score in the higher intelligence groupwas 1.84
(SD=0.56) andwas -1.36 (SD=0.44) in the lower intelligence
group.

2.2. Capillary electrophoresis coupled to mass spectrometry
(CE-MS) analysis

A 0.7 mL urine aliquot was thawed and diluted with 0.7 mL
2 M urea, 10 mM NH4OH containing 0.02% SDS. Proteins
N20 kDaltons (Da) were removed by ultracentrifugation
through Centrisart filters (Sartorius, Goettingen, Germany)
at 2300g relative centrifugal force (rcf) until 1.1 ml filtrate
was obtained. The filtrate was desalted on a PD-10 column (GE
Healthcare, Sweden) equilibrated in 0.01% aqueous NH4OH
(Roth, Germany). Samples were lyophilized and stored at 4 °C,
until resuspension in High Performance Liquid Chromatog-
raphy (HPLC)-grade H20 to a final protein concentration of
0.8 μg/μL prior to analysis. Analysis and data processing were
performed in accordance with current guidelines for clinical
proteome analysis (Mischak, Apweiler et al., 2007; Taylor et al.,
2007) using a P/ACE™ MDQ capillary electrophoresis system
(Beckman Coulter, Fullerton, USA) on-line coupled to a Micro-
Time-of-flight mass spectrometry (TOF MS) (Bruker Daltonic,
Bremen, Germany) (Kolch, Neususs, Peizing, & Mischak, 2005;
Theodorescu et al., 2005). Spectra were accumulated every 3 s
over a mass-to-charge ratio (m/z)-range of 350–3000 Da.
Details on accuracy, precision, selectivity, sensitivity, reproduc-
ibility, and stability of the CE-MS method have been reported
(Theodorescu et al., 2005).

2.3. Data processing

Mass spectral ion peaks representing identical molecules at
different charge states were deconvoluted into single masses
using MosaiquesVisu (Wittke et al., 2003). The software
employs probabilistic clustering and uses both isotopic distri-
bution and conjugated masses for charge-state determination
of peptides/proteins. The resulting peak list characterizes
each polypeptide by its molecular mass, CE-migration time,
and ion signal intensity (amplitude). Data were normalized
using a calibrationmethod for CE-migration time and ion signal
intensity on the basis of ‘internal standard’ peptides, which we
proved to be superior over creatinine normalization (Jantos-
Siwy et al., 2009; Theodorescu et al., 2006). All peptides were
deposited,matched, and annotated in aMicrosoft SQLdatabase.
Peptides were considered identical when mass deviation was
lower than 50 ppm for small peptides or 75 ppm for larger
peptides and proteins. Deviation of migration time was below
0.35 min.

2.4. Generation of polypeptide pattern

A polypeptide biomarker model was generated by com-
bination of peptides that were differentially distributed be-
tween the two groups separated by high and low g factor
scores using the support-vector-machine (SVM)-based
MosaCluster software (Theodorescu et al., 2006). In SVM, a
sample is regarded as a p-dimensional vector with p being the
number of peptides included in the pattern. The algorithm
constructs a (p-1)-dimensional separation plane between the
high and low g factor vectors. From all possible hyperplanes
that separate the high and low g factor groups, the one with
the largest distance to the nearest data points on both sides
is selected. Classification is performed by determining the
Euclidian distance of the data point to the maximal margin of
the hyperplane and assignment of a positive or negative value
depending on which side of the hyperplane, high or low g
factor, the vector is located.

2.5. Sequencing of peptides

Sequences were obtained and validated as described in
detail for the standard urine sample (Mischak et al., 2010).
Briefly, peptides were separated by nanoflow reversed phase
(nRP)-HPLC (Agilent 1100; flow split by tee to ~60 nL/min)
and introduced into an Electron Transfer Dissociation-capable
Finnigan linear trap quadruploe (LTQ) quadrupole linear ion
trap via nanoelectrospray ionization (nESI) as previously
described (Good et al., 2010). The resulting MS/MS data were
submitted to MASCOT (www.matrixscience.com) for a search
against human entries in the Swiss-Prot database without
any enzyme specificity with an accepted parent ion mass
deviation of 10 ppm and an accepted fragment ion mass
deviation of 500 ppm. Only search results with a MASCOT
peptide score equally or higher as the MASCOT score
threshold were included. An additional search was employed
using OMSSA (http://pubchem.ncbi.nlm.nih.gov/omssa/).

