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Abstract. This paper details the development and evaluation of the enhanced future FLows and Groundwater
(eFLaG) dataset of nationally consistent hydrological projections for the UK, based on the latest UK Climate Pro-
jections (UKCP18). The projections are derived from a range of hydrological models. For river flows, multiple
models (Grid-to-Grid, PDM (Probability Distributed Model) and GR (Génie Rural; both four- and six-parameter
versions, GR4J and GR6J)) are used to provide an indication of hydrological model uncertainty. For groundwa-
ter, two models are used, a groundwater level model (AquiMod) and a groundwater recharge model (ZOODRM:
zooming object-oriented distributed-recharge model). A 12-member ensemble of transient projections of present
and future (up to 2080) daily river flows, groundwater levels and groundwater recharge was produced using
bias-corrected data from the UKCP18 regional (12 km) climate ensemble. Projections are provided for 200 river
catchments, 54 groundwater level boreholes and 558 groundwater bodies, all sampling across the diverse hydro-
logical and geological conditions of the UK. An evaluation was carried out to appraise the quality of hydrological
model simulations against observations and also to appraise the reliability of hydrological models driven by the
regional climate model (RCM) ensemble in terms of their capacity to reproduce hydrological regimes in the cur-
rent period. The dataset was originally conceived as a prototype climate service for drought planning for the UK
water sector and so has been developed with drought, low river flow and low groundwater level applications as
the primary objectives. The evaluation metrics show that river flows and groundwater levels are, for the majority
of catchments and boreholes, well simulated across the flow and level regime, meaning that the eFLaG dataset
could be applied to a wider range of water resources research and management contexts, pending a full evaluation
for the designated purpose. Only a single climate model and one emissions scenario are used, so any applications
should ideally contextualise the outcomes with other climate model–scenario combinations. The dataset can be
accessed in Hannaford et al. (2022): https://doi.org/10.5285/1bb90673-ad37-4679-90b9-0126109639a9.
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1 Introduction

This paper details the development and evaluation of the en-
hanced future FLows and Groundwater (hereafter referred to
as “eFLaG”) dataset of nationally consistent and spatially
coherent hydrological (river flow and groundwater) projec-
tions for the UK, based on UKCP18 – the latest climate pro-
jections for the UK from the UK Climate Projections pro-
gramme (Murphy et al., 2018). eFLaG provides a succes-
sor to the Future Flows and Groundwater Levels (FFGWL)
dataset (Prudhomme et al., 2013), which was based on the
UKCP09 projections (Murphy et al., 2009).

The eFLaG dataset was developed specifically as a demon-
stration climate service for use by the water industry for wa-
ter resources and drought planning and hence by design is
focused on future projections of drought, low river flows and
low groundwater levels. By providing a consistent dataset of
future projections of these variables, eFLaG can potentially
support a wide range of applications across other sectors. The
predecessor, FFGWL, has been widely used within the water
industry but has also found very wide application for diverse
research purposes (see Sect. 9).

As in FFGWL, in eFLaG the climate projections are used
as input to a range of hydrological models to provide nation-
ally consistent, spatially coherent projections of river flow
and groundwater levels for the 21st century. The use of an
ensemble of river flow models also provides information on
hydrological model uncertainty. As well as using an updated
set of climate projections, eFLaG capitalises on advances in
national-scale river flow and groundwater modelling since
FFGWL and detailed evaluation of the applicability of mod-
els for drought simulation, notably research under the NERC
Drought and Water Scarcity (DWS) programme (e.g. Rudd
et al., 2017; Smith et al., 2019).

Previous research on hydrological projections

There is a long history of climate change impact assessment
within the UK water industry and academia, which we do not
review in detail here. Watts et al. (2015) provide an overview
of past research (up to around 2013) on climate projections
relevant for the water sector, including for future water re-
sources and drought. More recently, Chan et al. (2022) pro-
vided an in-depth review of the evolution of the use of cli-
mate change projections for hydrological applications. Here,
we briefly address some pertinent developments in river flow
projections since FFGWL.

The original FFGWL did not present an assessment of
future drought risk, other than seasonal river flows (Prud-
homme et al., 2012) and groundwater levels (Jackson et al.,
2015), which suggested pronounced decreases in future sum-
mer flows, reductions in annual-average groundwater lev-
els, and increases (decreases) in winter (summer) groundwa-
ter levels. Since then, the original FFGWL projections have

been used in a number of hydrological impact studies. Col-
let et al. (2018) presented a probabilistic appraisal of future
river flow drought (and flood) hazard in the UK showing
hydro-hazard “hotspots” in western Britain and north-eastern
Scotland, especially during the autumn. Hughes et al. (2021)
used the zooming object-oriented distributed recharge model
(ZOODRM) distributed groundwater recharge model to as-
sess changes in 21st century seasonal recharge across river
basin districts and groundwater bodies in the UK based on
the FFGWL climate change projections. The results showed
a consistent trend of more recharge being concentrated over
fewer months, with increased recharge in winter and de-
creased recharge in summer.

In addition to UKCP09 and FFGWL, other datasets
have been developed using different global climate model
(GCM)–regional climate model (RCM)–hydrological model
chains. One major development has been the use of large
ensemble projections of future climate variables from the
Weather@Home RCM (specifically HadRM3P) as part of
the MaRIUS (Managing the risks, impacts and uncertainties
of drought and water scarcity) project within the DWS pro-
gramme (Guillod et al., 2018). The MaRIUS projections pro-
vide large ensembles (100+) of past, present (1900–2006)
and future (2020–2049 and 2070–2099) climate outputs.
These were used as inputs to the national-scale Grid-to-Grid
(G2G) hydrological model to provide a similarly large grid-
ded (1 km2) dataset of river flow and soil moisture (Bell et
al., 2018). Analysis of these datasets has been conducted for
drought (Rudd et al., 2019) and low flows (Kay et al., 2018),
indicating future increases in hydrological drought severity
and spatial extent and decreases in absolute low flows.

A further source of hydro-meteorological projections now
available is that from the EDgE (End-to-end Demonstrator
for improved decision-making for the water sector in Europe)
project; see Samaniego et al. (2019). EDgE delivered an en-
semble comprising two GCMs and four “impact” models
(gridded land surface and hydrological models at a 5× 5 km
scale) for the whole of Europe. Visser-Quinn et al. (2019)
analysed future river flow drought risk in this ensemble us-
ing a similar approach to Collet et al. (2018) and found sim-
ilar results in terms of the spatial distribution and magnitude
of future changes in droughts, albeit with some differences
arising from the use of different scenarios, GCMs and hy-
drological models.

While such products may be used for climate adapta-
tion research, the most relevant for eFLaG is the release of
UKCP18. To date, relatively few studies using UKCP18 have
been published. Kay et al. (2020) made a rapid assessment
of UKCP18 impacts on hydrology compared to UKCP09.
More recently, Kay (2021), Kay et al. (2021a, b, c), Lane
and Kay (2021) and Kay (2022) provided future assessments
of potential changes in seasonal mean river flows, high flows
and low flows using various UKCP18 products with the G2G
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hydrological model. They found potential increases in winter
mean flows and high flows and decreases in summer and low
flows, albeit with wide uncertainty ranges. In the literature to
date, and to the authors’ knowledge, there have been no pub-
lished assessments of future groundwater levels or ground-
water recharge using UKCP18 – although groundwater lev-
els driven by UKCP18 are currently being used in the latest
operational water resources management plans (e.g. Thames
Water, 2023).

In summary, there have been substantial scientific ad-
vances in hydrological projections for the UK since Watts et
al. (2015) and FFGWL, including some research on future in-
dicators relevant for water resources availability and drought.
However, relatively few datasets have been made available
to the community since FFGWL. While MaRIUS and EDgE
provide complementary hydrological datasets, there remains
a need for an accessible dataset based on UKCP18. Existing
UKCP18 studies have been focused on time-slice projections
and/or have used a single hydrological model (e.g. Kay et al.,
2021a, b, c), so there will be significant benefit arising from
the eFLaG dataset of transient projections from a range of
hydrological models covering river flows, groundwater lev-
els and groundwater recharge.

2 Outline of the dataset and overview of the
modelling chain

In the following sections we set out the methodology be-
hind the eFLaG dataset. This section firstly provides a
brief overview of the various stages of the methodology
and how our method samples the “cascade of uncertainty”
(Smith et al., 2019) emerging from the multiplicity of pro-
jections and other modelling choices. While the original
FFGWL methodology provided an initial foundation for
eFLaG, much has changed in the decade since that study was
commissioned, and the new UKCP18 projections differ from
UKCP09 (e.g. Kay et al., 2020). eFLaG therefore required
the development of a new methodology, which is described
in detail in the following sections.

