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Reversible Dissociation of a Dialumene**
Rosalyn L. Falconer, Keelan M. Byrne, Gary S. Nichol, Tobias Kr-mer,* and Michael J. Cowley*

Abstract: Dialumenes are neutral AlI compounds with Al=Al
multiple bonds. We report the isolation of an amidophosphine-
supported dialumene. Our X-ray crystallographic, spectro-
scopic, and computational DFT analyses reveal a long and
extreme trans-bent Al=Al bond with a low dissociation energy
and bond order. In solution, the dialumene can dissociate into
monomeric AlI species. Reactivity studies reveal two modes of
reaction: as dialumene or as aluminyl monomers.

Introduction

Like other low oxidation-state main group systems, AlI

compounds are revealing potential in bond-activation and
catalysis.[1] Dialumenes are neutral AlI compounds with
Al=Al multiple bonds. They sit alongside the prototypical
neutral AlI compounds (Cp*Al)4 and NacNacAl(I), and the
rapidly developing class of anionic aluminyl compounds.[2]

Dialumenes can be divided into two classes: base-
coordinated dialumenes (R(L)Al=Al(L)R), which are iso-
electronic with alkenes, and “transient” dialumenes
(RAl=AlR). Two base-coordinated dialumenes have been
reported. The first, silyl substituted I, was reported by Inoue
in 2017.[3a] An aryl analogue, II, followed (Figure 1).[3b]

Though base-free dialumenes (III) are yet to be isolated,
“masked” examples that behave as RAl=AlR are known.
Power reported the toluene adduct IV,[4] and Tokitoh the
related benzene adduct V.[5]

Dialumenes readily activate dihydrogen and other small
molecules.[5, 6] InoueQs I and II catalytically reduce CO2 with
HBPin.[3b, 7] This capability comes from closely-spaced fron-
tier molecular orbitals, which beget high reactivity. Even
considering the only isolated examples, I and II, it is clear that
understanding the interplay between substituents, bonding,

and reactivity in dialumenes is critical to their further
development.

Base-coordinated and base-free dialumenes are clearly
related, but insights from experiment and theory reveal very
different pictures of bonding. Dialumenes I and II feature
planar or moderately trans-bent Al=Al bonds with double
bond character, do not dissociate, and react as dialumenes. In
contrast, donor-free dialumenes III feature low Al=Al bond
orders and substantially trans-bent geometry.[8] These dialu-
menes can dissociate readily in solution; V appears to react as
either RAl=AlR or RAlD species.[9] Recently, Power showed
that a larger terphenyl substituent allows access to an RAlD
monomer rather than IV.[10]

A transient N,P-coordinated aluminyl monomer was
implicated in our recent studies of reductive elimination in
the Al(II) dihydrodialane VI (Figure 1c).[11] We thus targeted
isolable AlI compounds of the same amidophosphine ligand.

Figure 1. a) Base-coordinated dialumenes (R3Si =MetBu2Si;
Tip =2,4,6-triisopropylphenyl). b) “masked” dialumenes (Ar*= 2,6-
(2,6-diisopropylphenyl)phenyl; Bbp= 2,6-(bis(trimethylsilyl)methyl)-
phenyl). c) Reversible reductive elimination in VI (Mes= 2,4,6-trime-
thylphenyl).
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We report here the base-coordinated dialumene 1. Our
studies demonstrate that 1 has an unusually weak Al=Al bond
with low bond-order and an extreme trans-bent geometry. We
reveal how the amidophosphine ligand of 1 is the origin of
these effects. In solution, 1 dissociates and can react as either
dialumene or monomeric aluminyl.

Results and Discussion

We prepared dialumene 1 by reduction from the Al(II)
precursor diiododialane 2 (Scheme 1). Treatment of 2 with
2 equiv Na/K alloy in THF led to a colour change from yellow
to dark purple. After 5 hours, 31P{1H} NMR spectroscopy
revealed consumption of 2 and a new broad resonance at d

21.3, as well as minor amounts of dihydrodialane VI.
Crystalline dialumene 1 was isolated as a dark purple solid
in 31% yield from toluene at @30 88C. UV/vis spectroscopy
revealed lmax 567.0 nm, which we assign to a p to p* transition
(Figure S3, Table S10). At 293 K, 1 decomposes over 1–2 days
in THF, toluene or hexane solutions.