2.6. Statistical analysis

Sensitivity, specificity, 95% confidence interval (CI) and
area under the curve (AUC) were calculated based on receiver
operating characteristic (ROC) analysis; MedCalc version
9.5.2.0 (MedCalc Software; Mariakerke, Belgium). For identifi-
cation of potential biomarkers, theWilcoxon T test was applied
because the data are not normally distributed. P-values were
calculated using the log transformed intensities. The
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conventional P-valueb0.05was appliedfirst. Then, to adjust for
multiple testing, the false discovery rate was controlled at
0.05 according to Benjamini & Hochberg (1995).

3. Results

All 40 urine samples from all subjects included in the
study were analyzed using CE-MS and evaluate peptides
deposited in the database, 3664 could be detected. 1309
peptides passed the threshold of being present in N30% in
at least one of the two groups and were investigated. Data
from the subjects were grouped according to the general
cognitive (g) factor, high or low, and examined for significant
differences. A graphic depiction of the data is shown in Fig. 1a.
The peptides are shown as a 3-dimensional plot, mass versus
Fig. 1. Compiled protein patterns of the capillary electrophoresis coupled to mass sp
1936 (LBC1936) groups of higher intelligence (N=20) and lower intelligence (N=
20 kDa, indicated on the left) is plotted against normalized migration time (18–45 m
shade of grey colour. Subtle differences in peptides present between apparently hi
distribution of only the 75 peptides that revealed the largest differences between t
biomarkers, peak intensity is enlarged 5-fold in panel b, in comparison to panel a. W
and low intelligence in LBC1936 appear quite evident.
migration time, and the peak height reflects signal intensity.
Some apparent differences between the datasets appear
visible. No significant biomarkers withstood adjustment for
multiple testing (all adjusted P-values N0.1, data not shown).
Without adjustment for multiple testing, several potentially
significant peptides (P-value b0.05) can be identified. The
results of the statistical comparison are given in Supplemen-
tary Table 1 and the identified peptides are shown in Table 1.
In Fig. 1b, the distribution of the 75 potential biomarkers
is shown. These peptides show highly different distributions
in the two groups.

We investigated the value and validity of the potential
biomarkers further, based on the data available. We em-
ployed the 75 most significant candidates in an SVM-driven
model, and assessed the model using complete take-one-out
ectrometry (CE-MS) analysis of urine samples from the Lothian Birth Cohort
20) examined in this study. The molecular mass on a logarithmic scale (0.8–
in, indicated on the bottom). Signal intensity is encoded by peak height and

gh and low intelligence in LBC1936 can be identified (a). Panel b shows the
he two groups (unadjusted P-value b0.05). To better visualize the potential
hen examining only these 75 potential biomarkers, differences between high



Table 1
Protein fragments identified from 75 potential biomarkers for the discriminatory model between individuals with high and low intelligence in the Lothian Birth
Cohort 1936 are listed. The peptide identification number in the dataset (Coon et al., 2008), the original protein name, and the sequence of the peptide in the
respective protein sequence are given.

Protein identification number Protein name Sequence

59022 Uromodulin SVIDQSRVLNLGPITR
108021 Complement C3 EGVQKEDIPPADLSDQVPDTESETR
124479 Collagen alpha-1 (I) chain PpGESGREGAPGAEGSPGRDGSpGAKGDRGETGP
94807 Collagen alpha-1 (I) chain AGQDGRpGPpGppGARGQAGVmGFpG
99691 Zinc finger protein 653 PEAEAEAEAGAGGEAAAEEGAAGRKARG
51175 Collagen alpha-1 (I) chain EGSpGRDGSpGAKGDRG
79786 Collagen alpha-1 (I) chain ADGQPGAKGEPGDAGAKGDAGPpGP
77018 Collagen alpha-1 (I) chain DGQPGAKGEpGDAGAKGDAGPPGp
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cross-validation, resulting in an AUC of 0.975, 100% sensitivity
and 85% specificity (P-value b0.0001). The ROC curve is
shown in Fig. 2.