The whole project workflow is illustrated in Fig. 1. eFLaG
is driven by the UKCP18 dataset, specifically the “Regional”
12 km projections, to which a bias correction is applied.
Section 3 describes the processing of the climate projec-
tions, including the bias-correction method. The UKCP18
projections are used as input to three river flow models,
i.e. GR (Génie Rural), PDM (Probability Distributed Model)
and G2G, one groundwater level model (AquiMod) and one
groundwater recharge model (ZOODRM), to provide simu-
lations for 200 river catchments, 54 groundwater boreholes
and 558 groundwater bodies respectively. Section 4 provides
more detail on how these sites were selected. Details of the
hydrological models and their calibration are given in Sect. 5.
The evaluation of the models is covered in Sects. 6 and 7.
Figure 1 also illustrates how all of the eFLaG projections

Figure 1. Project workflow illustrating the stages of analysis de-
scribed in this paper.

feed into a series of water industry demonstrators, in part-
nership with UK water providers (specifically, Dwr Cym-
ru/Welsh Water and Thames Water). These are not discussed
in detail in this paper, but they were relevant for the site se-
lection and as such are mentioned briefly below.

The question of uncertainty in climate impact modelling
is a challenging one that has been explored in a whole range
of studies extending back to the 1980s, when climate pro-
jections began to be routinely produced. There are inherent
uncertainties at every step of the process, including climate
emissions scenarios, climate modelling, environmental mod-
elling (in our case hydrological modelling, which itself has
a vast literature when it comes to uncertainty estimation)
and wider impact modelling (e.g. in water supply systems).
Recently, Smith et al. (2018) presented this issue as a “cas-
cade of uncertainty” (using widely adopted terminology, e.g.
Wilby and Dessai, 2010). Within eFLaG, as with the major-
ity of climate impact applications, it is not possible to sam-
ple across all sources of uncertainty. We adopted a pragmatic
approach to sampling key sources of uncertainty within the
available time and resources constraints. In Table 1, we con-
sider the sources of uncertainty and our approach to sampling
from them. The focus in eFLaG is on uncertainty arising
from initial/boundary conditions. Additionally, for the river
flow simulations, the uncertainty arising from model choice
is also accounted for, embracing models of different types
(lumped and distributed) and structures. The effect of differ-
ent structures of the same model is also included through the
use of two versions of one of the models (namely the GR
suite).
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Table 1. Sources of uncertainty explored in eFLaG (building on the framework of Smith et al., 2018).

Uncertainty source Sampling approach Details

Emissions scenarios One scenario RCP8.5

Climate models One model Hadley Centre GCM

Initial/boundary conditions 12-member PPE (perturbed-parameter
ensemble)

The PPE perturbs the parameters of the climate model
(both the RCM and the GCM within which it is nested).

Temporal/spatial downscaling One method Hadley Centre RCM, monthly mean bias correction

Model choice Three river flow models
Two groundwater models

GR, PDM, G2G
AquiMod, ZOODRM

Model structure Two model structures for the GR mod-
elling framework

Fixed structure for G2G and PDM, but for GR two dif-
ferent model structures were used (GR4J and GR6J), as
discussed in Sect. 4.

Model parameter uncertainty Not considered in eFLaG Not considered in eFLaG

3 UKCP data processing

The UKCP18 regional climate projections were created us-
ing perturbed-parameter runs of the Hadley Centre global
climate model (GCM, HadGEM3-GC3.05) and regional cli-
mate model (RCM, HadREM3-GA705) (Murphy et al.,
2018). These provide a set of 12 high-resolution (12 km) spa-
tially consistent climate projections over the UK, covering
the period December 1980–November 2080. The 12-member
RCM perturbed-parameter ensemble (PPE) is valuable for
representing climate model parameter uncertainty; ensemble
members are numbered 01–15, excluding 02, 03 and 14 (as
there are no RCM equivalents for these GCM PPE members:
Murphy et al., 2018, Sect. 4.3), and 01 is the standard pa-
rameterisation. However, it is important to note that, as all
ensemble members are based on the same high-emissions
scenario (RCP8.5) and the underlying climate model struc-
ture, they do not represent the full climate uncertainty. The
UKCP18 RCM output was processed to provide the variables
needed for hydrological modelling, namely 1 km gridded and
catchment-average time series of available precipitation (i.e.
after the application of a snow module; see below) and po-
tential evapotranspiration (PET), not itself a UKCP18 output
but estimated using available UKCP18 variables as described
below.

The Hadley Centre climate model uses a simplified 360 d
year consisting of 12 30 d months. The RCM precipitation
and temperature time series are given for this 360 d calendar
and are therefore not consistent with the 365/6 d observed
time series. Previously, the FFGWL Climate project inserted
5 (or 6 in a leap year) days of zero rainfall into the RCM time
series, so that the observed and RCM data were using com-
parable calendars (Prudhomme et al., 2012). However, here
the data were kept in the 360 d format to avoid modifying the
time series with artificial data.

3.1 Precipitation

Daily precipitation time series were available for each of
the UKCP18 RCM–PPE members. However, the RCM data
showed biases compared to observed precipitation, as is com-
mon for climate data (Murphy et al., 2018; Teutschbein and
Seibert, 2012). The RCM data substantially overestimate
precipitation for most months (typically by around 1 mm d−1

for the UK mean, Murphy et al., 2018, Fig. 4.4), the excep-
tion being August–October. A simple monthly-mean bias-
correction methodology was therefore applied through the
following steps.

1. The 1 km HadUK-Grid observed rainfall product was
averaged to 12 km for consistency with the RCM data
(Hollis et al., 2019).

2. For each month and grid cell, change factors were
calculated between the RCM-simulated precipitation
and observation-based HadUK-Grid time-slice mean of
monthly total rainfall over the period 1981–2010. This
resulted in bias-correction factor grids being made for
each month and each RCM ensemble member, as shown
in Fig. 2.

3. The change-factor grids were then smoothed to reduce
spatial discontinuities by updating each grid cell using
a weighted combination of the original grid-cell value
and neighbouring values, as in Guillod et al. (2018).

4. To produce bias-corrected precipitation estimates, the
RCM-simulated precipitation time series were multi-
plied by the bias-correction factor grid for each month
(i.e. all January precipitation was multiplied by the Jan-
uary bias-correction grids, February precipitation by the
February correction grid, etc.).

The bias-corrected precipitation products were then down-
scaled from 12 to 1 km based on the distribution of the stan-

Earth Syst. Sci. Data, 15, 2391–2415, 2023 https://doi.org/10.5194/essd-15-2391-2023



J. Hannaford et al.: The eFLaG dataset 2395

dard average annual rainfall (SAAR) for the period 1961–
1990, as in previous studies (Bell et al., 2007; Kay and
Crooks, 2014). This involved calculating the ratio of the ob-
served SAAR at 1 km to the observed SAAR averaged up to
the 12 km RCM grid and then multiplying RCM precipitation
values by this ratio. This introduces further spatial variability
related to typical rainfall patterns, but the total rainfall across
the original 12 km RCM grid cell remains unchanged.

3.2 Accounting for snowmelt processes

A simple snow module was applied to account for snowmelt
processes (Bell et al., 2016). The snow module converted the
1 km bias-corrected precipitation into rainfall plus snowmelt
(i.e. available precipitation) based on temperature. This used
the minimum and maximum daily temperatures provided by
each RCM ensemble member, which were first scaled from a
12 km resolution to 1 km using a lapse rate based on elevation
data. The parameters used in the snow module are given in
the Supplement (Table S1).

3.3 Potential evapotranspiration

PET was not directly available as an RCM output and was
therefore generated using a range of variables from the
RCM–PPE climate time series (Table S2). The PET was cal-
culated using the same methodology as the Hydro-PE dataset
(Robinson et al., 2021, 2022), except for the use of eFLaG
bias-corrected precipitation data within the interception cor-
rection component. This produces Penman–Monteith PET
parameterised for short grass. The equation also included
monthly stomatal resistance values, which were adjusted for
the future period to account for the impact of increased car-
bon dioxide concentrations on stomata (as in Rudd and Kay,
2016, based on Kruijt et al., 2008). The PET data were then
copied down from a 12 to 1 km resolution by simply setting
all 1 km grid cells to the value of the containing 12 km grid
cell.

3.4 Outputs

The 1 km gridded time series of “available precipitation” and
PET were then used to produce the time series of catch-
ment averages required for each of the eFLaG river catch-
ments and groundwater boreholes. For the river catchments,
the catchment-average values were derived using the stan-
dard UK National River Flow Archive (NRFA) approach
for catchment-average rainfalls, as described in the NRFA
(2021). For the boreholes, following Mackay et al. (2014a),
averages were taken over the representative aquifer length,
which was determined as the groundwater flow path between
the borehole and a single discharge point on a river based
on the catchment geometry and hydrogeology. For the grid-
based models, ZOODRM and G2G, the gridded data were
used directly.

The bias-corrected climate outputs are part of the eFLaG
dataset described further in Sect. 8. For each river catchment
and groundwater borehole, bias-corrected data are available
for the observational period, for the purposes of evaluation
of the hydrological model outputs and for the future. In ad-
dition, the gridded bias-corrected climatology is made avail-
able as a separate dataset (Lane and Kay, 2022; see also the
Data availability section).