The solid-state structure of dialumene 1, determined by
X-ray crystallography, reveals a highly trans-bent Al=Al bond
in E configuration (Figure 2). Two-site disorder of the Al
positions reveals major and minor isomers of 1 (88/12%) with
distinct geometries around the Al2 core. The amidophosphine
ligands enforce narrow N1@Al1@P1 angles (83–8488). The
Al=Al distance in 1 is shorter by 0.1–0.2 c than in the related
Al(II) dihydrodialane VI or in UhlQs dialane(4)
((SiMe3)2HC)2Al@Al(CH(SiMe3)2)2 (1 2.5190(14)/2.471-
(13) c; VI 2.6586(16) c; UhlQs dialane 2.660(1) c).[12] Never-
theless, the Al=Al distance in 1 is notably longer (~ 0.1 c)
than in InoueQs dialumenes [I 2.3943(16); II 2.4039(8)].
Compared to I and II, the Al=Al core of 1 is much less
planar (1 q = 48.888/51.288 ; I : 088 ; II : 17.388/23.788). We note that
the pyramidalised Al centres in 1 are stereogenic; the major
and minor isomers in the solid-state structure have opposite
stereochemistry at the Al centres.

DFT calculations reveal that the bonding situation in 1 is
distinct from previous base-coordinated dialumenes I and II.
Natural Bond Orbital (NBO) analysis of 1 shows natural
localised molecular orbitals (NLMOs) representing Al@Al s-
and p-bonds (Figure 3a). Although it retains some apparent
p-bond character, the corresponding NLMO of 1 is heavily
localised on the aluminium centres; the relevant NLMOs of I
or II more closely resemble classical p-orbitals (Figure S19/
20). The localisation of the p-orbital in dialumene 1 results
from admixture of the Al@Al s*. The extent of this admixture
is revealed by the increased s-character of the NLMO of

1 (Al1/Al2 sp1.25/sp1.09) compared to that in, for example, II
(Al1/Al2 sp48.34/sp23.32), where the p-bond is constructed from
essentially pure p-orbitals. Consistent with this picture, the
Wiberg bond index for the Al=Al bond of 1 is 1.31, which is
increased from that of dihydrodialane VI (0.91) but lower
than in I or II (1.67, 1.54).

Grgtzmacher and F-ssler have proposed simple topo-
graphical criteria for distinguishing classical and non-classical
multiple bonds.[13] Their criteria use the Electron Localisation
Function (ELF), which identifies regions of localised valence
electron density. The ELF of classically p-bonded systems
reveals “attractors”—local maxima M in the ELF that
correspond to electron pairs—above and below the plane of
E=E bonds. Each attractor M is surrounded by a “basin” of
electron density. The topology and electron population of
such basins is interpretable in familiar terms as covalent
bonds or lone pairs. Classical p-bonded systems have “dumb-
bell” shaped electron basins, and their populations sum to
approximately 4e@ .

Topological analysis of the ELF of 1 (Figure 3b) reveals
a quite different picture. The characteristic pattern of
attractors and basins for a slipped p-bond is observed. Three
valence attractors, M1-M3, are found near the Al2 unit. M3 is
centred on the Al@Al bond; its basin population is 1.11e@ . M1

and M2 are each above or below an Al centre, “slipped” from
their positions in a classical double bond. The basins of M1/M2

are each populated by ~ 1.30e@ ; the summed basin popula-
tions (3.76e@) correspond with the 4 e@ available for bonding
from the two AlI centres of 1.Scheme 1. Preparation of dialumene 1.

Figure 2. X-ray crystal structure of dialumene 1 (H atoms omitted for
clarity). Thermal ellipsoids at 50% probability. Major component of
disordered Al/ligand displayed (1A). Selected bond distances [b] and
angles [88]: Al1-Al1’ 2.5190(14); N1-Al1 1.909(2); P1-Al1 2.4816(9); N1-
Al1-P1 84.86(7); q= 48.8; t = 0.[21]
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The positions of attractors M1-M3 in 1 correspond with
those in the base-free dialumene Al2H2.

[8a, 14] The sigmoidal
form of the ELF isosurface of 1 is a feature of bonding in base-
free dialumenes, along with low Al@Al bond order (~ 0.5) and
diradical character.[8a] Based on the basin population around
M3 (1.11 e@), 1 also has low Al@Al bond order. M1 and M2 can
be interpreted as non-bonding electron density at Al. In
contrast, the ELF of planar dialumene I reveals features of
classical p-bonds: an attractor on each face of the Al=Al bond
(Figure S23).

