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Abstract

During protracted dry spells, there is considerable interest from water managers, media and 
the public in when and how drought termination (DT) will occur. Robust answers to these 
questions require better understanding of the hydroclimatic drivers of DT than currently 
available. Integrated vapour transport (IVT) has been found to drive DT in western North 
America, but evidence elsewhere is lacking. To evaluate this association for the British-Irish 
Isles, Event Coincidence Analysis is applied to 354 catchments in the UK and Ireland over 
the period 1900-2010 using ERA-20C reanalysis IVT data and 7,589 DT events extracted 
from reconstructed river flow series. Linkages are identified for 53% of all DT events across 
all catchments. Associations are particularly strong for catchments in western and southern 
regions and in autumn and winter. In Western Scotland, 80% of autumn DTs are preceded by 
high IVT, whilst in southern England more than two thirds of winter DTs follow high IVT 
episodes. High IVT and DT are most strongly associated in less permeable, wetter upland 
catchments of western Britain, reflecting their maritime setting and orographic enhancement 
of prevailing south-westerly high IVT episodes. Although high IVT remains an important 
drought-terminating mechanism further east, it less frequently results in DT. Furthermore, the 
highest rates of DT occur with increasing IVT intensity, and the vast majority of the most 
abrupt DTs only occur following top decile IVT and under strongly positive North Atlantic 
Oscillation (NAO) conditions. Since IVT and NAO forecasts may be more skilful than those 
for rainfall which underpin current forecasting systems, incorporating these findings into such 
systems has potential to underpin enhanced forecasting of DTs. This could help to mitigate 
impacts of abrupt recoveries from drought including water quality issues and managing 
compound drought-flood hazards concurrently.

Keywords: drought recovery; integrated vapour transport; atmospheric rivers; event coincidence analysis; UK; Ireland

1 Introduction

Drought is a naturally recurring phenomenon influenced by 
a range of factors but ultimately caused by a prolonged lack of 
rainfall (Van Loon 2015). The UK and Ireland (hereafter 

jointly referred to as the British-Irish Isles; BII) have an 
extensive history of drought events over multiple centuries, 
despite reputations as relatively wet countries, which 
challenges public perceptions. Drought is an increasingly 
topical issue in the BII, due to the combined pressures of 
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increasing populations and water demands plus climate 
change projections of more frequent and severe droughts 
(Parry et al. 2023; Meresa & Murphy 2023).

Drought termination (DT) ‒ the return to normal quantities 
of water ‒ is a critical drought phase (Parry et al. 2016a), and 
vital to avoiding the most damaging impacts and costly 
management interventions (Seneviratne & Ciais 2017). 
However, DT has generally received far less attention than 
other aspects of drought (Parry et al. 2016b) despite the 
compound occurrence of drought and flooding multiplying 
their impacts (Parry et al. 2013; Swain et al. 2018; He & 
Sheffield 2020; Seeley & Wordsworth 2021). Increasing 
abruptness of DTs has already been observed (Christian et al. 
2015; Qiao et al. 2022), with climate change also impacting 
both historical (Michaelis et al. 2022) and future occurrences 
of DT (Chen & Wang 2022).

Relative to DT events, the likelihood of recovery from 
drought has received greater attention because of its relevance 
to water managers, decision makers and wider society during 
protracted droughts (Panu & Sharma 2002). These studies 
have addressed related questions such as when DT is likely to 
occur, how much precipitation this will require, and the 
likelihood of this occurring (e.g. Karl et al. 1987; Bell et al. 
2013; Pan et al. 2013; Antofie et al. 2015). Associations 
between DT and hydroclimatic drivers including tropical 
cyclones (Lam et al. 2012; Kam et al. 2013), frontal systems 
(Maxwell et al. 2017), and atmospheric rivers (Dettinger, 
2013; Maxwell et al. 2017) have been explored to some extent. 
However, there remains poor understanding of rainfall 
mechanisms that trigger DT (Schwalm et al. 2017), hindering 
progress in forecasting (Huang et al. 2015; Han & Singh 
2021).