4 Catchment selection

The UK is fortunate to have one of the densest hydrometric
networks in the world, with a legacy of strong commitment
to data quality and completeness. There are more than 1500
river flow gauging stations with flow records in the NRFA
(Dixon et al., 2013, and https://nrfa.ceh.ac.uk/, last access:
29 March 2023) and more than 180 observation boreholes
with groundwater level records in the BGS National Ground-
water Level Archive (NGLA). These archives are the prin-
cipal sources of validated river flow and groundwater level
data at the UK scale. A remit of the NRFA and NGLA is
to archive data that are useful for a wide variety of applica-
tions, primarily focusing on the most strategically important
records. However, such catchments are not always the most
relevant for the water industry, and water companies often
have their own sites on which they undertake analysis. Since
the eFLaG project aims to maximise utility for a range of
users, the catchment selection strategy considered both re-
search and industry needs.

Detailed site lists and metadata for river flow, groundwater
level and groundwater recharge are catalogued on the dataset
held at the Environmental Informatics Data Centre (EIDC)
(Hannaford et al., 2022).

4.1 River flows

To support selection, a meta-database was assembled for
all NRFA gauging stations in the UK, primarily using the
NRFA’s metadata holdings published on the NRFA web-
site and in the UK Hydrometric Register (Marsh and Han-
naford, 2008). Metadata compiled included membership of
key national strategic networks (e.g. the near-natural Bench-
mark Network (UKBN2; Harrigan et al., 2018a) and opera-
tional monitoring networks), capitalising on efforts of other
projects in quality-controlling data and ensuring catchments
are fit for purpose. Selection also considered whether catch-
ments were used in previous relevant projects that have sim-
ulated river flows for drought analysis. The selection ensured
a strong representation of the original FFGWL catchments
(with 117 catchments featuring in both) and also overlap
with recent modelling endeavours through the DWS pro-
gramme (AboutDrought, 2021) projects Historic Droughts,
IMPETUS (Improving predictions of drought to inform user
decisions) and MaRIUS, which used several of the models
used by eFLaG (specifically G2G and GR4J – Génie Ru-
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Figure 2. Bias-correction grids applied to correct monthly precipitation. Values are correction factors used to modify precipitation, with a
value of 0.5 halving precipitation, 1 meaning no change to precipitation, 2 doubling precipitation, etc. The columns show the results from
each RCM–PPE member, and the rows show the results for each month. Note that the column numbers reflect the RCM–PPE number (see
Sect. 3).
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ral à 4 paramètres Journalier). In this regard we ensured that
165 eFLaG catchments overlapped with at least one DWS
project.

Selection also focused on data quality. Longer record
lengths were prioritised and hydrometric quality was eval-
uated where possible. Given the extent of hydrometric issues
(at low flows especially), it is not possible for all sites to have
the highest-quality data, but where decisions were made on
similar sites, quality was considered a tiebreaker. The selec-
tion included 80 Benchmark catchments but did not seek to
focus entirely on natural catchments given the limited range
of variability they capture (being mostly small and clustered
in headwaters) and also included large and disturbed sites
known to be important for water industry purposes. Artifi-
cial influences are prevalent across the UK and have been
shown to prominently affect flow regimes (e.g. Rameshwaran
et al., 2022) and drought characteristics (Tijdeman et al.,
2018) in many catchments. Hence, the incorporation of a
range of Benchmark near-natural catchments and artificially
influenced sites is important for ensuring representativeness
and demonstrating the utility of the different models used,
which treat artificial influences differently (Sect. 5). Mem-
bership of the Benchmark catchments is highlighted in the
dataset description, and information on artificial influences
can be accessed for all sites on the NRFA website (in station
descriptions and “Factors Affecting Runoff” codes).

Catchment representativeness was also considered, en-
abling the eFLaG dataset to sample the hydrological variabil-
ity of the UK. Representativeness was considered by compar-
ing the distribution of eFLaG potential selections relative to
various catchment descriptors from the NRFA Hydrometric
Register (altitude, area, annual rainfall, baseflow index, land
cover, etc.).

Finally, this activity focused on ensuring water industry
relevance. At the national scale, this was achieved by asking
stakeholders at an eFLaG workshop for views on additional
catchments (Durant and Counsell, 2021). In this way, 12
catchments were added. Similarly, for the regional demon-
strators (Dwr Cymru/Welsh Water and Thames Water), water
company teams were consulted to gain a better understand-
ing of strategically important flow records for water compa-
nies in the case study regions, leading to an additional five
catchments.

The final eFLaG dataset consists of 200 catchments
(Fig. 3a) giving good geographical coverage and represen-
tativeness of the UK.

4.2 Groundwater levels

Boreholes were selected to ensure a number of essential cri-
teria were met. Firstly, only those boreholes with the highest-
quality records of groundwater level were considered. This
required regular (at least monthly) and continuous (at least
10 years in length) records of data from boreholes that are

in zones which are not significantly affected by groundwater
abstraction.

Secondly, sites were chosen to ensure coverage of the
UK’s principal aquifers where possible, enabling the eFLaG
dataset to sample the hydrogeological variability of the
UK. This broadly aligns with the requirements of other
national-scale assessments of groundwater resources under-
taken as part of the original FFGWL project and the Historic
Droughts and IMPETUS projects. Accordingly, the selection
aimed to ensure good coherence with these studies too.

Thirdly, as with river flow catchment selection, an ad-
ditional activity focused on ensuring water industry rele-
vance, at the national scale, through both consultation with
stakeholders at the eFLaG workshop and through consulta-
tion with key demonstrator partners (Dwr Cymru/Welsh Wa-
ter and Thames Water), who identified strategically impor-
tant boreholes that would strengthen the outputs for long-
term drought-risk assessment to support the water resources
planning case study. Through this activity, several additional
boreholes were identified.

These selection criteria identified over 70 “candidate”
boreholes for the eFLaG project. A final quality-assurance
procedure was then undertaken, whereby a preliminary anal-
ysis of AquiMod’s ability to capture low groundwater lev-
els was undertaken at each borehole via visual inspection of
the simulated hydrographs. A final set of 54 boreholes was
selected (Fig. 3b). They represent a significant advance in
aquifer coverage compared to the 24 NGLA boreholes used
in FFGWL, 15 of which are used in both.

4.3 Groundwater recharge

The gridded groundwater recharge simulations have been ag-
gregated over 558 “groundwater bodies” covering England
(Environment Agency, 2021a), Wales (Natural Resources
Wales, 2023) and Scotland (Ó Dochartaigh et al., 2015)
(Fig. 3c). These units were used for two principal rea-
sons. Firstly, they are physically justifiable as they reflect
known hydrogeological characteristics, including groundwa-
ter recharge and groundwater flow regimes, so that each
catchment represents a distinct body of groundwater that
can reasonably be considered in isolation. Secondly, they
are coherent with the licensing areas defined as part of
Catchment Abstraction Management Strategy (Environment
Agency, 2021b) and management areas for the implementa-
tion of the Water Framework Directive. They are, therefore,
directly relevant to water regulation and the wider water in-
dustry.

5 Hydrological and groundwater model ensemble
set-up

Creation of an eFLaG dataset is underpinned by hydrological
and groundwater models used to transform rainfall and PET
to river flow, soil moisture, groundwater levels and recharge.
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Figure 3. (a) Map of the 200 eFLaG catchments highlighting those used as case study sites in Sect. 7. (b) Map of 54 eFLaG boreholes
and principal UK aquifers, including the Chalk, Devonian and Carboniferous aquifers (Devonian/Carbonif.), Jurassic limestones (Jurassic),
Magnesian limestones (Magnesian) and Permo-Triassic sandstones (Permo Trias.). (c) Map of 558 groundwater bodies. The inset of Fig. 3b
shows the Berkshire downs, where there are a high number of boreholes.

The approach builds on that employed under FFGWL (Prud-
homme et al., 2013) whilst exploiting developments in hy-
drological modelling for droughts since that time.

For modelling of river flows, eFLaG used two lumped
catchment models, PDM (Moore, 2007) and the GR suite
(Perrin et al., 2003), and one distributed grid-based hydro-
logical model, G2G (Bell et al., 2009). PDM was used in
FFWGL and therefore provides some comparability with
that project. Embracing a range of different model structures
and spatial representations can provide insights into how as-
sessments of future river flows (and hence drought or low-
flow risk under climate change) are sensitive to hydrological
model choice. It should be noted that an important difference
between the river flow models is in the treatment of artifi-
cial influences (abstractions and discharges). G2G is not cal-
ibrated and simulates natural river flows only (i.e. it does not
include artificial influences). The GR suite and PDM do not
explicitly include artificial influences either, but as calibrated
models they will implicitly include the net effect of artificial
influences in the simulations. We return to this important dis-
tinction in the results and discussion.

For groundwater, eFLaG adopted the lumped, conceptual,
AquiMod groundwater model (Mackay et al., 2014a) to sim-
ulate groundwater level time series on a daily time step at the
boreholes identified in Sect. 4. AquiMod was the groundwa-
ter level model used in FFGWL providing direct comparison.
In addition to groundwater levels, ZOODRM (Mansour and
Hughes, 2004) was used to study changes in future ground-
water recharge.