To better determine the Al@Al bond order in 1, we
undertook Quantum Theory of Atoms in Molecules
(QTAIM) analysis (Figure 3c and SI). The molecular graph
reveals Al@Al, Al@N and Al@P bond paths. The Al@P
interactions are polar dative bonds, as revealed by the
position of their bond critical points (bcp) closer to the more

electropositive Al centres and associated QTAIM parameters
(sbcp = 0.310 ec@3, r2sbcp =+ 1.180 ec@5, Hbcp =

@0.107Eh c@3), Gbcp/sbcp< 1).[15] Meanwhile the Al@N bonds
exhibit stronger ionic character (sbcp = 0.499 ec@3, r2sbcp =+

8.410 ec@5, Hbcp =@0.094 Eh c@3, Gbcp/sbcp< 1). The Al@Al
bond features weak shared-shell covalent character, as judged
by the charge concentration and topological parameters at its
bcp (sbcp = 0.349 ec@3, r2sbcp =@1.390 e c@5, Hbcp =

@0.135Eh c@3, Gbcp/sbcp< 1). In accordance with the ELF
results, the values of both sbcp and r2sbcp are rather low,
indicating a weak Al@Al bond. The bond ellipticity parameter
suggests a small degree of double bond character (ebcp =

0.195).
The delocalisation index d(A,B) is a quantitative measure

for the number of electron pairs exchanged between two
atomic basins. When referenced against a chemically-similar
comparator compound with a well-defined bonding situation,
the delocalisation index can reflect chemical bond order.
Here, we use d(Al,Al) of the bond in dihydrodialane VI to
define an Al@Al bond order of 1. At 0.65, d(Al,Al) in VI is
about half that in the planar transition state TS1C-1C (see later)
which unequivocally has a planar Al=Al double bond (d-
(Al,Al) = 1.21). In trans-bent dialumene 1, d(Al,Al) at 0.80 is
only slightly higher than that of dihydrodialane VI, but much
lower than that of the Al=Al double-bond.[14]

The combined results of our crystallographic and elec-
tronic structure analyses indicate small but significant Al=Al
multiple bond character in 1. Al@Al bond distance, and
computational bond order and delocalisation-index criteria
all support the conclusion that the Al=Al bond in 1 is
intermediate between single and double bonds, with bond
order ~ 1.3.

Why is dialumene 1 so different from I and II? We used
DFT calculations on a set of minimal base-coordinated
dialumenes with NHC or PMe3 donors and hydride, phenyl,
silyl or amino substituents (Table 1) to answer this ques-
tion.[16]

The structures of the model dialumenes depend strongly
on the substituent and Lewis base (NHC or PMe3). Electro-
positive substituents (SiMe3) provoke shorter Al=Al bonds,
wider R@Al@L angles, and more planar structures. More
electronegative (Si < H < Ph < N) or p-donating substituents
induce more trans-bending and longer Al=Al bonds. NHC-
coordinated dialumenes always have shorter and more planar
Al=Al bonds than their PMe3 counterparts (Al=Al = 2.42–
2.48 c vs. 2.45–2.60 c).

These substituent effects mimic those in disilenes, reflect-
ing the isoelectronic relationship between R2Si=SiR2 and
R(L)Al=Al(L)R. In disilenes, trans-bend angles and Si=Si
bond distances are correlated with the singlet-triplet energy
gap (DES-T) of the notional or real silylene monomers, DSiR2.

[17]

We find that the same relationship applies to dialumenes:
Al=Al bond dissociation energy increases as DES-T for the
monomeric R(L)AlD fragments decreases (Figure S11). The
result is that dialumene bond dissociation energy/geometry
can be predicted based on properties of the R(L)AlD
(aluminyl) monomer.

We attribute the stronger and more planar Al=Al bonds
of NHC- vs. PMe3-coordinated dialumenes to the strong

Figure 3. Electronic structure analysis of 1. a) NLMOs (isovalue =
0.036) of the Al=Al bond. b) ELF localisation domains (isovalue =
0.795) of the Al=Al core. Mn indicates attractors. c) Laplacian of the
electron density in the P@Al=Al@P plane. Areas of charge concentration
and depletion (blue/pink), bond paths (black) and bond critical points
shown.
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donor ability of the NHC, which raises the R(L)AlD HOMO,
narrowing DES-T. In contrast, the low dissociation energy for
Me2N(PMe3)Al=Al(PMe3)NMe2, (2.1 kcalmol@1) is ex-
plained by the large DES-T for the Me2N(Me3P)AlD fragment
(32.4 kcal mol@1).