Atmospheric rivers (ARs) and their vertically-integrated 
horizontal water vapour transport (IVT) have received 
considerable attention over recent years as an important driver 
of intense rainfall and flooding in mid-latitude settings 
(Kingston et al. 2016; Nayak & Villarini 2017; Waliser & 
Guan 2017; Kamae et al. 2019; Esfandiari & Rezaei 2022; 
Guan et al. 2023), including western Europe (Lavers & 
Villarini 2013a; De Luca et al. 2017; Matthews et al. 2018). 
Despite the frequent occurrence of floods following droughts, 
linkages between DT and high IVT have not been explored 
sufficiently. IVT linkages to drought development have been 
assessed (Bennet & Kingston 2022) and most studies which 
have focused on DT are for North America. For instance, 
Maxwell et al. (2017) found that frontal storms were more 
important than ARs in the southern and eastern USA domain. 
In contrast, in western parts of the USA Dettinger (2013) 
found that ARs were responsible for up to two thirds of DTs. 
It is reasonable to anticipate that this might also apply to 
western Europe ‒ a mid-latitude, maritime setting with upland 
areas close to coastlines that favour orographic enhancement.

High IVT and ARs are projected to become more frequent 
and intense under climate change (e.g. Dettinger 2011; Gao et 
al. 2016; Ramos et al. 2016; Espinoza et al. 2018; Curry et al. 
2019), implying that they may become a more prevalent DT 
mechanism in future. Previous studies have assessed the 
influence on high IVT of different patterns of atmosphere-
ocean circulation, including the North Atlantic Oscillation 
(Dhana Laskhmi & Satyanarayana 2020; Gonzales et al. 2022; 
Baek et al. 2023; Singh et al. 2023). Taken together these have 
potential to inform improved forecasting of DT and its 
impacts. Forecasts of IVT and NAO are more skilful than 
rainfall (Scaife et al. 2014; Lavers et al. 2016) hence they may 
yield more reliable outlooks at improved lead times than 
currently possible.

This study aims to better understand the association 
between high IVT and hydrological drought termination in the 
BII. The following research questions are addressed:

 How important is high IVT as a hydroclimatic driver 
of drought termination?

 How does this association vary seasonally and 
spatially across the BII?

 How do catchment characteristics modulate these 
associations?

 How do high IVT intensity and the North Atlantic 
Oscillation influence characteristics of drought 
termination?

2 Data & Methods

2.1. Drought termination

2.1.1. Reconstructed river flows
Record lengths of reconstructed river flows far exceed 

those of observations, thus maximising the sample size of DT 
events for robust statistical analysis. Daily reconstructed river 
flows are available for 303 UK catchments for the period 
1891-2015 (Smith et al. 2018; Smith et al. 2019), while 
monthly reconstructions are available for 51 Irish catchments 
during 1766-2010 (O’Connor et al. 2021). Reconstructed 
flows for the 1900-2010 timeframe were used, concurrent with 
that of the reanalysis product used to source IVT data. For the 
UK, daily flows were aggregated to monthly mean flows since 
a monthly timestep is sufficient for identifying robust DT.

The 354 catchments were grouped into 12 hydroclimatic 
regions (SI Figure 1) following previous hydrological studies 
in the BII (e.g. Harrigan et al. 2018; Quinn et al. 2021). 
Selected catchment characteristics hypothesised to modulate 
the hydroclimatic influence of high IVT on DT were extracted 
for all 354 study catchments (Marsh and Hannaford 2008; 
Mills et al. 2014), describing the location (‘Longitude’ and 
‘Latitude’), elevation (‘Max_Alt’), wetness (‘SAAR’) and 
storage capacity (Base Flow Index, ‘BFI’) of catchments.
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2.1.2. Identification and characterisation of DTs
For each catchment, DT events were identified objectively 

from monthly reconstructed flow series via the methodology 
described by Parry et al. (2016a; 2016b). Each drought event 
consists of drought development and DT phases, with the 
drought termination rate (DTR) quantifying how abruptly 
droughts terminate on average. For each catchment, monthly 
time series of DT were extracted from reconstructed flows. 
These were then converted into binary series: ‘1’ 
corresponding to the final month of DT and ‘0’ otherwise.