In the following sub-sections, we describe each of these
models in turn, providing information on the model set-up,

calibration and past approaches to evaluation. A consistent
approach was applied to the model application and evaluation
across all these models where possible. However, it is impor-
tant to emphasise that, while some aspects were common, in-
sofar as possible (e.g. model-driving data), it was necessary
to apply different approaches to suit the model in question.
Calibration was done according to past applications and best
practice. Hence, the calibration approach described below is
similar for the GR suite and PDM but different for AquiMod,
and by its nature, G2G requires no specific calibration here.
Where calibration was carried out for the conceptual models,
it was undertaken for the full period of record of available
data.

Identical approaches to evaluation were adopted across all
river flow models, but minor differences applied to ground-
water, as described below.

There are two sets of model output in eFLaG described
below – this terminology is adopted throughout.

– simobs. observation-driven simulation (i.e. simulations
for the observed period, driven by observational climate
datasets, described below). The simobs period varies
between models but covers at least the January 1961–
December 2018 period.

– simrcm. UKCP18 RCM-driven simulation (12 ensem-
ble members) (i.e. simulations driven by the UKCP18
RCM bias-corrected dataset as described in Sect. 3).
These are available for 1980 to 2080. The simrcm
runs from the observed period could then be evaluated
against the simobs data.
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Common driving data were applied across all the models for
the simobs runs. Accepted national-standard observational
climate products were used, including the following.

– Precipitation and temperature: the HadUK-Grid
1 km× 1 km dataset (Hollis et al., 2019), the national-
standard gridded meteorological dataset and observa-
tional product associated with UKCP18

– PET: MORECS (Meteorological Office Rainfall and
Evaporation Calculation System) (Hough and Jones,
1997) is an established, national gridded PET prod-
uct. Other PET datasets such as CHESS (Robinson et
al., 2016) and more recently the Environment Agency’s
PET product (Environment Agency, 2021c) have been
available, but the decision to use MORECS was based
on the availability of data for the whole of the UK.

For all the models, evaluation was undertaken in two
stages, which is typical practice for appraising a model for
simulation of climate-change impacts.

1. Evaluation when driven with baseline-observed climate
data

2. Evaluation when driven with baseline climate model
data

Stage 1 involves the use of evaluation statistics to assess the
performance of model simulations driven by observed cli-
mate data (the simobs runs) against observations of river flow
and groundwater. For Stage 1, a range of metrics is avail-
able and widely used to assess how well rainfall–runoff or
groundwater models perform against observations. Within
eFLaG, these metrics were used to assess performance (Ta-
ble 2). For river flows, these metrics have a focus on low-
flow metrics (e.g. Nash–Sutcliffe efficiency, NSE, on log-
transformed flows), but some do evaluate performance across
the flow regime. For groundwater levels, a generalised NSE
score was used which provides an overall assessment of pro-
cess realism and fit to groundwater level data. The simulated
and observed Standardized Groundwater level Index (SGI)
was also compared using the NSE (NSESGI), which focuses
on groundwater extremes, including droughts.

It is not possible to do a thorough evaluation of the
recharge simulations from ZOODRM, given the difficulty in
measuring recharge, particularly at a scale that is commen-
surable with a national model. However, past applications of
ZOODRM (e.g. Mansour et al., 2018) have successfully used
monthly river flow data as a means of evaluating ZOODRM’s
ability to capture catchment water balances and infer the ac-
curacy of seasonal recharge simulations (further details are
provided in the model description). Accordingly, a sub-set
of the river flow metrics relevant to monthly river flows has
been used to evaluate ZOODRM for Stage 1.

Sources of quality-controlled, long-term observational
data for model calibration and evaluation were the national-
standard repositories for hydrological data.

– River flows: UK National River Flow Archive: https:
//nrfa.ceh.ac.uk/ (last access: 29 March 2023)

– Groundwater levels: UK National Groundwater
Level Archive: https://www2.bgs.ac.uk/groundwater/
datainfo/levels/ngla.html (last access: 29 March 2023)

Stage 2 appraises the performance of the models when
driven by the climate model outputs. That is, it compares
the simobs and simrcm runs over the common baseline pe-
riod. This assessment cannot use performance metrics based
on time series, as climate models are not expected to repro-
duce the sequencing of events seen over the historical pe-
riod (Kay et al., 2015). Instead, the comparison has been
done in terms of river flow and groundwater level duration
curves, low-flow/low-level metrics and seasonal recharge
values, thus comparing the statistical characteristics of river
flows, groundwater levels and groundwater recharge rather
than their day-to-day equivalence (Kay et al., 2015, 2018).
When looking at the performance of an ensemble of climate
model runs, the model simulation driven by observed data
would ideally sit within the range covered by the ensemble
(assuming an ensemble of sufficient size). However, it would
not necessarily be expected to sit in the middle of the en-
semble range, because the set of weather events that actually
occurred within the historical observed baseline period is just
one realisation of what could have occurred within the range
of natural variability (Kay et al., 2018).

5.1 Description of the models and the specific set-up

5.1.1 GR4J/GR6J

The GR4J (Génie Rural à 4 paramètres Journalier) and GR6J
(Génie Rural à 6 paramètres Journalier) models come from
a suite of hydrological models provided in the airGR mod-
elling suite (Coron et al., 2021) for the R software pro-
gram. Both models are well suited to application across many
catchments using the inbuilt automatic parameter optimisa-
tion function. The simple, efficient forms of airGR models
also make them suitable for uncertainty and ensemble analy-
ses.

GR4J is a simple daily lumped conceptual model with
only four free parameters. GR4J has been used for hydrocli-
mate change research across the globe and has demonstrated
good performance in a diverse set of catchments in the UK.
The model has been applied in the UK for operational sea-
sonal forecasting and for long-term drought reconstructions
nationwide (Harrigan et al., 2018b; Smith et al., 2019).

GR6J (Pushpalatha et al., 2011) is a six-parameter vari-
ant of the GR modelling suite that was developed to improve
low-flow simulation and groundwater exchange. Recently,
GR6J has increasingly been applied in UK water resources
applications (e.g. Anglian Water, 2021).

For eFLaG, it was decided, therefore, that using both GR4J
and GR6J would be beneficial. Both GR4J and GR6J were
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Table 2. Model calibration and evaluation metrics used in eFLaG.

Evaluation metric Equation Focus

Nash–Sutcliffe efficiency
(R2 efficiency)

NSE= 1−
∑n
i=1(Qi−qi )2∑n
i=1(Qi−Q)2

Qi and qi are observed and modelled flows for day i of an n d record.Q is the mean
observed flow.
NSE= 1−

∑n
i=1(Hi−hi )2∑n
i=1(Hi−H )2

Hi and hi are observed and modelled groundwater levels for day i of an n d record.
H is the mean observed groundwater level.

High flows/generalised
groundwater levels

Nash–Sutcliffe efficiency log
flows∗

NSElog = 1−
∑n
i=1(log(Qi )− log(qi ))2∑n
i=1(log(Qi )−log(Q))2 Low flows

Nash–Sutcliffe efficiency
square-root flows

NSEsqrt = 1−
∑n
i=1(
√
Qi−
√
qi )2∑n

i=1(
√
Qi−
√
Q)2

Generalised
flows

Nash–Sutcliffe efficiency stan-
dardised groundwater level in-
dex

NSESGI = 1−
∑n
i=1(SGIi− sgii )

2∑n
i=1(SGIi−SGI)2

SGIi and sgii are observed and modelled SGI for day i of an n d record. SGI is the
mean observed SGI.

Groundwater extremes

Modified Kling–Gupta
efficiency (square-root flows)

KGE′sqrt = 1−
√

(r − 1)2+ (β − 1)2+ (γ − 1)2,

where r is the correlation coefficient, β is the bias ratio
µ√q
µ√Q

and

γ is the variability ratio
CV√q
CV√Q

or
σ√q/µ

√
q

σ√Q/µ
√
Q

µ. σ and CV are the mean, standard deviation and coefficient of variation of flow
(here of the square root of modelled and observed flows as indicated by the suffix).

Generalised flows

Absolute percent bias absPBIAS=
∣∣∣∑(qi−Qi )∑

Qi

∣∣∣100 Water balance

Mean absolute percent error MAPE=

(
1
n

n∑
i=1

∣∣∣Qi−qiQi

∣∣∣)100 Systematic

Absolute percent error in Q95 Q95APE =
∣∣∣Q95−q95

Q95

∣∣∣100 Low flows

Low-flow volume LFV= 100
∑95
p=70(√qp−

√
Qp)∑95

p=70(
√
Qp)

Here qp and Qp are the modelled and observed flow p percentiles

Low flows

Absolute percent error in the
mean annual minimum on a
30 d moving average∗

MAM30APE =
∣∣∣QMAM30−qMAM30

QMAM30

∣∣∣100,

where QMAM30= 1
n

n∑
j=1

minj
(
Qj,i−29+Qj,i−28+Qj,i−27...Qj,i−1+Qj,i

30

)
.

Here Qj,i is the observed flow for day i of hydrological year j for a record of n
years.