As shown in Supplementary Table 1, we were able to
obtain the sequences from some peptides that may be dif-
ferently distributed between the two groups. When examin-
ing the peptides that appear to be of the highest significance,
we found a N2-fold increase of a C-terminal peptide from
uromodulin (see Fig. 3), the most abundant protein in normal
human urine, in the group with the high g score. A peptide
from Complement C3 C-terminus and four peptides derived
from Collagen alpha-1 (I) chain were found substantially
increased in the urine samples of the subjects with high
intelligence. The N-terminus of the Zinc finger protein 653, a
transcriptional repressor, was increased 7-fold in the indivi-
duals with a low g score, as was a peptide derived from
Collagen alpha-1 (I) chain (see Fig. 3).

These results indicate that urinary proteomic biomarkers
for cognition may exist, but the statistical power of the
Fig. 2. Performance of the proteomic biomarker model based on 75 urinary
peptides that may be biomarkers for cognition in old age. Shown is the
receiver operating characteristic (ROC) analysis of the classification results
obtained differences between the Lothian Birth Cohort 1936 (LBC1936) group
of higher intelligence (N=20) and lower intelligence (N=20) after complete
take-one-out cross-validation. The numerical values of the classification
obtained employing the support-vector-machine (SVM)-driven model based
on the 75 biomarkers was examined. The 95% confidence interval is indicated
by the dashed line.
pilot study is not sufficient to confirm this assumption. Esti-
mates on the sample size required, based on resampling of
data presented here and applying the same adjustment for
multiple testing using the false discovery rate, indicate that
approximately 200 high- and low-scorers each need to be
analyzed to enable identification of 75 biomarkers with good
confidence (q-value b0.01), and 300 cases and controls would
need to be analyzed to enable identification of 90 biomarkers.

4. Discussion

The data indicate that potential differences between older
people of high and low general intelligence can be identified
in the proteins in human urine. There are certain reasons to
believe that the four proteins suggested in this study may be
valid and worthy of replication attempts. Three of the four
proteins that gave rise to the peptides with the highest
significance have functional evidence to prioritise them for
follow-up. First, uromodulin is coded for by the gene UMOD
and defects in this gene cause renal disorders, characterised
by hyperuricemia, gout, and progressive renal failure. Genetic
variants associated with gout and serum uric urate levels
have been associated with memory performance in human
studies (Houlihan, Wyatt, et al., 2010). Second, the gene
encoding Complement C3, C3, has been associated with
Alzheimer's disease (Giedraitis et al., 2009). The third
candidate, ZNF653, is a zinc finger protein. Whereas there is
no evidence to suggest this protein specifically, zinc finger
proteins have been associated with cognitive deficits in
certain illnesses such as X-linked mental retardation (Shoi-
chet et al., 2003), schizophrenia (Walters et al., 2010), and
autism (Willemsen et al., 2010). Recently, several reports
indicated an increase of collagen, or collagen fragments that
are generated during the assembly of collagen (indicating
increased collagen deposit), being associated with Alzhei-
mer's disease andmild cognitive impairment (Luckhaus et al.,
2009; Tong, Xu, Scearce-Levie, Ptacek, & Fu, 2010). These
reports support the hypothesis that the upregulation of the
two fragments of collagen alpha-1 we report here, which are
degradation products of themature collagen fibres, indicating
a reduction of collagen fibre in the tissue, is associated
significantly with advanced intelligence or cognitive function.

The study has a number of strengths. First, it opens a new
avenue of research on cognitive differences, one that is not
prey to the highly polygenic influences on cognitive differ-
ences. Thus, the protein levels capture the many regulatory
influences on any one gene transcribing a given protein.

image of Fig.�2
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Fig. 3. Regulation of the sequenced peptide markers in urine samples of the LBC1936 cohort. Displayed is the regulation of an uromodulin fragment, a Complement
C3 fragment, five collagen alpha-1 (I) fragments, and a Zinc finger protein 653 fragment. The regulation is the fold-difference of mean signal intensity between
high and low intelligence groups. The errors bars represent the standard deviation. The bar-chart is ordered according to significance value from left to right.
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Second, we deliberately chose extreme cognitive scores form
the sample, based upon multiple tests from one of the best
validated intelligence batteries. Third, there was a conserva-
tive approach to significance testing. However, because the
study was novel, the top proteins were still named, even
though they did not meet rigorous adjustments for multiple
testing. Finally, the results from the complete take-one-out
cross-validation suggest that validation of our preliminary
results of the biomarker model in an independent cohort
could be successful. In order to establish validity of the
differences between higher and lower intelligence, a substan-
tially larger number of additional samples needs to be ana-
lyzed. Based on the calculations and also on experience in
other studies that clearly indicate a significant benefit of a
larger number of biomarkers in a biomarker model, approx-
imately 200 higher- and lower-scorers on intelligence tests
should suffice to identifyN75 biomarkers,whichwould enable
establishment of a stable classifier. This classifier would have
to be validated in an independent set of samples (according
to guidelines just published, Mischak et al. STM 2010);
consequently, a total of 600 independent samples would
be required for a study to prove the concept that urinary
biomarkers can be employed in the unbiased assessment of
cognitive skills. This is planned in future work.