Returning to dialumene 1, we can ascribe its extreme
trans-bending to the electronegative/p-donating NR2 sub-
stituent and narrow 8588 N1-Al1-P1 angle enforced by the
ligand, which both increase DES-T in the monomeric aluminyl
fragment (Table S9). Calculations on the full dialumene
1 predict a bond dissociation energy of 7.1 kcalmol@1, vs.
25.0 and 19.0 kcal mol@1 for I and II (Table S7). To explore the
possible dissociation of 1, we turned to its solution-phase
behaviour.

Dialumene 1 is predominantly dimeric in solution. Its
31P{1H} NMR spectrum at 300 K has one broad signal at d 21.3
(Dn1=2

= 134 Hz) (Figure 4a). 1H NMR spectroscopy reveals
two ligand environments for 1, in the ratio 54 %:46%,
indicating at least two (stereo)isomers. The stereogenic Al
centres of 1, in combination with its ligand backbone, mean
that there are three possible diastereomers of E-1, A-C
(Figures 4 a, S1), each of which must have distinct 31P
signals.[18] 1A and 1B are meso compounds with equivalent
phosphorus centres—each will give rise to a singlet. 1C has
inequivalent phosphorus centres, so two 31P resonances
(potentially doublets with 3JPP). The pattern of DFT-predicted
31P signals confirms our stereochemical analysis (Figure 4c,
S15).

At 300 K, the broad 31P{1H} resonance at d 21.3 indicates
diastereomers 1A-C are exchanging. Cooling to 243 K,
resolves this broad signal into two singlets (d 20.4 and d

20.0). At 203 K, the higher field signal (d 19.5) broadens and
approaches coalescence (Dn1=2

= 148 Hz).
The dynamic 31P{1H} NMR behaviour of 1 arises from

a combination of intra- and intermolecular exchange pro-
cesses that exchange diastereomers 1A–C. In the low temper-
ature regime (9 300 K), only intramolecular fluxional pro-
cesses are operative. The two singlets observed at 243 K are
assigned to 1A/B and 1C. A “trans-flip” process, fast on the
NMR timescale at this temperature, simultaneously inverts
the stereochemistry at both aluminium centres (Figure 4b).
This has the effect of interconverting diastereomers 1A and
1B, generating a (concentration-weighted) time-averaged
signal for them. In 1C, the trans-flip is instead a degenerate

process that exchanges the two inequivalent phosphorus
centres, leading to the observed singlet. At 203 K, we assign
the broad signal to 1C, in which the trans-flip is becoming
slow on the NMR timescale.

Using DFT calculations we were able to locate the planar
transition states TS1A-1B and TS1C-1C for the trans-flip process
(Figure 4d). The barriers for this process range from 8 to
11 kcal mol@1. TS1C-1C is higher in energy than TS1A-1B (11.35 vs.
9.37 kcal mol@1).

In the higher temperature regime (~ 300 K), exchange
between isomers 1A/B and 1C becomes active through an
intermolecular route. Dissociation of dialumene 1 generates
monomeric aluminyl 3, which can then recombine to form any
of the three diastereomers of 1 (Figure 4c). This process is
possible due to the low dissociation energy of 1, (DFT
predicts DG298 =+ 7.1 kcalmol@1). 2D 1H EXSY NMR spec-
troscopy at 300 K reveals exchange cross peaks between
resonances for 1A/1B (time averaged) and 1C (Figures S6/7).
Our DFT calculations place diastereomers 1A–C very close in
energy, spanning just 2 kcalmol@1. Experimental measure-
ments are consistent with this. We were able to determine the
equilibrium constants for the exchange of [1A + 1B] with 1C
in the temperature range 188–243 K (Figure S5). We can thus
estimate DG0 for [1A + 1B]! 1C as 0.8: 0.2 kJ mol@1 (0.19:
0.04 kcal mol@1).

The presence of aluminyl 3 in solution is revealed by
dynamic NMR behaviour, but its concentration must be
rather low since we did not observe signals for it. Nor did UV-
vis spectroscopy in the temperature range 5–65 88C reveal
absorptions for 3 (Figure S3). Lacking direct spectroscopic
evidence, we sought to trap 3.