Low flows

∗ One-hundredth of the mean observed flow was added to both modelled and observed flow values during evaluation in order to avoid errors and biases due to very small and zero flows.

calibrated using the inbuilt automatic calibration function,
with the modified Kling–Gupta efficiency (KGE, Gupta et
al., 2009; Kling et al., 2012) as the error criterion (“Error-
CritKGE2”). KGE offers a thorough error criterion as it cal-
culates the correlation coefficient, the bias and the variability
between simulated and observed flows. KGE values range
from −Inf to 1, with 1 being a perfect fit. The calibration al-
gorithm was applied to square-root-transformed flows in or-
der to place weight evenly across the flow regime. The airGR
snowmelt module CemaNeige was not applied, as a simple
snow module was applied to the climate data to pre-process
the precipitation data into rainfall and snowmelt based upon
temperature (See Sect. 3).

5.1.2 Grid-to-Grid

The G2G hydrological model is an established model dis-
tributed area-wide that has been used to investigate the spa-
tial coherence and variability of floods and droughts at catch-
ment, regional and national scales. Model output typically
consists of natural river flows at both gauged and ungauged
locations and can be provided as time series for specific lo-
cations as well as 1 km× 1 km grids. G2G has been used for
climate impact modelling of floods (Bell et al., 2009, 2012),
low flows (Kay et al., 2018) and droughts (Rudd et al., 2019)
and is also used operationally for flood forecasting (Cole and
Moore, 2009; Moore et al., 2006).
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G2G is typically configured on a 1 km× 1 km grid across
Great Britain using spatial datasets of landscape properties
such as soil type and drainage network, together with a few
nationally applied model parameters. The model is thus pa-
rameterised using national-scale spatial datasets (e.g. soil
grids) rather than via individual catchment calibration. The
spatial datasets and parameters used here are the same as
those used in previous studies (Rudd et al., 2019; Bell et al.,
2009, 2012; Kay et al., 2018). Note that model output for
G2G is for 186 of the 200 eFLaG catchments. Of the 14
catchments excluded, 9 are in Northern Ireland and so are
not covered by the version of G2G applied here. For the other
five catchments there were difficulties in identifying appro-
priate outlet locations on the 1 km network of flow directions
used by G2G.

G2G can either be initialised with model water stores set
to default or zero values or from a states file appropriate to
the run start date. In eFLaG the G2G was run for 2 years
with observed rainfall and PET to provide a 1 January 1963
states file to initialise the observation-driven G2G model run.
The RCM-driven G2G runs were all initialised with a generic
December states file provided by an obs-driven run (for 1 De-
cember 1980), and then the first 2 years of each RCM-driven
run were discarded to allow for model spin-up. The eFLaG
river flow datasets therefore cover the periods 1 January 1963
to 31 December 2018 (simobs) and 1 December 1982 to
30 November 2080 (simrcm).

5.1.3 PDM

PDM (Moore, 2007; UKCEH, 2022) is a simple, very widely
used lumped rainfall–runoff model that can be configured to
a variety of catchment flow regimes. Within the model, a soil
water store with a distribution of water absorption capaci-
ties controls runoff production through a saturation excess
process; stored water is also lost to evaporation. In one con-
figuration, all runoff enters a surface store (the fast pathway),
while a groundwater store (the slow pathway) is recharged by
soil water drainage. In an alternative configuration, the runoff
is split between the two stores according to a fixed fraction.
Water in the surface water and groundwater stores is routed
using a non-linear storage equation (powers of 1, 2 and 3
were trialled under eFLaG) or, for the surface store, a cascade
of two linear reservoirs before being combined to produce the
modelled flow at the catchment outlet. Water is conserved
within the model, whilst a multiplicative factor (equal to 1
if not required) is applied to the input precipitation. Alterna-
tively, a groundwater extension (Moore and Bell, 2002) may
be invoked to allow modelling of underflow at the catchment
outlet, external springs, pumped abstractions and incorpora-
tion of well-level data. Multiple hydrological response zones
within a catchment can also be represented (not trialled un-
der eFLaG). PDM may be thought of as a toolkit of model
components representing a range of runoff-production and
flow-routing behaviours and with a choice of time step.

Under eFLaG, single-zone PDM models were invoked
with a daily time step. The model stores were initialised us-
ing the mean observed flow over the period of record and the
first 2 years of model flow discarded to allow for model spin-
up. Nineteen different combinations of the above-mentioned
toolkit options were systematically trialled for each catch-
ment. Parameter estimation was performed using an auto-
matic calibration procedure that applied a simplex optimi-
sation scheme (Nelder and Mead, 1965) to increasing num-
bers of model parameters in turn. The rainfall factor, or, when
employed, a spring factor (representing net water exchange
for the catchment), were used to achieve zero bias in the
modelled flows with respect to observations. The remain-
ing parameters were estimated so as to optimise the modified
Kling–Gupta efficiency calculated on either the square-root-
transformed flows or, to a limited extent, the log-transformed
flows (see “Supplementary information 2” in the Supple-
ment).

5.1.4 AquiMod

AquiMod is a lumped conceptual groundwater model that
links simplified equations of soil drainage, unsaturated
zone flow, and saturated groundwater flow to simulate
daily groundwater level time series at a specified borehole
(Mackay et al., 2014b). Each of these three components
uses model parameters that describe site-specific hydrolog-
ical and hydrogeological characteristics of the groundwater
catchment surrounding the borehole. The model also has a
flexible saturated-zone model structure that can be modified
to represent different levels of vertical heterogeneity in hy-
drogeological properties.

For each borehole, the AquiMod parameters and struc-
ture were calibrated to achieve the most efficient simula-
tion of available historical groundwater level data using NSE,
which provides a reliable assessment of overall process real-
ism and goodness of fit to groundwater level time series; fol-
lowing the approaches of Mackay et al. (2014a) and Jackson
et al. (2016), model parameters that could be related to catch-
ment information (e.g. relating to known land cover and soil
type) were fixed. The remaining parameters were then cal-
ibrated using six different saturated-zone model structures,
including a one-layer model (fixed hydraulic conductivity
and specific yield), two- and three-layer models with vari-
able hydraulic conductivity and fixed specific yield, two- and
three-layer models with variable hydraulic conductivity and
variable specific yield and a “cocktail glass” representation
of hydraulic conductivity variation with depth (William et
al., 2006). The optimal structure–parameter combination was
obtained for each borehole using the shuffled complex evo-
lution global optimisation algorithm.
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The calibrated models were then evaluated for their abil-
ity to capture groundwater level extremes using the SGI
(Bloomfield and Marchant, 2013) as the basis for this evalua-
tion. The SGI is a normalised index, calculated directly from
groundwater level time series, which can be used to identify
droughts and provide a quantitative status of groundwater re-
source drought events (e.g. Bloomfield et al., 2019).

5.1.5 ZOODRM

ZOODRM is a distributed recharge calculation model origi-
nally developed to estimate recharge values to drive ground-
water models (Mansour and Hughes, 2004). It is applied over
the British Mainland using a 2 km square grid. The FAO
Drainage and Irrigation Paper 56 (FAO, 1998) approach,
modified by Griffiths et al. (2006), is used to calculate poten-
tial recharge. This method removes actual evaporation and
soil moisture deficit from rainfall and calculates potential
recharge as a fraction of the excess water using a runoff co-
efficient value. The model was driven by daily rainfall and
potential evaporation data. The model was primarily param-
eterised using available national-scale data, including data
relating to the soil hydrology (Boorman et al., 1995), veg-
etation (Land Cover Map 2000; NERC, 2000) and surface
topography. The latter of these was used to route surface wa-
ter runoff.

The runoff coefficient, which defines the proportion of ex-
cess soil water that drains overland via surface runoff, is an
unknown parameter which must be calibrated. This was done
in two stages. Firstly, the calibration problem was simpli-
fied by defining zones of equal runoff coefficients. In to-
tal, 35 zones were used in ZOODRM, which were based
on UK hydrogeological and geological maps (DiGMapGB-
625, 2008). Then, the runoff coefficient for each zone was
manually calibrated by comparing simulated runoff to ob-
served river flows minus baseflow, which was calculated
using a well-established baseflow separation method (Gus-
tard et al., 1992). This was done using monthly mean flows
given that ZOODRM does not have a sophisticated runoff
routing scheme, and it is not expected, therefore, to capture
daily variability in runoff. The comparison to monthly flows
does, however, provide a useful means of evaluating the sea-
sonal water balance of the model which serves as the best
available proxy for the accuracy of the recharge simulations.
In total, 41 gauging stations were used to assess the model
performance.

The only hydrological process that needs initialisation in
the ZOODRM is the soil moisture deficit. As all simulations
start in January, which is a wet month with minimal potential
evaporation, it is assumed that the initial soil moisture deficit
is equal to zero. Even so, a warm-up period of 1 year is used
to initialise the model.

6 Hydrological model evaluation (Stage-1
evaluation)

This section provides a brief summary of the outputs of the
Stage-1 evaluation. Note that, for river flows, model evalua-
tion was undertaken at the same gauged locations and for the
same period of time used for model calibration, except for
G2G, which is not specifically calibrated.