2.2. Integrated vapour transport

2.2.1. Reanalysis data
Reanalysis data were used herein because observations of 

IVT are unavailable and to ensure consistency of data across 
UK and Irish catchments. The ERA-20C reanalysis (Poli et al. 
2016; grid resolution of 125km) spanning the period 1900-
2010 was applied to maximise overlap with river flow 
reconstructions. For each catchment, data were extracted from 
the nearest grid cell to the catchment centroid.

2.2.2. Identification of high IVT episodes
High IVT was defined as monthly IVT falling within the 

upper quartile of seasonal mean IVT. Whilst a monthly time 
step cannot identify individual high IVT storm events which 
occur on single or multiple days, high monthly values are 
indicative of above average IVT and associated ARs within a 
given month. For each catchment, the resulting monthly 
binary time series of high IVT (‘1’ for instances of IVT within 
the upper quartile of the seasonal mean, and ‘0’ otherwise) 
were filtered to include only those episodes of high IVT 
occuring during identified drought events.

2.2.3. North Atlantic Oscillation index data
Given the intensified flux of landfalling atmospheric water, 

it is hypothesised that both positive NAO and increased IVT 
could lead to higher DTRs (SI Figure 2a). In order to test this 
hypothesis, monthly NAO data spanning the 1900-2010 
timeframe were sourced (Jones et al. 1997).

2.3. Event Coincidence Analysis

Event Coincidence Analysis (ECA; Donges et al. 2016) 
was applied (through the R package ‘CoinCalc’; Siegmund et 
al. 2017) to all catchments to characterise associations 
between high IVT and DT during 1900-2010. ECA has been 
applied to independently-defined drought and flooding events 
(He & Sheffield 2020) but not yet potential drivers of DT. 
ECA reads in two binary time series of events that are 
hypothesised to be associated; in this instance, the binaries of 
DT and high IVT. Event series ‘A’ is the binary DT series and 
event series ‘B’ is the binary high IVT series, since this study 
assesses the importance of high IVT in driving DT. A window 

of T months is applied to detect occurrences of high IVT 
preceding DT. A value of T=2 was used to reflect the 
termination criteria of identified DT events (two months; 
Parry et al. 2016a, 2016b).

ECA yields two metrics that quantify associations between 
high IVT and DT. The Precursor Coincidence Rate (PCR) 
considers all occurrences of DT and quantifies how many are 
preceded by high IVT; PCR=1 (PCR=0) when every (no) DT 
is preceded by high IVT. Subtly different, the Trigger 
Coincidence Rate (TCR) considers all occurrences of high 
IVT during a drought and quantifies how many lead to DT; 
TCR=1 (TCR=0) when every (no) high IVT episode is 
followed by DT.

The relative values of PCR and TCR highlight important 
differences between catchments (SI Figure 2b). High PCR and 
low TCR suggests that high IVT is a frequent driver of DT but 
not every episode will result in DT. Conversely, low PCR and 
high TCR suggests that high IVT almost always results in DT, 
but these episodes occur less frequently and/or high IVT is one 
of a number of potential drivers.

Terciles were applied to indicate high (>0.67), moderate 
(0.33-0.67) and low (<0.33) values. PCRs and TCRs were 
evaluated for statistical significance whereby significance 
equates to a greater number of occurrences than expected by 
chance.

3 Results

Applying the DT methodology described above to monthly 
river flow time series spanning 1900-2010 for 354 catchments 
in the BII yielded 7,589 events (SI Figure 3) which generally 
terminate multi-year droughts.

3.1. High IVT and drought termination

Highest PCR values (>0.67) are found in western and 
southern Britain, and south-western and northern parts of 
Ireland (Figure 1a). Elsewhere, PCRs remain moderately high 
(0.33-0.67) in most catchments. Of the 12 hydroclimate 
regions identified for the BII, 10 have regional mean PCRs in 
the range 0.51-0.61 (SI Table 1). Low PCRs (<0.33) are 
restricted to eastern and particularly north-eastern Britain (SI 
Table 1). Nevertheless, PCRs are statistically significant in all 
but five catchments, suggesting that high IVT is a necessary 
driver of DT for most of the BII.