The study also has limitations. First, the main limitation is
the small number of subjects in each group and the
consequent low power. This was partly because the cost and
labour involved in proteomic analysis is still relatively large.
However, we consider the study to be useful in establishing
feasibility and encouraging this approach among others.
Considering the fact that the complete take-one-out cross-
validation still allowed almost perfect classification accuracy
(1/40 was incorrectly assigned) indicates that the combina-
tion of biomarkers chosen in the model consisting of 75
urinary peptides is associated with cognitive function, and
that these preliminary findings warrant further investigation.
Second, the large number of outcome variables and the
small number of subjects, means that type 1 and 2 statistical
errors must be expected. This is illustrated in a possible
artefactual result where four of the five peptides from the
collagen 1 fragments are consistently upregulated in the
group with the higher g score except for Collagen alpha-1
chain (820–843) which is upregulated in the group with the
low g score. This experimental artefact may be due to the low
statistical power in this small cohort, which will be resolved
when more samples are analyzed. Thus, this observation
should not be interpreted with confidence.

A third limitation is the study sample. The subjects in the
“lower” cognitive group were not especially low, because
the LBC1936 cohort is, overall, cognitively quite advantaged
(Deary, Gow, et al., 2007). Furthermore, the proteomic
analysis was based on urine which, of course, does not
contain all proteins that might usefully be assayed. In
particular, proteomic profiles reflecting genes expressed
where their end-products are excreted in urine may differ
from those in the brain; ante-mortem brain tissue is very
rarely available for proteomic analysis and post-mortem
tissue proteomics may be substantially influenced by agonal
events. Nevertheless, urinary proteomics has been useful in
providing biomarkers for other conditions and traits and
given limited access to brain tissue, it is worthy of further
investigation with regard to intelligence traits.

There were further technical limitations to the study.
First, there is a lack of sequence for several of peptides that
appear to be differentially distributed. As outlined in detail
(Mischak et al., 2009), sequencing of naturally occurring
peptides represents substantial challenges, among other due
to the potential of unknown posttranslational modifications
being present. However, the peptides described here are
characterized in sufficient detail (by accurate mass, migration
time in CE, and their presence in a significant number of
urine samples) that allows allocating identity with very high

image of Fig.�3
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confidence (see also Coon, et al., 2008). This will potentially
enable sequencing those peptides in the future by using
substantially more sample, and/or other, better suited mass
spectrometers. Second, few peptides could be identified by
sequencing, but was hindered by several obstacles associated
with MS sequencing of naturally occurring peptides; tryptic
digests cannot be utilized due to a loss of connectivity to
the original identification parameters (Chalmers et al., 2005).
Major obstacles are suboptimal employment of proteomic
search machines (like Mascot or OMSSA) for naturally oc-
curring peptides (Fliser et al., 2007; Mischak, Julian, & Novak,
2007), as well as the chemical nature of the peptides that
prevents successful sequencing (Zürbig et al., 2006).

It is hoped that, among other “omic” approaches to
identifying the mechanisms underlying cognitive ability and
its changes through the human lifecourse, proteomics will
be added. Urine samples are especially easy to collect by
comparison with most other biological samples, and so any
emerging markers derived from urine could offer a conve-
nient test for cognitive level and changes. Future studies
should have larger samples that are well-characterised on
cognitive abilities. With the relative lack of information cur-
rently available from other biological approaches to cognitive
differences, proteomics has the advantage of assessing the
biological end points of many influences on protein synthesis
and breakdown, and so might provide a relatively fruitful
source of cognitive biomarkers. The identification of such
biomarkers should provide us with a deeper understanding of
the pathophysiological changes associated with the various
degrees of cognitive decline in old age, and may even result
in advancements in therapeutic strategies by early detection
of dementia.

Supplementary materials related to this article can be
found online at doi:10.1016/j.intell.2010.11.001.
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