6.1 River flows

Figure 4 summarises the range of Stage-1 evaluation metrics
across all the catchments, while Supplement Figs. S2 to S5
provide maps of the evaluation metrics at each catchment.
For GR4J, generally there was good performance across
performance metrics in most catchments. Some outliers are
present in the drought metrics, particularly in the south-
east and London. For GR6J, we observed good performance
across all performance and drought metrics. GR6J generally
performs slightly better than GR4J, particularly as shown in
low-flow catchments in the logNSE metric. For PDM, very
good scores are obtained across the 200 sites, especially the
low-flow/drought indicators (bottom rows).

For G2G, again, good performance was observed overall
(medians for NSE/logNSE/sqrtNSE/KGE2≥ 0.7). However,
the performance was generally lower than for GR or PDM
because the G2G is not calibrated to individual catchments,
and G2G simulates natural flows, whereas the lumped mod-
els are calibrated to the observations used for performance
assessment. In catchments with a high degree of anthro-
pogenic disturbance, G2G is less able to simulate observed
flows, whereas the calibration of the other hydrological mod-
els will implicitly account for such artificial impacts, mean-
ing they are inevitably more likely to replicate observed flows
even if these processes are not included explicitly.

This distinction highlights an important benefit of eFLaG:
PDM and GR4J/GR6J are calibrated to present-day flows,
and hence simulated flows are not natural, as they implicitly
include artificial impacts. These runs do not, therefore, allow
users to separate natural flows and artificial influences in the
baseline period or to project how they may change relative to
each other in the future. On the other hand, although not used
here, G2G has the capability of including artificial influences
separately (e.g. Rameshwaran et al., 2022). We return to this
issue in Sect. 9.

In general, the eFLaG dataset shows a very good range of
performance comparable with previous applications of these
models for the UK (e.g. Rudd et al., 2017; Harrigan et al.,
2018b; Smith et al., 2019). There are some commonalities
with these previous studies in terms of spatial patterns. Rudd
et al. (2017) also noted that G2G performance is likely to
reflect the fact that simulated flows are natural (hence per-
formance is poorer in the south and east, where artificial in-
fluences are typical greater). Issues with poorer performance
in groundwater-dominated catchments were highlighted for
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Figure 4. Evaluation of modelled river flow performance. The key evaluation metrics outlined in Table 2 are summarised for all 200 modelled
catchments (GR4J, GR6J, PDM) or 186 modelled catchments (G2G).

GR4J by Smith et al. (2019), and the present study shows
that eFLaG enables some improvement through GR6J. Smith
et al. (2019) also highlighted how a lack of snowmelt con-
strained performance in some areas (e.g. north-eastern Scot-
land), while the current results also show improvements in
these areas in eFLaG, given the inclusion of snowmelt ac-
counting.

6.2 Groundwater levels

Figure 5 summarises the model evaluation results for the 54
AquiMod models used in eFLaG. The results show that all
54 models demonstrate good overall efficiency in capturing
daily groundwater level dynamics, achieving NSE≥ 0.77.
All but 11 of the models achieve NSE≥ 0.85, and 28 of the
models achieve NSE≥ 0.90. These include all seven mod-
els situated in the Permo-Triassic sandstone and four out of
five of the models situated in the Devonian and Carbonif-
erous aquifers. Swan House and Lower Barn Cottage, the
only models situated in the Magnesian limestones and Lower
Greensand respectively, achieved NSE values of 0.82 and
0.86. The Chalk and Jurassic limestone borehole models span
the full range of NSE scores.

The results show that all 54 AquiMod models are able to
capture the historical SGI time series efficiently, achieving
NSESGI≥ 0.6, which indicates that the models effectively
capture groundwater extremes, including periods of drought.
The majority of the models show a lower NSESGI compared
to the NSE, although several models show a negligible dif-
ference. On average, the NSESGI is 0.15 less than the NSE.

6.3 Groundwater recharge

ZOODRM demonstrates an ability to efficiently capture
monthly mean river flows as reflected by the medians for
NSE and KGE2, which both exceed 0.75, and the median ab-
solute percent bias, which is 12.7 % (Fig. 6). Figure S6 shows
the distributed recharge model results at the 41 gauging sta-
tions across the country. The model uses a simplistic over-
land routing approach, which is implemented to check the
water balance on a monthly basis, noting that large-scale spa-
tial recharge values are most commonly used to drive ground-
water flow models using monthly stress periods.
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Figure 5. AquiMod evaluation metric results including NSE (a) and NSESGI (b).

Figure 6. Distributed recharge model ZOODRM evaluation results.

7 Evaluation of RCM-based runs in the baseline
(Stage-2 evaluation)

This section briefly considers the outcomes of the Stage-
2 evaluation, focusing firstly on flow/groundwater duration
curves for a sub-set of eFLaG sites (see map, Fig 3) and then
specifically on the representation of particular low flows (low
groundwater level) quantiles.

7.1 Flow-duration curves

Flow-duration curves (FDCs) summarise the entirety of the
flow regime from high to low flows by including all river
flows and expressing them in terms of the percentage of time
a given flow is exceeded. Figures 7 and S7 to S9 provide a
perspective on the ability of the RCM-driven river flow simu-
lations (simrcm) to replicate the range and frequency of flows
based on the observation of climate-driven river flow sim-
ulations (simobs). FDCs are shown for a common baseline
period of 1989–2018.

The close correspondence between FDCs derived from the
RCM ensemble members and model observations suggests
that the RCM ensemble performs well in replicating flows
across the regime. This is consistent across most UK catch-
ments, illustrated by the representative sub-set of 32 catch-
ments featured in Figs. 7 and S7 to S9. The model observa-
tions are usually within the range of values from the 12 en-
semble members throughout the flow regime. There are some
catchments for which the RCM ensemble is more likely to
overestimate the lowest half of the flow regime (exceedance
probabilities of 50–100), most notably for Stringside (33029;
Fig. 7), Dove (28046; Fig. S7), Frome (53006; Fig. S8) and
Lud (29003; Fig. S7).

For certain catchments such as Stringside (33029; Fig. 7)
and Lud (29003; Fig. S7), although there appears to be
greater RCM uncertainty in river flows than for other catch-
ments, the differences tend to be exaggerated in smaller, drier
catchments with lower flows across the flow regime. The log-
arithmic y axis is also a contributing factor to this and also
accounts for the seemingly larger RCM uncertainty in low
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Figure 7. Flow-duration curves (FDCs) comparing the baseline flow regime in the 12 RCM ensemble members (simrcm, grey lines) to
simulated observed ones (simobs, red line), 1989–2018. FDCs are featured for four hydrological models (GR4J, GR6J, PDM, G2G; rows) and
eight catchments in southern and eastern England (32003 Harpers Brook, 33029 Stringside, 37005 Colne, 39025 Enborne, 39034 Evenlode,
41022 Lod, 48003 Fal, 52010 Brue; columns). The y axis represents river flows (cumecs) on a logarithmic scale.

flows than high flows across all catchments. These findings
are also consistent across the four hydrological models, with
no systematic differences identified for a given hydrological
model. In some exceptional circumstances, there are exam-
ples of certain models in specific catchments in which the
lowest river flows derived from the RCM ensemble are much
lower than those in the model observations (e.g. 23004 South
Tyne (Fig. S7) and 67018 Welsh Dee (Fig. S8) for GR6J,
33029 Stringside (Fig. 7) for G2G).

7.2 Groundwater level duration curves

Overall, an analysis of the groundwater level duration curves
(GLDCs) at all the boreholes (Figs. S10–S15) shows close
correspondence between the simrcm and simobs runs, where
the simobs GLDC typically lies within the range of the sim-
rcm GLDCs. However, there are some different behaviours
across the boreholes which are summarised in Fig. 8. Fig-
ure 8a shows the GLDCs for the New Red Lion bore-
hole situated in the Lincolnshire Limestone, the results of
which are representative of most boreholes where the ma-
jority of simobs GLDCs fall within the range of the simrcm
GLDCs. Several of the boreholes show a relatively high de-
gree of variability across the simrcm runs in comparison to
the simobs, including the Heathlanes borehole situated in the
Permo-Triassic Sandstone (Fig. 8b). These appear to be asso-
ciated with boreholes which are known to respond relatively
slowly to climate due to local hydrogeological conditions.

For example, Heathlanes is known to be representative of a
relatively low-hydraulic-diffusivity aquifer. For some bore-
holes there are areas of the GLDCs where the simobs GLDC
does not lie within the range of the simrcm GLDC. In the
most extreme cases, systematic biases across almost the en-
tire GLDC can be seen (e.g. Fig. 8c).

7.3 Low river flows and groundwater levels

Replication of observed low river flows and groundwater lev-
els over a baseline period provides an indication of how well
the simrcm runs are performing in the lower part of the river
flow and groundwater level regime and therefore enhances
confidence in future low-flow and low-level projections. Fig-
ure 9a–d show the difference between the simobs and sim-
rcm 90 % exceedance flow (Q90) over the 1989–2018 base-
line period reported as the absolute percentage error (APE)
at each of the 200 catchments for all four river flow models.