The spatial extent of high TCR values (>0.67) is much more 
constrained and generally limited to a dozen catchments in 
western Britain (Figure 1b). Moreover, the gradient of 
decreasing values ‒ moving from west to east across Britain ‒ 
is steeper for TCRs than PCRs. A similar gradient is not 
evident for the island of Ireland, with relatively uniform TCR 
values of 0.3-0.5. Low values (<0.33) are more widespread, 
encompassing many catchments in central, southern and 
particularly eastern Britain. Southern England and Anglian 
regions join Eastern Scotland and North-East England as 

Page 3 of 13 AUTHOR SUBMITTED MANUSCRIPT - ERL-115643.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX  

4

outliers in regional mean TCRs (SI Table 1). Regardless, 
TCRs are statistically significant in all but four catchments.

3.2. Seasonal variations

Of the 7,589 DTs identified across all 354 study catchments 
in the BII, 53% are preceded by high IVT, although important 
seasonal variations exist. Across all catchments, DTs preceded 
by high IVT are more frequent in autumn/winter than in 
spring/summer. In autumn, IVT-driven events comprise 
substantially more than half of all DTs for 9/12 hydroclimatic 
regions. In Western Scotland, 80% of autumn DTs are 
preceded by high IVT. In winter, for South-West England & 
South Wales and Southern England, more than two thirds of 
all DTs are preceded by high IVT (Figure 2). In spring and 
summer, the importance of high IVT in driving DT is less 
striking, although in half of the regions IVT-driven DTs 
outnumber those unrelated to high IVT for each season.

The majority of DTs in Western Scotland, Severn-Trent, 
Western Ireland and Southern Ireland are preceded by high 
IVT regardless of season (Figure 2). This is also true for three 
of the four seasons in Northern Ireland, Eastern Ireland, 
North-West England & North Wales, South-West England & 
South Wales, and Southern England. The year-round 
importance of high IVT is particularly noticeable for the island 
of Ireland. The only regions for which high IVT precedes less 
than half of DTs in all seasons are Eastern Scotland and North-
East England.

3.3. IVT-DT and catchment characteristics

Average rainfall (‘SAAR’) has the greatest association with 
each ECA metric (Figure 3e-f). TCRs correlate positively with 
catchment wetness (Spearman Rank rs=0.67; p<0.001) and, 
whereas a range of PCRs are exhibited for drier catchments, 
the wettest catchments all have PCRs exceeding 0.5 (rs=0.24; 
p<0.001).

Elevation (‘Max_Alt’) is associated with TCR (Figure 3h, 
though to a lesser extent than for SAAR; Figure 3f), but not 
with PCR (Figure 3g). Nevertheless, there are relatively fewer 
low PCR and TCR values for catchments with high maximum 
altitudes (compared to lower altitude catchments). Higher 
TCRs in higher elevation catchments (rs=0.40; p<0.001) 
suggest that a single occurrence of high IVT during a drought 
is more likely to lead to DT.

TCR decreases strongly with increasing longitude (distance 
east) across the BII (rs=-0.61; p<0.001; Figure 3b). Irish 
catchments (longitudes of -10.0 to -5.0) all have moderate to 
high PCRs and TCRs, with PCRs less than 0.4 and TCRs less 
than 0.2 almost entirely restricted to eastern catchments of the 
BII. Similarly, for catchments east of longitude -2.5, TCRs 
appear to be truncated with no catchments exceeding 0.4 (the 
same pattern is not evident for PCRs; Figure 3a). These results 
indicate a stronger association between high IVT and DT in 
western catchments of the BII.

The opposite is true for latitude. PCRs are more strongly 
correlated with latitude (Figure 3c), decreasing with distance 
north (rs=-0.30; p<0.001). At lower latitudes (further south in 
the BII), there are relatively few catchments with PCRs less 
than 0.4, and an increasing range of PCRs in catchments 
further north (increasing latitude). Conversely, there is no 
signal for TCR with latitude (Figure 3d). Higher PCRs at 
lower latitudes (further south) suggests that episodes of high 
IVT frequently lead to DT, whereas this is not necessarily the 
case further north.