Like I and II,[3] 1 can react with alkenes and alkynes to
form 4-membered aluminacycles. Treatment of 1 with ethene
(1 atm) at room temperature results in rapid (5–20 mins)
conversion to dialuminacyclobutane 4 by formal [2++2] cyclo-
addition of the Al=Al and C=C bonds. Similarly, diphenyla-
cetylene reacts with 1 to form dialuminacyclobutene 5
(Scheme 2). 31P{1H} NMR spectroscopy of 4 and 5 reveals
distinct signals for three diastereomers in each case. This is
a result of the “locking” of the stereogenic aluminium centres
enforced by their cyclic structures (4 : d 11.6 (d, 3JPP = 12 Hz),
11.5 (s), 11.5 (s), 11.4 (d, 3JPP = 12 Hz);, 5 : d 11.0 (br s), 10.7
(s), 10.4 (s), 10.3 (br s).; see SI).

Table 1: Selected geometrical and thermodynamic properties of model dialumenes calculated at SMD-B3LYP-D3/6-311G(2d,2p)//M062X-D3/def2SVP
level[a]

Al=Al [b] 2.42 2.44 2.39 2.48 2.45 2.47 2.46 2.60
L-Al-R [88] 101.7 97.1 112.1/106.9 91.9 95.8 92.7 98.7 99.4
q [88] [b] 29.6/47.2[d] 33.4/53.9[e] 19.1/16.3[f ] 43.1 46.6 50.5/50.4 41.6/41.0 63.5/44.6[g]

DG298(dissoc) [kcalmol@1][c] 22.1 20.6 33.2 11.5 19.3 19.7 25.5 2.1
DES-T(monomer) [kcal
mol@1]

19.2 20.6 12.3 25.5 23.2 25.4 16.4 32.4

[a] L= NHC, Imidazol-2-ylidene (C3H4N2). [b] q= trans-bend angle, see Figure 2. Unless otherwise noted, t =088. Where two values are listed, complexes
are unsymmetrically trans-bent. [c] corrected for basis set superposition error (Table S7). [d] t =17.888. [e] t =20.588. [f ] t =7.988. [g] t = 19.888.
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Figure 4. a) 31P{1H} NMR spectra of 1 (161 MHz, [D8]toluene) recorded at 203–300 K. b) Inversion at aluminium exchanges 1A and 1B, but is
degenerate for 1C. c) Intermolecular dissociation/recombination of 1 exchanges all diastereomers. d) Reaction energy profile for the “trans-flip” in
diastereomers 1A-C at T = 298.15 K (geometries optimised at M062X-D3/def2SVP, energies calculated at B3LYP-D3/6-311G(2d,2p) corrected for
C6H6 solvent).
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X-ray crystallography reveals the geometry of the C2Al2

rings of 4 and 5. The Al@Al distances in 4 and 5 are not
notably longer than in 1, despite destruction of the Al=Al p

bond (1, 2.519(1) c; 4, 2.558(1) c; 5, 2.512(1) c, see SI). This
is rather different to the behaviour of dialumenes I or II in
comparable reactions with alkenes/alkynes. The resulting
analogues of 4/5 exhibit substantial Al@Al bond elongation
(0.20–0.25 c) compared to I/II. The difference reflects the
lower Al=Al bond order in 1 vs. I/II.

When dialumene 1 is treated with the bulkier alkyne
Me3SiC/CSiMe3, the observed product is derived not from
1 but rather from its monomer, 3. On addition of Me3SiC/
CSiMe3, purple solutions of 1 become yellow within three
hours. 31P{1H} NMR reveals a broad signal at d 9.8, character-
istic of amidophosphine-coordinated Al(III) compounds.[19]

X-ray crystallography shows that the product from 1 and
Me3SiC/CSiMe3 is aluminacyclopropene 6 (Figure 5). 6 has
the narrow C1@Al@C2 angle expected for aluminacyclopro-
penes (42.05(9)88) and its C1=C2 distance is typical for
a double bond (1.367(2) c). Cycloaddition reactions with
alkynes are a characteristic reaction for neutral aluminyls. A
NacNac-coordinated analogue of 6 has been prepared by
reduction of Al(III) precursors in the presence of Me3SiC/
CSiMe3, though with other alkynes direct reaction with
NacNacAl(I) is also viable.[20] Structurally, the AlC2 core of
5 and its NacNac analogue are closely comparable.

Conclusion

In summary, we have prepared the first isolable dialumene
that dissociates in solution. The donor properties of the
amidophosphine ligand generate a large DES-T on the

transient aluminyl monomers. This large DES-T is the origin
of the low bond order, high trans-bending, and weak Al=Al
bond in 1. We continue to explore the reactivity of 1 and
related systems.
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