Overall, there is a reasonable agreement between the
simobs and simrcmQ90 values across all four models. Mean
APEs are less than 20 % for most catchments across the four
hydrological models. Modelled low flows for GR6J, G2G
and particularly PDM are especially well replicated in catch-
ments across the UK, with mean APEs higher (20 %–50 %)
in GR4J river flows for catchments in East Anglia and parts
of northern England and southern Wales. The lumped catch-
ment models GR6J and PDM struggle to capture low flows in
groundwater-influenced catchments of the eastern Chilterns
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Figure 8. Groundwater level duration curves (GLDCs) for the period 1989–2018 using the simrcm (grey lines) and simobs (red line)
simulations. GLDCs are featured for three boreholes in different hydrogeological settings which show contrasting behaviour: (a) New Red
Lion (Lincolnshire Limestone), (b) Heathlanes (Permo-Triassic Sandstone, Shropshire) and (c) Tank Hall (Chalk).

Figure 9. Comparison of simobs and simrcm runs for river flows and groundwater levels exceeding 90 % of the time (Q90 and L90
respectively) between 1989 and 2018. The colour scale indicates the mean of 12 absolute percent errors (APEs) between Q90 (L90) in
model observations and Q90 (L90) in each of 12 ensemble members. Results are presented for (a) GR4J, (b) GR6J, (c) PDM, (d) G2G and
(e) AquiMod. Note: AquiMod levels are expressed as a percentage of the simobs range in groundwater levels to remove the influence of
aquifer storage. Figures S16 to S18 feature the equivalent baseline assessment for Q30 (L30), Q50 (L50) and Q70 (L70).

north of London, with APEs of up to 70 %. Considering the
natural flows simulated by G2G and the prevalence of arti-
ficial influences on rivers further south and east in the UK,
mean APEs are reasonable in this region and are actually
higher in more natural parts of Wales and northern England.

Mean APEs at a range of other flow quantiles demon-
strate similar patterns (Figs. S16 to S18). Mean APEs of
Q30 for the vast majority of catchments for all four hydro-
logical models are less than 20 % (Fig. S16). Mean APEs
of Q50 (Fig. S17) and Q70 (Fig. S18) are also reasonable
in most catchments and models, though higher mean APEs
(20 %–50 %) are apparent for both of these flow quantiles

in East Anglia for GR4J, in parts of northern England for
G2G and in groundwater-influenced parts of the Chilterns for
PDM. Mean APEs are similarly higher in GR6J flows atQ50
in East Anglia and at Q70 in the groundwater-influenced
Chilterns. Whilst this analysis is primarily an assessment of
the ability of the RCM ensemble to replicate flows across the
regime, it is clear that the hydrological model calibrations
also have a role in influencing the outcomes.

Figure 9e shows the difference between the simobs and
simrcm 90 % exceedance groundwater level (L90) over the
1989–2018 baseline period reported as an APE relative to the
simobs range in groundwater levels at each of the 54 bore-
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holes. The use of the range in groundwater level as a refer-
ence removes the influence that the aquifer storage has on
groundwater variability across the boreholes. There is good
agreement between the simobs and simrcm L90 values across
the boreholes. Mean APEs are less than 20 % for all of the
boreholes except for the Heathlanes borehole in the Permo-
Triassic Sandstone, where the mean APE exceeds 30 %.

Mean APEs at a range of other groundwater level quantiles
demonstrate similar patterns (Figs. S16 to S18). Mean APEs
of L30 do not exceed 5 % for the majority of the boreholes.
The mean APEs typically become larger for most boreholes
as the level quantile reduces towards L90. Heathlanes con-
sistently has the highest mean APE for all level quantiles.

7.4 Seasonal groundwater recharge

Figure 10 provides a comparison of simobs and simrcm runs
for seasonal-average groundwater recharge between 1989
and 2018 generated by ZOODRM. During the winter months
(DJF), when groundwater recharge is highest, the simrcm
simulations show good correspondence to simobs simula-
tions, where the mean APE is less than 20 % for all but
seven of the groundwater bodies. During the summer months
(JJA), when groundwater recharge is lowest, the majority of
the groundwater bodies still show mean APEs of less than
20 %, but over 200 of them show errors exceeding 20 %.
These larger errors are typically associated with groundwater
bodies that have lower-than-average recharge for this time of
the year. For MAM, the majority of the groundwater bod-
ies with errors that exceed 20 % are also associated with
those groundwater bodies with below-average recharge for
that time of the year. There are also some additional areas
with significant recharge that show errors exceeding 20 %,
including groundwater bodies in eastern–central Scotland
and north-western and south-western England. For autumn
(SON), the simrcm simulations show good correspondence
to simobs simulations, where the majority (>80 %) of the
groundwater bodies show mean APEs of less than 20 %. The
majority of those with larger errors are situated on the east-
ern coast of Scotland and England and in northern Wales and
Cheshire.

8 Data availability

The eFLag dataset is associated with a digital object iden-
tifier. This must be referenced fully for every use of the
eFLag data as https://doi.org/10.5285/1bb90673-ad37-4679-
90b9-0126109639a9 (Hannaford et al., 2022).

All eFLaG files are available through the
UKCEH EIDC: https://catalogue.ceh.ac.uk/documents/
1bb90673-ad37-4679-90b9-0126109639a9 (last access:
29 March 2023, Hannaford et al., 2022).

The data are stored as .csv files in the folder struc-
ture shown in the guidance note available in Hannaford et
al. (2022). In total, there are 3304 files, 1 for each variable,

Figure 10. Comparison of simobs and simrcm runs for seasonal-
average groundwater recharge between 1989 and 2018 generated
by ZOODRM. The colour scale indicates the mean of 12 absolute
percent errors (APEs) between simobs and simrcm.

model and catchment–borehole combination. They can be
broadly split into two groups of files (Table 3), simobs and
simrcm, as follows.

– simobs. For the meteorological data, the simobs files
contain date-indexed, observation-driven simulation
(sim) data for precipitation with snowmelt and potential
evaporation. For river flows and groundwater levels, the
simobs files contain date-indexed, observation-driven
simulations (sim) and associated observations (obs) if
they exist.

– simrcm. For the meteorological data, the simrcm files
contain date-indexed, RCM-driven simulations for the
12 RCMs used in eFLaG for precipitation with both
snowmelt and potential evaporation. For river flows
and groundwater levels, the simrcm files contain date-
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Table 3. eFLaG dataset structure information.

Data Name of file Years available

simobs Daily meteorology (precipwsnow
(mm d−1)+PET – mm d−1)

ukcp18_simobs_[nrfa-station-
number/borehole-name].csv

Jan 1961–Dec 2018

Daily river flow (m3 s−1) modelname_simobs_nrfa-station-number.csv Jan 1963–Dec 2018

Daily groundwater levels (m AOD) AquiMod_simobs_borehole-name.csv Jan 1962–Dec 2018

Daily groundwater recharge (mm d−1) zoodrm_simobs_groundwater-body-name.csv Jan 1962–Dec 2018

simrcm Daily meteorology (precipwsnow
(mm d−1)+PET – mm d−1)

ukcp18_simobs_nrfa-station-number.csv Dec 1980–Nov 2080

Daily river flow (m3 s−1) modelname_simrcm_nrfa-station-number.csv Dec 1982–Nov 2080

Daily groundwater levels (m AOD) AquiMod_simrcm_borehole-name.csv Jan 1982–Nov 2080

Daily groundwater recharge (mm d−1) zoodrm_simrcm_groundwater-body-name.csv Jan 1981–Nov 2080

indexed, RCM-driven simulations for the 12 RCMs
used in eFLaG, where modelname is G2G, PDM, GR4J
and GR6J. NRFA station numbers and NGLA borehole
names are given in the eFLaG_Station_Metadata.xlsx
workbook.

– The gridded bias-corrected precipitation data are also
made available as a separate dataset at the EIDC (Lane
and Kay, 2022): https://doi.org/10.5285/755e0369-
f8db-4550-aabe-3f9c9fbcb93d.

Conditions of use

The eFLaG dataset is available under a licensing condition
agreement. For non-commercial use, the products are avail-
able free of charge. For commercial use, the data might be
made available conditional on a fee to be agreed to with
the UKCEH and NERC BGS licensing teams, owners of the
IPRs (intellectual property rights) of the datasets and prod-
ucts.

9 Applications and limitations

9.1 Applications

The eFLaG dataset is presented as a nationally consistent
dataset of future river flow, groundwater and groundwater
recharge, using the latest available climate projections from
UKCP18. In this article, we have described the dataset and
its evaluation against observational hydrological datasets to
give some confidence in the use of eFLaG as a dataset that
can be used to assess the potential impacts on climate change
in UK hydrology for a very wide range of applications.

The eFLaG dataset was developed specifically as a demon-
stration climate service for use by the water industry for wa-
ter resources and drought planning and hence by design is
focused on future projections of drought, low river flows and

low groundwater levels. We therefore present eFLaG primar-
ily as a dataset for this purpose. Ongoing work is underway
to demonstrate the utility of eFLaG for future drought pro-
jections (Parry et al., 2023; Tanguy et al., 2023) and for fu-
ture drought/water resources planning in practice (Counsell
et al., 2023). The predecessor product, FFGWL, has been
widely used within the water industry to provide insight into
the future evolution of river flows and groundwater levels
through the 21st century to support water resources man-
agement plans and also supported significant academic wa-
ter resources planning studies (e.g. Borgeomo et al., 2015;
Huskova et al., 2016).