Catchment storage (‘BFI’) has a modest association with 
TCRs (rs=-0.36; p<0.001; Figure 3j) but not so for PCRs 
(Figure 3i). TCRs are strongly truncated at values of 0.3 for 
BFIs exceeding 0.75. The limited correlation between BFI and 
PCRs suggests that high IVT is just as likely to precede DT 
regardless of catchment storage. However, the limits placed 
on TCRs in high BFI catchments suggests that multiple high 
IVT episodes occur before DT.

Taken together, a coherent narrative emerges linking high 
IVT and DT in different catchment types. High IVT frequently 
precedes DT in wetter catchments, and those further west and 
south, but is less likely to precede DT in drier catchments and 
those further north and east (PCRs; Figure 3a,c,e,g,i). 
Similarly, mid-drought high IVT episodes more frequently 
lead directly to DT in wetter, upland and/or western 
catchments, with high IVT less likely to lead to DT in drier, 
lowland and/or eastern catchments, particularly those with 
more substantial catchment storage (TCRs; Figure 3b,d,f,h,j).

3.4. Influence of NAO and IVT intensity on DT 
characteristics

The NAO plays a key role in influencing the intensity of 
high IVT. Across all DT events preceded by high IVT in all 
study catchments, strong positive NAO conditions 
(NAO>2.0) favour the occurrence of higher intensity IVT 
episodes (as evidenced by higher NAO values with increasing 
IVT intensity in Figure 4a-c). Furthermore, it is clear that an 
increasingly high intensity of IVT influences the upper limit 
of DTR that can be realised (Figure 4). The upper limit of 
DTRs increases markedly with IVT threshold (particularly for 
IVT above the 90th percentile). The majority of the highest 
DTR values (>100% month-1) are associated with the highest 
IVT values (Figure 4c).

Taken together, these findings confirm that positive NAO 
triggers higher IVT and that increased IVT, in turn, produces 
the highest DTRs. Whilst a range of DTRs is plausible for all 
positive NAO values and for all high IVT values, the highest 
DTRs (i.e. the most abrupt terminations) are almost entirely 
limited to episodes of high IVT above the 90th percentile 
during strongly positive NAO conditions (Figure 4c).

4 Discussion

Page 4 of 13AUTHOR SUBMITTED MANUSCRIPT - ERL-115643.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX  

5

This research sought to better understand the importance of 
high IVT as a potential driver of DT and its spatial and 
seasonal variations across the BII. High IVT is very influential 
in driving DTs (especially in autumn and winter; Figure 2), 
consistent with findings from previous studies (Debbage et al. 
2017; Nayak & Villarini 2017; Dettinger et al. 2018; Akbary 
et al. 2019; Sharma & Dery 2019). Summer associations are 
limited by less intense high IVT-derived rainfall (Champion 
et al. 2015).

TCRs vary more markedly with a stronger association with 
catchment characteristics but PCRs are relatively higher 
across a range of catchment characteristics (Figure 3). This 
suggests that high IVT is an important trigger for DT in most 
catchments, but that in some catchments not every episode of 
high IVT will lead to DT (where TCRs are lower).  Where 
PCRs and TCRs are lower, it also implies that other 
hydroclimatic drivers largely unrelated to high IVT may be 
more influential in driving DT, an aspect which would require 
further research.

The catchment characteristic with the strongest correlation 
with the ECA metrics is catchment average rainfall (Figure 3e-
f). High IVT is most responsible for DT in the wettest regions, 
likely explained by lower potential evapotranspiration and 
wetter shallower soils meaning such catchments are more 
responsive to rainfall inputs (e.g. McCabe & Wolock 2016). 
Catchment maximum elevation is also found to be influential 
on TCRs (Figure 3h). It is likely that the orographic 
enhancement of plumes of high IVT over the higher ground of 
western Britain and Ireland (Burt & Howden 2013; Griffith et 
al. 2020) produces a swifter response and thus higher TCRs 
(i.e. a greater proportion of high IVT episodes result in DT). 
Orographic enhancement of high IVT has also been cited as a 
controlling factor in other parts of the world (e.g. Neiman et 
al. 2008).

Despite the strong association between elevation and 
rainfall across the BII, associations with TCRs are weaker for 
elevation (non-existent for PCRs) than for rainfall. Whilst 
there are west-east gradients for both rainfall and elevation, 
the western uplands cast a rain shadow effect inhibiting 
rainfall totals. Although high elevation is an important 
explanatory factor linking high IVT with DT (e.g. Neiman et 
al. 2008), it is not necessarily elevation which best reflects this 
pattern.

Longitude was also found to be an important factor (Figure 
3a-b). Both PCRs (Figure 1a) and especially TCRs (Figure 1b) 
are higher in western than eastern catchments (SI Table 1). 
This is most likely explained by the prevailing south-westerly 
direction from which plumes of high IVT arrive in the BII 
(Griffith et al. 2020). It also explains why Irish catchments 
tend to have both high PCRs and TCRs despite lacking the 
same higher elevations which promote orographic 
enhancement and higher rainfall totals in western Britain. This 
mirrors previous findings of stronger associations in western 

maritime settings of other countries (Dhana Laskhmi & 
Satyanarayana 2020; Singh et al. 2023).

The importance of catchment wetness, elevation and the 
location of the wettest and highest elevation catchments along 
the same western maritime setting in which plumes of high 
IVT make landfall is highlighted by the lack of seasonality in 
associations between high IVT and DT. For regions 
comprising the entirety of the western maritime BII, high IVT 
is an important driver of DT in all seasons (SI Table 1). The 
dominance in autumn/winter is consistent with previous 
findings in similar western upland maritime settings, 
attributed to the increased effectiveness of orographic 
enhancement (Neiman et al. 2008; Burt & Howden 2013; 
Khouakhi et al. 2022).

DT in catchments in eastern Scotland and north-east 
England are least correlated with high IVT (Figure 1). This is 
probably also attributable to the presence of the rain shadow 
cast by western uplands over north-eastern regions and 
reducing the influence of south-westerly airflows on DT 
(Malby et al. 2007). This is borne out by steeper west-east 
gradients in PCRs and TCRs in the north than further south 
(Figure 3c-d).

In general, high IVT less often leads to DT in drier lowland 
catchments (Figure 3e-h). More frequently characterised by 
higher rates of evapotranspiration, higher soil moisture 
deficits, and more substantial subsurface storage, these 
catchments are generally less responsive to rainfall inputs. 
This suggests that multiple episodes of high IVT might be 
necessary to trigger DT, resulting in reduced TCRs. Such 
catchments are also subject to higher surface and groundwater 
abstractions to meet water demands ‒ an additional factor 
confounding DT occurrence. Whilst abstractions are higher 
today than in the early 20th century, the reconstructed river 
flow data used herein were calibrated over recent decades, 
incorporating current artificial influences and extrapolating 
them over the entire time series.

In addition to the influence of catchment properties, the 
intensity of IVT and the NAO are also found to coincide with 
the occurrence of particularly abrupt DTs (Figure 4). Strong 
positive NAO favouring the prevalence of higher intensity 
IVT episodes is consistent with previous findings in north-
west Europe. Positive NAO conditions were found to promote 
the development of ARs that draw atmospheric moisture from 
subtropical sources under a south-westerly airflow (Stohl et al. 
2008).  It is perhaps no surprise that abrupt DTs are more 
prevalent under positive NAO conditions, which generally 
bring more winter storms, higher IVT, increased rainfall and 
higher temperatures across the BII and Northern Europe (Li et 
al. 2020; Barnes et al. 2022).  Even within the UK there are 
spatio-temporal variations in the influence of NAO on rainfall 
and river flows, with positive NAO found to be more 
important primarily in the north-west and in winter (West et 
al. 2021).  By extension, given the influence of positive NAO, 
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negative NAO may also suppress rainfall; the relative 
sequencing of negative (dry) and positive (wet) NAO phases 
(e.g. Burt & Howden 2013; West et al. 2022) is a potential 
mechanism of DT.