To provide users with a platform for accessing eFLaG
datasets and all the evaluation approaches outlined here,
an interactive web application has been developed, the
eFLaG Portal (https://eip.ceh.ac.uk/hydrology/eflag/, last ac-
cess: 29 March 2023). The portal provides a user-friendly
front-end for accessing eFLaG results, with several examples
shown in Fig. 11. The figure demonstrates how eFLaG data
can be used to project future drought characteristics for vari-
ous time slices and also how low-flow characteristics change
through the 21st century, based on the analysis conducted in
Parry et al. (2023).

By providing a consistent dataset of future river flows,
groundwater levels and groundwater recharge, eFLaG can
potentially support a wide range of applications across other
sectors. The FFGWL product also found very wide appli-
cation for diverse research purposes (for water quality, e.g.
Charlton et al., 2017, hydroecology, e.g. Royan et al., 2015,
groundwater recharge, Hughes et al., 2021, or groundwater
level reconstruction, Jackson et al., 2016). For eFLaG, the
good simulation of river flows and groundwater behaviours
across much of the hydrological range suggests that this
product could also find application in a whole range of im-
pact studies, subject to additional evaluation for the purposes
in mind. While not validated specifically for floods, the en-
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Figure 11. Screenshots from the eFLaG Portal. Top: map showing percentage change in drought duration between baseline and near future
for eFLaG catchments nationally, using PDM; box plots showing percentage changes (using PDM) for a river in southern England (the river
Pang) for three time slices, with box plots showing range of RCM uncertainty; other drought characteristics available on other tabs. Bottom:
map showing percentage change in a low flow metric (Q90) between baseline and near-future for eFLaG catchments nationally, using PDM;
with time series showing transient projections of Q90 in moving windows through to the 2080s for the river Pang, each colour representing
different RCM runs, black representing median. For all outputs, models other than PDM can be selected using the tabs at the top.
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couraging evaluation outputs for higher-flow percentiles sug-
gests users can analyse high-flow metrics and variability (e.g.
frequency of flows above a threshold), even if not annual
maximum peak flows.

As with FFGWL, there are a number of advantages of us-
ing eFLaG for future projections: it is a spatially coherent
dataset, meaning that future changes in hydrological vari-
ables can be compared between catchments, boreholes and
aquifers at the regional to national scales. This is a key ben-
efit for both research and practical water resources plan-
ning. Spatially coherent projections are needed to address
the spatio-temporal dynamics of droughts (e.g. Tanguy et al.,
2021), how these may change in the future and what this may
mean for water resources planning – where, in practice, water
resources management plans often involve transfers between
regions (e.g. Murgatroyd et al., 2021). Tanguy et al. (2023)
address the changing future spatial coherence of droughts us-
ing eFLaG.

Another key benefit of eFLaG is that transient time se-
ries (daily data from 1980 to 2080) allow users to explore
the future evolution of river flow and groundwater variability
on interannual and decadal timescales rather than just using
change-factor approaches that compare between future time
slices and the baseline.

The use of an ensemble of outputs enables users to con-
sider uncertainty in driving data (via the 12-member RCM
ensemble) as well as, for river flows, hydrological model
uncertainty. In addition, different models provide different
benefits: G2G performs less well against observations than
the (calibrated) lumped catchment models but does enable
the characterisation of natural flows, which is vital for some
uses (e.g. in providing naturalised river flows for regionalisa-
tion or as a baseline for assessing impacts, as is common in
regulatory and hydroecology applications, e.g. Terrier et al.,
2021). Moreover, abstractions and discharges can be added
to the naturalised runs, as demonstrated by Rameshwaran
et al. (2022). This opens up the possibility of projecting the
evolution of future naturalised and impacted river flows sep-
arately – a follow-up study on this topic is underway by the
authors.

Furthermore, G2G’s response to rainfall may be less tai-
lored to the present-day climate than the calibrated models,
as noted in the limitations section. The eFLaG hydrological
model ensemble therefore includes models that may be ben-
eficial for different applications according to the particular
needs of end-users.

9.2 Limitations and guidance

Users of the eFLaG dataset should be aware of its limitations.
While the evaluation shows encouraging results at the na-
tional scale, there are inevitably some catchments and bore-
holes where the evaluation (either Stage 1, Stage 2 or both)
indicates poorer-quality simulations. Users must be aware of
this and should consult all the provided evaluation metrics

when considering which catchments to use (and which mod-
els to use) in their analyses.

Users must also be aware that, while there is some con-
sideration of uncertainty through the adoption of the RCM
PPE and the use of multiple models for river flows, there are
many other sources of uncertainty not sampled in eFLaG.
While the PPE gives a range of 12 outcomes, it is only one
UKCP18 product and one emissions scenario and so does
not sample the full range of outcomes in UKCP18. The emis-
sions scenario, RCP8.5, is considered to be a pessimistic sce-
nario (Hausfather and Peters, 2020), so this should be borne
in mind, and the eFLaG projections (along with other uses
of the UKCP18 regional projections) can arguably be seen as
akin to a “worst case” for planning (Arnell et al., 2021). Fu-
ture work should position eFLaG against the wider range of
UKCP18 outcomes. Furthermore, only one bias-correction
approach is used.

Although we use a range of river flow models, clearly
other hydrological models could provide different outcomes
than the set used here, and we have only used one groundwa-
ter level model and recharge model respectively and so have
not considered model uncertainty for groundwater. We have
also not considered other sources of uncertainty in the hy-
drological modelling (e.g. parametric uncertainty, as in e.g.
Smith et al., 2019) or the impacts of different observational
driving climate datasets (e.g. different formulations of poten-
tial evapotranspiration, as in e.g. Tanguy et al., 2018). These
studies demonstrate that these can be significant sources of
uncertainty, but it was beyond our scope to consider them
within the time and resources constraints of eFLaG given
the high number of existing runs that were necessary. Future
studies should address these further sources of uncertainty.

The eFLaG modelling framework adopted the approach of
calibrating using a full period of record rather than using a
split-sample approach. Given the length of the record, this is
unlikely to be too significant (as shown for GR4J in the UK
by Harrigan et al., 2018b) relative to using split-sampling,
but at the same time, uncertainties inevitably remain about
future projections well outside the calibration period, not
least given likely non-stationarities in catchment properties.
It should also be borne in mind that a strong performance of a
model as indicated by good metric values is not necessarily a
reliable indicator of a model’s ability to reproduce trends in
hydrological signatures such as those describing low flows
(Todorović et al., 2022) – this is particularly the case for the
future under a changing climate.

Following on from this, one important limitation of this
study – in common with the original Future Flows product
(Prudhomme et al., 2012) and indeed a great majority of cli-
mate projections in hydrology – is the lack of explicit mod-
elling of human disturbances. This is simply unavoidable, as
large-scale datasets of artificial influences have only recently
been made available in the UK, and only for England (e.g.
Rameshwaran et al., 2022). This especially applies to the
lumped catchment models and the groundwater level model.
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As such processes are not represented, they will simply be
accounted for implicitly during calibration. Of course, this
is unrealistic, as artificial influences are likely to change in
the future and such non-stationarity could be locally signifi-
cant. However, it should be borne in mind that the purpose of
eFLaG is to model future river flow characteristics based on
current catchment conditions rather than to truly chart future
river flow trajectories in these catchments. For most practical
applications, assuming current artificial influences and pro-
jecting forwards in time is entirely reasonable, especially in
the absence of any informed understanding of how artificial
influences will change.

There are also considerations for end-users when apply-
ing the projections directly in impact assessments. Notably,
the HadREM3-GA705 climate model that underpins the
UKCP18 RCM outputs is run on a 360 d calendar year. The
eFLaG projections do not modify this calendar when pro-
ducing the meteorological, hydrological and hydrogeological
variables, and it is therefore the responsibility of the end-user
to deal with this in an appropriate way. There are a number
of ways of doing this (e.g. Prudhomme et al., 2012; Dobor
et al., 2015), and, in general, there is no agreed-upon optimal
approach. Where this is performed as a post-processing step
by the user (as with the eFLaG datasets), it is likely that the
best approach will depend on the impact or system modelling
being undertaken.

Finally, eFLaG only provides projections for a sub-set of
the UK gauging station network (200 catchments from some
1200 in the NRFA). This is an inevitable constraint, as with
the original FFGWL product (300 locations). While we have
tried to sample UK hydrology to give users as much scope
as possible, there will still be a need to transpose projec-
tions to sites of interest for some users. One of the bene-
fits of eFLaG is that gridded river flow and recharge mod-
els are used. While these gridded datasets are not yet openly
available, current follow-up initiatives are looking to exploit
them to provide projections at ungauged locations. A grid-
ded dataset using G2G, but with different driving data, is de-
scribed by Kay et al. (2023).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-2391-2023-supplement.
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