These findings have important implications for forecasting 
DTs. Catchments with high PCRs and TCRs are those in 
which DT is most likely to be successfully forecast, as most 
DTs are triggered by high IVT and most mid-drought high 
IVT episodes result in DT. Such conditions are most prevalent 
in autumn/winter in western parts of the BII. Only one of the 
study catchments falls within the highest tercile of both PCR 
and TCR; the Nevis drains the slopes of the highest peak in 
the BII and is the sixth wettest of ~1,600 catchments in the UK 
(Marsh and Hannaford 2008).

For more than 90% of study catchments, PCR values 
exceed TCR values, meaning that whilst high IVT tends to 
lead to DT, not every high IVT episode results in DT. Lower 
TCR values could act to limit the forecasting potential of high 
IVT. Where values of TCR are lower, it is more likely that a 
given high IVT episode will not result in DT (a ‘false alarm’ 
in a forecasting context). Confounding factors that weaken the 
IVT-DT association (such as catchment storage, higher 
evaporative demand and soil moisture deficits, artificial 
influences) are consistent with previous findings in the UK 
(Lavers et al. 2012).

Nevertheless, whilst there are important regional, seasonal 
and catchment-specific controls on the extent to which high 
IVT associates with DT, these findings demonstrate the 
potential for forecasting. Despite recent improvements in the 
skill of medium-term rainfall forecasts (e.g. Scaife et al. 
2014), forecasts of IVT and NAO over a similar timeframe 
show greater skill, particularly at longer lead times (e.g. 
Lavers et al. 2016; Scaife et al. 2016; Hall et al. 2017; Lavers 
et al. 2017; Weisheimer et al. 2017). Combining this skill with 
the insights gained herein offers scope to forecast DTs and 
therefore both better manage droughts and minimise negative 
impacts of destructive DT events (Han & Singh 2021; Ficklin 
et al. 2022).

5 Conclusion

This study has provided the science that might potentially 
underpin enhanced forecasting of DTs in the BII. Subsequent 
research is required to more formally evaluate the success of 
hindcasts of sub-seasonal IVT and NAO outlooks. Such 
evaluations would provide formal skill assessments which 
could inform the confidence with which decision-makers, 
water managers and other stakeholders might utilise forecasts. 
The UK Hydrological Outlook (Prudhomme et al. 2017) is an 
existing forecasting system which could operationalise 
enhanced DT forecasting capabilities.

Given the strength of associations between high IVT and 
DT identified herein for the BII, as well as findings on the 
importance of high IVT in triggering flooding elsewhere in 

western Europe (e.g. Stohl et al. 2008; Lavers et al. 2013a), a 
natural successor study could explore the extent to which 
findings are similar elsewhere in the region. The development 
of reconstructed flow series in other countries (e.g. Caillouet 
et al. 2017 for France) offers tantalising potential to underpin 
enhanced forecasting of DTs across the region.
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Figure 1 -- Event Coincidence Analysis for drought termination with high IVT for 354 catchments across the British-Irish Isles: (a) Precursor Coincidence Rates (PCRs); 
(b) Trigger Coincidence Rates (TCRs). Dots with borders indicate significance at the 95% confidence level.
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Figure 2 -- Proportion of drought termination (DT) events in all study catchments during 1900-2010 preceded by high IVT or otherwise, by season (rows) and British-
Irish Isles region (columns).
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Figure 3 -- Associations between PCR (top row) or TCR (bottom row) and five catchment characteristics: (a)-(b) Longitude [degrees]; (c)-(d) Latitude [degrees]; (e)-(f) 
catchment average rainfall [SAAR; mm]; (g)-(h) maximum altitude [Max_Alt; m]; (i)-(j) Base Flow Index [BFI; unitless]. Spearman rank correlations (rs) and their 
significance values (p) are indicated.
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Figure 4 -- North Atlantic Oscillation (NAO) index values in the final month of drought termination (DT) events identified in all 354 catchments against drought 
termination rate (DTR) for those events preceded by high IVT in percentile ranges: (a) 75th-80th; (b) 80th-90th; and (c) >90th.
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